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In the realm of wireless communications, the Global Positioning System (GPS), integral to 

Global Navigation Satellite Systems (GNSS), finds extensive applications ranging from 

vehicle navigation to military operations, aircraft tracking, and Geographic Information 

Systems (GIS). The reliability of GPS is often compromised by errors particularly prevalent 

in dense and structurally complex environments, where signal attenuation by environmental 

obstacles like mountains and buildings is common. These challenges necessitate the 

deployment of high-cost, precision GPS receivers capable of enhanced signal tracking and 

acquisition. This study investigates the reduction of GPS positioning errors by implementing 

a machine learning framework, utilizing a dataset from vehicle tracking devices equipped 

with Novatel and Ublox technologies. Ten machine learning prediction algorithms were 

evaluated, focusing on techniques that introduce randomness for stability, employ proximity 

for predictions, incorporate regularization to prevent overfitting, and leverage both single 

and ensemble methods to refine analyses. Among the evaluated algorithms, the Extra Trees 

algorithm was distinguished by its superior performance, achieving a coefficient of 

determination (R²) of 99.6%, with the lowest error rates compared to its counterparts. The 

errors were quantified as Root Mean Square Error (RMSE) at 1.01E-4, Mean Absolute Error 

(MAE) at 4.14E-5, and Mean Square Error (MSE) at 1.03E+0 for normalized data. A 

comparative assessment across ten scenarios demonstrated that the machine learning-

enhanced approach deviated by approximately 6.8 meters on average, markedly improving 

accuracy over traditional GPS methods and reducing positional deviations to a scale of 

meters. This advance represents a significant stride towards minimizing GPS inaccuracies 

in complex environments, providing a robust framework for enhancing navigational 

precision in critical applications.  
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1. INTRODUCTION

Recently, there has been increasing interest in the GNNS [1] 

framework in which positioning and geolocation processes are 

carried out. At least three satellites must be used to measure 

location in the GPS. The data acquired from multiple satellites 

is then processed and transformed into a single point [1]. GPS 

data is used in many fields, such as the defense industry, 

military, navigation, geology, and mapping. Although the 

measured GPS data sometimes differs from the actual location 

[2-4], fatal errors can occur due to the complexity of 

information, communication, and sensing technologies. 

Processing and converting GPS raw data into the target 

geolocation data is a complex and disciplined process 

requiring a wide range of information [4]. The most important 

argument is the value of GPS data accuracy. While it is 

relatively easy to deal with the weak signal problem, accurate 

location determination is difficult as the data can give 

inaccurate results due to the hardware and technical 

shortcomings of GPS receivers. Although ground truth GPS 

receivers have higher precision than ordinary GPS receivers, 

they are very expensive. Therefore, while matching GPS point 

locations to the road network, improving the quality of the 

quality of ordinary GPS data based on ground truth GPS data 

is often required. 

In general, GPS receivers learn the location of four or more 

satellites and find the distance to each. According to the 

distance to the satellites, it extracts the coordinate information 

of its location. This process relies on a basic mathematical 

operation known as trilateration. Using the trilateration 

method, the location of the object in three-dimensional space 

is revealed. The trilateration method is an approach for finding 
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a coordinate whose distance from two or more points is known 

(Figure 1). Circles are drawn with known points as centers and 

known distances as radii. By intersecting these circles, the 

desired coordinate can be found [5]. This is also the approach 

inspired by our method. 

 

 
 

Figure 1. GPS trilateration calculation 

 

1.1 Motivation 

 

Most map-matching algorithms connect GPS tracks with 

the road network, considering the location of each GPS point 

or other GPS point in the same orbit [6, 7]. However, the map-

matching algorithm does not consider the sources of error 

associated with the navigation sensors and the digital maps 

when estimating the location of the vehicle in the identified 

road segment. Indeed, the measured GPS data may deviate 

from the actual position. The basic mapping techniques are 

based on geometric analysis (point-to-point, point-to-curve, 

and curve-to-curve, using the geometric information of the 

digital road network) and topological analysis. Some basic 

map-matching algorithms try to overcome the errors with 

more complex techniques such as fuzzy logic, Kalman 

filtering, particle filtering, Bayes filtering, and Dempster. No 

matter how efficient these techniques are, the complexity of 

the street network can result in poor results. 

In summary, geometric calculations in map matching and 

location estimation algorithms cannot give precise results 

when the complexity of the road network is high and the 

number of sample data points is low. As an alternative to 

geometric methods, more advanced map-matching algorithms 

such as particle filtering and Kalman filtering can be used. 

However, the particle filter algorithm needs a large number of 

particles to produce accurate results. The calculation costs are 

high. At the same time, there is no convenient way of relating 

particle counts to accuracy. For the same input, a particle filter 

can produce different outputs, making prediction success and 

error rates difficult to eliminate. On the other hand, the 

Kalman filter is used for linear problems. The Kalman filter 

can perform computation by iteratively updating linear 

Gaussian systems. However, it cannot properly model systems 

with nonlinear properties. Machine learning mechanisms can 

offer a number of solutions to address the shortcomings of 

sensor fusion-based approaches such as particle and Kalman 

filters. However, since the studies in this field have to use the 

whole data set, costly operations are carried out [8, 9]. 

 

1.2 Contribution 

 

The detection of patterns in GPS error has been emphasized 

in many studies [10-14]. The position is calculated by the GPS 

receiver based on the distance to visible satellites. However, 

these distances are distorted by errors. In this paper, Machine 

Learning (ML) algorithms are used to measure the accuracy of 

GPS data obtained from vehicle tracking devices to match 

real-time road details. As mentioned earlier, the ML approach 

is suitable due to some shortcomings of existing solutions. In 

this study, we use 10 different ML algorithms in our method 

to minimize the possible errors of GPS systems, especially in 

dense obstacles and complex areas. Since there are numerical 

data such as latitude, longitude, and time in the data, the use of 

these algorithms provides a serious advantage. However, in 

this study, we only give the latitude and longitude information 

of the data set as an input to ML algorithms with a unique 

approach, thanks to the model we propose. The program 

automatically generates feature values with algorithms 

(haversine, Manhattan, bearing) that calculate K-means and 

distance. Then, machine learning algorithms are used with 

these feature values. Therefore, transactions will be both fast 

and cost-effective. This process is described in Section 3. 

On the other hand, the Kalman filter is applied to the 

integration of sensors and data fusion. In real-time systems, a 

series of sequential measurements is commonly utilized rather 

than a single observation to determine the system's state. For 

every time increment, this filter provides predictions of the 

actual unknown quantities and assesses their uncertainty. In 

the previous version of this study, map mapping was 

performed using Kalman Filter, and it was seen that Kalman 

Filter gave good results in location data with noisy data type 

as shown in experimental results below. 

