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Introduction: Acute lymphoblastic leukemia (ALL) is a severe illness that affects children 

and adults, and it can be fatal when left untreated. This leukemia strikes children and 

adolescents suddenly, often claiming their lives within just a few weeks after diagnosis. To 

diagnose ALL, hematologists investigate blood slides and bone marrow samples. Manual 

blood testing methods, which have been around for a long time, are typically laborious and 

may result in lower-quality diagnoses. ALL is essentially the unchecked growth of immature 

cells found in the bone marrow, often referred to as lymphoblasts. Methods: This research 

focuses on the classification of lymphoblast and lymphocyte cells using a computer-assisted 

method that employs deep learning and image processing techniques. This classification 

involves several steps. Prior to feature extraction, preprocessing and data augmentation are 

performed on the ALL-IBD dataset. Features are extracted from this augmented database 

using transfer learning with pre-trained networks (DenseNet121, ResNet50, InceptionV3, 

Xception). The selected and transformed features, obtained through principal component 

analysis (PCA), are then subjected to 5-fold cross-validation for hyper-tuning and training 

of individual machine learning models (LR, SVM, DT, RF). Finally, a soft voting 

classification model is proposed to predict lymphocytes and lymphoblasts. Results: The 

suggested ensemble method achieved 98.23% accuracy. SVM and the ensemble model with 

DenseNet121 and all feature sets reached an AUC of 1.00. LR achieved an AUC of 1.0 with 

all features and 0.99 with DenseNet121 features. The minimum AUC for DT was 0.64 and 

for RF was 0.86. AUC with all features was 0.80 for DT and 0.91 for RF. Conclusion: The 

suggested method uses image processing and deep learning to analyze blood cells 

automatically, avoiding the many limitations of manual analysis. The acquired results 

demonstrate that the presented approach may be employed as a diagnostic tool for ALL, 

which is undoubtedly helpful to pathologists. Observation: This procedure can also be 

employed for enumeration, as it offers exceptional efficiency and enables prompt suspicion 

of a diagnosis, which can subsequently be validated by a hematologist using specialized 

techniques. 
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1. INTRODUCTION

Acute lymphoblastic leukemia is a malignancy of white 

blood cells (WBCs). It is characterized by an excessive 

generation and ongoing growth of immature and cancerous 

white blood cells in the bone marrow, often known as 

lymphoblasts or blasts. Leukemic cells proliferate rapidly in 

the blood and spread to various organs including the spleen, 

nervous system, brain, lymph nodes, and liver [1, 2]. ALL 

primarily affects the bone marrow and blood. Due to an 

abnormally high number of cancerous and immature white 

blood cells, ALL leads to a deficiency of healthy blood cells. 

The projected incidence of ALL in the US for 2022 (covering 

both adults and children) is approximately 6,660 new ALL 

cases (2,920 in females and 3,740 in males) and approximately 

1,560 ALL fatalities (680 in females and 880 in males). The 

likelihood of an individual being diagnosed with ALL is 

highest in children under the age of five. The risk remains 

relatively stable until the mid-20s, after which it begins to 

progressively rise again around age 50. In most cases, adults 

account for four out of every 10 cases of all forms of the 

disease. ALL accounts for fewer than 0.5 percent of all cancers 
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in the United States, making it a relatively uncommon 

malignancy. The lifetime chance of developing ALL is around 

1 in 1,000. Males are at a slightly higher risk than females, 

while White individuals are at a higher risk than African 

Americans [3]. Most cases of ALL occur in youngsters, yet the 

majority of fatalities (approximately 4 out of 5) are in adults. 

Children may fare significantly better than adults due to 

differences in treatment (children's bodies often respond better 

to intense therapy than adults'), differences in the biology of 

childhood and adult ALL, or a combination of these factors [3]. 

The presence of more than twenty percent lymphoblasts in the 

bone marrow is one of the diagnostic criteria for acute 

leukemia. Conversely, if left undetected and untreated, it can 

progress rapidly and lead to death in only a few months. 

Fortunately, early detection of the illness aids in patient 

recovery, especially in cases involving children [3]. 

Distinguishing between lymphocytes and lymphoblastic 

cells is a crucial factor in the diagnosis, treatment, and 

monitoring of various blood-related conditions, especially 

leukemia and lymphoma. It enables personalized healthcare 

and supports ongoing scientific efforts to enhance our 

understanding and management of these diseases. 

Following a confirmed diagnosis, the staging and 

categorization of Acute Lymphoblastic Leukemia (ALL) play 

a crucial role in determining the most suitable treatment 

strategy. This typically involves a combination of 

chemotherapy, radiation therapy, and, in some cases, stem cell 

transplantation. Research and treatment regimens have made 

significant advancements, leading to improved outcomes for 

individuals with ALL, particularly in infants and children. 

 

1.1 Morphological characteristics of stained WBC 

 

Most of the peripheral blood cells (leukocytes) are 

comprised of red and white blood cells. Granulocytes are a 

type of white blood cell that contain granules, including 

neutrophils, basophils, and eosinophils. Agranulocytes, on the 

other hand, are white blood cells that lack granules, such as 

lymphocytes and monocytes. Human blood typically contains 

the following percentage of leukocytes: 50-70% neutrophils, 

2-10% monocytes, 20-45% lymphocytes, 1-5% eosinophils, 

and 0-1% basophils. Figure 1 illustrates the morphological 

structure [1, 2, 4-6]. 

