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Although the numerous advantages of wind turbine, the nonlinear characteristic (P–Ω) 

providing a unique maximum power point is the most drawbacks. Therefore a maximum 

power point tracker is usually adopted, which the Tip-Speed ratio, the perturbation and 

observation and the optimum torque control methods are widely used. In this article, a 

novel neural network (ANN) MPPT controller based on perturbation and observation has 

been projected and studied. The ANN MPPT controller of wind turbine system is 

established in two independents steps: the offline operation mode is mandatory for training 

of different neural networks parameters and the Online operation mode where the most 

advantageous neural network MPPT controller is implanted in wind turbine system. The 

developed MPPT controller is tested on wind turbine based–DFIG generator, which it is 

controlled by sliding mode control (SMC). Simulation results are presented and discussed. 
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1. INTRODUCTION

Today, the rapid growth of industry, the huge development 

of modern lifestyles, the fast consumption of the fossil fuel 

reserves and the pollution caused by the traditional energy 

sources have encouraged many countries and governments to 

develop a new efficient energy sources. The new energy 

strategy uses new forms of green energy well-known 

"renewable energy" to address the global challenges of clean 

energy and able to ensure a part of energy production. These 

energies include the solar, rain, wind; tides, geothermal heat 

and various forms of biomass are renewable and can be 

physically replenished continuously. Wind energy is an 

attractive source of energy and it represent a great potential for 

power production and consequently it has been developed and 

implemented in many countries due to its advantages of clean, 

safe energy resource and resource abundance [1-5].  

Although the numerous advantages of wind turbine, many 

drawbacks can be noted such as the random nature of wind 

speed leading to the fluctuation of the produced wind turbine 

power. In addition, the wind turbine has a nonlinear 

characteristic (P–Ω) which the maximum power point (MPP) 

is guaranteed in only one point, depending on wind speed and 

speed ratio. Therefore, the wind turbine system must be 

calculated to drive the system at their maximum output power 

for any conditions. Therefore, many MPPT methods have been 

proposed and implemented [6-16]. In which, The developed 

MPPT controllers can be classified in two groups: i) the first 

one is the conventional methods , it includes optimum torque 

control (OTC) [8], tip speed ratio (TSR) [9], perturbation and 

observation (P&O) [4-10], and power speed feedback (PSF) 

[4], and ii) the second group or intelligent methods  uses fuzzy 

logic, neural-network [11-15], and particle swarm 

optimization [16]. 

In recent years, neural network technique has demonstrated 

new solution in wind turbine systems. Due to it can be trained 

off-line, and then used in the on-line physical application [15]. 

The major benefit of neural network is that it does not need an 

exact mathematical model and be capable of identify 

compound nonlinear relationships between dependent and 

independent variables. 

In this document, a new ANN MPPT controller using the 

famous perturbation and observation (P&O) has been 

projected and looked for. The necessary ANN model training 

data are calculated using the classical (P&O) rules [17-18]. 

The proposed MPPT controller is tested on wind turbine 

controlled by sliding mode control (SMC). Simulation results 

are presented and discussed. 

2. MODELING OF WIND TURBINE AND DFIG

2.1 Modeling of wind turbine 

The mechanical power of wind turbine is written by [3, 10]: 

31
( , )

2
aer p windP C Sv  =   (1) 

where Paer: is the extracted power from the wind turbine; 
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The wind turbine efficiency Cp is given [19]: 
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Based on the previous equations, a functional block diagram 

model developed under Simulik of wind turbine system is 

presented in Figure 1. 

 

 

 
 

Figure 1. Bloc Simulink of wind turbine 

 

 
 

Figure 2. Power coefficients Cp(λ) of 3MW wind turbine 

[19] 

 

 
 

Figure 3. Power versus rotational speed of generator for 

turbine 3 MW [19] 

The characteristics of the typical captured output power for 

different pitch angles  (2, 4 to 14) are showed in Figure 2. It 

can be observed that captured output power of wind turbine 

depends on pitch angles and it is clear that there is one specific 

point (CPmax-opt) at which the turbine is maximized. Hence, 

for each wind speed, there is a one turbine speed that provides 

a maximum output power as shown in Figure 3. 

 

2.2 DFIG model and control 

 

Today, doubly fed induction generators become the most 

popular variable speed wind turbine concept [20-22]. These 

class of generators are commonly selected as one of the 

appropriate wind energy conversion systems since it is able to 

operate in wide range of speed variation approximately the 

synchronous speed ±30 %, the independent active and reactive 

control possibilities and accessibility to the stator and rotor 

providing the opportunity to control active and reactive 

powers as well as power factor. The Wind turbine with DFIG 

system is exposed in Figure 4. 