Therewithal, as an alternative approach to correcting GPS 

points and reducing device deviation rates in vehicle tracking 

systems, this study focuses on an extra tree-based method to 

measure the accuracy of matching GPS data obtained from 

vehicle tracking devices with real-time road details. GPS data 

is equipped with different regression algorithms, and the 

predictions are compared with the real data set. In addition, 

costly and expensive GNSS devices are used to obtain location 

data with high accuracy along the road route. In this study, a 

model using machine learning algorithms is presented as an 

alternative solution to advanced and expensive GNSS devices. 

By training the raw location GPS data (location data not on the 

road route) with the model, the accuracy of the latitude and 

longitude values that should be on the road line has been 

increased. This model can also be used efficiently in many new 

trending technologies, such as the Internet of Things [15], 

smart networks [16], and autonomous vehicles [17]. 

The rest of the paper is organized as follows: Section 2 gives 

a brief overview of several works related to GNSS in the 

literature. Section 3 describes the developed models, and 

section 4 presents the results of the experiments conducted and 

discussions among them. Finally, Section 5 includes the 

conclusions. 

 

 

2. RELATED WORKS 

 
Most map matching and location estimation algorithms are 

based on the theory of alignment with the current road network 

and the measurement of other GPS points in the same orbit 

with respect to the location of each GPS point [18]. Although 

these geometric calculations are accurate, they cannot produce 

conclusive results when the sampling rate is small or the 

complexity of the road network is high [6]. As an alternative 

to geometric approaches, more sophisticated map-matching 

algorithms such as particle filters and Kalman filters are used. 
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In applications that are resolved by a particle filter, the 

algorithm calculates probable values based on the candidate 

paths in orbit and the GPS point values [19]. The most reliable 

route between these results is used to suit the map. Particle 

filter technology is used in many applications, such as path 

tracking and prediction in non-linear dynamic systems [20]. 

However, the particle filter algorithm requires a large number 

of particles to produce accurate results; thus, the cost of the 

calculation appears to be high. Moreover, there is no 

convenient way to correlate accuracy with particle numbers. 

For example, a particle filter for the same input can produce 

different outputs, making predictable success and error rate 

elimination difficult [21]. A particle filter is formulated as 

follows: 

 

 𝜋𝑛(𝑑𝑥𝑛 |𝑦1:𝑛)  ≈  �̂�𝑛(𝑑𝑥𝑛  |𝑦1:𝑛)

=  ∑ 𝑊𝑛
𝑖

𝑁

𝑖=1

∆𝑋𝑛
𝑖 (𝑑𝑥𝑛) 

(1) 

 

where, 𝑊𝑛
𝑖 collects random weights, while 𝑋𝑛

𝑖  are the random 

variables called snippets, 𝛥𝑥 is the mass of points at zero time, 

𝜋0 pulls particles from 𝑊0
𝑖 = 1/N which is set in 𝑛 time �̂�𝑛−1 

that starts as new particles 𝑃(. |𝑋𝑛
𝑖 ), from which 𝑋𝑛

𝑖  is drawn. 

In Eq. (2), 𝑊𝑛−1
𝑖  having weights 𝑋𝑛

𝑖  particles 𝜋𝑛|𝑛−1 provides 

a more important approach. 𝑊𝑛
𝑖  ∝ 𝑊𝑛−1

𝑖  𝑔( 𝑦𝑛 || 𝑋𝑛
𝑖 ) weights 

are updated, and iteration is closed. 

 
𝜋𝑛 | 𝑛−1(𝑑𝑥𝑛  |𝑦1:𝑛−1)

= ∫ 𝜋𝑛−1(𝑑𝑥𝑛−1 |𝑦1:𝑛−1)𝑃(𝑑𝑥𝑛  |𝑥𝑛−1)    
(2) 

 

  𝜋𝑛(𝑑𝑥𝑛 |𝑦1:𝑛)

=  𝜋𝑛 | 𝑛−1(𝑑𝑥𝑛  |𝑦1:𝑛−1)
𝑔(𝑦𝑛|𝑥𝑛)

𝑝𝑛(𝑦𝑛|𝑦1:𝑛−1)
 

(3) 

 

Another method, the Kalman filter, is used to maximize the 

interest variables when they are not specifically measured. In 

addition, it is both reciprocal and online, making it ideal for 

real-time signals. Filters from the Kalman linear system are 

popular due to their minimum average square estimate. 

Furthermore, the Kalman filter can recurrently update 

Gaussian linear systems and perform the calculation process. 

However, systems with non-linear properties cannot be 

properly modeled [22]. The Kalman filter is developed and 

motivated as an ideal filter for linear systems. For targets with 

variable speeds or accelerations, Kalman and particle filters 

are the only reliable ones [23]. The extended Kalman filter 

provides solutions to nonlinear evaluation problems by 

applying standard Kalman filter formulas after a linearization 

process. Nevertheless, filter operations cause approximation 

errors in linearization and updating operations. The Kalman 

filter is formulated in the simplest form as follows: 

 

�̂�𝑘 = 𝐾𝑘 . 𝑍𝑘 + (1 − 𝐾𝑘). �̂�𝑘−1 (4) 

 

where, k indicates the states. The goal is to find �̂�𝑘 value for 

each 𝑘 . 𝑍𝑘  is the measured value, while 𝐾𝑘  is the most 

important parameter of Kalman gain. Finally, �̂�𝑘−1  is the 

prediction of the previous state of the signal [24, 25]. 

In addition to approaches such as particle and Kalman filters, 

various solutions are also offered on the machine learning side. 

A model based on the estimation of GPS data is given in 

Markovic’s study [26] to calculate vehicle travel times in the 

area. For an accurate assessment and road network, the K-

Nearest Neighbor (KNN) algorithm is utilized to map GPS 

data. However, as revealed in this study, in contrast to the 

different ML algorithms, the KNN algorithm does not always 

yield accurate results. As can be understood from here, 

systems based on a single algorithm cannot produce consistent 

results under all conditions. In another analysis on ML [27], 

the exactingness of the GPS points along the way is achieved 

by training the models of the Artificial Neural Network (ANN). 

However, the model using reverse artificial neural networks 

has been found to slow down the training period. 

 

 

3. METHODOLOGY 

 
In this study, we investigated ten different ML techniques, 

such as Extra Trees, KNN, Linear Regression, Ridge, Lasso, 

Elastic Net, Random Forest, Decision Trees, Gradient 

Boosting, and Ada Boosting, to reduce the error deviation rates 

of GPS data. The "minimum error rate" refers to the lowest 

achievable misclassification rate for our predictive models. 

This metric is pivotal in evaluating the performance and 

robustness of our chosen methods against the complexity and 

variability inherent in the data set. Since numerical data such 

as latitude, longitude, and time are present in the data, it is 

acceptable to use these algorithms in research. The outputs of 

the regression model also include the error in magnitude and 

direction. In the working mechanism of the proposed method, 

as shown in Figure 2, the first step is to prepare the dataset. 