 

 
 

Figure 1. Morphological structure of stained WBC: 1) 

monocyte 2) neutrophil 3) basophil 4) eosinophil and 5) 

lymphocyte 

 

There is a connection between the ALL illness and the 

lymphocytes found in the bone marrow and peripheral blood. 

Only white blood cells, particularly those with eccentrically 

positioned nuclei, tend to take up the stain used in blood 

preparation. In most cases, white cells are significantly larger 

than red cells. The FAB (French-American-British) approach, 

which uses morphological analysis, is the most popular 

method for classifying leukemia (lymphoblasts). In a 

collection of lymphocytes, potential lymphoblasts can be 

identified by examining the cell's morphological distortions [5, 

6]. Figure 2 explains the differences between lymphocytes and 

all classes of lymphoblastic cells. 

 

 
 

Figure 2. Morphological difference between (a) lymphocyte 

and (b-d) lymphoblast 

 

For instance, lymphocytes typically have a consistent 

nucleus with smooth and continuous borders, and a regular 

shape. In contrast, lymphoblasts exhibit amorphous shapes. 

When it comes to ALL, potential lymphoblasts are analyzed 

using the FAB classification, known as L1-small, 

homogeneous blasts. These blasts have rounded and regular 

nuclei, with minimal nucleoli and cleft. Vacuoles are typically 

absent, and the cytoplasm is sparse. In contrast, L2-blasts are 

larger and more diverse. Their nuclei are disorganized and 

often clefted, with the possibility of more than one nucleolus. 

The cytoplasm is often abundant and may contain vacuoles. 

Finally, L3 describes blasts that are uniform in appearance and 

range in size from medium to large. Their nuclei are regularly 

shaped, round-oval, with one or more nucleoli present. 

Prominent vacuoles and a reasonable amount of cytoplasm are 

observed overall. 

 

1.2 Limitation and prerequisite of computer assisted 

diagnosis system 

 

While manual diagnosis of ALL has been crucial in 

detecting and managing the disease, it comes with certain 

constraints and difficulties. Several significant limitations 

include subjective variability among readers, complex 

cytogenic behavior, limitations in sensitive testing procedures, 

and reliance on clinical symptoms. Moreover, accurate 

classification between lymphoblasts and lymphocytes is 

essential for customizing treatment strategies, predicting 

outcomes, identifying specific therapies, minimizing adverse 

effects, enabling participation in clinical trials, optimizing 

resource distribution, and ensuring efficient long-term 

monitoring and follow-up care for patients. The proposed 

work classifies normal (lymphocyte) and lymphoblastic cells 

through a series of procedures. Firstly, a preprocessing 

approach is used to enhance image quality and reduce noise 

caused by various staining procedures. Subsequently, data is 

augmented to train models with different aspects and angles of 

the input image. Secondly, transfer learning methods (with 

pre-trained networks) are employed to extract features. These 

features are then input to PCA in the third step. PCA reduces 

the dimensionality of the extracted features, enhancing 

interpretability while minimizing information loss. Half of the 

features are selected after PCA. In the fourth step, selected 

features are properly tuned using cross-validation techniques. 
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Finally, various classification techniques based on machine 

learning approaches are deployed to assess the classification 

accuracy between lymphocytes and lymphoblasts. 

The remainder of the paper is outlined as follows: Section 2 

addresses the literature review. Section 3 summarizes the 

proposed methodology, experimental setup, and data 

collection procedure. Section 4 presents the results of the 

experiment. Section 5 discusses these results. The conclusion 

and future work are outlined in Section 6. 

 

 

2. RELATED WORK 

 

In 2005, Scotti introduced a system for recognizing blast or 

normal lymphocytes. This paper categorizes blasts and regular 

cells by a K-nearest neighbor (KNN) classifier based on 

geometric features. Later, accuracy is tested on Linear and 

feed-forward neural networks (NN) [6]. A method to 

categorize WBCs based on nucleus information was proposed 

by Theera-Umpon and Dhompongsa [1], in which the pattern 

spectrum of each nucleus is determined. Initially, the area and 

high location of the spectrum are taken as the two aspects of 

two selected granulometric measurements. Classifiers based 

on neural networks and Bayes theorem are employed. In 2008, 

Adollah et al. [2] examined the procedure of blood cell 

segmentation to diagnose various diseases and treat 

pathological conditions. Another way to segment white blood 

cells is a circular histogram-based Otsu algorithm. A higher 

degree of entropy is a feature for threshold over a two-

dimensional histogram, and this feature is present on two color 

models: RGB and HSI. When it comes to segmentation, 

several distinct approaches, including gray-level thresholding, 

morphological processes, a variety of filtering strategies, color 

matching, and color thresholding, are evaluated and ranked 

based on their effectiveness. Differently, the shape 

information is first found by binarization after the maximum 

intensity is made, and then it is utilized. Finally, seeded 

watershed and gradient vector flow methods are employed for 

cell segmentation and identification. 

