
Enhancing GPS Accuracy with Machine Learning: A Comparative Analysis of Algorithms

Metin Zontul1 , Ziya Gokalp Ersan2 , Ilkay Yelmen3* , Taner Cevik4 , Ferzat Anka5 , Kevser Gesoglu6

1 Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Sivas University of Science and

Technology, Sivas 58000, Türkiye
2 Department of Software Engineering, Faculty of Engineering and Architecture, Istanbul Gelisim University, Istanbul 34310,

Türkiye
3 Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
4 Department of Computer Engineering, Faculty of Engineering, Istanbul Arel University, Istanbul 34537, Türkiye
5 Data Science Application and Research Center (VEBIM), Fatih Sultan Mehmet Vakif University, Istanbul 34445, Türkiye
6 R&D Center, Turkcell Technology, Istanbul 34854, Türkiye

Corresponding Author Email: ilkay.yelmen@istinye.edu.tr

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.410332 ABSTRACT

Received: 22 October 2023

Revised: 29 March 2024

Accepted: 6 May 2024

Available online: 26 June 2024

In the realm of wireless communications, the Global Positioning System (GPS), integral to

Global Navigation Satellite Systems (GNSS), finds extensive applications ranging from

vehicle navigation to military operations, aircraft tracking, and Geographic Information

Systems (GIS). The reliability of GPS is often compromised by errors particularly prevalent

in dense and structurally complex environments, where signal attenuation by environmental

obstacles like mountains and buildings is common. These challenges necessitate the

deployment of high-cost, precision GPS receivers capable of enhanced signal tracking and

acquisition. This study investigates the reduction of GPS positioning errors by implementing

a machine learning framework, utilizing a dataset from vehicle tracking devices equipped

with Novatel and Ublox technologies. Ten machine learning prediction algorithms were

evaluated, focusing on techniques that introduce randomness for stability, employ proximity

for predictions, incorporate regularization to prevent overfitting, and leverage both single

and ensemble methods to refine analyses. Among the evaluated algorithms, the Extra Trees

algorithm was distinguished by its superior performance, achieving a coefficient of

determination (R²) of 99.6%, with the lowest error rates compared to its counterparts. The

errors were quantified as Root Mean Square Error (RMSE) at 1.01E-4, Mean Absolute Error

(MAE) at 4.14E-5, and Mean Square Error (MSE) at 1.03E+0 for normalized data. A

comparative assessment across ten scenarios demonstrated that the machine learning-

enhanced approach deviated by approximately 6.8 meters on average, markedly improving

accuracy over traditional GPS methods and reducing positional deviations to a scale of

meters. This advance represents a significant stride towards minimizing GPS inaccuracies

in complex environments, providing a robust framework for enhancing navigational

precision in critical applications.

Keywords:

map matching, machine learning, location

estimation, Global Positioning System

(GPS)

1. INTRODUCTION

Recently, there has been increasing interest in the GNNS [1]

framework in which positioning and geolocation processes are

carried out. At least three satellites must be used to measure

location in the GPS. The data acquired from multiple satellites

is then processed and transformed into a single point [1]. GPS

data is used in many fields, such as the defense industry,

military, navigation, geology, and mapping. Although the

measured GPS data sometimes differs from the actual location

[2-4], fatal errors can occur due to the complexity of

information, communication, and sensing technologies.

Processing and converting GPS raw data into the target

geolocation data is a complex and disciplined process

requiring a wide range of information [4]. The most important

argument is the value of GPS data accuracy. While it is

relatively easy to deal with the weak signal problem, accurate

location determination is difficult as the data can give

inaccurate results due to the hardware and technical

shortcomings of GPS receivers. Although ground truth GPS

receivers have higher precision than ordinary GPS receivers,

they are very expensive. Therefore, while matching GPS point

locations to the road network, improving the quality of the

quality of ordinary GPS data based on ground truth GPS data

is often required.

In general, GPS receivers learn the location of four or more

satellites and find the distance to each. According to the

distance to the satellites, it extracts the coordinate information

of its location. This process relies on a basic mathematical

operation known as trilateration. Using the trilateration

method, the location of the object in three-dimensional space

is revealed. The trilateration method is an approach for finding

Traitement du Signal
Vol. 41, No. 3, June, 2024, pp. 1441-1450

Journal homepage: http://iieta.org/journals/ts

1441

https://orcid.org/0000-0002-7557-2981
https://orcid.org/0000-0002-2575-0735
https://orcid.org/0000-0002-1684-9717
https://orcid.org/0000-0001-9653-5832
https://orcid.org/0000-0002-0354-9344
https://orcid.org/0009-0000-5979-9353
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410332&domain=pdf

a coordinate whose distance from two or more points is known

(Figure 1). Circles are drawn with known points as centers and

known distances as radii. By intersecting these circles, the

desired coordinate can be found [5]. This is also the approach

inspired by our method.

Figure 1. GPS trilateration calculation

1.1 Motivation

Most map-matching algorithms connect GPS tracks with

the road network, considering the location of each GPS point

or other GPS point in the same orbit [6, 7]. However, the map-

matching algorithm does not consider the sources of error

associated with the navigation sensors and the digital maps

when estimating the location of the vehicle in the identified

road segment. Indeed, the measured GPS data may deviate

from the actual position. The basic mapping techniques are

based on geometric analysis (point-to-point, point-to-curve,

and curve-to-curve, using the geometric information of the

digital road network) and topological analysis. Some basic

map-matching algorithms try to overcome the errors with

more complex techniques such as fuzzy logic, Kalman

filtering, particle filtering, Bayes filtering, and Dempster. No

matter how efficient these techniques are, the complexity of

the street network can result in poor results.

In summary, geometric calculations in map matching and

location estimation algorithms cannot give precise results

when the complexity of the road network is high and the

number of sample data points is low. As an alternative to

geometric methods, more advanced map-matching algorithms

such as particle filtering and Kalman filtering can be used.