Novatel and Ublox GNSS devices are used while preparing the 

raw dataset [28]. Since Ublox can make more precise 

measurements, it is used as ground truth (reallat, reallong) data. 

 

 
 

Figure 2. A schematic view of all phases of the proposed methodology 
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Figure 3. The working mechanism of the proposed method in the data processing 

 

Using haversine, Manhattan, and bearing distance 

algorithms on raw latitude, longitude data from a Novatel 

GNSS device, and real point data from Ublox, our input data 

became 22 features in total. Then, the data set is reduced to 17 

features by applying Principal Component Analysis (PCA) 

analysis. 

Figure 3 shows how we get each feature. The dots in orange 

here are the raw latitude and longitude values. The points 

found as centers are calculated with the K-means algorithm. 

Yellow dots are ground truth (reallat, reallong) values. The 

prediction data from our machine learning-based method is 

shown with a blue line. 

The rest of this section refers to the regression models 

configured specifically for this study and whose mathematical 

logic is described in the basic machine learning literature [29]. 

 

3.1 Extra trees (extremely randomized trees) 

 

Following the traditional top-down procedure, the Extra 

Trees algorithm creates several regression tree assemblies. 

There are two key differences from other tree-based grouping 

approaches: the separation of nodes by randomly selecting 

split points and the use of the entire learning instance (rather 

than a boot-copy) to grow trees. Applying randomization and 

using the entire original sample contribute to the reduction in 

variance and bias, respectively. Although the Extra Trees 

algorithm applies a similar procedure as the other tree-based 

algorithms, it is faster than their counterparts. Algorithm 1 

shows the splitting procedure in Extra Trees for numerical 

properties [30]. 

 

Algorithm 1. Extra-Trees splitting algorithm (for numerical 

attributes) 

Split_a_node(S) 

Input: the local subset S corresponding to the node we want to split 

Output: a split [a<ac] or nothing. 

If Stop_split(S) is TRUE then return nothing. 

Otherwise select K attributes {a1,.....,aK} among all non constant (in 

S) candidate attributes; 

Draw K splits {s1,.....,sK}, where si = Pick_a_random_split(S, ai), 

∀i = 1,......,K; 

Return a asplit s* such that Scores(s*, S) = maxi = 1,....,K 
Score(Si, S). 

 

Pick_a_random_split(S,a) 

Inputs: a subset S and an attribute a 

Output: a split 

Let 𝑎𝑚𝑎𝑥
𝑆  and 𝑎𝑚𝑖𝑛

𝑆  denote the maximal and minimal value of a in S; 

Draw a random cut-point ac uniformly in 𝑎𝑚𝑖𝑛
𝑆 , 𝑎𝑚𝑎𝑥

𝑆 ; 

Return the split [a<ac]. 

 

Stop_split(S) 

Input: a subset S 

Output: a Boolean 

If |S| < nmin, then return TRUE; 

If all attributes are constant in S, then return TRUE; 

If the output is constant in S, then return TRUE; 

Otherwise, return FALSE. 

 

3.2 KNN 

 

The KNN algorithm, presented in the literature as a lazy 

learning method, was developed by Cover and Hart [31]. The 

KNN algorithm is a simple algorithm that reclassifies all 

existing states according to a similarity measure (e.g., distance 

functions such as Euclidean and Manhattan, as given in Eq. (5, 

6) [24, 25]. 

 

dEuclidean = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=1  (5) 

 

dManhattan = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑘
𝑖=1  (6) 

 

It looks at the distance of the data to be classified with its 

neighbours and performs the classification and regression 

process with the most appropriate label. In the proposed 

framework, the property value of the object is used as output 

in KNN regression algorithms. This is the average of the 

nearest neighbour values. Since the inputs are decimal values 

(e.g., latitude and longitude), they are assumed to be similar to 

these values in this analysis. Therefore, the regression property 

of the KNN algorithm is used, which is not graded. 

 

3.3 Linear regression 

 

Linear regression [32, 33] is the most common predictive 

model that describes the relationship between variables. As 

well as univariate or multivariate data types, the concept is 

linear. There are two different linear regression models: simple 

linear and multiple linear regression. Linear regression is 

described in Eq. (7). 

 

𝑦 = 𝑥𝛽 + 𝜀 (7) 

 

In Eq. (7), 𝑥  is a dependent variable that is always a 

continuous value and 𝑦 is the independent variable that can be 

either a continuous or categorical value. Its analysis is done 

with a probability distribution and focuses on multivariate 

analysis with a conditional probability distribution.  
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3.4 Ridge regression, lasso, and elastic net 

 

Ridge regression [34] is suitable if it has many predictors 

and all non-zero coefficients from a normal distribution. In 

particular, it performs well with many predictors, each with a 

small impact, and prevents poor determination of the 

coefficients of linear regression models with many associated 

variables and high variance. Ridge regression equally shrinks 

the coefficients of associated predictors towards zero. That is, 

for example, given k identical predictions, each would obtain 

identical coefficients equal to the dimension any predictor 

would take if they fit alone [35]. Ridge Regression therefore 

does not force the coefficients to disappear, and therefore we 

cannot choose a model that only has the most relevant and 

predictive subset of predictors. 

 

�̂�(𝑟𝑖𝑑𝑔𝑒) =  𝑎𝑟𝑔𝛽𝑚𝑖𝑛‖𝑦 − 𝑋𝛽‖2
2 +  𝜆‖𝛽‖2

2 (8) 

 

In Eq. (8), 𝛽  is the regression coefficient; the higher the 

value of 𝜆, the greater the fractures in the data. Since the value 

of 𝜆  is data-dependent, data-based methods such as cross-

validation can be used [36]. 

Lasso regression methods are widely used in areas with 

large data sets, such as genomics, where fast and efficient 

algorithms are required. Whereas Lasso regression is not 

robust against high correlations between predictors. It 

arbitrarily chooses one, ignores the others, and collapses when 

all predictors are the same [33]. The lasso penalty expects only 

a small subset to be larger (but not zero) and many coefficients 

to be close to zero. 

 

�̂�(𝑙𝑎𝑠𝑠𝑜) = 𝑎𝑟𝑔𝛽𝑚𝑖𝑛‖𝑦 − 𝑋𝛽‖2
2 +  𝜆‖𝛽‖1 (9) 

 

In Eq. (9), 𝛽 defines the regression coefficient, 𝜆 ≥ 0 is set. 

Reducing the lassoed components by the least-squares method 

by reducing the best-selected 𝜆 values to zero [37]. 

The Elastic Net (ENET), a combination of Ridge and Lasso, 

is robust to extreme correlations between the predictors [38, 

39]. ENET has been proposed to analyze high-dimensional 

data to avoid the instability of lasso solutions when predictors 

are highly correlated. The ENET uses a mixture of the Ridge 

and Lasso penalties and can be expressed as in Eq. (10) [40]. 

