
 

 
 
 

 
 

 
1. INTRODUCTION 

Debris flow is a mass liquid-like movement involving 
water-saturated, predominantly coarse-grained material which 
is moving down a confined and steep channel at a high speed 
[1]. It poses a threat to human life and can cause enormous 
property damages involving both direct and indirect costs. 
Debris flows of various sizes, depths, and velocities often 
endanger human lives and infrastructure facilities, and can 
result in fatalities [2]. The velocity of a debris flow is 
associated with run-out distance, superelevation, impact force, 
and influences hazard assessment [3]. Therefore, it is a very 
important factor in hazard evaluation and mitigation[4]. 
Many scholars have done a large amount of work to estimate 
debris flow velocity, including empirical equation based on 
the Manning formula, numerical simulation, and Machine 
Learning theory as widely applied to debris flow velocity 
analysis.  

The velocity calculation methods of debris flow can be 
categorized into four types [5]. The first is numerical 
simulation equations [6]. This calculation method is based on 
the continuum theory, mass and momentum conservation 
equations, and the velocity formula is derived from basic 
physical principles. Most parameters of the velocity equation 
are obtained from laboratory experiments, and some are 
difficult to obtain and can only be back-analyzed through 
field survey, which limits its application. The second method 
is empirical equations, where most equations are derived 
from the Manning-Stickler equation or the Chezy equation, 
and is summarized from experimental observations [7]. The 
third method is back-calculated from super elevation events. 

The super elevation height is related to the flow surface at the 
outside and inside walls, which can back-calculate the debris 
flow velocity. However, this method requires subjective 
estimates of radii of curvature of bends in the debris flow 
channel, and the result may change according to various 
person’s estimations [8]. The fourth method is based on data 
statistics or the machine learning method, which require a 
large amount of data, and the result of this method is 
predicated on velocity influence factors through machine 
learning theory.  

The support vector machine (SVM), developed by Vapnik 
and his colleagues, is based on the structural risk 
minimization principle and statistic learning theory (SLT) [9]. 
Different from other machine learning methods, SVM do not 
use all available samples and has a smaller structural risk, so 
it can solve the problem with small samples and achieve a 
good generalization capability [10]. It is well suited to 
engineering geological prediction problems and shows good 
performance in nonlinear high-dimensional prediction [11]. 
However, having appropriate parameters for the SVM model 
is crucial to ensure the best performance. Therefore, the 
optimal method for determining SVM parameters is essential, 
and the particle search optimal (PSO) algorithm is introduced 
for the best performance of the SVM model [12].  

This study focuses on mean debris flow velocity. Through 
the analysis of empirical velocity calculation equations, the 
parameters for debris flow velocity calculation are 
determined, and the LSSVM and PSO methods are 
introduced to predict the parameters of the common empirical 
equation. The empirical equation is combined with machine 
learning theory to calculate the debris flow velocity, and the 
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result shows a better performance than the original empirical 
equation, as summarized in the conclusion. 

2. THEORETICAL BASIS AND METHODS 

2.1 Empirical equation of debris flow velocity 

The empirical or semi-empirical formula for the calculation 
of average flow velocity have been proposed by many 
researchers. The factors that account for the largest 
differences of each equation are related to the properties of 
debris flow materials, the slope of the flow channel and the 
depth of the debris flow, all of which are used in every 
equation. The most well known equations for debris flow 
velocity calculation are as follows: 

1) The Manning formula 
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where n is the resistance coefficient, R is the hydraulic radius, 
and S is the slope. 

2) Newtonian laminar flow 
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where ρ  is debris flow density, g is gravitational acceleration, 

h  is debris flow depth, μ  is dynamic viscosity. 

3) Bingham fluid 
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where, H is effective shear depth, η  is Bingham viscosity. 