However, the particle filter algorithm needs a large number of

particles to produce accurate results. The calculation costs are

high. At the same time, there is no convenient way of relating

particle counts to accuracy. For the same input, a particle filter

can produce different outputs, making prediction success and

error rates difficult to eliminate. On the other hand, the

Kalman filter is used for linear problems. The Kalman filter

can perform computation by iteratively updating linear

Gaussian systems. However, it cannot properly model systems

with nonlinear properties. Machine learning mechanisms can

offer a number of solutions to address the shortcomings of

sensor fusion-based approaches such as particle and Kalman

filters. However, since the studies in this field have to use the

whole data set, costly operations are carried out [8, 9].

1.2 Contribution

The detection of patterns in GPS error has been emphasized

in many studies [10-14]. The position is calculated by the GPS

receiver based on the distance to visible satellites. However,

these distances are distorted by errors. In this paper, Machine

Learning (ML) algorithms are used to measure the accuracy of

GPS data obtained from vehicle tracking devices to match

real-time road details. As mentioned earlier, the ML approach

is suitable due to some shortcomings of existing solutions. In

this study, we use 10 different ML algorithms in our method

to minimize the possible errors of GPS systems, especially in

dense obstacles and complex areas. Since there are numerical

data such as latitude, longitude, and time in the data, the use of

these algorithms provides a serious advantage. However, in

this study, we only give the latitude and longitude information

of the data set as an input to ML algorithms with a unique

approach, thanks to the model we propose. The program

automatically generates feature values with algorithms

(haversine, Manhattan, bearing) that calculate K-means and

distance. Then, machine learning algorithms are used with

these feature values. Therefore, transactions will be both fast

and cost-effective. This process is described in Section 3.

On the other hand, the Kalman filter is applied to the

integration of sensors and data fusion. In real-time systems, a

series of sequential measurements is commonly utilized rather

than a single observation to determine the system's state. For

every time increment, this filter provides predictions of the

actual unknown quantities and assesses their uncertainty. In

the previous version of this study, map mapping was

performed using Kalman Filter, and it was seen that Kalman

Filter gave good results in location data with noisy data type

as shown in experimental results below.

Therewithal, as an alternative approach to correcting GPS

points and reducing device deviation rates in vehicle tracking

systems, this study focuses on an extra tree-based method to

measure the accuracy of matching GPS data obtained from

vehicle tracking devices with real-time road details. GPS data

is equipped with different regression algorithms, and the

predictions are compared with the real data set. In addition,

costly and expensive GNSS devices are used to obtain location

data with high accuracy along the road route. In this study, a

model using machine learning algorithms is presented as an

alternative solution to advanced and expensive GNSS devices.

By training the raw location GPS data (location data not on the

road route) with the model, the accuracy of the latitude and

longitude values that should be on the road line has been

increased. This model can also be used efficiently in many new

trending technologies, such as the Internet of Things [15],

smart networks [16], and autonomous vehicles [17].

The rest of the paper is organized as follows: Section 2 gives

a brief overview of several works related to GNSS in the

literature. Section 3 describes the developed models, and

section 4 presents the results of the experiments conducted and

discussions among them. Finally, Section 5 includes the

conclusions.

2. RELATED WORKS

Most map matching and location estimation algorithms are

based on the theory of alignment with the current road network

and the measurement of other GPS points in the same orbit

with respect to the location of each GPS point [18]. Although

these geometric calculations are accurate, they cannot produce

conclusive results when the sampling rate is small or the

complexity of the road network is high [6]. As an alternative

to geometric approaches, more sophisticated map-matching

algorithms such as particle filters and Kalman filters are used.

1442

In applications that are resolved by a particle filter, the

algorithm calculates probable values based on the candidate

paths in orbit and the GPS point values [19]. The most reliable

route between these results is used to suit the map. Particle

filter technology is used in many applications, such as path

tracking and prediction in non-linear dynamic systems [20].

However, the particle filter algorithm requires a large number

of particles to produce accurate results; thus, the cost of the

calculation appears to be high. Moreover, there is no

convenient way to correlate accuracy with particle numbers.

For example, a particle filter for the same input can produce

different outputs, making predictable success and error rate

elimination difficult [21]. A particle filter is formulated as

follows:

 𝜋𝑛(𝑑𝑥𝑛 |𝑦1:𝑛) ≈ �̂�𝑛(𝑑𝑥𝑛 |𝑦1:𝑛)

= ∑ 𝑊𝑛
𝑖

𝑁

𝑖=1

∆𝑋𝑛
𝑖 (𝑑𝑥𝑛)

(1)

where, 𝑊𝑛
𝑖 collects random weights, while 𝑋𝑛

𝑖 are the random

variables called snippets, 𝛥𝑥 is the mass of points at zero time,

𝜋0 pulls particles from 𝑊0
𝑖 = 1/N which is set in 𝑛 time �̂�𝑛−1

that starts as new particles 𝑃(. |𝑋𝑛
𝑖), from which 𝑋𝑛

𝑖 is drawn.

In Eq. (2), 𝑊𝑛−1
𝑖 having weights 𝑋𝑛

𝑖 particles 𝜋𝑛|𝑛−1 provides

a more important approach. 𝑊𝑛
𝑖 ∝ 𝑊𝑛−1

𝑖 𝑔(𝑦𝑛 || 𝑋𝑛
𝑖) weights

are updated, and iteration is closed.

𝜋𝑛 | 𝑛−1(𝑑𝑥𝑛 |𝑦1:𝑛−1)

= ∫ 𝜋𝑛−1(𝑑𝑥𝑛−1 |𝑦1:𝑛−1)𝑃(𝑑𝑥𝑛 |𝑥𝑛−1)
(2)

 𝜋𝑛(𝑑𝑥𝑛 |𝑦1:𝑛)

= 𝜋𝑛 | 𝑛−1(𝑑𝑥𝑛 |𝑦1:𝑛−1)
𝑔(𝑦𝑛|𝑥𝑛)

𝑝𝑛(𝑦𝑛|𝑦1:𝑛−1)

(3)

Another method, the Kalman filter, is used to maximize the

interest variables when they are not specifically measured. In

addition, it is both reciprocal and online, making it ideal for

real-time signals. Filters from the Kalman linear system are

popular due to their minimum average square estimate.