 

�̂�(𝑒𝑛𝑒𝑡) =  (1 + 
𝜆2

𝑛
) {𝑎𝑟𝑔𝛽𝑚𝑖𝑛‖𝑦 − 𝑋𝛽‖2

2 +  𝜆2‖𝛽‖2
2

+ 𝜆1‖𝛽‖1 } 
(10) 

 

In this study, ridge, Lasso, and Elastic Net algorithms are 

used subsequently to avoid overestimation and estimation of 

new points on normalized data. 

 

3.5 Random forest 

 

Random Forest (RF) is an ensemble learning method that 

represents an important advance in machine learning. The task 

of the RF method is to create a large number of individual 

decision trees during the training phase. Its aim is to find new 

ways to combine information from individual trees [41].  

 

𝐻𝑟𝑒𝑔𝑟𝑒𝑠𝑠(𝑥) =  
1

𝑇
∑ ℎ𝑡(𝑥, 𝜃)

𝑇

𝑡=1

 (11) 

 

In Eq. (11) T shows the number of forest trees. A random 

vector of ht is used to decide how successive cuttings are 

produced in the development of individual trees. It is assumed 

that x and the samples are trained [42] independently. In this 

study, the tree depth is partitioned into five layers to calculate 

the GPS points more accurately. 
 

3.6 Decision trees 
 

In decision trees, the tree structure consists of a root node, 

internal nodes (branches), and end nodes (leaves). The tree 

structure is configured according to the training data. The 

attributes of the training samples are used to determine the 

placement of the nodes in the tree and threshold coefficients. 

The created decision tree reaches the end node by moving at 

the nodes according to the attribute values and threshold 

values determined during the training process. Optimal 

threshold values should be determined to make the branches 

leaving the nodes have the highest difference or to minimize 

the similarity of the crossed nodes [43]. 
 

�̂�𝑡 =  
1

𝑁𝑡

∑ 𝑦(𝑖)

𝑖∈𝐷𝑡

 (12) 

 

In Eq. (12), 𝑁𝑡 is the number of trained samples in node 𝑡, 

𝐷𝑡  is the training subset, 𝑦(𝑖) is the actual targeted value, and 

�̂�𝑡 is the estimated value [44]. In this study, since GPS point 

estimation is a value estimation problem, a decision tree 

structure based on regression is formed, which takes less 

training time. 
 

3.7 Gradient boosting decision trees 
 

Gradient Boosting Decision Trees (GBDT) [45] is an 

additional regression model that includes a set of decision trees. 

A single decision tree has an overfitting problem, but the 

GBDT algorithm can overcome this by combining hundreds 

of weak decision trees consisting of several leaf nodes. GBDT 

has several advantages, including the ability to find nonlinear 

transformations, the ability to handle skewed variables without 

the need for transformations, computational robustness, and 

high scalability [46]. 

 

𝑐𝑡𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖 , 𝑓𝑡−1(𝑥𝑖)
𝑥𝑖∈𝑅𝑡𝑗

+ 𝑐) (13) 

 

where, 𝑅𝑡𝑗 is the number of leaf nodes in the tree, 𝑓𝑡−1 is the 

most accurate value from the previous iteration, and 𝑐𝑡𝑗 

represents the best output value for each leaf node [47]. 

 

 

4. EXPERIMENTAL RESULTS 

 

The main idea of location algorithms is to model regular 

patterns based on historical information and to determine the 

most probable movements based on current observations. 

While a great deal of attention is paid to network architecture 

design literature in order to endorse GPS generally, nothing is 

done on the essential issue of the appropriate location. Besides, 

we concentrate instead of costly equipment on estimating the 

target position using ML techniques. 

The trajectory of a vehicle cannot be explicitly converted to 

an approximation model because of changes in position and 

time. The trajectories of the vehicle do not exactly follow the 

same route every day, but they do not. It may result in higher 
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calculation costs, as well as a poorer estimate of a location with 

continuous coordinates [48]. The relationship between latitude 

and longitude coordinates along the trajectory must be defined 

before predictive models are developed. 

 

4.1 Dataset materials 

 

In this study, we meticulously collected vehicle location 

data, including latitude and longitude information, across five 

distinct districts in Istanbul, Türkiye—Besiktas, Ortakoy, 

Palanga, Buyukdere, and Eski Buyukdere. This dataset 

represents an accumulation of data over four days, conducted 

in two separate laps for each day to ensure consistency and 

reliability in our findings. The primary objective of our data 

collection was to analyze the precision and accuracy of two 

GNSS (Global Navigation Satellite System) receivers: 

Novatel and Ublox. The choice of these devices was guided by 

their widespread use in geographic data collection and their 

distinct operational capabilities. Novatel is the GNSS receiver 

platform for recording GPS data with multiple frequency 

tracking [49]. Ublox is a GNSS receiver, just like Novatel. 

However, Ublox can make more accurate measurements [50]. 

The latitude and longitude data obtained through Novatel is 

6027, while the dataset from Ublox is 1407 points. The latitude 

and longitude points taken with Ublox represent more 

sensitive data. Therefore, Ublox is used as the ground truth 

data in our dataset. The raw data gathered from GNSS 

receivers is received using the National Marine Electronics 

Association (NMEA) protocol. NMEA is a protocol created by 

the US National Maritime Electronics Association. Sentences 

begin with a $ sign, and the GP letter is then added to indicate 

that it is from the GPS receiver. The next three letters indicate 

the purpose of the sentence (e.g., $ GPVTG: velocity, 

$ GPGLL: position). What is most important here is the GGA 

(Global Positioning System Fix Data). "Fix" is a GPS term 

referring to the determination of the current location [51]. An 

NMEA example sentence is given in the following: 

 
$GPGGA,073840.00,4102.7502506, N,02901.1513588, 

E,2,12,1.0,9.979, M,37.30, M,18, TSTR*5 

 

In the example sentence, the part up to N (4102.7502506, N) 

represents latitude, the part up to E (02901.1513588, E) 

represents longitude, and the time in UTC format is provided 

first (073840.00). All the raw data (6027 dots) in NMEA 

format is coded in Python and appropriately divided into 

latitude, longitude, and time zones. With the new dataset, test 

and training data are created in advance. The generated 

training data is modeled with regression algorithms in ML. 

 

4.2 Accuracy performance analysis 

 

Data are shown on the Open Street Map and Google Map as 

a result of the analysis. The correlation coefficient is 

determined by extracting the error rates. The absolute values 

of the discrepancies between the test and forecast values can 

be seen as the MAE. All errors are of equal weight in MAE 

[52]. The MAE formula is given as: 

 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 −  �̂�𝑖|

𝑛

𝑖=1

 (14) 

 

where, n is observed data, 𝑦𝑖  is test data, and �̂�𝑖  is the 

estimated data. 