Sadeghian et al. [3] suggested a segmentation approach to 

isolate leukocytes from other blood components. The images 

were first converted to grayscale, and then the WBCs were 

imaged using a sub-imaging approach. To locate the nuclei, a 

gradient vector flow model is utilized. The nucleus is created 

using hole filling after the cytoplasm has been segmented 

using Zack thresholding, and the nucleus has been removed 

from the grayscale image. The suggested method is 92% 

accurate at segmenting the nucleus and 78% accurate at 

segmenting the cytoplasm. To classify white blood cells into 

distinct kinds in 2010, Tabrizi et al. [4] collected 

morphological, textural, and color data from segmented nuclei 

and cytoplasm. They used them to train learning vector 

quantization neural networks. The classifications are accurate 

in 96% of cases. Later, in 2011, Rezatofighi et al. [7] 

developed a technique that recognizes five distinct blood cell 

types with three stages each. To differentiate basophils, the 

nucleus is initially segmented using the Gram-Schmidt 

approach, which is based on the co-occurrence matrix of 

characteristics and the local binary pattern. The snake 

approach is used to segment the cytoplasm in the second stage 

of image processing after the images have been preprocessed 

in grayscale and the S component of the HSI color model. In 

this stage, the images are also preprocessed using the HSI 

color model. In conclusion, the remaining four subtypes of 

WBC are categorized according to their morphological 

characteristics. 

Abd Halim et al. [8] provided a novel approach to the 

nucleus segmentation problem to distinguish between acute 

lymphoblastic leukemia (ALL) and acute myeloid leukemia 

(AML) for acute leukemia. All the images are projected onto 

the HSI color space to enhance the global contrast and make 

the categorization zone more visible. The S component from 

the HSI color space is used to segment the nucleus, and a 

defined threshold is then applied for more precise 

segmentation. Region-growing techniques are employed to 

identify blasts and nuclei. Nee et al. [9] utilized the S 

component of the HSV color model. This method, which is 

used for AML and its subtypes, achieves a 94.5 percent 

accuracy rate and relies on edge segmentation for the 

watershed transformation and edge identification using 

erosion, dilation, and magnitude gradient. Pan et al. [10] 

segment leukocytes using the extreme learning machine 

(ELM). The peak gradient pixel is selected for sampling using 

a gradient threshold. The multi-colored object is then 

examined for segmentation using maximal entropy. Leukocyte 

images are converted to HSI before the cytoplasm is extracted 

using the Otsu process. The edge pixels on ELM are 

considered as categories. 

Madhloom et al. [11] extracted the H and S bands from 

RGB images and converted them to binary. Fifteen disk-

shaped structuring elements were utilized to open the H band 

and erode the S band. Subsequently, the images were 

reconstructed using a morphological operator to enable the 

classification of blast cells based on their shape's centroid and 

axis length. This approach effectively segmented the 

lymphoblasts, localized them, and achieved a 100% accuracy 

rate. Jagdeesh et al. [12] proposed a method in 2013 for 

identifying cancer cells in blood samples. The image is 

initially converted into binary and then into grayscale form. 

Subsequently, morphological closure, erosion, and a map 

depicting the difference between black and white pixels are 

employed to remove smoothness and distortion from the 

image. Data segmentation is facilitated by the watershed 

transformation. When classifying data with SVM, geometric, 

statistical, and textural considerations are all considered. In 

comparison, Joshi et al. [13] utilized the Otsu threshold 

technique for segmentation and the KNN algorithm for 

classification based on a combination of morphological and 

textural characteristics of the images. 

Blood smear images can be segmented using k-means 

clustering, as proposed by Mahopatara et al. [14] in 2014. The 

method extracts RGB color information from the full image 

before segmenting it using the leukocytes-shadowed C-means 

algorithm. The nucleus, cytoplasm, and backdrop are 

separated from the sub-image using color space SCM 

clustering. Features based on morphology, texture, and color 

are extracted, normalized, and selected. The classification 

method employs various classifiers, including radial basis 

function, naive Bayesian, multilayer perceptron, support 

vector machines, neural networks, and KNN. 

Kulkarni-Joshi and Bhosale [15] proposed a thresholding-

based technique for detecting ALL blasts and segmenting 

nuclei. After removing the background, Otsu thresholding is 

applied to extract form features for blast identification. They 

introduced a method for segmenting lymphocyte nuclei to 

identify leukemia in 2014. To achieve accurate segmentation 

of nuclei and diagnosis of leukemia with a success rate of 

96.5%, the Otsu method is used to obtain nuclei, followed by 
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the removal of small segments and dilation of the nuclei. This 

process is repeated iteratively until the desired results are 

achieved. Additionally, to reduce the high RGB values in the 

image, the first step involves convolving it with a 2×2/6 mask.  

Vidhya et al. [16] segmented the data using local directional 

features (LDP) and k-means clustering in 2015. They 

employed k-means clustering to separate lymphoblasts into 

various groups in the same year. Subsequently, they gathered 

statistical and geometrical information to identify ALL and its 

subtypes, and then they utilized multiclass support vector 

machines (SVM) to analyze the data. Conversely, the author 

bases the categorization solely on the characteristics of the 

nucleus, claiming this method achieves 97% accuracy. 

Goutam et al. [17] proposed a framework for detecting 

whether cells are affected by acute myeloid leukemia or are 

normal by segmenting cell nuclei using grayscale images and 

k-means clustering. This method was designed to determine 

whether the cells were impacted by AML or were normal. 