Furthermore, the Kalman filter can recurrently update

Gaussian linear systems and perform the calculation process.

However, systems with non-linear properties cannot be

properly modeled [22]. The Kalman filter is developed and

motivated as an ideal filter for linear systems. For targets with

variable speeds or accelerations, Kalman and particle filters

are the only reliable ones [23]. The extended Kalman filter

provides solutions to nonlinear evaluation problems by

applying standard Kalman filter formulas after a linearization

process. Nevertheless, filter operations cause approximation

errors in linearization and updating operations. The Kalman

filter is formulated in the simplest form as follows:

�̂�𝑘 = 𝐾𝑘 . 𝑍𝑘 + (1 − 𝐾𝑘). �̂�𝑘−1 (4)

where, k indicates the states. The goal is to find �̂�𝑘 value for

each 𝑘 . 𝑍𝑘 is the measured value, while 𝐾𝑘 is the most

important parameter of Kalman gain. Finally, �̂�𝑘−1 is the

prediction of the previous state of the signal [24, 25].

In addition to approaches such as particle and Kalman filters,

various solutions are also offered on the machine learning side.

A model based on the estimation of GPS data is given in

Markovic’s study [26] to calculate vehicle travel times in the

area. For an accurate assessment and road network, the K-

Nearest Neighbor (KNN) algorithm is utilized to map GPS

data. However, as revealed in this study, in contrast to the

different ML algorithms, the KNN algorithm does not always

yield accurate results. As can be understood from here,

systems based on a single algorithm cannot produce consistent

results under all conditions. In another analysis on ML [27],

the exactingness of the GPS points along the way is achieved

by training the models of the Artificial Neural Network (ANN).

However, the model using reverse artificial neural networks

has been found to slow down the training period.

3. METHODOLOGY

In this study, we investigated ten different ML techniques,

such as Extra Trees, KNN, Linear Regression, Ridge, Lasso,

Elastic Net, Random Forest, Decision Trees, Gradient

Boosting, and Ada Boosting, to reduce the error deviation rates

of GPS data. The "minimum error rate" refers to the lowest

achievable misclassification rate for our predictive models.

This metric is pivotal in evaluating the performance and

robustness of our chosen methods against the complexity and

variability inherent in the data set. Since numerical data such

as latitude, longitude, and time are present in the data, it is

acceptable to use these algorithms in research. The outputs of

the regression model also include the error in magnitude and

direction. In the working mechanism of the proposed method,

as shown in Figure 2, the first step is to prepare the dataset.

Novatel and Ublox GNSS devices are used while preparing the

raw dataset [28]. Since Ublox can make more precise

measurements, it is used as ground truth (reallat, reallong) data.

Figure 2. A schematic view of all phases of the proposed methodology

1443

Figure 3. The working mechanism of the proposed method in the data processing

Using haversine, Manhattan, and bearing distance

algorithms on raw latitude, longitude data from a Novatel

GNSS device, and real point data from Ublox, our input data

became 22 features in total. Then, the data set is reduced to 17

features by applying Principal Component Analysis (PCA)

analysis.

Figure 3 shows how we get each feature. The dots in orange

here are the raw latitude and longitude values. The points

found as centers are calculated with the K-means algorithm.

Yellow dots are ground truth (reallat, reallong) values. The

prediction data from our machine learning-based method is

shown with a blue line.

The rest of this section refers to the regression models

configured specifically for this study and whose mathematical

logic is described in the basic machine learning literature [29].

3.1 Extra trees (extremely randomized trees)

Following the traditional top-down procedure, the Extra

Trees algorithm creates several regression tree assemblies.

There are two key differences from other tree-based grouping

approaches: the separation of nodes by randomly selecting

split points and the use of the entire learning instance (rather

than a boot-copy) to grow trees. Applying randomization and

using the entire original sample contribute to the reduction in

variance and bias, respectively. Although the Extra Trees

algorithm applies a similar procedure as the other tree-based

algorithms, it is faster than their counterparts. Algorithm 1

shows the splitting procedure in Extra Trees for numerical

properties [30].

Algorithm 1. Extra-Trees splitting algorithm (for numerical

attributes)

Split_a_node(S)

Input: the local subset S corresponding to the node we want to split

Output: a split [a<ac] or nothing.

If Stop_split(S) is TRUE then return nothing.

Otherwise select K attributes {a1,.....,aK} among all non constant (in

S) candidate attributes;

Draw K splits {s1,.....,sK}, where si = Pick_a_random_split(S, ai),

∀i = 1,......,K;

Return a asplit s* such that Scores(s*, S) = maxi = 1,....,K
Score(Si, S).

Pick_a_random_split(S,a)

Inputs: a subset S and an attribute a

Output: a split

Let 𝑎𝑚𝑎𝑥
𝑆 and 𝑎𝑚𝑖𝑛

𝑆 denote the maximal and minimal value of a in S;

Draw a random cut-point ac uniformly in 𝑎𝑚𝑖𝑛
𝑆 , 𝑎𝑚𝑎𝑥

𝑆 ;

Return the split [a<ac].

Stop_split(S)

Input: a subset S

Output: a Boolean

If |S| < nmin, then return TRUE;

If all attributes are constant in S, then return TRUE;

If the output is constant in S, then return TRUE;

Otherwise, return FALSE.

3.2 KNN

The KNN algorithm, presented in the literature as a lazy

learning method, was developed by Cover and Hart [31]. The

KNN algorithm is a simple algorithm that reclassifies all

existing states according to a similarity measure (e.g., distance

functions such as Euclidean and Manhattan, as given in Eq. (5,

6) [24, 25].

dEuclidean = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=1 (5)

dManhattan = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑘
𝑖=1 (6)

It looks at the distance of the data to be classified with its

neighbours and performs the classification and regression

process with the most appropriate label. In the proposed

framework, the property value of the object is used as output

in KNN regression algorithms. This is the average of the

nearest neighbour values. Since the inputs are decimal values

(e.g., latitude and longitude), they are assumed to be similar to

these values in this analysis. Therefore, the regression property

of the KNN algorithm is used, which is not graded.