Root Mean Square Error is used to measure the difference 

between the predicted values, similar to MAE. The difference 

is that it can calculate larger absolute values by giving more 

weight than the MAE gives. The greater the difference 

between MAE and RMSE, the greater the error rates are in the 

sample [53]. 
 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

𝑛
 (15) 

 

where, n is observed data, yi is test data, and �̂�𝑖 is the estimated 

data. As the input data of the algorithm, the methods used in 

distance calculations (Haversine, Manhattan, Bearing), the K-

means clustering algorithm, PCA, reduced and simplified data, 

vehicle speed, and real road information are processed. The 

theorem of Haversine is used to measure the latitude and 

longitude values of a two-point range on the surface of the 

Earth. To calculate two distances, four variables must be 

prepared. It is estimated that the distance between the two 

points is 6 367.45 kilometers [54]. The Haversine formula is 

as follows [35]: 
 

𝑎 =  𝑠𝑖𝑛²(𝛥𝜆/2)  +  𝑐𝑜𝑠 𝜑1 ⋅  𝑐𝑜𝑠 𝜑2 
⋅  𝑠𝑖𝑛²(𝛥𝜆/2) 

c = 2 ⋅ atan2(√a, √(1−a)) 

𝑑 =  𝑅 ⋅  𝑐 

(16) 

 

where, ϕ is the latitude, λ denotes longitude, and R stands for 

the radius of the world. The calculation of distance by 

Manhattan (city block size) calculates the size to travel on a 

grid-like path from one data point to another. The distance 

between the two elements in Manhattan is the sum of the 

differences between the components. The Manhattan distance 

is also known as the L1 distance [55]. The Manhattan distance 

is formulized as follows: 
 

𝑑 =  ∑|𝑥𝑖 −  𝑦𝑖|

𝑛

𝑖=1

 (17) 

 

where, 𝑛 is the number of the variables, 𝑥 and 𝑦 represent the 

two points. 

The bearing algorithm, on the other hand, is the calculation 

of the distance between two points on the earth’s surface by 

connecting them using a circular line. The bearing distance 

formula is as follows [41]: 
 

𝜃 =  𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛 𝛥𝜆 ⋅  𝑐𝑜𝑠 𝜑2 , 𝑐𝑜𝑠 𝜑1 ⋅  𝑠𝑖𝑛 𝜑2
−  𝑠𝑖𝑛 𝜑1 ⋅  𝑐𝑜𝑠 𝜑2 ⋅  𝑐𝑜𝑠 𝛥𝜆 ) 

(18) 

 

where, ϕ1, λ1 are the starting points, ϕ2, λ2 refer to the ending 

points, and ∆𝜆 denotes the longitude difference. 

The K-means clustering algorithm allows grouping of data 

that show similar properties in a dataset. The K value in the 

algorithm sets the number of clusters, and this value is to be 

taken as a parameter [56]. 

 

𝐽 = ∑ ∑‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖

𝑛

𝑖=1

𝑘

𝑗=1

 (19) 

 

where, J is the target function, k refers to the number of 

clusters, n denotes the number of cases, 𝑥𝑖
(𝑗)

− 𝑐𝑗  is the 

distance function, and cj is the centroid for cluster j [57]. 
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Table 1. Procedures applied to the input and output data 

 

Input Description 

Lat Latitude (Novatel) 

Lon Longitude (Novatel) 

Time GPS time 

Haversine_latlon_reallatlon Distance between Latitude, Longitude and Real Latitude, Real Longitude according to Haversine 

Manhatten_latlon_reallatlon Distance between Latitude, Longitude and Real Latitude, Real Longitude according to Manhattan 

Bearing_latlon_reallatlon Distance between Latitude, Longitude and Real Latitude, Real Longitude according to Bearing 

Centroid_long The centroid of Longitude points 

Centroid_lat Centroid of Latitude points 

Centroid_real_long The centroid of Real Longitude points 

Centroid_real_lat The centroid of Real Latitude points 

Haversine_latlon_centlatlon Distance between Latitudes, Longitudes, and Centroid to Haversine 

Haversine_reallatlon_centreallatlon Distance between Real Latitudes, Real Longitudes, and their Centroids according to Haversine 

Haversine_centlatlon_centreallatlon Distance between Real Latitudes, Real Longitudes 

Haversine_latlon_centreallatlon 
Distance between Latitudes, Longitudes, and Centroids Real Latitudes, Real Longitudes according to 

Haversine 

Manhatten_latlon_centlatlon Distance between Latitudes, Longitudes, and Centroid according to Manhattan 

Manhatten_reallatlon_centrealletlon Distance between Real Latitudes, Real Longitudes, and their Centroids according to Manhattan 

Manhetten_centretlon_centrealletlon Distance between Real Latitudes, Real Longitudes 

Bearing_latlon_centletlon Distance between Latitudes, Longitudes, and Centroid according to Bearing 

Bearing_reallatlon_centlatlon 
Distance between Real Latitudes, Real Longitudes, and Centroids Latitudes, Longitudes according to 

Bearing 

Bearing_centlatlon_centreallatlon Distance between Real Latitudes, Real Longitudes 

Speed_haversin Speed between two points according to the distance calculated by Haversine 

Speed_manhatten Speed between two points according to the distance calculated by Manhattan 

Reallot Real Latitude – output value 

Reallon Real Longitude – output value 

 

Table 2. Estimation error rates 

 

Our Method Based on ML Algorithms 𝑹𝟐 RMSE MAE MSE 

Extra Trees 0.996139756 0.000101322 0.0000414464 1.026606022 

KNN 0.946238279 0.000377134 0.0000812606 1.422298635 

Linear Regression 0.987449608 0.000182063 0.000100999 3.314678968 

Ridge  0.604053192 0.00104511 0.0005396492 1.092254988 

Lasso 0.467520898 0.001701065 0.000824387 2.89362048 

Elastic Net 0.517820798 0.001701065 0.000824387 2.89362048 

Random Forest 0.970729381 0.000297608 0.000100891 8.857064416 

Decision Trees 0.979705547 0.000240813 0.0000776682 5.799076299 

Gradient Boosting 0.569920497 0.001115341 0.00052906 1.243984473 

Ada Boosting 0.897450938 0.000699161 0.000193861 4.888266597 

 

The distances between the latitude and longitude values that 

are retrieved from the GPS are calculated for the exact spot. 

The midpoints of the latitudes and longitudes are calculated 

using the equation K-means. A total of 22 data are generated 

as inputs, and 2 data are generated as outputs. Table 1 shows 

the procedures applied to both input and output data 

throughout the proposed methodology. 

Table 2 shows the results of ten different ML algorithms 

that are compared. The Extra Trees algorithm yielded 99.6% 

accuracy in R2 with low error values. The errors RMSE, MAE 

and MSE are calculated in terms of normalized values. 

Therefore, they are expected to be very close to zero and each 

other in optimal regression models. 

