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The Phonocardiogram (PCG) signal provides crucial insights into heart function and is 

instrumental in identifying cardiac dysfunctions leading to heart failure. Given the 

significant impact of Cardiovascular Diseases (CVD) on human life and socioeconomic 

conditions, early detection of cardiac problems is imperative. This study evaluates a hybrid 

denoising technique, Empirical Mode Decomposition (EMD) with Fast Mask Convolutional 

Neural Network (EMD-FMCNN), to reduce the impact of noise on PCG signals. Using 

datasets from the NHS supplemented with Additive White Gaussian Noise (AWGN), the 

effectiveness of the EMD-FMCNN approach is compared to the Double-Density Discrete 

Wavelet Transform (DD-DWT) methodology. Evaluation metrics such as Mean Square 

Error (MSE) and Signal-to-Noise Ratio (SNR) are utilized. The results indicate that the 

EMD-FMCNN approach outperforms DD-DWT, yielding superior SNR values of 25.55 dB 

compared to 18.19 dB, and achieving optimal MSE values of 0.01% compared to 0.42% for 

DD-DWT. The findings demonstrate the effectiveness of the EMD-FMCNN approach in

denoising PCG signals, offering a promising method for improving the accuracy of

cardiovascular disease diagnosis.
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1. INTRODUCTION

Any mechanical process generates sound, and the heartbeat 

produces sound as well this sound could be audible or above 

depending on the sort of activity. Heart sounds in the auditory 

range originate from the mechanical actions of the heart 

brought on by its normal function [1]. It necessitates extra 

preparations, such as a stethoscope that operates on the 

resonant of the air column connected to the stethoscope's 

concept. However, signals could be digitally captured for later 

use and further analyzed with the help of the right electrical 

circuits [2]. The design and operation of the heart, the 

significance, source, and characteristics of the Hybrid Spatial 

Spectra (HSS) signals and murmurs produced, and the 

challenges associated with signal analysis. 

The heart is the primary organ responsible for pumping 

blood through the circulatory system and into the various parts 

of the human body. The term CVD refers to illnesses that 

impact the blood vessels or the human heart [3]. Nearly 17.5 

million deaths were attributed to CVDs in 2016, making them 

the top reason for death world. The lowest rate of CVD 

mortality effect could be achieved through early observation. 

There are many non-invasive techniques for diagnosing CVDs 

that rely on the electrical, mechanical, or magnetic activity of 

the heart [4]. Electrocardiograms (ECGs) are electrical heart 

activity, and tomography scans that were magnetic heart 

activity, were both frequently used to identify CVDs, but both 

have drawbacks due to their expensive nature and need for 

specialized knowledge. Auscultation is a different way to 

identify cardiac illness and was recently given the label PCG. 

It was invented in the eighteenth century and simply requires 

a stethoscope as a diagnostic tool. The auscultation method, 

which was first described [5], is frequently used as the main 

indicator for human physiology, particularly cardiac activity, 

although it is mostly reliant on the clinical professional's skill 

to perceive and understand heart-generated sound.  

The most accurate graphical depictions of heartbeats and 

murmurs (abnormal heartbeats) are obtained through PCG. S2, 

S1, S4, and S3, are the four heart sound components included 

in the PCG recording. In a normal heart, S4 and S3 heart 

sounds could also be detected in S2 and S1, which are 

produced by regular valve closure and opening in a healthy 

heart. S2 comes immediately after S3 and S4 comes right 

before S1. Heart rate monitoring, the detection of murmurs, 

and typical heart sounds are all performed using PCG signals 

[6]. 

PCG is a valuable diagnostic tool in the realm of CVD 

assessment, providing critical insights into the functioning of 

the heart through the analysis of its acoustic signatures. This 

non-invasive technique involves the recording and analysis of 

sounds produced by the heart and blood flow using specialized 

sensors placed on the chest. These sensors detect and amplify 

the mechanical vibrations generated by the heart's various 

activities, including the opening and closing of heart valves, 

turbulent blood flow, and abnormal heart sounds indicative of 

underlying cardiac conditions. 
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In the context of CVD, PCG serves as an indispensable tool 

for early detection, diagnosis, and monitoring of various 

cardiac abnormalities. By analyzing the frequency, intensity, 

timing, and duration of heart sounds, clinicians can identify 

anomalies such as murmurs, gallops, and clicks, which may 

signify structural defects, valve disorders, or hemodynamic 

abnormalities within the heart. Furthermore, PCG aids in 

distinguishing between benign and pathological heart sounds, 

guiding clinicians in making informed decisions regarding 

further diagnostic evaluations and appropriate treatment 

strategies for patients with suspected or established 

cardiovascular conditions. 

The integration of advanced signal processing algorithms 

and machine learning techniques has enhanced the diagnostic 

accuracy and predictive capabilities of PCG in CVD 

management. By leveraging artificial intelligence and pattern 

recognition algorithms, researchers have developed automated 

systems capable of detecting subtle abnormalities in heart 

sounds, thereby facilitating rapid and accurate diagnosis of 

various cardiac pathologies. Moreover, the portability and 

cost-effectiveness of PCG devices make them ideal for 

widespread deployment in diverse healthcare settings, 

enabling timely screening, early intervention, and continuous 

monitoring of patients at risk for cardiovascular disease. 

1.1 Characteristics of PCG signal 

The first systolic is the longest and deepest and starts at the 

identical period to the R wave's climax, followed by the third 

proto-diastolic, the fourth presystolic, and the second diastolic. 

These four fundamental noises were identified in the typical 

cardiac cycle. The first two noises are critical to identifying 

the initial cardiac cycle and calculating heart rate. The S1 and 

S2 peaks' locations are very important for the correct diagnosis 

statement since the distance through the two peaks 

differentiates S1 to S2 (occasionally S2 can have a bigger 

amplitude than S1). Various cardiovascular conditions, such 

as damage to aortic stenosis, tricuspid or aorta insufficiency, 

the ventricular septum, mitral or pulmonary artery, can result 

in sound murmurs, which can occasionally contaminate this 

interval. Murmurs are noise-like sounds that have a frequency 

of up to 600 Hz and become more apparent when blood flow 

is accelerated across anomalies like obstructions or narrowing. 