When employing SVM for classification, LDP with textural 

features achieves an accuracy of 98%. Bhattacharjee and Saini 

[18] presented a method for diagnosing acute lymphoblastic 

leukemia in 2015. To segment the data, watershed 

transformations were used, followed by morphological 

procedures. When collecting morphological characteristics for 

use in a Gaussian mixture model and a binary search tree for 

classification, the suggested strategy achieves an accuracy of 

95.56%. 

Using a deep belief network (DBN), Bibin et al. [19] 

proposed a methodology in 2017 for identifying malaria 

parasites. The primary objective is to distinguish between 

parasites and non-parasites. They developed an HSV color 

space conversion model, partitioned the cells into regions, and 

then employed DBN for classification using color and texture 

attributes. Rawat et al. [20] also in 2017, utilized histogram 

equalization, global thresholding, and morphological patterns 

to segment lymphoblastic cells. After subtracting this from the 

preprocessed image, the cytoplasm is obtained. Geometrical, 

chromatic, statistical, and other characteristics are extracted 

for classification and fed into various classifiers with PCA. 

Although hierarchically applying PCA-ANFIS achieved a 

maximum accuracy of 97.6%, employing too many classifiers 

in this combination leads to lengthy processing times. 

Mughal et al. [21] proposed an innovative method to 

remove the pectoral muscle from mammography images. 

Amjad et al. utilized images of stained bone marrow in 2018 

to classify ALL into several subtypes. Using a convolutional 

neural network and deep learning techniques, the model was 

trained on bone marrow images to achieve accurate 

classification results. This allowed for a comparison of the 

results with those obtained from naive Bayesian, KNN, and 

SVM classifiers. The experiments demonstrated that the 

proposed approach resulted in an accuracy of 97.78% [22]. 

Hegde et al. [23] utilized an SVM classifier in 2020 to classify 

WBCs as normal or abnormal. NN classifiers were employed 

to subdivide typical white blood cells into five distinct types. 

The overall classification accuracy was increased to 98.8% by 

using both NN and SVM. In 2022, Chand and Vishwakarma 

[24] introduced a unique deep learning framework for 

diagnosing ALL based on a CNN. The group developed this 

framework. When compared to the 41,626 free-tuning 

parameters in the suggested architecture, the trainable 

parameters of pre-trained complex networks such as AlexNet, 

VGG-Net, and ResNet-50 are significantly lower in number. 

Table 1 describes various public and private data sets used 

in the previous study. The entire literature is divided based on 

region of interest. Various segmentation techniques and 

classification techniques are used to isolate the region of 

interest. Literature suggests three types of classification 

standards. In the First category, authors [1, 8, 9] presented 

segmentation procedures to isolate nuclei and cytoplasm 

elements. This category shows accuracy variation ranging 

from 77% to 95%. In the second category, the authors [4, 5, 7, 

24] are classifying five types of white blood cells. The 

accuracy of this category classification is restricted to 98.62%, 

and finally, in the third category, researchers [6, 10-12, 20, 23, 

25, 26] presented various techniques to classify between 

centroblast and centrocytes. In this category, accuracy ranges 

from 89.8 to 98%. 

 

Table 1. Summary of the related literature 

 

Ref. Dataset 
Segmentation & 

Feature Extraction 

Region of 

Interest 

Classification 

Approaches 
Performance Evaluation 

[1] 

Gray Scale bone marrow 

Images collected from the 

University of Missouri Ellis 

Fischel Cancer Center 

Nuclei based features 
Extraction of 

Nuclei 

Bayes-based 

classification 

followed by ANN 

77% of classification is 

achieved while testing 

[4] 

251 blood slide containing 302 

WBC with magnification 100X 

and resolution 720X576 pixel 

acquired form Camera-Sony-

Model No. SSC-DC50AP. 

Gram-Schmidt and active 

contour algorithms are 

used to segment nuclei 

and cytoplasm followed 

by PCA for feature 

selection 

Five types of 

white blood 

cells in 

peripheral 

blood 

LVQ neural 

network is used 

to classify 

peripheral blood 

Overall, 96% classification 

accuracy is achieved. 

[5] 

300 microscopic images of 

bone marrow with 100X 

resolution at Amreek Clinical 

Laboratory Swat KP Pakistan. 

A method based on 

thresholding after 

changing the color space 

from RGB to HSV CNN 

used to extract features 

ALL into its 

sub-type and 

reactive bone 

marrow 

Convolutional 

Neural Network 

is used for 

classification 

97.78% accuracy is achieved 

[6] 

113 images contain about 8400 

blood cells, collected from M. 

Tettamanti Research Center for 

Childhood Leukemias and 

Hematological Diseases, 

Monza, Italy.   