3.3 Linear regression

Linear regression [32, 33] is the most common predictive

model that describes the relationship between variables. As

well as univariate or multivariate data types, the concept is

linear. There are two different linear regression models: simple

linear and multiple linear regression. Linear regression is

described in Eq. (7).

𝑦 = 𝑥𝛽 + 𝜀 (7)

In Eq. (7), 𝑥 is a dependent variable that is always a

continuous value and 𝑦 is the independent variable that can be

either a continuous or categorical value. Its analysis is done

with a probability distribution and focuses on multivariate

analysis with a conditional probability distribution.

1444

3.4 Ridge regression, lasso, and elastic net

Ridge regression [34] is suitable if it has many predictors

and all non-zero coefficients from a normal distribution. In

particular, it performs well with many predictors, each with a

small impact, and prevents poor determination of the

coefficients of linear regression models with many associated

variables and high variance. Ridge regression equally shrinks

the coefficients of associated predictors towards zero. That is,

for example, given k identical predictions, each would obtain

identical coefficients equal to the dimension any predictor

would take if they fit alone [35]. Ridge Regression therefore

does not force the coefficients to disappear, and therefore we

cannot choose a model that only has the most relevant and

predictive subset of predictors.

�̂�(𝑟𝑖𝑑𝑔𝑒) = 𝑎𝑟𝑔𝛽𝑚𝑖𝑛‖𝑦 − 𝑋𝛽‖2
2 + 𝜆‖𝛽‖2

2 (8)

In Eq. (8), 𝛽 is the regression coefficient; the higher the

value of 𝜆, the greater the fractures in the data. Since the value

of 𝜆 is data-dependent, data-based methods such as cross-

validation can be used [36].

Lasso regression methods are widely used in areas with

large data sets, such as genomics, where fast and efficient

algorithms are required. Whereas Lasso regression is not

robust against high correlations between predictors. It

arbitrarily chooses one, ignores the others, and collapses when

all predictors are the same [33]. The lasso penalty expects only

a small subset to be larger (but not zero) and many coefficients

to be close to zero.

�̂�(𝑙𝑎𝑠𝑠𝑜) = 𝑎𝑟𝑔𝛽𝑚𝑖𝑛‖𝑦 − 𝑋𝛽‖2
2 + 𝜆‖𝛽‖1 (9)

In Eq. (9), 𝛽 defines the regression coefficient, 𝜆 ≥ 0 is set.

Reducing the lassoed components by the least-squares method

by reducing the best-selected 𝜆 values to zero [37].

The Elastic Net (ENET), a combination of Ridge and Lasso,

is robust to extreme correlations between the predictors [38,

39]. ENET has been proposed to analyze high-dimensional

data to avoid the instability of lasso solutions when predictors

are highly correlated. The ENET uses a mixture of the Ridge

and Lasso penalties and can be expressed as in Eq. (10) [40].

�̂�(𝑒𝑛𝑒𝑡) = (1 +
𝜆2

𝑛
) {𝑎𝑟𝑔𝛽𝑚𝑖𝑛‖𝑦 − 𝑋𝛽‖2

2 + 𝜆2‖𝛽‖2
2

+ 𝜆1‖𝛽‖1 }
(10)

In this study, ridge, Lasso, and Elastic Net algorithms are

used subsequently to avoid overestimation and estimation of

new points on normalized data.

3.5 Random forest

Random Forest (RF) is an ensemble learning method that

represents an important advance in machine learning. The task

of the RF method is to create a large number of individual

decision trees during the training phase. Its aim is to find new

ways to combine information from individual trees [41].

𝐻𝑟𝑒𝑔𝑟𝑒𝑠𝑠(𝑥) =
1

𝑇
∑ ℎ𝑡(𝑥, 𝜃)

𝑇

𝑡=1

 (11)

In Eq. (11) T shows the number of forest trees. A random

vector of ht is used to decide how successive cuttings are

produced in the development of individual trees. It is assumed

that x and the samples are trained [42] independently. In this

study, the tree depth is partitioned into five layers to calculate

the GPS points more accurately.

3.6 Decision trees

In decision trees, the tree structure consists of a root node,

internal nodes (branches), and end nodes (leaves). The tree

structure is configured according to the training data. The

attributes of the training samples are used to determine the

placement of the nodes in the tree and threshold coefficients.

The created decision tree reaches the end node by moving at

the nodes according to the attribute values and threshold

values determined during the training process. Optimal

threshold values should be determined to make the branches

leaving the nodes have the highest difference or to minimize

the similarity of the crossed nodes [43].

�̂�𝑡 =
1

𝑁𝑡

∑ 𝑦(𝑖)

𝑖∈𝐷𝑡

 (12)

In Eq. (12), 𝑁𝑡 is the number of trained samples in node 𝑡,

𝐷𝑡 is the training subset, 𝑦(𝑖) is the actual targeted value, and

�̂�𝑡 is the estimated value [44]. In this study, since GPS point

estimation is a value estimation problem, a decision tree

structure based on regression is formed, which takes less

training time.

3.7 Gradient boosting decision trees

Gradient Boosting Decision Trees (GBDT) [45] is an

additional regression model that includes a set of decision trees.

A single decision tree has an overfitting problem, but the

GBDT algorithm can overcome this by combining hundreds

of weak decision trees consisting of several leaf nodes. GBDT

has several advantages, including the ability to find nonlinear

transformations, the ability to handle skewed variables without

the need for transformations, computational robustness, and

high scalability [46].

𝑐𝑡𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖 , 𝑓𝑡−1(𝑥𝑖)
𝑥𝑖∈𝑅𝑡𝑗

+ 𝑐) (13)

where, 𝑅𝑡𝑗 is the number of leaf nodes in the tree, 𝑓𝑡−1 is the

most accurate value from the previous iteration, and 𝑐𝑡𝑗

represents the best output value for each leaf node [47].

4. EXPERIMENTAL RESULTS

The main idea of location algorithms is to model regular

patterns based on historical information and to determine the

most probable movements based on current observations.