A widely-used method for mean velocity is the Manning-
stickler equation, and all aforementioned formulas are based 
on it. The Manning coefficient n is adjusted through 
statistical regression analysis based on observation data, and 
the empirical formula of the research area is obtained. In 
calculating the velocity of a debris flow, the Manning 
coefficient n is subjectively determined, but it is closely 
associated with the accuracy of the results. Generally, the 
common equations of flow mean velocity calculation can be 
described as follows: 

 
b cV Nh S                                                                   (4) 

 
where b, c and N are constant values, They can be determined 
by the research data from the debris flow area. 

In this article, debris flow velocity is calculated by the 
common equation of flow, and the parameters used in the 
mean flow equation is the integral component in debris flow 
velocity calculation. 

2.2 LS-SVM prediction principle 

The least squares support vector machine was developed 
by Suykens et al. [13]. It is one of the most accessible data 
mining technologies for small samples based on the structural 
risk minimization principle. The non-linear prediction 
problem is resolved by conducting original data into high 

dimensional space and obtaining the optimal hyperplane. The 
dimension transformation is conducted by kernel function, so 
the kernel function is important for prediction accuracy. RBF 
kernel is selected in this article, and is expressed as follows: 

 
2( , ) exp( ( ) )i j i jK x x x x                                         (5) 

 
The prediction function of a common fitness curve can be 

describe as 0( ) ( )Ty x w x w  , where w  is the weight 

vector, 0w  is the bias term,   is a constant which should be 

determined artificially, It is closely associated with the 
performance of the LSSVM model, and PSO is applied for 
it's optimization. The structural risk minimization is used to 
resolve the problem, and it formulates the following 
optimization problem: 
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where ( , ) ( ) ( ); hnn

i j j iK x x x x R R     is the kernel 

function, hnw R  is a weight vector, C is the penalty 

parameter, i R   is an error variant, 0w  is a deviation.  

To solve the function, we introduce the Lagrannge 
multiplier, than the function can be defined as follows: 
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is the Lagrange multiplier, set 
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We calculate 0w , iα  by (6) (7) (8)，Then the prediction 

model function is as follows:  
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                                                      (9) 

2.3 PSO (particle swarm optimization) method 

PSO (particle swarm optimization) is an optimization 
method for SVM parameters used in this article, which is an 
improved method of the grid search method. It sets each 
possible solution as a particle in the optimization process, and 
gives it an initial speed so that the particle can move in high 
dimension space. The best choice of one particle and all 
particles in optimization are recorded as the individual 

optimal solution bestp  and the global optimal solution bestg , 

and the speed changes with bestp  and bestg  in high dimension 

space are recorded. After several loops of particles’ changing 
speeds and positions, the finally optimal solution of 
parameters are obtained [14]. 
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where iv  is the velocity of the i particle, ix  is the position of 

the particle, 1c  and 2c  are learning factors,  is the inertia 

factor. 

2.4 Improved empirical equation of velocity calculation 

According to studies worldwide, the general equation of 
flow velocity based on the Manning formula is as equation: 

b cV Nh S  , where N is a constant, h is flow depth, b and c 

are coefficients with regional features. Previous studies have 
yielded the following results. In the Chezy equation, b=c=0.5. 
In the Manning-Strickler equation, b is 2/3 and c is 1/2. In the 
debris flow velocity research articles, the b value is varied 
from 1/3 to 1/2, with 1/2 as the most widely used for debris 
flow velocity calculation. c is varied from 1/6 to 1, and the c 
value is generally determined as 1/2 or 1/3 [5]. 

The values of b and c in the equations are influenced by 
many factors of debris flow materials. In this article, we 
propose a PSO-LSSVM model to analysis the coefficients in 
the empirical equation, and the process of velocity calculation 
is as follows. 

1) The original data of debris flow samples are processed 
by PCA. 

2) The b value is fixed as 0.5, and the c values of each 
samples are back-calculated through empirical formula. 

3) Train the LSSVM model with debris flow samples and 
the back-calculated c value. 

4) Calculate MSE and MAE through five-fold cross- 

validation, and obtain the predicted c value based on the 
LSSVM model. 

5) Fix c value as 1, then calculate b as the same as 
procedures 3) and 4) instead of c parameter. 