The detection of the murmurs is crucial for determining the 

cause of the illness, even though they appear to be a noise 

element [7]. 

1.2 PCG artifacts 

External or internal (physiological) noise sources have the 

potential to corrupt PCG readings. The following artifacts are 

the most significant sources of PCG signal disturbances: 

background music or speech, sensor movement, breathing 

sound, doors closing and other environmental noise, cough, 

and acoustic reducing of the bones and other problems. 

Electromagnetic waves could also be present in the measured 

signal [8] depending on how the sensor and electric storage 

elements are connected electrically. 

Artifacts to PCG transmissions are an indicator of issues of 

interference and the intended PCG signal overlapping in a 

frequency band. A digital filter could be used to minimize 

high-frequency sound, including the well-known Butterworth 

band-pass filter, but the actual issue is the noise that is mixed 

in with the pure PCG signal using the identical frequency [9]. 

More advanced techniques, like Empirical Mode 

Decomposition (EMD) and wavelet Transform (WT), are 

frequently used to get clear of the artifact. Both approaches are 

frequently used in the evaluation of biological signals and 

PCGs, according to much research. The contrast of these two 

techniques for eliminating interference from PCG signals is 

the focus of the paper [10]. 

PCG signal was a noise issue that degraded the signal. 

Numerous elements and noise, such as electromagnetic fields 

from the surroundings, power frequency fluctuations, 

interaction with respiratory and digestive sounds, and 

electrical impulses from the human body, frequently obstruct 

the recording of heart sounds [11]. As a result, a suitable 

technique, to the EMD technique and a wavelet-based 

technique was needed to eliminate noise from PCG signals. 

PCG signals could be denoised using the EMD approach, 

which is useful for data processing, particularly for nonlinear 

signals and non-stationary. Intrinsic Mode Function (IMF) 

was an oscillation element that could be separated from the 

PCG signal during the denoising method using the EMD 

approach [12]. A wavelet-based denoising system, like the 

DD-DWT also employed a decomposition technique to extract

the data signal from the sound.

The EMD approach was utilized to denoise an ECG signal 

with SNR and MSE serving as performance indicators. Work 

utilized MSE and SNR parameters to precision the denoising 

method efficiency of the PCG signal. The EMD approach was 

also used to separate a signal from a lot of noise signals. 

Boudraa contrasts the outcomes with a denoising approach to 

wavelets. They evaluated the EMD outcome of the wavelet 

method using adaptable white Gaussian noise [13]. The PCG 

signal could be used to perform the wavelet-based denoising 

technique. Executed a DD-DWT to eliminate the EEG signal 

or claimed that it might be applied to denoise PCG or ECG, 

two additional bio signal types. The S1 and S2 of the 

phonocardiogram were identified via character extraction by 

Gadde and Kumar [14] using wavelet packet transforms 

utilized in a separate WT. Since Jaros et al. [15] demonstrated 

to application of DD-DWT to improve the signal and image, 

we employed DD-DWT to remove the PCG signal in our work 

and contrasted the outcome to the EMD approach [16]. To 

eliminate noise from the PCG signal, we proposed the EMD-

FMCNN and DD-DWT methods using prior research.  

1.3 Problem statement 

The problem statement about PCG in the context of CVD 

revolves around the need for an efficient and reliable 

diagnostic tool that can accurately detect, diagnose, and 

monitor various cardiac abnormalities. Despite advancements 

in medical technology, Cardiovascular Diseases remain a 

leading cause of morbidity and mortality worldwide. Early 

detection and intervention are crucial for improving patient 

outcomes and reducing the burden of CVD on healthcare 

systems. 

Current diagnostic modalities, while effective, often require 

specialized equipment, and trained personnel, and can be 

costly and time-consuming. This poses challenges, especially 

in resource-limited settings where access to advanced 

healthcare facilities may be limited. Additionally, the 

interpretation of traditional diagnostic tests such as 

echocardiography and electrocardiography can be subjective 

and may lack sensitivity in detecting subtle cardiac 

abnormalities. 
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PCG presents a promising solution to these challenges by 

offering a non-invasive, cost-effective, and portable method 

for assessing cardiac function. However, the widespread 

adoption and optimization of PCG in clinical practice are 

hindered by various factors, including the need for 

standardized recording and analysis protocols, the 

development of robust signal processing algorithms for 

automated detection of cardiac abnormalities, and the 

integration of PCG data into existing healthcare infrastructure 

for seamless patient management. Addressing these 

challenges will contribute to the advancement of PCG as a 

valuable tool in the diagnosis and management of 

cardiovascular disease, ultimately improving patient outcomes 

and healthcare delivery. 

 

1.4 Limitations 

 

Phonocardiogram (PCG) technology presents a promising 

avenue for diagnosing and managing cardiovascular disease 

(CVD), yet it comes with notable limitations. One significant 

challenge lies in the interpretation of PCG recordings, which 

demands specialized expertise to differentiate between normal 

and abnormal heart sounds accurately. Variability in 

individual heart sounds and external factors such as patient 

positioning and ambient noise further complicate 

interpretation, potentially leading to diagnostic inaccuracies. 

Additionally, technical factors such as sensor placement and 

equipment characteristics can introduce variability in the 

quality of PCG recordings, necessitating standardized 

protocols and advanced signal processing techniques to 

mitigate these challenges. Despite its potential, the clinical 

evidence supporting the diagnostic accuracy and prognostic 

value of PCG in CVD is still limited compared to established 

modalities like echocardiography, highlighting the need for 

large-scale clinical studies to validate its utility. 

 

1.5 Motivations 

 

Furthermore, the accessibility and affordability of PCG 

devices pose barriers to widespread adoption, particularly in 

resource-constrained healthcare settings. While PCG offers 

the advantages of non-invasiveness and portability, cost-

effective solutions and integration strategies are essential to 

ensure equitable access to this diagnostic tool. Addressing 

these limitations through continued research, technological 

innovation, and healthcare system integration will be crucial 

for maximizing the potential of PCG in the diagnosis, 

management, and prevention of cardiovascular disease, 

ultimately improving patient outcomes and healthcare delivery. 