 

 
 

Figure 4. The Wind turbine based on DFIG 

 

The DFIG model is expressed as follows [20-22]: 
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The DFIG torque is expressed by: 

 

em qs dr ds qr

s

M
C p i i

L
  = −                             (6) 

 

To accomplish independent control [19-24], the subsequent 

equations can be obtained: 
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The voltage Vdr and Vqr shown in Figure 5 are expressed 

respectively by: 
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Figure 5. Field oriented control of DFIG 

 

2.3 Sliding mode control of DFIG  

 

Recently, the sliding mode control (SMC) has been 

considered as one of most used techniques for DFIG drive 

control among nonlinear control strategies, due to its 

simplicity, easy implementation and robustness [25-27]. The 

sliding mode control is based on three steps: the first is the 

choice of control surface, the second is convergence condition, 

and the third is control law design. 

SMC algorithm consists to calculate the equivalent and 

discontinuous components of control variable from an 

adequate surface of sliding mode chosen. In this case we chose 

the error as being the sliding surface. 

The control algorithm is defined by following expression: 

 
eq nu u u= +                                  (9) 

 

where 

u  is the control vector, equ  is the equivalent control vector,  
nu  is the switching part of the control (the correction factor) 
equ  can be obtained by considering the condition for the 

sliding regime, 0s =  

The control law is defined as follows: 

 

{
𝑢𝑛 = 𝑢𝑚𝑎𝑥(𝑠(𝑋)/𝜃)

𝑠𝑎𝑡(𝑠(𝑋)/𝜃) {
𝑠𝑖𝑔𝑛(𝑠)     𝑖𝑓     |𝑠| > 𝜃

𝑠/𝜃            𝑖𝑓      |𝑠| < 𝜃
        (10) 

 

The sliding surface is calculated by the general equation J.J. 

Slotine: 
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where the convergence condition is defined by the equation 

Lyapunov ( ). ( ) 0s x s x 
. 

 

2.3.1 Active power control  

For 1n = ,the sliding surface representing the error between 

the measured and reference active power is given by:  
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The derivative of the surface is given by 
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By replacing active power equation in the equation of the 

switching surface, the expression of the surface becomes: 
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From the equation (11) (During the sliding mode and in 

permanent regime), we can write 
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The control law design Vrq is given by:  

 
eq n

rq rq rqV V V= +
                         

(16) 

 

Replacing equation (16) in equation (14), the equation we 

have  
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During the sliding mode and in permanent regime, we have: 
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Replacing in previous equation, the equivalent control 
eq

rqV

and correction factor are given by: 

 

( )( )

eq s r
s refrq r rq

s

n

rq V rq

L L
V P R I

V M

V K sign S P


−

 
= + 

 
 = 

      (18) 

 

where:
V rqK  positive constant [25]. 

 

2.3.2 Reactive power control 

For n=1, the reactive power control surface becomes is 

given by 

( )( ) s ref ss − =  −
                  

(19) 

 

The derivative of the surface is given by 
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From the equation (11) the current expression is given by 
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The control law design Vrd is given by: 
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From equation (24), (21) and (22), the derivative of the 

surface can be expressed by: 
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During the sliding mode and in steady state 

 

( ) 0, ( ) 0, 0.n

rds s V =  = =  

 

Therefore, the equivalent control eq

rdV and the switching 

term is given by can be expressed by: 
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where: V rdK  is positive constant [25]. 

 

 

 
 

Figure 6. Active and reactive power of the DFIG using 

S.M.C 

The obtained simulation results of the DFIG using S.M.C is 

shown in Figure 6, in which the produced active and reactive 

power follow perfectly their references. 

 

 

3. PROPOSED ANN MPPT CONTROLLER BASED ON 

P&O METHOD 

 

3.1 Perturb & observe (P&0) method 

 

The perturb & observe (P&O) MPPT controller is widely 

applied, it can be used by small step size disturbing the control 

variable and analyzing the resulting raising or decreasing in 

generated power (the controller must move it right or left of 

the MPP) as shown in Figure 7 presenting the output power of 

3MW wind turbine since a function of generator speed for its 

nominal wind speed (13 m/s). If it results in the increase in 

power, then the similar perturbation is useful for the next 

control occurrence. Otherwise the sign of the perturbation is 

inverted to track in the way of increasing power. Once the 

stable state is achieved the process oscillates about the MPP.  