While a great deal of attention is paid to network architecture

design literature in order to endorse GPS generally, nothing is

done on the essential issue of the appropriate location. Besides,

we concentrate instead of costly equipment on estimating the

target position using ML techniques.

The trajectory of a vehicle cannot be explicitly converted to

an approximation model because of changes in position and

time. The trajectories of the vehicle do not exactly follow the

same route every day, but they do not. It may result in higher

1445

calculation costs, as well as a poorer estimate of a location with

continuous coordinates [48]. The relationship between latitude

and longitude coordinates along the trajectory must be defined

before predictive models are developed.

4.1 Dataset materials

In this study, we meticulously collected vehicle location

data, including latitude and longitude information, across five

distinct districts in Istanbul, Türkiye—Besiktas, Ortakoy,

Palanga, Buyukdere, and Eski Buyukdere. This dataset

represents an accumulation of data over four days, conducted

in two separate laps for each day to ensure consistency and

reliability in our findings. The primary objective of our data

collection was to analyze the precision and accuracy of two

GNSS (Global Navigation Satellite System) receivers:

Novatel and Ublox. The choice of these devices was guided by

their widespread use in geographic data collection and their

distinct operational capabilities. Novatel is the GNSS receiver

platform for recording GPS data with multiple frequency

tracking [49]. Ublox is a GNSS receiver, just like Novatel.

However, Ublox can make more accurate measurements [50].

The latitude and longitude data obtained through Novatel is

6027, while the dataset from Ublox is 1407 points. The latitude

and longitude points taken with Ublox represent more

sensitive data. Therefore, Ublox is used as the ground truth

data in our dataset. The raw data gathered from GNSS

receivers is received using the National Marine Electronics

Association (NMEA) protocol. NMEA is a protocol created by

the US National Maritime Electronics Association. Sentences

begin with a $ sign, and the GP letter is then added to indicate

that it is from the GPS receiver. The next three letters indicate

the purpose of the sentence (e.g., $ GPVTG: velocity,

$ GPGLL: position). What is most important here is the GGA

(Global Positioning System Fix Data). "Fix" is a GPS term

referring to the determination of the current location [51]. An

NMEA example sentence is given in the following:

$GPGGA,073840.00,4102.7502506, N,02901.1513588,

E,2,12,1.0,9.979, M,37.30, M,18, TSTR*5

In the example sentence, the part up to N (4102.7502506, N)

represents latitude, the part up to E (02901.1513588, E)

represents longitude, and the time in UTC format is provided

first (073840.00). All the raw data (6027 dots) in NMEA

format is coded in Python and appropriately divided into

latitude, longitude, and time zones. With the new dataset, test

and training data are created in advance. The generated

training data is modeled with regression algorithms in ML.

4.2 Accuracy performance analysis

Data are shown on the Open Street Map and Google Map as

a result of the analysis. The correlation coefficient is

determined by extracting the error rates. The absolute values

of the discrepancies between the test and forecast values can

be seen as the MAE. All errors are of equal weight in MAE

[52]. The MAE formula is given as:

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 (14)

where, n is observed data, 𝑦𝑖 is test data, and �̂�𝑖 is the

estimated data.

Root Mean Square Error is used to measure the difference

between the predicted values, similar to MAE. The difference

is that it can calculate larger absolute values by giving more

weight than the MAE gives. The greater the difference

between MAE and RMSE, the greater the error rates are in the

sample [53].

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

𝑛
 (15)

where, n is observed data, yi is test data, and �̂�𝑖 is the estimated

data. As the input data of the algorithm, the methods used in

distance calculations (Haversine, Manhattan, Bearing), the K-

means clustering algorithm, PCA, reduced and simplified data,

vehicle speed, and real road information are processed. The

theorem of Haversine is used to measure the latitude and

longitude values of a two-point range on the surface of the

Earth. To calculate two distances, four variables must be

prepared. It is estimated that the distance between the two

points is 6 367.45 kilometers [54]. The Haversine formula is

as follows [35]:

𝑎 = 𝑠𝑖𝑛²(𝛥𝜆/2) + 𝑐𝑜𝑠 𝜑1 ⋅ 𝑐𝑜𝑠 𝜑2
⋅ 𝑠𝑖𝑛²(𝛥𝜆/2)

c = 2 ⋅ atan2(√a, √(1−a))

𝑑 = 𝑅 ⋅ 𝑐

(16)

where, ϕ is the latitude, λ denotes longitude, and R stands for

the radius of the world. The calculation of distance by

Manhattan (city block size) calculates the size to travel on a

grid-like path from one data point to another. The distance

between the two elements in Manhattan is the sum of the

differences between the components. The Manhattan distance

is also known as the L1 distance [55]. The Manhattan distance

is formulized as follows:

𝑑 = ∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (17)

where, 𝑛 is the number of the variables, 𝑥 and 𝑦 represent the

two points.

The bearing algorithm, on the other hand, is the calculation

of the distance between two points on the earth’s surface by

connecting them using a circular line. The bearing distance

formula is as follows [41]:

𝜃 = 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛 𝛥𝜆 ⋅ 𝑐𝑜𝑠 𝜑2 , 𝑐𝑜𝑠 𝜑1 ⋅ 𝑠𝑖𝑛 𝜑2
− 𝑠𝑖𝑛 𝜑1 ⋅ 𝑐𝑜𝑠 𝜑2 ⋅ 𝑐𝑜𝑠 𝛥𝜆)

(18)

where, ϕ1, λ1 are the starting points, ϕ2, λ2 refer to the ending

points, and ∆𝜆 denotes the longitude difference.

The K-means clustering algorithm allows grouping of data

that show similar properties in a dataset. The K value in the

algorithm sets the number of clusters, and this value is to be

taken as a parameter [56].

𝐽 = ∑ ∑‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖

𝑛

𝑖=1

𝑘

𝑗=1

 (19)

where, J is the target function, k refers to the number of

clusters, n denotes the number of cases, 𝑥𝑖
(𝑗)

− 𝑐𝑗 is the

distance function, and cj is the centroid for cluster j [57].