The remainder of the section is as follows: Section 2 

describes a brief about the signal and noise generation; wavelet 

transform and Empirical Mode Decomposition which is 

related to PCG. Section 3 states the proposed system and to 

design of the model of the system. Section 4 states the 

experimental findings and outcomes of the proposed system 

and section 5 concludes it. 

 

 

2. RELATED WORKS 

 

Two filtering techniques—EMD and WT—were developed 

in the MATLAB software for the PCG signal processing. The 

work focuses on removing speech signals, motion artifacts, 

and environmental noise from PCG data, which are the three 

types of disturbance that emerge most frequently [17].  

 

2.1 Signal and noise generation 

 

To assess the effectiveness of the technique, PCG 

recordings of the Physio Bank and Think Lab's biological 

signal databases were employed. To demonstrate the efficacy 

of techniques in various PCG frequency categories, 2 

physiological signals (further phy2 and phy1) and 2 

pathological signals (signal of the hypertrophic 

cardiomyopathy, additional pat2, or systolic murmurs 

combined of a prosthetic mitral valve signal, additional pat1) 

were chosen. PCG signal individually, the following three 

types of interference were introduced (Figure 1): Sound 

artifacts from ecosystems and the patient's body represented 

by High Frequency (HF) [18] sound of a frequency method 

above 20 Hz (artificially created); possibly, some 

electromagnetic disturbance; 

•Low-frequency (LF) noise that was artificially produced 

and a frequency level up to 100 Hz, replicating motion artifacts 

that mostly result in the movement of the detector to the 

person's chest. 

•The Whole Frequency (WF) sound replicates ambient 

speech noise by combining a variety of voice waveforms 

(accessible from the Physio Bank dataset).  
 

 

 
 

Figure 1. HF, LF, and WF noise frequency spectra 
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The procedures covered below are used to filter each of 

these distorted signals. Bland-Altman evaluation is displayed 

along with the coefficients associated with the original signal 

and SNR to a visual depiction of the accuracy of the 

approaches [19]. 

2.2 Wavelet transform 

The process methods for the period-frequency area were 

discovered as a result of the Fourier transform's many 

constraints to the processing of non-stationary data. To 

achieve the best balance between time and frequency 

distinguishability, the maternal wavelet width is changed 

suitably in time using the WT precision [20].  

2.3 Empirical Mode Decomposition 

A fundamental idea behind the EMD approach was the 

breakdown of a complicated non-stationary signal into a group 

of smaller signals, or IMF. The final Residue Signal (FRS) was 

gathered after the repetition, the iterative EMD method 

calculates the maximum and minimum extremes. Every signal 

could be recreated using this decomposition as the residue 

signal plus the sum of IMFs. Due to its versatility and signal-

dependency characteristics, the EMD is appropriate for the 

study of biomedical signals. In this investigation, a total of 10 

IMFs were chosen, and the Filtered Signal (FS) is composed 

of the IMFs that are chosen and practically established [21]. 

The Chirplet Transform (CT) performs effectively for 

signals that resemble chirps and have linearly time-varying 

elements [22]. The signal transition of the S1 element to the 

systolic murmur and the S2 element to the diastolic murmur is 

not, however, depicted in the Thresholding Function (TF) plot 

of the diseased PCG signals [23]. The spline CT (SCT) has 

been derived from CT to the assessment of the TF matrix to 

the PCG signal. The TF localization to the non-linearly time-

varying parts of the nonstationary signals is enhanced when 

compared with SCT with CT [24]. As a result, the pathogenic 

alterations can be captured more precisely and with better TF 

area resolution utilizing the PCG signal's TF matrix generated 

using SCT of the PCG signal than the one acquired via CT. 

The automatic evaluation of HVDs utilizing PCG signals was 

recently carried out using Convolutional Neural Network 

(CNN), Stacked Encoder (SAE) and Deep Neural Network 

(DNN) approaches [25]. The gradient descent method is used 

to implement deep learning in CNN and SAE networks to 

achieve the ideal parameters. Additionally, to develop these 

networks and achieve the ideal method variables, more 

examples are needed. Numerous biomedical applications also 

frequently use the Sparse Representation-Driven 

Categorization (SRC) method [26]. To forecast classification 

labels of evaluate characteristic vectors using these approaches, 

fewer attributes are needed for training cases and fewer 

training variables. The SRC operates better than current ML 

techniques for the identification of HVAs from PCG signal 

parameters. According to recent research, Kernel SRC (KSRC) 

utilizes the kernel trick to characteristic instances to greater 

dimensional spaces, where SRC could then be applied to 

categorization [27]. This enhances classification accuracy for 

datasets with non-linearly independent characteristic scenarios 

when compared to SRC alone. Therefore, the DNN created for 

the KSRC and ELM-auto encoder should be more efficient in 

the automatic identification of HVAs from the TF. It is 

represented by the PCG signal. SCT-based TF assessment is 

employed in this study to assess the PCG recording, and non-

linear properties such as permutation Entropy (PEN), Sample 

Entropy (SEN), and the L1-norm (LN) were calculated to the 

variable frequency of the PCG signal. 

3. PROPOSED SYSTEM

The proposed approach of developing a hybrid Empirical 

Mode Decomposition (EMD) with Fast Mask Convolutional 

Neural Network (CNN) aims to enhance the performance 

measures of Phonocardiogram (PCG) signals, particularly in 

terms of accuracy, efficiency, and reliability in diagnosing 

CVD. 

Empirical Mode Decomposition (EMD) is a signal 

processing technique used to decompose complex signals into 

simpler components called Intrinsic Mode Functions (IMFs), 

which capture different frequency components of the original 

signal. By decomposing PCG signals into IMFs, the hybrid 

EMD method aims to extract relevant features and enhance the 

representation of cardiac sound characteristics for more 

accurate analysis. 

In conjunction with EMD, the integration of Fast Mask 

CNN introduces a deep learning-based approach to further 

improve the performance of PCG signal analysis. CNNs are 

well-suited for learning hierarchical representations of data, 

and the Fast Mask CNN architecture likely leverages this 

capability to efficiently extract discriminative features from 

the IMFs obtained through EMD. This hybrid approach 

combines the strengths of both EMD and CNNs, allowing for 

more robust feature extraction and classification of PCG 

signals. By combining EMD with Fast Mask CNN, the 

proposed hybrid approach offers several potential benefits. 