6) Put the new predicted b and c vectors into the empirical 
formula, the velocity of debris flow samples will be obtained 
through the new equation. 

3. STUDY OF DEBRIS FLOW VELOCITY IN 

RESEARCH AREA 

3.1 Debris flow data and background 

The debris flow data used for SVM velocity prediction in 
this study is from Jiangjia Ravine, located in Yunnan 
province in China. The ravine is 12.1 km long with a total 
area of 47.1 km2. The altitude is from 1088m to 3269m above 
sea level, and several debris flows occur each year in this 
section. According to previous articles, ρ, h, S, p, D50, 
D50/D10, and h/D50 are potential factors influencing debris 
flow velocity. The Manning formula and other articles 
[8,15,16,17] have shown that the most important influencing 
factors in debris flow velocity are channel characteristics and 
material properties, such as slope gradient , wetted perimeter 
and roughness, flow depth related to wetted perimeter in 
shallow and wide debris flow gullies, particle mean diameter 
and density reflecting roughness. We take the particle mean 
diameter, flow depth, slope gradient and density as the 
influencing factors in debris flow velocity prediction. We 
select 50 samples of debris flow gullies in Jiangjia Ravine for 
debris flow velocity prediction, with test data taken from 
article [18].  

The 50 debris flow gullies in the research area are shown in 
Table 1. Figure 1 shows the procedure of the improved 
empirical velocity model in this paper. 

 

Table 1. Debris flow samples for velocity prediction of research area 

 

 

Particle mean 
diameter 
(mm) 

Flow 
depth  
(m) 

Slope 
gradient 
(%) 

Densit 
(t/m3) 

Velocit 
(m/s)  

Particle mean 
diameter 
(mm) 

Flow 
depth 
(m) 

Slope 
gradient 
(%) 

Density 
(t/m3) 

Velocity 
(m/s) 

1 8 1.75 6.3 2.08 8.9 26 9 2.5 5.5 2.22 6.9 

2 11 1.5 6.3 2.2 8.8 27 11 2.26 5.5 2.13 6.6 

3 17 2 6.3 2.21 7.4 28 8 1.2 5.5 2.2 6 

4 14 2 6.3 2.25 7.9 29 11 1.45 5.5 2.25 7.4 

5 6 0.95 6.3 2.16 10 30 11 0.65 5.5 2.24 5 

6 9 0.55 6.3 2.25 7.4 31 10 1.22 5.5 2.21 6.9 

7 7 0.11 6.3 2.07 7.6 32 16 1.68 5.5 2.28 7.5 

8 9 1 6.3 2.19 7.6 33 12 3.72 6.6 2.21 9.2 

9 10 0.9 6.3 2.21 7.3 34 12 1.07 5.5 2.29 5.8 

10 12 0.7 6.3 2.19 6.6 35 1 0.52 5.8 1.7 3.6 

11 16 2.75 6.6 2.21 9.6 36 8 1.03 5.5 2.21 5.8 

12 11 1.7 6.6 2.19 7.5 37 3 0.7 5.5 1.92 5.6 

13 8 2.1 6.6 2.2 8.4 38 2 0.7 5.8 1.8 4.1 

14 12 1.6 6.6 2.22 8.1 39 3 0.93 5.8 1.92 4.8 

15 7 1.3 6.6 2.2 8.2 40 2 0.56 5.8 1.69 3.6 

16 15 2.2 6.6 2.29 9.6 41 2 0.5 5.8 1.76 3.5 

17 12 2.1 6.6 2.21 9.4 42 6 0.6 5.5 1.99 4.9 

18 10 2.1 6.3 2.29 9.3 43 5 0.6 5.5 1.97 4.7 

19 15 2 6.3 2.3 8.5 44 10 1.61 5.5 2.25 7.7 

20 3 0.4 6.3 2.04 4 45 11 1.77 5.5 2.24 7.7 

21 6 1.4 6.3 1.95 7.8 46 1 0.6 5.5 1.83 3.9 

22 1 0.4 6.3 2.02 3.7 47 8 0.55 5.8 2.07 3.9 

23 1 0.4 6.3 1.85 3.8 48 11 1.09 5.5 2.25 6.4 

24 11 2.1 6.3 2.21 9.3 49 1 0.55 5.8 1.8 3.7 

25 17 2.02 5.5 2.27 6.9 50 6 1.25 6.3 2.1 7.6 
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Figure 1. Flowchart of the improved empirical velocity 
model 