1446

Table 1. Procedures applied to the input and output data

Input Description

Lat Latitude (Novatel)

Lon Longitude (Novatel)

Time GPS time

Haversine_latlon_reallatlon Distance between Latitude, Longitude and Real Latitude, Real Longitude according to Haversine

Manhatten_latlon_reallatlon Distance between Latitude, Longitude and Real Latitude, Real Longitude according to Manhattan

Bearing_latlon_reallatlon Distance between Latitude, Longitude and Real Latitude, Real Longitude according to Bearing

Centroid_long The centroid of Longitude points

Centroid_lat Centroid of Latitude points

Centroid_real_long The centroid of Real Longitude points

Centroid_real_lat The centroid of Real Latitude points

Haversine_latlon_centlatlon Distance between Latitudes, Longitudes, and Centroid to Haversine

Haversine_reallatlon_centreallatlon Distance between Real Latitudes, Real Longitudes, and their Centroids according to Haversine

Haversine_centlatlon_centreallatlon Distance between Real Latitudes, Real Longitudes

Haversine_latlon_centreallatlon
Distance between Latitudes, Longitudes, and Centroids Real Latitudes, Real Longitudes according to

Haversine

Manhatten_latlon_centlatlon Distance between Latitudes, Longitudes, and Centroid according to Manhattan

Manhatten_reallatlon_centrealletlon Distance between Real Latitudes, Real Longitudes, and their Centroids according to Manhattan

Manhetten_centretlon_centrealletlon Distance between Real Latitudes, Real Longitudes

Bearing_latlon_centletlon Distance between Latitudes, Longitudes, and Centroid according to Bearing

Bearing_reallatlon_centlatlon
Distance between Real Latitudes, Real Longitudes, and Centroids Latitudes, Longitudes according to

Bearing

Bearing_centlatlon_centreallatlon Distance between Real Latitudes, Real Longitudes

Speed_haversin Speed between two points according to the distance calculated by Haversine

Speed_manhatten Speed between two points according to the distance calculated by Manhattan

Reallot Real Latitude – output value

Reallon Real Longitude – output value

Table 2. Estimation error rates

Our Method Based on ML Algorithms 𝑹𝟐 RMSE MAE MSE

Extra Trees 0.996139756 0.000101322 0.0000414464 1.026606022

KNN 0.946238279 0.000377134 0.0000812606 1.422298635

Linear Regression 0.987449608 0.000182063 0.000100999 3.314678968

Ridge 0.604053192 0.00104511 0.0005396492 1.092254988

Lasso 0.467520898 0.001701065 0.000824387 2.89362048

Elastic Net 0.517820798 0.001701065 0.000824387 2.89362048

Random Forest 0.970729381 0.000297608 0.000100891 8.857064416

Decision Trees 0.979705547 0.000240813 0.0000776682 5.799076299

Gradient Boosting 0.569920497 0.001115341 0.00052906 1.243984473

Ada Boosting 0.897450938 0.000699161 0.000193861 4.888266597

The distances between the latitude and longitude values that

are retrieved from the GPS are calculated for the exact spot.

The midpoints of the latitudes and longitudes are calculated

using the equation K-means. A total of 22 data are generated

as inputs, and 2 data are generated as outputs. Table 1 shows

the procedures applied to both input and output data

throughout the proposed methodology.

Table 2 shows the results of ten different ML algorithms

that are compared. The Extra Trees algorithm yielded 99.6%

accuracy in R2 with low error values. The errors RMSE, MAE

and MSE are calculated in terms of normalized values.

Therefore, they are expected to be very close to zero and each

other in optimal regression models.

MAE measures the average magnitude of errors in a series

of estimates, which represents the mean of the validation

sample of the absolute values of the differences between the

estimate and the observed. RMSE is a second-order scoring

rule that measures average error magnitude. The difference

between the estimate and the observed values is taken from

each frame and then centered on the sample. Both evaluation

tools can be used to diagnose the variation of errors in several

estimates. GPS latitude and longitude estimation results

obtained from test data are shown on the map.

According to the results obtained, the method based on the

Extra Tree Algorithm performs better. The working results of

this are shown on the sample real map in Figure 4. On the other

hand, the latitude and longitude values gathered from the

Novatel device are shown on the map in Figure 5 to help

understand the difference between them.

Figure 4. The extra trees algorithm results (real map of

Istanbul)

1447

Figure 5. Latitude and longitude values gathered from the

Novatel device (real map of Istanbul)

As clearly seen on the map, the coordinates retrieved from

GPS (Figure 5) do not produce more consistent and accurate

results along the road compared to the Extra Trees algorithm

(Figure 4), which is one of the ML algorithms. Obviously, the

Extra Trees algorithm correctly calculates the latitude,

longitude points and draws a smoother path along the road. In

addition, Table 3 expresses the deviation rates, which are

calculated by using Euclid's theorem. The deviations from

exact locations with respect to the proposed prediction model

are between 1.9 and 9.4 meters approximately. Therefore, the

average of deviations is 6.8 meters with respect to exact

locations based on ground truth GPS receivers. This finding

marks a significant advancement, notably reducing the

deviation to a scale of meters when comparing GPS data from

the vehicle tracking system with the projected coordinates.

Importantly, the deviation of 6.8 meters is evaluated within the

context of its practical implications in various application

areas, such as vehicle navigation and search and rescue

operations. In vehicle navigation, such precision significantly

enhances route accuracy and safety, making it highly

beneficial for autonomous driving technologies where every

meter counts. In search and rescue missions, this reduced

deviation could drastically improve the efficiency of locating

individuals in distress, potentially saving lives by enabling

quicker response times. By benchmarking against acceptable

standards within these application areas, it becomes evident

that the achieved deviation substantially exceeds the

conventional accuracy, thereby affirming the superiority and

applicability of our method in real-world scenarios. In

literature, the Kalman Filter mechanism, which was recently

proposed [58], gave deviations between 5.2 and 27.2 meters

with a 10.15 average value. In the analysis of the results

obtained, the method proposed in this study demonstrates that

it outperforms the others with the least deviation.