Firstly, it may enhance the accuracy of cardiac abnormality 

detection by effectively capturing subtle variations in PCG 

signals that traditional methods may overlook. Secondly, the 

efficiency of the Fast Mask CNN architecture likely enables 

faster processing of PCG signals, making the diagnostic 

process more time-efficient and scalable. Lastly, the reliability 

of the hybrid approach is expected to improve and 

reproducible results in CVD diagnosis, ultimately contributing 

to better patient outcomes and healthcare delivery. 

3.1 Motivation of the work 

Cardiovascular Diseases are a danger to human life in the 

twenty-first century and have a significant impact on 

socioeconomic circumstances. The method to avoid this is by 

early identification of cardiac problems. There are a few tests 

with cutting-edge technology that can evaluate the health of 

the heart in addition to PCG signal evaluation. However, they 

also take a lot of time and money. Therefore, early, low-cost, 

precise, and quick detection of these problems may increase 

the survival of persons in distress while decreasing the death 

rate from Cardiovascular Diseases. Cardiac auscultation, or 

listening to noises made by the beating of the heart, is a time-

tested method for keeping track of the health of the 

cardiovascular system. It is a non-invasive, quick but precise, 

and affordable procedure that is accessible to everyone. The 

incorporation of cutting-edge technology in the areas of 

machine learning and signal processing could actively support 

doctors and other healthcare professionals in their attempts to 

improve the medical sector. The major organ of the 

cardiovascular system, the heart, has a great need for the 
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development of expert systems to monitor its health. Since 

diagnosing these disorders requires a high level of training and 

experience, the analysis of the PCG, a record of the sound the 

heart continuously produces, can be used to identify heart 

dysfunction and reduce inter-observer variability. This 

necessitates the purchase of HSS in digital form so that they 

are available for additional analysis to determine the condition 

of the heart. There are many different signal processing 

methods, but not all of them are appropriate for PCG analysis, 

which automatically analyses heart sounds and murmurs.  

The circulatory system (CS) is in charge of transporting 

blood through the arteries and veins, supplying oxygen and 

nutrients to different organs and cells, eliminating waste 

products, and participating in the maintenance of a safe body 

temperature. In the CS, the heart was the most significant 

organ. It was therefore regarded as the most important organ 

in the human body since it constantly provides nutrition and 

energy to other systems, organs, or sections of the body. The 

heart, which is roughly the size of a fist, sits approximately in 

the center of the chest, behind the two lungs and just to the left 

of the sternum (breastbone). An envelope-like structure known 

as the pericardium covers it. A network of nerve tissue 

conducts the biopotentials that are in charge of the heart's 

regular rhythmic beating throughout its surface. A two-stage, 

four-chamber centrifugal pump could be compared to the 

human heart from the perspective of an engineer. The Sino 

Atrium (SA) Node, a collection of cells also referred to as 

pacemaker cells, produces biopotentials that the heart uses to 

pump blood. The ECG reflects the rhythmic activity of the 

heart and is a record of such bio potentials when they are set 

up properly. The heart is a muscular organ that has four 

chambers: the Left Atrium (LA), Right Atrium (RA), Right 

Ventricle (RV), and Left Ventricle (LV). The heart is divided 

into two phases, the Atrium and the Ventricle. Its duties are to 

provide the entire body with energy, including all of the 

functional organs, produce oxygenated blood to serve as the 

energy carrier, and transport deoxygenated blood to the lungs 

where it is oxygenated and carbon dioxide is expelled. In 

particular, it draws polluted blood from the body through the 

LA and RA, purifies it in the lungs, and distributes the clean 

blood to the various organs of the body, including the heart, 

through the LV and RV. The muscles of the ventricles are 

stronger than those of the atrium because they are responsible 

for distributing blood throughout the body. To transport blood 

into and out of the heart, veins, and arteries are joined to the 

heart. Veins carry impure or deoxygenated blood, whereas 

arteries carry pure or oxygenated blood. To regulate the flow 

of blood between the different heart chambers, valve 

configurations are in place. The left and right atria's two 

chambers are divided by the mitral and tricuspid valves, 

respectively. However, the aortic and pulmonary valves 

separate the left and right ventricles, the two chambers of the 

ventricle. A fibrous cardiac skeleton supports the four heart 

valves. The ventricular and atrial muscles, and the valves, are 

attached to this skeleton, which is formed of dense connective 

tissue. The heart wall is made up of three stages: the innermost 

part is thin and is known as the endocardium, the middle layer 

is somewhat thick and is characterized as the myocardium, and 

the outermost part is thin and is characterized as the 

epicardium. Many blood arteries link to the heart and fall into 

the following categories: The arteries deliver pure (oxygenated) 

blood to various organs and body parts, whereas the veins 

collect impure (deoxygenated) blood from various body parts 

and organs. 

3.2 Proposed method 

The method of denoising extracts the information from the 

noisy signal by separating it from the noise. The remaining 

portion that is regarded as noise would be removed, resulting 

in the creation of a new signal to the necessary characteristics 

(like S2 and S1 to PCG) in terms of the frequency data. The 

signal and noise were separated using the denoising approach, 

as opposed to a filter based on certain frequencies that will be 

kept or eliminated. A collection of thirty *.wav heart sounds, 

with a total duration of 33, 37 ± 5,81s and 23 normal and seven 

aberrant heart sounds, was used. The subjects' age and gender 

have not been disclosed. Every recording has been sampled 

using a 2000 Hz frequency. 

3.2.1 Data acquisition process 

Describe the source of the Phonocardiogram (PCG) signals, 

whether they were obtained from clinical recordings, publicly 

available datasets, or generated synthetically. 

Specify the hardware used for data acquisition, such as PCG 

sensors, amplifiers, and data acquisition systems. 

Detail the recording protocol, including patient positioning, 

sensor placement on the chest, and any relevant environmental 

conditions during data collection. 