MAE measures the average magnitude of errors in a series 

of estimates, which represents the mean of the validation 

sample of the absolute values of the differences between the 

estimate and the observed. RMSE is a second-order scoring 

rule that measures average error magnitude. The difference 

between the estimate and the observed values is taken from 

each frame and then centered on the sample. Both evaluation 

tools can be used to diagnose the variation of errors in several 

estimates. GPS latitude and longitude estimation results 

obtained from test data are shown on the map. 

 

According to the results obtained, the method based on the 

Extra Tree Algorithm performs better. The working results of 

this are shown on the sample real map in Figure 4. On the other 

hand, the latitude and longitude values gathered from the 

Novatel device are shown on the map in Figure 5 to help 

understand the difference between them. 

 

 
 

Figure 4. The extra trees algorithm results (real map of 

Istanbul) 
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Figure 5. Latitude and longitude values gathered from the 

Novatel device (real map of Istanbul) 

 

As clearly seen on the map, the coordinates retrieved from 

GPS (Figure 5) do not produce more consistent and accurate 

results along the road compared to the Extra Trees algorithm 

(Figure 4), which is one of the ML algorithms. Obviously, the 

Extra Trees algorithm correctly calculates the latitude, 

longitude points and draws a smoother path along the road. In 

addition, Table 3 expresses the deviation rates, which are 

calculated by using Euclid's theorem. The deviations from 

exact locations with respect to the proposed prediction model 

are between 1.9 and 9.4 meters approximately. Therefore, the 

average of deviations is 6.8 meters with respect to exact 

locations based on ground truth GPS receivers. This finding 

marks a significant advancement, notably reducing the 

deviation to a scale of meters when comparing GPS data from 

the vehicle tracking system with the projected coordinates. 

Importantly, the deviation of 6.8 meters is evaluated within the 

context of its practical implications in various application 

areas, such as vehicle navigation and search and rescue 

operations. In vehicle navigation, such precision significantly 

enhances route accuracy and safety, making it highly 

beneficial for autonomous driving technologies where every 

meter counts. In search and rescue missions, this reduced 

deviation could drastically improve the efficiency of locating 

individuals in distress, potentially saving lives by enabling 

quicker response times. By benchmarking against acceptable 

standards within these application areas, it becomes evident 

that the achieved deviation substantially exceeds the 

conventional accuracy, thereby affirming the superiority and 

applicability of our method in real-world scenarios. In 

literature, the Kalman Filter mechanism, which was recently 

proposed [58], gave deviations between 5.2 and 27.2 meters 

with a 10.15 average value. In the analysis of the results 

obtained, the method proposed in this study demonstrates that 

it outperforms the others with the least deviation. 

 

Table 3. Deviation results in meters 

 
Proposed Method based on Extra Trees Kalman Filter GPS Distance (Deviation Rate) 

Latitude Longitude Latitude Longitude Latitude Longitude Meter 

41.04268513 29.00984937 41.04410506 29.01486518 41.04267867 29.00981133 3.26992175 

41.04284729 29.0103781 41.04414235 29.01494283 41.04283289 29.01039153 1.95796513 

41.04307647 29.01123174 41.04417789 29.01502226 41.04300557 29.01121421 8.01926154 

41.04310119 29.01134478 41.04421081 29.01510458 41.04305312 29.01141928 8.22238095 

41.04330904 29.01228856 41.04424125 29.0151883 41.04324906 29.01234396 8.12768869 

41.04332878 29.01238319 41.04427077 29.01527151 41.0432678 29.01242529 7.64459395 

41.04334697 29.01246332 41.0443013 29.01535364 41.0432861 29.01250516 7.62372252 

41.04390765 29.01425744 41.04373476 29.01394512 41.04384431 29.01433329 9.490165 

41.04430288 29.01527054 41.04370114 29.01387296 41.04430417 29.01521512 4.64992499 

41.04455555 29.01596397 41.04366641 29.01379503 41.04453592 29.01599378 3.31897928 

 

 

5. CONCLUSIONS 
 

This paper presents a study that aims to mitigate GPS 

localization errors by using ML methods. In the first step, the 

data set is created using the latitude and longitude coordinates 

obtained through Novatel (less precision) and Ublox (ground 

truth) GNSS receivers. This data set is analyzed within the 

framework. During the data set creation phase, the raw data in 

NMEA format is processed. After the data creation phase, 

location estimation and map matching operations are 

performed. Then, the latitude and longitude values calculated 

by machine learning-based methods are compared with the 

raw data set and shown numerically on the chart. As a result 

of the analysis, the false deviation rates of the GPS data are 

calculated and given in meters. It is observed that the Extra 

Trees algorithm outperforms the other 9 machine learning 

algorithms and the Kalman Filter method. New coordinate 

values are calculated with algorithms on Google Maps, and 

they are shown on the map with the help of OpenStreetMap. 

Compared with previous raw data, deviation rates are 

calculated in meters using the Euclidean principle. 

Consequently, machine learning algorithms can be used 

effectively to correct erroneous GPS points and reduce the 

deviation rates of devices using navigation, especially for 

vehicle tracking systems. For future research, additional 

experiments at various locations using a variety of GNSS 

receivers are recommended to further highlight the value of 

machine learning algorithms in reducing GPS errors. 

Additionally, although our preliminary findings highlight a 

notable increase in positional accuracy (in particular, the Extra 

Trees algorithm outperforms nine other machine learning 

algorithms and the Kalman Filter approach), future research 

should include a broader range of datasets. Performing 

statistical significance analysis with a large data set will 

provide more robust validation of these results. This approach 

will help validate the effectiveness of machine learning 

algorithms in improving GPS accuracy on a more significant 

and diverse scale. 

 

 

REFERENCES  

 

[1] Li, D., Ma, X., Zhao, J., Wu., F. (2022). Mitigating GNSS 

multipath effects using XGBoost integrated classifier 

based on consistency checks. International Journal of 

1448



 

Antennas and Propagation, 1-14. 

https://doi.org/10.1155/2022/2742620 

[2] Rychlicki, M., Kasprzyk, Z., Rosiński, A. (2020). 

Analysis of accuracy and reliability of different types of 

GPS receivers. Sensors, 20(22): 6498. 

https://doi.org/10.3390/s20226498 

[3] Dogan, U., Uludag, M., Demir, D.O. (2014). 

Investigation of GPS positioning accuracy during the 

seasonal variation. Measurement, 53: 91-100. 

https://doi.org/10.1016/j.measurement.2014.03.034 

[4] Nikolic M., Jovic J. (2017). Implementation of generic 

algorithm in map-matching model. Expert Systems with 

Applications, 72: 283-292. 

https://doi.org/10.1016/j.eswa.2016.10.061 

[5] Orabi, M., Khalife, J., Abdallah, A.A., Kassas Z.M., 

Saab, S.S. (2020). A machine learning approach for GPS 

code phase estimation in multipath environments. In 

IEEE/ION Position, Location and Navigation 

Symposium (PLANS), Portland, OR, USA, pp. 1224-

1229. 

https://doi.org/10.1109/PLANS46316.2020.9110155 

[6] Kempinska, K., Davies, T., Taylor, J.S. (2021). 