Table 3. Deviation results in meters

Proposed Method based on Extra Trees Kalman Filter GPS Distance (Deviation Rate)

Latitude Longitude Latitude Longitude Latitude Longitude Meter

41.04268513 29.00984937 41.04410506 29.01486518 41.04267867 29.00981133 3.26992175

41.04284729 29.0103781 41.04414235 29.01494283 41.04283289 29.01039153 1.95796513

41.04307647 29.01123174 41.04417789 29.01502226 41.04300557 29.01121421 8.01926154

41.04310119 29.01134478 41.04421081 29.01510458 41.04305312 29.01141928 8.22238095

41.04330904 29.01228856 41.04424125 29.0151883 41.04324906 29.01234396 8.12768869

41.04332878 29.01238319 41.04427077 29.01527151 41.0432678 29.01242529 7.64459395

41.04334697 29.01246332 41.0443013 29.01535364 41.0432861 29.01250516 7.62372252

41.04390765 29.01425744 41.04373476 29.01394512 41.04384431 29.01433329 9.490165

41.04430288 29.01527054 41.04370114 29.01387296 41.04430417 29.01521512 4.64992499

41.04455555 29.01596397 41.04366641 29.01379503 41.04453592 29.01599378 3.31897928

5. CONCLUSIONS

This paper presents a study that aims to mitigate GPS

localization errors by using ML methods. In the first step, the

data set is created using the latitude and longitude coordinates

obtained through Novatel (less precision) and Ublox (ground

truth) GNSS receivers. This data set is analyzed within the

framework. During the data set creation phase, the raw data in

NMEA format is processed. After the data creation phase,

location estimation and map matching operations are

performed. Then, the latitude and longitude values calculated

by machine learning-based methods are compared with the

raw data set and shown numerically on the chart. As a result

of the analysis, the false deviation rates of the GPS data are

calculated and given in meters. It is observed that the Extra

Trees algorithm outperforms the other 9 machine learning

algorithms and the Kalman Filter method. New coordinate

values are calculated with algorithms on Google Maps, and

they are shown on the map with the help of OpenStreetMap.

Compared with previous raw data, deviation rates are

calculated in meters using the Euclidean principle.

Consequently, machine learning algorithms can be used

effectively to correct erroneous GPS points and reduce the

deviation rates of devices using navigation, especially for

vehicle tracking systems. For future research, additional

experiments at various locations using a variety of GNSS

receivers are recommended to further highlight the value of

machine learning algorithms in reducing GPS errors.

Additionally, although our preliminary findings highlight a

notable increase in positional accuracy (in particular, the Extra

Trees algorithm outperforms nine other machine learning

algorithms and the Kalman Filter approach), future research

should include a broader range of datasets. Performing

statistical significance analysis with a large data set will

provide more robust validation of these results. This approach

will help validate the effectiveness of machine learning

algorithms in improving GPS accuracy on a more significant

and diverse scale.

REFERENCES

[1] Li, D., Ma, X., Zhao, J., Wu., F. (2022). Mitigating GNSS

multipath effects using XGBoost integrated classifier

based on consistency checks. International Journal of

1448

Antennas and Propagation, 1-14.

https://doi.org/10.1155/2022/2742620

[2] Rychlicki, M., Kasprzyk, Z., Rosiński, A. (2020).

Analysis of accuracy and reliability of different types of

GPS receivers. Sensors, 20(22): 6498.

https://doi.org/10.3390/s20226498

[3] Dogan, U., Uludag, M., Demir, D.O. (2014).

Investigation of GPS positioning accuracy during the

seasonal variation. Measurement, 53: 91-100.

https://doi.org/10.1016/j.measurement.2014.03.034

[4] Nikolic M., Jovic J. (2017). Implementation of generic

algorithm in map-matching model. Expert Systems with

Applications, 72: 283-292.

https://doi.org/10.1016/j.eswa.2016.10.061

[5] Orabi, M., Khalife, J., Abdallah, A.A., Kassas Z.M.,

Saab, S.S. (2020). A machine learning approach for GPS

code phase estimation in multipath environments. In

IEEE/ION Position, Location and Navigation

Symposium (PLANS), Portland, OR, USA, pp. 1224-

1229.

https://doi.org/10.1109/PLANS46316.2020.9110155

[6] Kempinska, K., Davies, T., Taylor, J.S. (2021).

Probabilistic map-matching using particle filters. arXiv

preprint arXiv:1611.09706.

[7] Hashemi, M., Karimi, H. (2016). A machine learning

approach to improve the accuracy of GPS-based map-

matching algorithms. In IEEE 17th International

Conference on Information Reuse and Integration (IRI),

Pittsburgh, PA, USA, pp. 77-86.

https://doi.org/10.1109/IRI.2016.18

[8] Carron, A., Todescato, M., Carli, R., Schenato, L.,

Pillonetto, G. (2016). Machine learning meets Kalman

filtering. In 2016 IEEE 55th Conference on Decision and

Control (CDC), Las Vegas, NV, USA, pp. 4594-4599.

https://doi.org/10.1109/CDC.2016.7798968

[9] Gao, X., Luo, H., Ning, B., Zhao, F., Bao, L., Gong, Y.,

Xiao, Y., Jiang, J. (2020). RL-AKF: An adaptive Kalman

filter navigation algorithm based on reinforcement

learning for ground vehicles. Remote Sensing, 12(11):

1704. https://doi.org/10.3390/rs12111704

[10] Kim, S., Byun, J., Park, K. (2022). Machine learning-

based GPS multipath detection method using dual

antennas. arXiv:2204, 14001.

https://doi.org/10.48550/arXiv.2204.14001

[11] Hashemi, M. (2017). Reusability of the output of map-

matching algorithms across space and time through

machine learning. IEEE Transactions on Intelligent

Transportation Systems, 18(11): 3017-3026.

https://doi.org/10.1109/TITS.2017.2669085

[12] Lou, J., Cheng, A. (2020). Detecting pattern changes in

individual travel behavior from vehicle GPS/GNSS data.