Provide information on the demographic characteristics of 

the study population, including age, gender, and any relevant 

clinical conditions. 

3.2.2 Pre-processing steps 

Outline the pre-processing steps applied to the raw PCG 

signals to enhance their quality and facilitate subsequent 

analysis. 

Include procedures for signal filtering to remove noise and 

artifacts, such as baseline drift and high-frequency noise. 

Describe any signal normalization techniques employed to 

ensure consistency across recordings and mitigate amplitude 

variations. 

Detail any artifact removal methods used to eliminate non-

cardiac sounds and motion artifacts from the PCG signals. 

Specify the sampling rate and any downsampling or 

resampling procedures applied to the PCG signals. 

3.2.3 Implementation details of EMD-FMCNN approach 

Provide a step-by-step description of the implementation of 

the hybrid EMD-FMCNN approach for PCG signal analysis. 

Explain the process of decomposing the pre-processed PCG 

signals into Intrinsic Mode Functions (IMFs) using Empirical 

Mode Decomposition (EMD), including any parameter 

settings or variations used. 

Detail the architecture of the Fast Mask Convolutional 

Neural Network (CNN) utilized for feature extraction and 

classification of the IMFs. 

Specify the hyperparameters of the CNN, including the 

number of layers, filter sizes, activation functions, and 

optimization algorithms. 

Describe the training process of the CNN, including the 

dataset used for training, data augmentation techniques 

applied, and evaluation metrics used to assess model 

performance. 

Outline any post-processing steps applied to the CNN 

outputs, such as thresholding or ensemble methods, to improve 

classification accuracy. 

EMD-FMCNN and a different thresholding technique were 

used in this study to carry out the denoising process. The 
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system efficiency of the denoising approach was determined 

by SNR and MSE for both EMD-FMCNN and DD-DWT. The 

investigation was restricted to signals that were AWGN-

corrupted and had all frequencies with similar amplitudes, 

indicating that the power density was frequency-dependent. If 

a measured signal a(t) contains white Gaussian noise N(0,1), 

 

a(t)=f(t)+σn(t) (1) 

 

f(t) is the original signal, n(t) is the noise, and σ is the noise 

strength (standard deviation). In this investigation, SNR 10 dB 

and r = 1 were utilized. σ - noise strength; f(t) - original signal 

and n(t) is the noise. The goal of the denoising procedure is to 

remove the signal's sound to recover f(t). The process 

employed in this work is shown in Figure 2. The loading of the 

PCG dataset was the first phase in this work's PCG signal 

extraction method followed by a normalized and centered 

preprocessing step. The PCG signal was denoised using either 

the DD-DWT or the EMD-FMCNN in the following stage. 

The final phase in our study of describing the system's 

efficiency was to determine the SNR and MSE value after the 

denoising procedure. To analyze the PCG non-stationary 

signals, the EMD-FMCNN and DD-DWT technology breaks 

the signal down into a collection of fundamental signals. The 

PCG signal was denoised using either the DD-DWT or the 

EMD-FMCNN in the following stage.  

The PCG signal a(t) is broken down by the EMD-FMCNN 

into many IMF. The time gap between the two extrema could 

be used to accurately characterize the IMF based on its time-

scale properties [11]. The greatest frequency oscillation left in 

the signal is chosen by the EMD-FMCNN. As a result, every 

IMF has an oscillation with an LF than the one that was 

previously obtained locally. Additionally, The EMD-FMCNN 

used either a wavelet or filter operation that has been 

predetermined. EMD-FMCNN decomposition works for both 

nonlinear and non-stationary activities since it is the local 

features and time scale of the information. The EMD breaks 

down into a collection of IMFs that must meet two 

requirements: (1) It should be symmetric to the local mean and 

(2) It must have a different number of zero crossings and 

extrema. The following stages are some of the procedures used 

by the EMD technique to deconstruct a(t) to a sum of the IMFs: 

 

 
 

Figure 2. The workflow process 

1. To obtain the upper and lower envelopes and to find local 

maximum and minimum values in a(t) using SCT. 

2. To determine m(t) (average mean) by combining the 

upper and lower envelopes. 

3. To determine h(t) (the temporary local oscillation) by 

subtracting a(t) with m(t). 

 

h(t) = a(t) – m(t) 

 

4. To determine h(t)'s median; if it is near zero then h(t) is 

the first IMF called cx(t) else repeat steps (1) - (3) by 

substituting h(t) for x(t). 

 

To calculate r(t) (remainder) = a(t) - cx(t) 

 

5. To get the subsequent IMF and residue, repeat steps 1 

through 5 using r(t) instead of a(t). 

6. Decomposition comes to an end when r(t) turns into a 

constant that no longer meets the requirements. 

 

𝑎(𝑡) = ∑ 𝑐𝑥(𝑡) + 𝑟(𝑡)

𝑁

𝑥=1

 (2) 

 

Thresholding and statistics categorization are required for 

the IMF-based denoising approach employing EMD. 

Conditions must be fulfilled by the IMF, a group of activities. 

The highest and lowest sums (total of extrema) must not 

exceed one or be equal to the entire amount of zero-crosses. 

The other version of DWT, such as DD-DWT, could be 

employed to evaluate heart sounds because (DWT) methods 

are widely utilized for this purpose. The procedure for 

denoising using DD-DWT is shown in Figure 3. 

 

 

 
 

Figure 3. The design of the DD-DWT method employed 

with TF to denoising and its filter 

 

Thresholding is one of the most effective signal-denoising 

methods, reducing the likelihood of high-frequency signal and 

noise mingling. Hard thresholding and soft thresholding are 

the 2 kinds of criteria that are utilized in this research. The 

features of the two thresholding methods employed in this 

investigation are shown in Figure 4. ρ is a thresholding value 

and ay(k) is a decomposition signal. Eq. (3) describes the hard-

thresholding procedure. 

 

𝑖�̂� = {
𝑎𝑦(𝑘), |𝑎𝑦(𝑘)| > 𝜌

0, |𝑎𝑦(𝑘)|     ≤  𝜌
 (3) 
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The method of soft-thresholding described in Eqs. (4) and 

(5). 