Probabilistic map-matching using particle filters. arXiv 

preprint arXiv:1611.09706. 

[7] Hashemi, M., Karimi, H. (2016). A machine learning 

approach to improve the accuracy of GPS-based map-

matching algorithms. In IEEE 17th International 

Conference on Information Reuse and Integration (IRI), 

Pittsburgh, PA, USA, pp. 77-86. 

https://doi.org/10.1109/IRI.2016.18 

[8] Carron, A., Todescato, M., Carli, R., Schenato, L., 

Pillonetto, G. (2016). Machine learning meets Kalman 

filtering. In 2016 IEEE 55th Conference on Decision and 

Control (CDC), Las Vegas, NV, USA, pp. 4594-4599. 

https://doi.org/10.1109/CDC.2016.7798968 

[9] Gao, X., Luo, H., Ning, B., Zhao, F., Bao, L., Gong, Y., 

Xiao, Y., Jiang, J. (2020). RL-AKF: An adaptive Kalman 

filter navigation algorithm based on reinforcement 

learning for ground vehicles. Remote Sensing, 12(11): 

1704. https://doi.org/10.3390/rs12111704 

[10] Kim, S., Byun, J., Park, K. (2022). Machine learning-

based GPS multipath detection method using dual 

antennas. arXiv:2204, 14001. 

https://doi.org/10.48550/arXiv.2204.14001 

[11] Hashemi, M. (2017). Reusability of the output of map-

matching algorithms across space and time through 

machine learning. IEEE Transactions on Intelligent 

Transportation Systems, 18(11): 3017-3026. 

https://doi.org/10.1109/TITS.2017.2669085 

[12] Lou, J., Cheng, A. (2020). Detecting pattern changes in 

individual travel behavior from vehicle GPS/GNSS data. 

Sensors, 20(8): 2295. https://doi.org/10.3390/s20082295 

[13] Wang, Y., Qin, K., Chen, Y., Zhao, P. (2018). Detecting 

anomalous trajectories and behavior patterns using 

hierarchical clustering from taxi GPS data. ISPRS 

International Journal of Geo-Information. 7(1): 25. 

https://doi.org/10.3390/ijgi7010025 

[14] Wang, C.Z., Kong, L.W., Jiang, J. (2021). Machine 

learning-based approach to GPS antijamming. GPS 

Solution, 25(115).  

[15] Kiani, F., Nematzadehmiandoab, S., Seyyedabbasi, A. 

(2019). Designing a dynamic protocol for real-time 

industrial internet of things-based applications by 

efficient management of system resources. Advances in 

Mechanical Engineering, 11: 1-23. 

https://doi.org/10.1177/1687814019866062 

[16] Kiyani, F., Tahmasebi rad, H., Chalangari H., Yari, S. 

(2010). DCSE: A dynamic clustering for saving energy 

in wireless sensor network. In 2010 Second International 

Conference on Communication Software and Networks, 

Singapore, pp. 13-17. 

https://doi.org/10.1109/ICCSN.2010.98 

[17] Kiani, F., Saraç, Ö.F. (2022). A novel intelligent traffic 

recovery model for emergency vehicles based on 

context-aware reinforcement learning. Information 

Sciences, 619: 1-22. 

https://doi.org/10.1016/j.ins.2022.11.057 

[18] Islam, M.R., Kim, J.M. (2014). An effective approach to 

improving low-cost GPS positioning accuracy in real-

time navigation. The Scientific World Journal, 2014: 

671494. https://doi.org/10.1155/2014/671494  

[19] Ahwiadi, M., Wilson, W. (2019). An enhanced mutated 

particle filter technique for system state estimation and 

battery life prediction. IEEE Transactions on 

Instrumentation and Measurement, 68(3): 923-935. 

https://doi.org/10.1109/tim.2018.2853900 

[20] Xian, W., Long, B., Li, M., Wang, H. (2014). Prognostics 

of lithium-ion batteries based on the Verhulst model, 

particle swarm optimization and particle filter. IEEE 

Transactions on Instrumentation and Measurement, 

63(1): 2-17. https://doi.org/10.1109/TIM.2013.2276473 

[21] Pathak, A., Singh, E. (2014). Comparative study on 

filtering techniques of digital image processing. Advance 

in Electronic and Electric Engineering, 4(6): 669-674. 

[22] Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T. 

(2012). A tutorial on particle filters for on-line non-

linear/non-gaussian Bayesian tracking. IEEE 

Transactions on Signal Processing, 50(2): 174-188. 

http://doi.org/10.1109/78.978374 

[23] Mahfouz, S., Mourad-Chehade, F., Honeine, P., Joumana, 

F., Snoussi, H. (2014). Target tracking using machine 

learning and Kalman filter in wireless sensor networks. 

IEEE Sensors Journal, 14(10): 3715-3725. 

https://doi.org/10.1109/JSEN.2014.2332098 

[24] Nematzadeh, S., Kiani, F., Torkamanian-Afshar, M., 

Aydin, N. (2022). Tuning hyperparameters of machine 

learning algorithms and deep neural networks using 

metaheuristics: A bioinformatics study on biomedical 

and biological cases. Computational Biology and 

Chemistry, 97: 1-22. 

https://doi.org/10.1016/j.compbiolchem.2021.107619 

[25] Çayiroglu, I. (2012). Kalman filter and programming. 

Science and Technology Information Sharing, 1: 1-6.  

[26] Markovic, H., Basic, B., Gold, H., Dong, F., Hrvoje, G. 

(2010). GPS data-based non-parametric regression for 

predicting travel times in urban traffic networks. Promet-

Traffic & Transportation, 22(1): 1-13. 

https://doi.org/10.7307/ptt.v22i1.159 

[27] Han, Y., Kim, Y., Ku, J., Jung, Y., Roh, J. (2021). Map 

matching algorithm for real-time data processing of non-

route GPS data in Seoul. KSCE Journal of Civil 

Engineering, 25(9): 3511-3522. 

http://doi.org/10.1007/s12205-021-1750-x 

[28] Zhao, J., Hernández-Pajares, M., Li, Z., Wang, L., Yuan, 

H. (2020). High-rate Doppler-aided cycle slip detection 

and repair method for low-cost single-frequency 

receivers. GPS Solutions, 24(3). 

https://doi.org/10.1007/s10291-020-00993-0  

1449



 

[29] Theodoridis, S., Koutroumbas, K. (2008). Pattern 

Recognition, 4th Edition. Elsevier, Amsterdam, 

Netherlands, 23-59. 

[30] Guerts, P., Ernst, D., Wehenkel, L. (2016). Ensembles of 

extremely randomized trees and some generic 

applications. Proceedings of Robust Methods for Power 

System State Estimation and Load Forecasting, Paris, 

France, pp. 1-10. 