Adaptive prefiltering and 

segmentation approaches 

Centrocytes 

vs centroblast 

linear Bayes 

Normal classifier, 

KNN, and 

Feedforward 

neural network is 

used  

The mean square error rate are 

0.040, 0.0267, and 0.0133 

respectively 
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[7] 

251 blood slide containing 302 

WBC with magnification 100X 

and resolution 720X576 pixel 

acquired form Camera-Sony-

Model No. SSC-DC50AP 

The textural parameter is 

extracted by LBP and 

GLCM 

Five types of 

white blood 

cells in 

peripheral 

blood 

SVM classifier 
Overall, 93.09% accuracy is 

achieved 

[8] ALL and AML images are used 

A global contrast 

stretching technique 

followed by 

segmentation in HSV 

color space 

Identify 

nucleus 

region in 

WBC   

No classification 

techniques are 

implemented 

No evaluation criterion is 

evaluated 

[9] 

663 bone marrow leukemia 

images from the Mexican 

Social Security Institute at 

100X resolution 

Extraction of the nucleus 

and cytoplasm is 

achieved using features 

of the neighboring pixels 

as contextual information 

to generate homogeneous 

regions 

Isolation of 

nucleus and 

cytoplasm 

Markov Random 

Field 

Cell separation segmentation 

accuracy is 95%. While 

classifying 95% in the 

diagnosis of leukemia 

families and 90% in the 

diagnosis of leukemia 

[10] Leukocyte image ELM based segmentation  

Leukocyte 

image 

segmentation 

No classification 

approaches are 

deployed 

Overall, Error using 

watershed algorithm 0.2797, 

SVM based ELM based 

0.1567 

[11] 180 microscopic blood sample  

Color feature with 

morphological 

reconstruction  

Isolation of 

lymphoblast 

from 

microscopic 

images 

No classification 

criterion is 

implemented 

Isolation of lymphoblast from 

microscopic image achieved 

100% accuracy 

[12] 

54 samples of size 1024X1024 

are collected Department of 

Hematology, Ispat General 

Hospital, Rourkela, India 

K-means clustering in 

RGB color space and 

extraction of cytological 

components 

Lymphocyte 

vs 

lymphoblast 

classification 

The ensemble 

model is used in 

conjunction with 

RBF, MLP, 

KNN, NB  

Sensitivity for the ensemble 

model is 94.93% and 

specificity is 95% 

[20] 
ALL IDB Dataset of 260 

images 

Feature-based algorithm 

to extract nuclei and 

cytoplasm followed by 

PCA for dimensional 

reduction 

Lymphocyte 

vs 

lymphoblast 

classification 

Smooth support 

vector machine, 

KNN, 

probabilistic 

neural network, 

neuro-fuzzy 

inference system 

Maximum accuracy achieved 

is 94.6% by PCA-SVM 

[23] 

1159 images taken from 

Leishman stained peripheral 

blood smears 

Brightness and color-

based features are 

extracted 

Normality 

between 

normal and 

abnormal cell 

A combination of 

NN and SVM 

classifiers is used 

98.8% of accuracy is achieved 

[24] ALL IDB  
Deep Learning (CNN) 

for feature extraction 

Diagnosing 

ALL and their 

subtypes  

CNN-based deep 

network with a 

smaller (41626) 

number of 

parameters 

Experiment A: 98.62% 

accuracy achieved 

Experiment B: 97.73% 

accuracy 

[25] ALL IBD dataset  

Histogram equalization 

to obtain morphological 

and textural features 

ALL vs 

Healthy  

SVM along with 

the Gaussian 

radial basis kernel 

function 

The accuracy achieved by the 

algorithm is 93% while 

sensitivity is 98% 

 

 

3. PROPOSED METHODS 

 

The proposed method is divided into seven steps covering 

data collection, preprocessing, and data augmentation, transfer 

learning approaches for feature extraction, principal 

component analysis for feature selection/transformation, grid-

search cross-validation method for hyperparameter tuning, 

training of individual best models, and soft voting 

classification for prediction. The proposed method of this 

research paper is shown in Figure 3. 

The Proposed soft voting ensemble model is based on four 

classifiers: random forest, logistic regression (LR), decision 

tree (DT), and support vector machine (SVM). The 

hyperparameters of LR, SVM, DT, and RF were properly 

tuned using 5-fold cross-validation (CV). 

 

3.1 Data collection 
 

ALL-IDB data set consists of normal and lymphoblast cells 

clipped with their area of interest. There are 260 images 

containing 130 images of lymphoblasts and 130 images of 

lymphocytes [6]. All images are true to colour, with a size of 

257 × 257 × 3. 
 

3.2 Preprocessing and data augmentation 
 

Preprocessing is the technique to enhance image quality and 

noise reduction. All images pass by a low pass average filter 

for noise reduction. Data augmentation helps to train a model 

with different aspects/angles of the image—parameters used 

in the data augmentation layer, as shown in Table 2. A total of 

14677 images were generated using this technique, which 

were further used for feature extraction [25]. 
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Figure 3. Proposed method for lymphocytes and lymphoblast classification 

 

Table 2. Data augmentation layer parameters 

 
Parameter Name Values 
Range of Rotation 45 

The range for the shift in width 0.2 

The range for the shift in height 0.2 

Range for Zoom 0.1 

Shear range 0.1 

Image with horizontal flip True 

Image with a vertical flip True 

Fill model in image transformation. Nearest 

Feature Wise center True 

Feature Wise Standard Normalisation True 

 

3.3 Transfer learning 

 

Transfer learning is the method that uses pre-trained 

convolutional neural networks directly [27, 28]. Four 

convolutional neural networks were used to extract the 

features in this step, namely DenseNet121, ResNet50, 

InceptionV3, and Xception. These features are saved in .csv 

file and used in further processes. Feature extraction using 

transfer learning methods is shown in Figure 4. 