 

3.2 Techniques compared and prediction results 

The LSSVM model based on the performance of the 
empirical equation is sensitive to the b and c values in the 
empirical equation. In this article, N is determined as 1. The 
mean MSE with a five-fold cross-validation is used to assess 
the performance of the SVM prediction model,

 2
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1
( ( ) )

n

i i

i

MSE f x y
n 

   

The 50 debris flow prediction samples and parameter b, c 
and its relative velocity results are shown in Table 2. The 
parameters b and c are predicted by PSO-LSSVM. The origin 
is the velocity of the field survey. ESb and ESc are the 
predicted values of b and c through PSO-LSSVM. The bv is 
the calculated velocity with ESb determined through the 

general equation of flow velocity ( b cV Nh S ). At this time, 

c is fixed as 1. The cv is the calculated velocity with ESc, and 
b is fixed as 0.5. The cv is better than bv according to the 
MSE and MAE. 

Table 2. Debris flow velocity estimating with predicted b or c parameter by the empirical equation 
 

NO. Origin ESb bv ESc cv NO. Origin ESb bv ESc cv 

1 8.9 -0.19  5.67  1.17  11.36  27 6.6 0.59  8.89  1.00  8.34  

2 8.8 0.18  6.79  1.06  8.58  28 6 0.59  6.12  1.02  6.21  

3 7.4 0.39  8.26  0.95  8.11  29 7.4 0.58  6.82  1.01  6.71  

4 7.9 0.38  8.21  0.96  8.35  30 5 0.60  4.25  1.02  4.57  

5 10 -0.22  6.37  1.20  8.81  31 6.9 0.60  6.20  1.01  6.22  

6 7.4 -0.05  6.49  1.13  5.93  32 7.5 0.45  6.95  0.98  6.95  

7 7.6 -0.07  7.33  1.19  2.96  33 9.2 0.39  11.07  0.93  11.11  

8 7.6 -0.08  6.30  1.14  8.09  34 5.8 0.56  5.71  1.01  5.76  

9 7.3 0.02  6.29  1.11  7.31  35 3.6 0.54  4.08  0.91  3.60  

10 6.6 0.10  6.08  1.09  6.19  36 5.8 0.59  5.60  1.02  5.77  

11 9.6 0.39  9.80  0.93  9.61  37 5.6 0.45  4.69  1.03  4.88  

12 7.5 0.35  7.93  0.97  8.08  38 4.1 0.62  4.66  0.92  4.19  

13 8.4 0.31  8.32  0.98  9.26  39 4.8 0.61  5.55  0.96  5.23  

14 8.1 0.37  7.86  0.95  7.64  40 3.6 0.56  4.20  0.91  3.72  

15 8.2 0.21  6.97  1.03  7.93  41 3.5 0.59  3.85  0.91  3.51  

16 9.6 0.39  8.99  0.93  8.59  42 4.9 0.44  4.40  1.05  4.66  

17 9.4 0.39  8.79  0.94  8.59  43 4.7 0.43  4.41  1.05  4.65  

18 9.3 0.33  8.02  1.00  9.18  44 7.7 0.59  7.27  1.01  7.07  

19 8.5 0.39  8.26  0.95  8.09  45 7.7 0.57  7.61  1.00  7.37  

20 4 0.26  4.96  1.09  4.71  46 3.9 0.47  4.33  0.99  4.16  

21 7.8 0.00  6.31  1.17  10.18  47 3.9 0.44  4.46  1.01  4.41  

22 3.7 0.39  4.41  1.02  4.13  48 6.4 0.59  5.79  1.01  5.86  

23 3.8 0.44  4.20  0.95  3.64  49 3.7 0.59  4.07  0.91  3.68  

24 9.3 0.28  7.78  1.02  9.48  50 7.6 -0.21  6.01  1.20  10.15  

25 6.9 0.43  7.43  0.98  7.54  MSE  1.284  1.305 

26 6.9 0.58  9.34  1.00  8.72  MAE  0.827  0.740 

In comparison, b is predicted and c is fixed as a constant, 
or c is predicted and b is fixed as a constant. Table 3 shows 
the final result of debris flow velocity calculation based on 
ESb and ESc. Both ESb and ESc are substituted into the 
general equation of flow velocity, and the final result of 
debris flow velocity is calculated by the improved velocity 
equation. Table 3 shows the result of velocity bcv calculation 