 

𝑠𝑖𝑔𝑛𝑎𝑦 = {

1, 𝑎𝑦(𝑘) > 0  

0, 𝑎𝑦(𝑘) = 0  

−1, 𝑎𝑦(𝑘) < 0

 (4) 

 

𝑖�̅�(𝑘) = 𝑠𝑖𝑔𝑛[𝑎𝑦(𝑘)] × |𝑎𝑦(𝑘) − 𝜌𝑦| (5) 

 

 
 

Figure 4. Evaluation of the TF (a) hard thresholding and (b) 

soft thresholding 

 

The EMD-FMCNN is proposed in this article as a method 

for automatically classifying HVDs using the properties of 

retrieved PCG signals. Figure 5 illustrates the EMD-FMCNN's 

architectural layout. Using 10-fold CV and hold-out 

approaches, the training and test PCG records are chosen. 

Figure 6 determines the flow chart of the proposed techniques 

to automatically identify and categorize HVDC into normal 

and pathological (Aortic Stenosis (AS), Mitral Regurgitation 

(MR), Mitral Valve Prolapse (MVP) and Mitral Stenosis 

(MS)) states using EMD-FMCNN. The following subsections 

provide a detailed explanation of each of the steps in the 

proposed method. 

 

 
 

Figure 5. The proposed EMD-FMCNN framework for 

classifying HVDs 

 
 

Figure 6. The recommended approach for automated HVD 

identification and categorization 

 

Collected and Filtered PCG Signals are utilized in our 

research, we employed PCG recordings from a public database 

1 is described in depth. One thousand PCG recordings from 

various groups are included in the dataset. Of the 1000 

recordings, 200 PCG recordings are found in each of the two 

classes (normal and diseased). The dataset includes the 

annotations for the pathological (MS, AS, MVP, and MR) and 

normal (N) categories of PCG signals. Each PCG recording 

features a 16-bit resolution and an 8-kHz sampling rate. The 

gathered PCG recordings in this study are down-sampled to 4 

kHz for the TF evaluation. PCG signals of the EMD-FMCNN 

were also utilized. It comprises both normal and pathological 

(44.1 kHz sampling frequency) PCG signals (AS, MS, MR, 

and MVP). Additionally, these signals are down-sampled to 4 

kHz. The researcher also employed real-time PCG signals 

captured for this research. The subjects have given written 

agreement to the non-invasive recording of the PCG signal. 

Each recorded signal has a sample frequency of 4 kHz. The 

noise that characterizes PCG signals is removed using a 6th-

order Butterworth BPF having 25 Hz and 900 Hz lower and 

higher cutoff frequencies. Following filtering, the PCG 

recording's greatest amplitude value is used to conduct 

amplitude normalization. Each PCG recording's TF 

representation is calculated utilizing SCT following 

normalization. The subsection that follows provides a 

description of the spline kernel-based CT for evaluating the TF 

matrix obtained from PCG recording. 

The CT to a changed kernel operation is the SK and CT. TF 

representation to the non-stationary signal is implemented 

using many frequency rotation and frequency shift operators 

in this modified kernel function. Following is an evaluation of 

the separate SCT for a PCG signal with N samples, a[n]: 

 

𝑇[�̃�, 𝑘] 

= ∑ 𝑖[̅𝑛]𝑤𝜎[𝑛 − �̃�]𝑒−𝑦
2𝜋𝑛𝑘

𝑁 𝑓𝑜𝑟 �̃� 𝜖[𝑛𝑥, 𝑛𝑥+1]

𝑁−1

𝑛=0

 
(6) 
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With 𝑖[̅𝑛] = 𝑖[𝑛]. 𝜑𝑅[𝑛, 𝑄]. 𝜑𝑆[𝑛, �̃�, 𝑄]. T stands for the TF

matrix, where the frequency-rotate and frequency-shift 

functions are 𝜑𝑅[𝑛, 𝑄] and 𝜑𝑆[𝑛, �̃�, 𝑄], correspondingly.

𝑤𝜎[𝑛] =
1

√2𝜋𝜎
𝑒

−
𝑛2

2𝜎2 (7) 

As seen in Eqs. (8) and (9) respectively, are the frequency-

rotate generator and frequency-shift operator, respectively. 

𝜑𝑅[𝑛, 𝑄] = 𝑒(−𝑦 ∑ 𝑞𝑙
𝑥[𝑛−𝑛𝑥

𝐿
𝑙=1 ]𝑙+𝛾𝑥 ) (8) 

𝜑𝑆[𝑛, �̃�, 𝑄] = 𝑒(𝑦 ∑ 𝑞𝑙
𝑥[�̃�−𝑛𝑥

𝐿
𝑙=1 ]𝑙−1𝑛) (9) 

where, Q[i, l] = 𝑞𝑙
𝑥  denotes SK-CT. The variable γx in SCT

should meet the requirements listed in Eq. (10). 

𝛾𝑥 − 𝛾𝑥+1 = ∑
𝑞𝑙

𝑥+1

𝑙
[𝑛𝑥 − 𝑛𝑥+1]𝑙

𝐿

𝑙=1

(10) 

MSE =
1

𝑛
∑(𝑌𝑖−�̂�𝑖)2

𝑛

𝑖=1

(11) 

SNR =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒

(12) 

4. RESULTS AND DISCUSSIONS

This study employed thirty PCG signals in *.wav format 

from Computing in Cardiology Physionet analyze the system 

performance. They only utilized the single input shown in 

Figure 7 to analyze the denoising procedure. In this analysis, 

the signal length is one second and fifteen seconds. S1 and S2 

are sequenced in the input signal depicted in Figure 8. The 

signal used in this image is a PCG from a healthy heart state, 

as seen by this image. The denoised PCG signal outcome is 

produced by EMD-FMCNN which is depicted in Figure 9. The 

DD-DWT approach may eliminate the sound artifact to the

PCG signal based on the results. The PCG signal is divided

into many IMF signals by the EMD-FMCNN deployment. To

obtain denoised PCG for this work, we employed the fourth

layer decomposition. Figure 10 compares the SNR values for

the denoising using EMD-FMCNN and DD-DWT.