Each layer of DenseNet121 is connected to the others by a 

feed-forward method. When using dense networks, the 

vanishing-gradient problem in DenseNet121 is resolved, 

feature propagation is improved, feature reuse is promoted, 

and there are fewer parameters. A total of 1024 features are 

recovered by using the DenseNet121 algorithm. The ResNet50 

refers to a convolutional neural network with 50 layers. This 

network's first training was conducted using more than a 

million photos from the ImageNet database, each of which 

represented one of a thousand distinct object categories. As a 

direct consequence of this, the network now possesses feature 

representations that are exhaustive for various image types. 

When tested on the ImageNet database, the image recognition 

model InceptionV3 has shown that it is capable of achieving 

an accuracy of more than 78.1%. The model's structural 

components, including convolutions, average pooling, max 

pooling, concatenations, dropouts, and link layers, are 

constructed in a manner that is both symmetric and 

asymmetric. Batch normalization is often applied to the 

activation inputs by the model, and softmax is the method that 

is used to calculate the loss. Approaches like regularisation, 

factorized convolutions, and parallel processing with 

dimension reduction are employed in InceptionV3. Finally, an 

Xception neural network with 71 layers categorized images 

into 1000 classes. The extracted feature size using these pre-

trained neural networks is shown in Table 3. 

By combining all features, a new feature set of size 

14677×7168 has been generated. 
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Figure 4. Feature extraction using transfer learning techniques 

 

Table 3. Extracted feature size using a pre-trained neural 

network 

 
Pre-trained 

Neural 

Networks 

Number of 

Layers 
Layering 

Weight 
Output 

Feature Size 

DenseNet121 427 604 14677×1024 
ResNet50 175 318 14677×2048 

InceptionV3 311 376 14677×2048 
Xception 132 234 14677×2048 

 

3.4 Principal component analysis 

 

The dimensions of the feature vector significantly impact 

the effectiveness of machine learning algorithms. While large 

datasets are more common than ever, they can often be 

challenging to interpret. Principal Component Analysis (PCA) 

is a method that can reduce the number of dimensions in such 

datasets, improve interpretability, and mitigate information 

loss. This is achieved by generating progressively more 

uncorrelated variables to maximize the variance [29]. In this 

study, PCA is utilized to select fifty percent of the 

characteristics. 

The choice of PCA over other techniques is motivated by 

the high dimensionality of features from deep networks. PCA 

provides better visualization than other neural-based 

architectures, making it highly desirable to apply PCA before 

feeding the data into machine learning architectures. 

3.5 Parameter tunning 

 

A classification model's performance mainly depends on the 

number of features used to build the model. Each model may 

have a different number of features, which need to be tuned 

properly for better performance, as seen in Figure 5. This 

paper uses four classification algorithms, namely LR, SVM, 

DT, and RF classifiers. 

Logistic regression(LR) classification uses the sigmoid 

function, as shown in Eq. (1), as a logistic function, sometimes 

known as the sigmoid function. 

 

𝑓(𝑛) =
1

(1+𝑒𝑥𝑝−𝑛)
  (1) 

 

where, exponentiation, or exp, serves as the foundation for 

natural logarithms, and n represents the true numerical value. 

According to the second line of Eq. (2), the value of the output 

can be predicted by the linear combination of the values of the 

inputs using weights. In contrast to linear regression, binary 

regression models the output value as a binary digit, which can 

only take on one of two possible values: 0 or 1. 

SVM classifier is a popular machine learning supervised 

learning model [30]. It attempts to separate all data points of 

various classes. The samples fit within a segment that is 

divided by the hyperplane. As a result, it is possible to identify 

the category to which the sample belongs. 

 

 
Figure 5. Hyperparameter tuning for classification 
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Table 4. Parameters and their values for 5-fold cross-validation 

 
Classification Model Parameter Variables (Variable) Parameter Range Values 

Logistic Regression (LR.) 

Regularisation parameter strength (C) [0.01,0.1, 1, 10, 100, 1000] 

norm of the penalty(penalty) [‘None’,’l1’,’l2’] 

Algorithm to use in the optimisation problem (solver) ['lbfgs', 'liblinear', 'sag', 'saga'] 

Support Vector Machine 

(SVM) 

Regularisation parameter strength (C) [0.01,0.1, 1, 10, 100, 1000] 

Kernel Coefficient(gamma) [1000,100,10,1, 0.1, 0.01, 0.001, 0.0001] 

Types of Kernel (kernel) ['rbf','linear'] 

Decision Tree (DT.) 
Quality of split measure function(criterion) ['gini','entropy'] 

Maximum depth of tree(max_depth) [4,5,6,7,8,9,10,11,12,15,20,30,40,50,70,90,120,150] 

Random Forest(RF.) 

Number of tree(n_estimators) [25,50,100,150,200,500] 

Best Split Maximum Features (max_features) ['auto', 'sqrt', 'log2'] 

Maximum depth of tree(max_depth) [4,5,6,7,8,10,15,20] 

Quality of split measure function(criterion) ['gini', 'entropy'] 

 

A decision tree (DT) is a predictor, h:X→Y, that works by 

moving from a tree's root node to a leaf to forecast the label 

associated with an instance 𝑥. For the sake of simplicity, we 

concentrate on the binary classification scenario, where Y=0 

or 1; however, decision trees can also be used for other types 

of prediction issues [31]. The successor child is determined at 

each node along the root-to-leaf path by splitting the input 

space. The splitting is typically based on one of 𝑥′𝑠 

characteristics or a predetermined set of splitting rules. A 

unique label can be found on a leaf. 