 

 
 

Figure 7. Maximal power curve P(Ω) of 3MW wind turbine 

 

 
 

Figure 8. Diagram of the P&O method [2] 

 

Figure 8 explains the flowchart of the P&O strategy. The 

output power is maximum at a rotor speed well known most 

favorable rotor speed Ωopt, corresponding to optimum tip speed 

ratio opt. So, to produce maximum possible power, the turbine 
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must be driven at Ωopt. This is achievable by scheming the 

rotational speed of the turbine so that it always turns at the 

finest speed rotation. 

 

3.2 Proposed ANN MPPT 

 

Technological developments in recent years has allowed 

scientists to develop and refine methods for different 

applications, especially in the renewable energies areas, which 

they require the use of chic techniques for an perfect 

estimation of the accessible energy prospective and any 

successful control of systems operation [8]. 

Over the last few decades, many control strategies have 

been developped. Artificial neural networks techniques have 

been selected as one of  the best solution  for  computational 

system since they offer many benefits compared to the 

conventional computational systems [8, 17-18]. 

The proposed artificial neural network (ANN) MPPT 

controller is established on the similar law of Perturbation and 

Observation (P&O) method decreasing or increasing the 

generator speed regarding the sign of (dP/dΩ), the 

fundamental rule of ANN MPPT controller is recapitulated in 

Table 1. 

 

Table 1. Fundamental rule of artificial neural network MPPT 

controller 

 
dP  dΩ dP/ dΩ Increase /deacrease of Ω  

 +  + + Ω(s) = Ω(s-1) + ∆Ω 

 + - - Ω(s) = Ω(s-1) - ∆Ω Ω 

- + - Ω(s) = Ω(s-1) - ∆Ω Ω 

- - + Ω(s) = Ω(s-1) + ∆Ω Ω 

 

The developed ANN system operates in two epochs:  

1) The offline epoch necessary to trying different set of 

neural network parameters to find the most favorable neural 

network controller (activation function, organization, and 

training algorithm), when the training and testing performed 

in off-line, a neural network bloc model is obtained, and then 

it is introduced on-line in MPPT [8].  

2) The online epoch that employs the best ANN MPPT 

regulator to track the MPP point. The fundamental diagram of 

wind turbine system is demonstrated in Figure 9.  

Figure 10 shows the ANN MPPT regulator developped via 

Simulink. 

 
 

Figure 9. Block diagram of the wind turbine system control 

 

 
 

Figure 10. ANN MPPT regulator based on P&O rule  

 
 

Figure 11. Developed ANN MPPT regulator using P&O rule 

 

A simulation study was tested for the wind speed estimation 

and tracking control of the most favorable maximum power 

using a feed-forward neural networks having three layers. The 

inputs variables of the projected ANN MPPT controller are: 

the output power (P) and generator speed (dΩ). However, the 

output ANN parameter is the consequent rising or lowering of 

generator speed +/_∆Ω. 

 

 

4. SIMULATION AND RESULTS 

 

In this manuscript segment, the competence of the projected 

artificial neural network MPPT regulator using P&O rule is 

presented. A wind energy conversion system based on 3MW 

wind turbine connected to DFIG is employed.  

The simulation results have been establised using Simulink 

environment using the wind speed profile depicted in Figure 

12. 

Figures 13, 14 and 15 show the power coefficient, the output 

power and the optimal turbine rotational speeds, respectively, 

determined based on the optimum operating points of the 

system. 

From figures, its clear that the wind energy- DFIG system 

operates at its maximum power which it can be verified for 

nominal wind speed (13m/s). The power coefficient and output 

power correspond exactly at it nominal value 0.35 and 3MW, 

respectively. 
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Figure 12. Wind speed profile 

 

 
 

Figure 13. Power coefficient Cp 

 

 
 

Figure 14. Tracking MPPT power ANN-P&O 

 

 
 

Figure 15. Turbine rotational speed 

 

 

5. CONCLUSION 

 

In this article, a novel ANN MPPT regulator using (P&O) 

rules has been presented considering changeable speed wind 

turbine moving doubly-fed induction generator (DFIG). 

Modeling and control strategies of the generally system have 

been developed. Simulation results have carried out using 

Simulink under randomly and fast changeable wind rapidity. 

Obtained results exhibit the elevated performance of proposed 

ANN MPPT regulator. The simulation results are close to the 

theoretically expected results. The advantages of this proposed 

method include: good accuracy, does not require information 

of power coefficient Cpmax and the tip speed ratio opt and the 

characteristic curve of wind turbine. In addition, a variable 

step size can be used in the proposed neural Network MPPT 

controller for achieving better performances. This last feature 

will be considered for our future work. 
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