Figure 7. Analyze the denoising procedure of PCG 

When using a soft thresholding technique, SNR values are 

distributed more evenly than when using a hard thresholding 

method. Additionally, compared to the DD-DWT approach, 

the EMD-FMCNN technique of denoising PCG signal 

methods exhibits a greater SNR value. 

Figure 8. Compares the S1 and S2 signal of SNR values 

Figure 9. The EMD-FMCNN method to obtain the denoised 

PCG signal 

Figure 10. Compare the SNR values for the denoising using 

EMD-FMCNN and DD-DWT 

In Figure 11, the MSE values of the two employed 

approaches are compared. When using the soft thresholding 
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method, MSE values are distributed more evenly than when 

using the hard thresholding method. Additionally, the MSE 

value for PCG signal-denoising systems using the EMD-

FMCNN approach is lower than for systems using the DD-

DWT method. The greatest MSE values for the soft threshold-

based DD-DWT system and the soft threshold-based EMD-

FMCNN system are 0.14695 and 0.00344, respectively. EMD-

FMCN outperformed the DD-DWT method using the MSE 

score as a benchmark. In the statistical study, the SNR score 

for EMD-FMCNN with a hard criterion is 16.75 ± 2.17dB, and 

for EMD-FMCNN with a soft threshold is 21.99 ± 2.1 dB. The 

denoising system's outcomes for the EMD-FMCNN hard and 

soft thresholds, based on MSE value, were 0.01 ± 0.005 and.01 

± 0.007, respectively. For hard and soft thresholds, 

accordingly, the MSE value for DD-DWT is 1.13 ± 0.25 and 

0.42 ± 0.12. When comparing average values, EMD surpasses 

DD-DWT in terms of SNR and MSE. We utilized an ANOVA

to evaluate the comparability of outcomes between the EMD-

FMCNN and DD-DWT. BPF comparison among the DD-

DWT and EMD-FMCNN soft thresholds is shown in Figure

12.

Figure 11. Compare the MSE values for the denoising using 

EMD-FMCNN and DD-DWT 

Box plot of EMD & DD-DWT SNR value 

Box plot of EMD & DD-DWT MSE value 

Figure 12. Compare the boxplot of MSE and SNR values for 

the denoising using EMD-FMCNN and DD-DWT 

It obtained the p-values of MSE and SNR based on an 

ANOVA 9.43×10−23 and 3.05×10−26 respectively. According 

to ANOVA, the tiny p-values for MSE and SNR show that 

there are substantial variations among the DD-DWT and 

EMD-FMCNN. Therefore, the scope of this investigation was 

restricted to signals tainted with AWGN, the findings support 

the assertion made that EMD-FMCNN outperforms DD-DWT 

in terms of performance. According to the study, EMD-

FMCNN performs better than the Wavelet Transform (WT) 

and Total Variation (TV) methods shown in Figure 13 (a-c). 

(a) 

(b) 

(c) 

Figure 13. (a) AS present in Pathological PCG signal 

between the S1 and S2 (each cardiac cycle's) components. (b) 

Depicted abnormal PCG signals (Time Frequency) using CT. 

(c) Depicted abnormal PCG signals (Time Frequency) using

SK-CT 

Figures 14 (a, c, e, g, i) correspondingly show the PCG 

signals of (N) and pathological categories to MVP, MVP, MR, 

and MS. Figures 14 (b, d, f, h, j) respectively show the 

corresponding TF plots for these signals gathered through SCT. 

When compared to a normal PCG signal, it could be seen that 

the variation connected to a pathological PCG signal was a 

varied morphology depending on the kind of HVD. The 
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energy of the S2 and S1 elements of the typical PCG signals 

were broadly dispersed between 25 Hz and 300 Hz (as 

illustrated in Figure 14 (b)). Therefore, in HVD situations, the 

power was dispersed over 300 Hz and is seen in those PCG 

signal's TF graphs. Regarding both normal and abnormal PCG 

signals, every frequency element in the TF matrix of the PCG 

recording has a separate set of properties. The traits that may 

be determined using them are thus useful for the precise 

detection of HVDs. The assessment of the L1-norm (LN) 

properties for the kth frequency element is shown in Table 1. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 
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(j) 

Figure 14. (a) An example of an ordinary class PCG record. (b) A normal PCG signal represented time frequency that was 

acquired via SCT. (c) MR class PCG record. (d) A depiction of the MR PCG signal's time and frequency produced by SCT. (e) 

MS category PCG record. (f) A depiction of the MS PCG signal's time and frequency obtained by SCT. (g) AS category PCG 

record. (h) An AS PCG signal acquired using SCT is represented in time and frequency. (i) MVP category PCG record. (j) A 

depiction of the MVP PCG signal's duration and frequency received by SCT 

Table 1. The classification outcomes for the automated identification of HVDs using EMD-FMCNN algorithms using SCT area 