based on ESb and ESc, with the MSE and MAE being 
smaller than the other methods shown in Table 2. This table 
provides the best evidence showing that the improved 

empirical model has the capability to predict debris flow 
velocity more efficiently and accurately than only b or c can 
predict. Figure 2 and Figure 3 show the fitness curve of the 
PSO process, with lower fitness numbers indicating better 
performance.   and C of LSSVM are the objective values of 

PSO. With the increasing of the number of evolution 
generation, the fitness decreases to a low value and becomes 
stable. Then the PSO process achieves the best result, and the 
LSSVM model can result in the most suitable fit. Figure 2 is 
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the fitness curve of b optimization, and Figure 3 is the fitness curve of c optimization. 
 

Table 3. Debris flow velocity calculation based on both predicted b and c 
 

ID 1 2 3 4 5 6 7 8 9 10 

bcv 7.74  7.55  7.52  7.70  9.14  8.23  10.37  8.09  7.69  7.14  

ID 11 12 13 14 15 16 17 18 19 20 

bcv 8.60  7.45  8.06  7.19  7.35  7.88  7.89  8.06  7.50  5.86  

ID 21 22 23 24 25 26 27 28 29 30 

bcv 8.61  4.56  3.83  8.08  7.16  9.37  8.97  6.31  6.91  4.37  

ID 31 32 33 34 35 36 37 38 39 40 

bcv 6.35  6.77  9.66  5.78  3.51  5.78  4.97  4.02  5.19  3.59  

ID 41 42 43 44 45 46 47 48 49 50 

bcv 3.30  4.81  4.82  7.37  7.67  4.23  4.57  5.90  3.48  8.66  

 MSE 0.9753 MAE 0.7272     

 

 
 

Figure 2. Fitness curves of optimization of b through PSO 
 

  
 

Figure 3. Fitness curves of optimization of c through PSO 
 
 

4. CONCLUSION AND DISCUSSION  

1) This article proposed an improved empirical debris flow 
velocity prediction model and has been shown to predict the 
debris flow velocity well. The testing sample has shown that 
the improved new method for debris flow velocity performs 
better with less MSE and MAE than other methods.  

2) The common velocity calculation equation is 
summarized from several debris flow velocity empirical 
equations and the Manning-Stickler equation. Some 
parameters of the equation are associated with debris flow 
properties and it is predicted by LSSVM, which shows to be a 
feasible method to determine the parameters of the velocity 
equation. 

3) The number of influencing factors in debris flow 
velocity is too numerous. According to the analytical and 
empirical algorithm, the main factors of debris flow velocity 
are slope gradient S, particle mean diameter D50, flow depth 

h and density. The parameters b and c are related these 
factors, but the relation formula is still unclear. 

4) The parameters b and c are predicted by LSSVM 
respectively, and the velocity is calculated with the predicted 
value. When b is predicted by LSSVM, c is selected as the 
common value 1; otherwise, b is 0.5. The two methods both 
have a good performance for debris flow velocity prediction. 

5) The predicted values of b and c are lastly substituted 
into the formula together for the velocity calculation, and the 
MSE and MAE are the best compared with the other methods, 
which shows the validity of the improved method. 
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