RF is a widely used supervised machine learning 

classification technique. It substitutes a new training subset for 

the sample training data, and the outcome is determined by 

majority voting and averaging [31]. The steps involved in the 

RF algorithm are as follows: 

Step 1: In RF, n records are chosen randomly from a set of 

k records in the data. 

Step 2: The decision tree is built separately for each sample. 

Step 3: Each DT is analyzed, and the output of each decision 

tree is generated. 

Step 4: A voting or averaging procedure is applied for 

classifying the data, and the final classification result is 

recorded. 

Parameters of these models are tunned using grid-search 5-

fold cross-validation. All the necessary parameters and their 

values are used to find the best estimator for a given dataset, 

as shown in Table 4. 

 

3.6 Voting classifier 

 

The majority voting classifier has been used to combine the 

final predictions of the above classifiers. A Voting classifier 

uses a majority to favour a decision, as shown in Figure 6. Here 

final predictions of classifiers LR, SVM, DT, and RF will be 

combined using soft voting. 

 

 
 

Figure 6. Ensemble method for final prediction 

 

 

4. EXPERIMENTED RESULTS 

 

All tests were conducted on a computer equipped with a 

12th Generation Intel Core i7-12700H processor, with a 

maximum turbo speed of up to 4.7 GHz, 14 cores, 16 GB of 

RAM, a dedicated NVIDIA GeForce RTX 3050 Ti graphics 

card with 4 GB of GDDR6, and 64-bit Windows 10 Home. To 

train the pre-trained models, the data was randomly divided 

into two sets: a 70% training set and a 30% testing set. As 

shown in Table 5, calculations for Accuracy, Precision, Recall, 

F1-Score, and ROC-AUC were performed on each feature 

dataset extracted through the process of transfer learning and 

modified using principal component analysis. 

Let TP, TN, FP, and FN represent the number of samples 
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classified as true positives, true negatives, false positives, and 

false negatives, respectively. Calculating and formulating 

Accuracy, Precision, Recall, and F1-Score are all feasible. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (3) 

 

𝑃𝑟𝑒𝑠𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (5) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑅𝑒𝑐𝑎𝑙𝑙

  (6) 

 

The observation indicates that the combined features 

perform better than individual isolated features, as 

demonstrated in Table 5. 

 

Table 5. Detailed performance metric comparison 

 
Pre-Trained 

Neural 

Networks 

(l for Feature 

Set Extraction) 

Number of 

Features 

Extracted/Used 

Classifier LR 

KNN SVM DT 

RF 

Best Parameter (After 

Cross Validation) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

DenseNet121 1024 

LR 
'C': 0.1, 'penalty': 'l2', 'solver': 

'lbfgs' 
96.46 96.78 96.17 96.48 

SVM 
'C': 100, 'gamma': 0.0001, 

'kernel': 'rbf' 
98.89 98.96 98.82 98.89 

DT 
criterion='entropy', 

max_depth=5 
79.47 85.73 76.27 80.72 

RF 

'criterion': 'entropy', 

'max_depth': 8, 

'max_features': 'auto', 

'n_estimators': 50 

86.72 89.72 84.69 87.13 

ENSEMBLE ‘voting’: ‘Soft’ 98.23 98.46 98.02 98.24 

ResNet50 2048 

LR 
'C': 1, 'penalty': 'l2', 'solver': 

'lbfgs' 
89.49 90.58 88.69 89.63 

SVM 
'C': 100, 'gamma': 0.001, 

'kernel': 'rbf' 
91.71 92.48 91.12 91.80 

DT 
criterion='entropy', 

max_depth=5 
74.89 87.23 70.04 77.69 

RF 

'criterion': 'gini', 'max_depth': 

8, 'max_features': 'sqrt', 

'n_estimators': 200 

73.59 82.02 70.28 75.69 

ENSEMBLE ‘voting’: ‘soft’ 90.49 92.35 89.08 90.68 

InceptionV3 2048 

LR 
'C': 1000, 'penalty': 'l2', 

'solver': 'liblinear' 
84.33 85.33 83.73 84.52 

SVM 
'C': 100, 'gamma': 1000, 

'kernel': 'linear' 
83.81 85.24 82.94 84.07 

DT 
criterion='gini', 

max_depth=11 
64.08 63.99 64.23 64.11 

RF 

'criterion': 'gini', 'max_depth': 

8, 'max_features': 'auto', 

'n_estimators': 100 

78.52 81.34 77.08 79.15 

ENSEMBLE ‘voting’=’soft’ 83.42 84.65 82.70 83.66 

Xception 2048 

LR 
'C': 1000, 'penalty': 'l1', 

'solver': 'liblinear' 
80.2 82.7 78.84 80.73 

SVM 
'C': 1000, 'gamma': 1000, 

'kernel': 'rbf' 
82.65 84.96 81.28 83.08 

DT 
criterion='entropy', 

max_depth=7 
64.35 60.6 65.65 63.02 

RF 

'criterion': 'entropy', 

'max_depth': 8, 

'max_features': 'sqrt', 

'n_estimators': 200 

77.61 77.99 77.5 77.74 

ENSEMBLE ‘voting’=’soft’ 80.79 82.11 80.08 81.08 

Combined All 

Features 
7168 

LR 
'C': 0.1, 'penalty': 'l2', 'solver': 

'liblinear' 
97.68 97.87 97.52 97.69 

SVM 
'C': 10, 'gamma': 0.0001, 

'kernel': 'rbf' 
98.98 99.32 98.65 98.98 

DT 
criterion='entropy', 

max_depth=12 
79.29 81.3 78.25 79.74 

RF 

'criterion': 'entropy', 

'max_depth': 8, 

'max_features': 'sqrt', 

'n_estimators': 200 

82.7 78.53 85.76 81.99 

ENSEMBLE ‘voting’=’soft’ 98.23 98.82 97.67 98.24 
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The proposed ensemble learning techniques outperform the 

decision tree and random forest classifiers. Figure 7 illustrates 

the comparison of the area under the receiver operating 

characteristics curve (AUC) for features extracted using 

transfer learning methods. 