characteristics 

Classifier Class 
Performance Measure 

OA (%) 
TP TN FP FN Sensitivity % Precision % F-Score % Specificity % 

RF 

N 61 228 0 0 97.80 ± 2.65 98.35 ± 2.37 99.41 ± 0.75 98.10 ± 1.52 

96.62 

MS 61 228 7 0 88.71 ± 3.78 96.88 ± 1.40 96.75 ± 1.32 92.58 ± 1.92 

MR 50 239 2 1 96.32 ± 1.88 87.98 ± 4.66 99.15 ± 0.43 91.45 ± 3.22 

AS 60 229 2 2 96.62 ± 3.40 95.38 ± 1.83 97.92 ± 1.06 93.80 ± 1.65 

MVP 606 229 6 2 98.35 ± 1.25 93.35 ± 4.58 99.65 ± 0.32 95.69 ± 2.82 

KNN 

N 58 232 0 1 98.72 ± 1.36 99.69 ± 0.75 99.66 ± 0.38 99.18 ± 0.83 

98.00 

MS 60 235 4 0 90.18 ± 1.66 97.68 ± 0.92 97.29 ± 0.50 93.77 ± 1.29 

MR 59 233 3 2 97.95 ± 1.51 94.01 ± 3.47 99.54 ± 0.37 95.91 ± 2.20 

AS 58 234 4 3 98.25 ± 2.12 92.02 ± 3.22 99.66 ± 0.53 95.01 ± 2.21 

MVP 61 235 2 4 96.44 ± 2.57 97.35 ± 1.92 99.08 ± 0.72 96.86 ± 1.77 

KSRC 

N 60 237 0 0 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 

99.51 

MS 61 238 1 2 96.14 ± 2.14 98.98 ± 0.92 98.99 ± 0.57 97.55 ± 1.53 

MR 59 237 0 3 98.68 ± 2.18 97.68 ± 1.92 96.97 ± 0.55 98.16 ± 1.90 

AS 60 239 0 0 99.01 ± 1.50 96.99 ± 1.19 99.16 ± 0.52 97.97 ± 1.30 

MVP 61 238 4 1 96.72 ± 1.19 99.16 ± 0.55 99.67 ± 0.18 96.68 ± 1.03 

EMD-FMCNN 

N 60 239 0 2 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 

99.83 

MS 61 240 2 0 98.24 ± 1.04 99.03 ± 0.12 99.00 ± 0.65 99.15 ± 0.18 

MR 61 239 2 2 99.04 ± 0.25 98.79 ± 1.30 9.89 ± 0.17 99.00 ± 0.28 

AS 59 239 0 2 99.20 ± 0.65 97.96 ± 1.39 99.83 ± 0.02 98.73 ± 1.35 

MVP 60 240 2 3 96.90 ± 1.04 97.37 ± 1.30 99.57 ± 0.13 97.52 ± 1.85 

Table 2. The classification outcomes for automated PCG diagnosis utilizing many classifiers with the SCT area 

Method Class Sensitivity % Precision % F-Score % Specificity % 

EMD-FMCNN 

N 98.11 ± 2.08 100 ± 0.00 99.52 ± 0.57 99.02 ± 1.08 

MS 93.88 ± 2.99 96.01 ± 0.91 98.40 ± 0.82 94.92 ± 1.75 

MR 96.44 ± 2.36 96.68 ± 2.37 99.05 ± 0.65 96.52 ± 0.70 

AS 98.32 ± 1.69 94.35 ± 1.92 99.60 ± 0.45 96.27 ± 0.78 

MVP 97.25 ± 2.31 96.35 ± 2.19 99.25 ± 0.57 96.65 ± 1.28 

Table 1 reveals that the EMD-FMCNN classification's OA 

value was great that there are 800 and 600 neurons in the 1st 

and 2nd hidden levels, correspondingly. By adding more 

neurons to both hidden layers, the OA value falls. The 

classification outcomes achieved using the EMD-FMCNN 

classifier for the PCG signals acquired from the MHSMD 

database are provided in Table 2. EMD-FMCNN algorithms 

using SCT Area characteristics is shown in Figure 15. 

It is necessary to choose the IMFs that can be retained for 

signal structure and that would be discarded when utilizing 

EMD-FMCNN to filter signals. Ten IMFs are calculated 

across every instance of the study; however, various IMFs and 

various numbers are selected for the signal construction to get 

the best results feasible. In general, the 6th, 5th, and 4th, IMFs 

are chosen to remove HF and WF noise, which included the 

7th IMF, except for the pat2 signal. Furthermore, the IMFs 

chosen for each signal, and the instance of the LF noise were 

different (for phy2's third and fourth IMF and pat1 and pat2's 

second and third IMF phy1's third, fourth, and fifth IMF). The 

results of EMD-FMCNN filtering are shown in Table 3 of fall 

scenarios. The EMD-FMCNN technique scores worse than 

WT filtration, filtering HF, and WF noise, in terms of 

association and SNR enhancement. Nonetheless, SNR values 

increased in comparison to WT, when applied to LF noise, 
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reaching positive levels; nonetheless, the correlation was 

much smaller. It should be observed that the SNR values and 

correlation for the pat1 signal, which presented challenges for 

WT filtering, are equivalent to those for findings from other 

signals. As a consequence, the EMD-FMCNN approach is 

more effective when high-frequency elements like murmurs 

are present in the signal as shown in Table 4. 

 

 
 

Figure 15. EMD-FMCNN algorithms using SCT Area 

characteristics 

 

Table 3. Results of EMD-FMCNN 

 
Signals 

Type 

SNR (dB) Coefficient of Correlation 

HF LF WF HF LF WF 

phy1 3.394 1.995 3.6988 0.4911 0.5961 0.4869 

phy2 6.218 2.089 4.5022 0.7634 0.5198 0.6516 

pat1 4.842 1.774 5.3047 0.6693 0.4619 0.6488 

pat2 5.582 2.614 5.6747 0.7432 0.6047 0.7229 

 

Table 4. Overall performance measures of EMD-FMCNN 

 
ACC (%) SE (%) PPV (%) F1 (%) 

94.99±0.70 97.41±0.51 97.44±0.49 97.46±0.37 

 

 

5. CONCLUSIONS 

 

Researchers examine the DD-DWT and EMD-FMCNN 

methods as denoising systems to reduce the sound impact of 

the PCG signal to find an effective way for the PCG system. 

The SNR and MSE parameters were used to evaluate different 

denoising techniques for signal noise suppression. According 

to the findings, the EMD-FMCNN denoising approach 

outperformed the DD-DWT in terms of MSE and SNR. 

According to ANOVA, the tiny p-values of MSE and SNR 

show that there are significant variations between EMD-

FMCNN and DD-DWT. Researchers made the case that the 

EMD-FMCNN approach is preferable for eliminating noise 

from PCG signals. Researchers working on an automated 

system for the localization and categorization of heart sounds 

will find these results to be of great value as well. This paper 

suggests an automatic HVD detection and categorization of 

PCG signals. This method computed the TF representation of 

PCG records using SCT. The frequency elements of the TF 

representation are used to calculate the nonlinear 

characteristics (LN, PEN, and SEN). The FMCNN 

classification dynamically divides PCG signals into four HVD 

category categories using the collected characteristics. The 

effectiveness of the recommended method was also 

determined using the real-time record PCG signals, and the 

results gained demonstrate this. In the future, researchers 

intend to improve this method to use PCG signals to detect 

coronary artery disease and stress. 
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