[31] Liu, Q., Liu, C. (2017). A novel locally linear KNN 

method with applications to visual recognition. IEEE 

Transactions on Neural Networks and Learning Systems, 

28(9): 2010-2021. 

https://doi.org/10.1109/tnnls.2016.2572204 

[32] Lederer, J. (2021). Linear Regression. In: Fundamentals 

of High-Dimensional Statistics. Springer, Cham, 37-79. 

https://doi.org/10.1007/978-3-030-73792-4_2  

[33] Montgomery, D., Peck, E.A., Vining, G.G. (2015). 

Introduction to Linear Regression Analysis. John Wiley 

& Sons, New York, USA, 14-42. 

[34] Khalaf, G. (2022). Improving the ordinary least squares 

estimator by ridge regression. Open Access Library 

Journal, 9(5): 1-8. https://doi.org/10.4236/oalib.1108738 

[35] Haversine Formula. https://www.movable-

type.co.uk/scripts/latlong.html, accessed on Aug. 25, 

2022. 

[36] Piepho, H.P. (2019). Ridge regression and extensions for 

genome wide selection in maize. Crop Science, 49(4): 

1165-1176. https://doi.org/10.2135/cropsci2008.10.0595 

[37] Gebken, B., Bieker, K., Peitz, S. (2022). On the structure 

of regularization paths for piecewise differentiable 

regularization terms. Journal of Global Optimization, 85: 

709-741. https://doi.org/10.1007/s10898-022-01223-2 

[38] Jomthanachai, S., Wong, W.P., Khaw, K.W. (2022). An 

application of machine learning regression to feature 

selection: a study of logistics performance and economic 

attribute. Neural Computing and Application, 34(8): 

15781-15805. http://doi.org/10.1007/s00521-022-

07266-6 

[39] Wang, W., Liang, J., Liu, R., Song, Y., Zhang, M. (2022). 

A robust variable selection method for sparse online 

regression via the elastic net penalty. Mathematics, 

10(16): 2985. https://doi.org/10.3390/math10162985 

[40] Sahebalam, H., Gholizadeh, M., Hafezian, H., Ebrahimi, 

F. (2022). Evaluation of bagging approach versus 

GBLUP and Bayesian LASSO in genomic prediction. 

Journal of Genetics, 101(1): 19. 

http://doi.org/10.1007/s12041-022-01358-x  

[41] Bearing Formula. https://www.movable-

type.co.uk/scripts/latlong.html, accessed on Aug. 25, 

2021. 

[42] Gonzalo-Martin, C., Lillo-Saavedra, M., Garcia-Pedrero, 

A., Lagos, O., Menasalvas, E. (2017). Daily 

evapotranspiration mapping using regression random 

forest models. IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing, 10(12): 

5359-5368. 

https://doi.org/10.1109/JSTARS.2017.2733958 

[43] Zhao, L., Lee, S., Jeong, S.P. (2021). Decision tree 

application to classification problems with boosting 

algorithm. Electronics, 10(16): 1903. 

https://doi.org/10.3390/electronics10161903 

[44] Rahmatian, M., Chen, Y.C., Palizban, A., Moshref, A., 

Dunford, W.G. (2017). Transient stability assessment via 

decision trees and multivariate adaptive regression 

splines. Electric Power Systems Research, 142: 320-328. 

https://doi.org/10.1016/j.epsr.2016.09.030 

[45] Ilyas, Q.M., Mehmood, A., Ahmad, A., Ahmad, M.A. 

(2022). Systematic study on a customer’s next-items 

recommendation techniques. Sustainability, 14(12): 

7175. http://doi.org/10.3390/su14127175  

[46] Koren, Y. (2009). The Bellkor solution to the Netflix 

grand prize. Netflix Prize Documentation, 81(2009): 1-

10. 

[47] Ma, H., Yang, X., Mao, J., Zheng, H. (2018). The energy 

efficiency prediction method based on gradient boosting 

regression tree. In 2018 2nd IEEE Conference on Energy 

Internet and Energy System Integration (EI2), Beijing, 

China, pp. 1-9. 

https://doi.org/10.1109/EI2.2018.8581904 

[48] Wu, F., Fu, K., Wang, Y., Xiao, Z. (2017). A spatial-

temporal-semantic neural network algorithm for location 

prediction on moving objects. Algorithms, 10(2): 37-42. 

https://doi.org/10.3390/a10020037 

[49] Novatel GNSS. https://www.novatel.com/products/gnss-

receivers/, accessed on Aug. 25, 2021. 

[50] Ublox GNSS. https://www.u-

blox.com/sites/default/files/products/documents/GNSS-

product_Overview_%28UBX-14000426%29.pdf, 

accessed on Aug. 25, 2021. 

[51] Shoab, M., Jain, K., Anulhaq, M., Shashi, M. (2013). 

Development and implementation of NMEA interpreter 

for real-time GPS data logging. In 2013 3rd IEEE 

International Advance Computing Conference (IACC), 

Ghaziabad, India, pp. 143-146. 

https://doi.org/10.1109/IAdCC.2013.6514210 

[52]  Li, S., Pischinger, S., He, C., Liang, L., Stapelbroek, M. 

(2018). A comparative study of model-based capacity 

estimation algorithms in dual estimation frameworks for 

lithium-ion batteries under an accelerated aging test. 

Applied Energy, 212: 1522-1536. 

https://doi.org/10.1016/j.apenergy.2018.01.008 

[53] Tang, X., Zou, C., Yao, K., Chen, G., Liu, B., He, Z., Gao, 

F. (2018). A fast estimation algorithm for lithium-ion 

battery state of health. Journal of Power Sources, 396: 

453-458. 

[54] Abidin, D.Z., Nurmaini, S., Erwin, E., Rasywir, E., 

Pratama, Y. (2021). Indoor positioning system in 

learning approach experiments. Journal of Electrical and 

Computer Engineering, 2021(8). 

https://doi.org/10.1155/2021/6592562 

[55] Ponnmoli, K.M., Selvamuthukumaran, S. (2017). 

Analysis of face recognition using Manhattan distance 

algorithm with image segmentation. International 

Journal of Computer Science and Mobile Computing, 

3(7): 18-27. 

[56] Ahmed, M., Seraj, R., Islam, S.M.S. (2020). The k-

means algorithm: A comprehensive survey and 

performance evaluation. Electronics, 9(8): 1295. 

https://doi.org/10.3390/electronics9081295 

[57] Ikotun, A.M., Almutari, M.S., Ezugwu, A.E. (2021). K-

means-based nature-inspired metaheuristic algorithms 

for automatic data clustering problems: Recent advances 

and future directions. Applied Sciences, 11(12): 11246. 

https://doi.org/10.3390/app112311246 

[58] Ersan, Z.G., Zontul, M., Yelmen, I. (2020). Map 

matching with Kalman filter and location estimation. 

Cumhuriyet Science Journal, 41(1): 43-48. 

http://doi.org/10.17776/csj.634940 

1450