An AUC value of 1.00 was achieved with SVM and the 

ensemble model using DenseNet121, as well as with the 

combination of all feature sets. Logistic regression (LR) also 

achieved an AUC of 1.0 when combining all features, while 

with DenseNet121 features, the AUC was 0.99. The minimum 

AUC achieved by the decision tree (DT) is 0.64, and with 

random forest (RF), it is 0.86. The AUC with the combined 

feature set is 0.80 with DT and 0.91 with RF. 

 

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Figure 7. ROC-AUC comparison for a) DenseNet121, b) Resnet50, c) InceptionV3, d) Xception, and e) all features together  

 

 

5. DISCUSSION 

 

Our implemented work extracted the features from four 

different deep convolutional neural networks (DenseNet121, 

ResNet50, InceptionV3, and Xception) and the combination of 

these features form a new feature set. The best performance is 

achieved by SVM with DenseNet121 features, reaching 

98.89%, outperforming all classifiers on the other feature sets. 

LR achieves 96.46% accuracy with DenseNet121 features, 

slightly lower than the performance on the combined feature 

set. The performance of LR and the ensemble model improves 

when combining all features compared to individual feature 

sets. DT and RF exhibit lower performance than LR, SVM, 

and ensemble models but are still satisfactory, with a 

minimum accuracy of 64.08% and 73.59%, respectively, and 

a maximum of 79.47% and 86.72%, respectively. These 

classifiers perform particularly well on DenseNet121 features 

compared to other feature sets. Additionally, SVM achieves 

the best precision score of 99.32% with all features combined, 

the highest recall score of 98.82% with DenseNet121 features, 

and an F1 score of 98.98% with all features combined. Figure 

8 provides a visual comparison of the accuracy of various 

classification methods using different feature extraction 

algorithms based on transfer learning methods. 

Table 6 compares the proposed method for lymphocytes and 

lymphoblast classification with the previous state-of-the-art. 

The result shown in Table 5, Figure 7, and Figure 8 highlight 

that the proposed method can be effective compared to the 

previous state-of-the-art. 
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Figure 8. Accuracy graph based on different transfer learning approaches deployed for feature extraction vs machine learning 

methods used for ALL-IBD data set classification 

 

Table 6. Performance analysis from the previous state-of-the-art 

 
References Proposed Features Classification Techniques Test Data Set Accuracy 

[20] Morphological feature 
PCA with kNN, PNN, SVM, SSVM, and 

ANFIS 
260 97.6 

[22] CNN features Deep Neural Networks 330 97.78 

[25] Morphological and Textural features SVM 245 92% 

[32] Texture, as well as shape and colour SVM 267 92% 

[33] Morphological and Textural features SVM 196 89.8 

[34] Morphological and Textural features SVM 260 92.3 

[35] shape feature ANN 120 95.2 

[36] colour, shape, and texture Dempster-Shafer 180 96.7 

[37] Shape and texture feature SVM 21 97 

[38] color, shape, and texture Fuzzy System 108 98 

[39] Texture and shape based Neural Network 108 97.2 

Proposed 

Model 

Features from transfer learning 

and selection with PCA 
Ensembled Network 260 98.23 

 

 

6. CONCLUSIONS 

 

The research work has presented a comprehensive 

architecture based on transfer learning approaches for 

classifying Lymphocytes and Lymphoblastic cells with an 

ensemble model. Based on the results obtained, it is evident 

that the proposed method with an ensemble learning model, 

combining all features, can effectively be used for ALL-IDB 

classification. LR, SVM, and the ensemble model with 

DenseNet121 and combined features outperform previous 

state-of-the-art methods. Additionally, the performance of DT 

and RF classifiers is satisfactory. Combining features from 

DenseNet121, ResNet50, InceptionV3, and Xception 

networks provides better and more robust features. PCA plays 

a crucial role in selecting only half of the features, reducing 

complexity while maintaining high performance. The 

proposed architecture holds significant clinical implications 

for leukemia patients, aiding pathologists, and laboratory 

professionals in accurate diagnosis. 

Furthermore, exploring other feature extraction and 

selection methods such as nature-inspired techniques like 

genetic algorithms and PSO may further enhance the model's 

performance by selecting the most suitable feature set.  

Additionally, incorporating morphological and textural 

features alongside the proposed model could potentially 

improve system performance. While automated analysis offers 

significant advantages, it is essential to recognize the 

continued importance of human expertise, especially in 

complex decision-making scenarios. Integrating computerized 

analysis with human insight can enhance the effectiveness and 

thoroughness of diagnostic processes across various fields. 
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