Sensors, 20(8): 2295. https://doi.org/10.3390/s20082295

[13] Wang, Y., Qin, K., Chen, Y., Zhao, P. (2018). Detecting

anomalous trajectories and behavior patterns using

hierarchical clustering from taxi GPS data. ISPRS

International Journal of Geo-Information. 7(1): 25.

https://doi.org/10.3390/ijgi7010025

[14] Wang, C.Z., Kong, L.W., Jiang, J. (2021). Machine

learning-based approach to GPS antijamming. GPS

Solution, 25(115).

[15] Kiani, F., Nematzadehmiandoab, S., Seyyedabbasi, A.

(2019). Designing a dynamic protocol for real-time

industrial internet of things-based applications by

efficient management of system resources. Advances in

Mechanical Engineering, 11: 1-23.

https://doi.org/10.1177/1687814019866062

[16] Kiyani, F., Tahmasebi rad, H., Chalangari H., Yari, S.

(2010). DCSE: A dynamic clustering for saving energy

in wireless sensor network. In 2010 Second International

Conference on Communication Software and Networks,

Singapore, pp. 13-17.

https://doi.org/10.1109/ICCSN.2010.98

[17] Kiani, F., Saraç, Ö.F. (2022). A novel intelligent traffic

recovery model for emergency vehicles based on

context-aware reinforcement learning. Information

Sciences, 619: 1-22.

https://doi.org/10.1016/j.ins.2022.11.057

[18] Islam, M.R., Kim, J.M. (2014). An effective approach to

improving low-cost GPS positioning accuracy in real-

time navigation. The Scientific World Journal, 2014:

671494. https://doi.org/10.1155/2014/671494

[19] Ahwiadi, M., Wilson, W. (2019). An enhanced mutated

particle filter technique for system state estimation and

battery life prediction. IEEE Transactions on

Instrumentation and Measurement, 68(3): 923-935.

https://doi.org/10.1109/tim.2018.2853900

[20] Xian, W., Long, B., Li, M., Wang, H. (2014). Prognostics

of lithium-ion batteries based on the Verhulst model,

particle swarm optimization and particle filter. IEEE

Transactions on Instrumentation and Measurement,

63(1): 2-17. https://doi.org/10.1109/TIM.2013.2276473

[21] Pathak, A., Singh, E. (2014). Comparative study on

filtering techniques of digital image processing. Advance

in Electronic and Electric Engineering, 4(6): 669-674.

[22] Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.

(2012). A tutorial on particle filters for on-line non-

linear/non-gaussian Bayesian tracking. IEEE

Transactions on Signal Processing, 50(2): 174-188.

http://doi.org/10.1109/78.978374

[23] Mahfouz, S., Mourad-Chehade, F., Honeine, P., Joumana,

F., Snoussi, H. (2014). Target tracking using machine

learning and Kalman filter in wireless sensor networks.

IEEE Sensors Journal, 14(10): 3715-3725.

https://doi.org/10.1109/JSEN.2014.2332098

[24] Nematzadeh, S., Kiani, F., Torkamanian-Afshar, M.,

Aydin, N. (2022). Tuning hyperparameters of machine

learning algorithms and deep neural networks using

metaheuristics: A bioinformatics study on biomedical

and biological cases. Computational Biology and

Chemistry, 97: 1-22.

https://doi.org/10.1016/j.compbiolchem.2021.107619

[25] Çayiroglu, I. (2012). Kalman filter and programming.

Science and Technology Information Sharing, 1: 1-6.

[26] Markovic, H., Basic, B., Gold, H., Dong, F., Hrvoje, G.

(2010). GPS data-based non-parametric regression for

predicting travel times in urban traffic networks. Promet-

Traffic & Transportation, 22(1): 1-13.

https://doi.org/10.7307/ptt.v22i1.159

[27] Han, Y., Kim, Y., Ku, J., Jung, Y., Roh, J. (2021). Map

matching algorithm for real-time data processing of non-

route GPS data in Seoul. KSCE Journal of Civil

Engineering, 25(9): 3511-3522.

http://doi.org/10.1007/s12205-021-1750-x

[28] Zhao, J., Hernández-Pajares, M., Li, Z., Wang, L., Yuan,

H. (2020). High-rate Doppler-aided cycle slip detection

and repair method for low-cost single-frequency

receivers. GPS Solutions, 24(3).

https://doi.org/10.1007/s10291-020-00993-0

1449

[29] Theodoridis, S., Koutroumbas, K. (2008). Pattern

Recognition, 4th Edition. Elsevier, Amsterdam,

Netherlands, 23-59.

[30] Guerts, P., Ernst, D., Wehenkel, L. (2016). Ensembles of

extremely randomized trees and some generic

applications. Proceedings of Robust Methods for Power

System State Estimation and Load Forecasting, Paris,

France, pp. 1-10.

[31] Liu, Q., Liu, C. (2017). A novel locally linear KNN

method with applications to visual recognition. IEEE

Transactions on Neural Networks and Learning Systems,

28(9): 2010-2021.

https://doi.org/10.1109/tnnls.2016.2572204

[32] Lederer, J. (2021). Linear Regression. In: Fundamentals

of High-Dimensional Statistics. Springer, Cham, 37-79.

https://doi.org/10.1007/978-3-030-73792-4_2

[33] Montgomery, D., Peck, E.A., Vining, G.G. (2015).

Introduction to Linear Regression Analysis. John Wiley

& Sons, New York, USA, 14-42.

[34] Khalaf, G. (2022). Improving the ordinary least squares

estimator by ridge regression. Open Access Library

Journal, 9(5): 1-8. https://doi.org/10.4236/oalib.1108738

[35] Haversine Formula. https://www.movable-

type.co.uk/scripts/latlong.html, accessed on Aug. 25,

2022.

[36] Piepho, H.P. (2019). Ridge regression and extensions for

genome wide selection in maize. Crop Science, 49(4):

1165-1176. https://doi.org/10.2135/cropsci2008.10.0595

[37] Gebken, B., Bieker, K., Peitz, S. (2022). On the structure

of regularization paths for piecewise differentiable

regularization terms. Journal of Global Optimization, 85:

709-741. https://doi.org/10.1007/s10898-022-01223-2

[38] Jomthanachai, S., Wong, W.P., Khaw, K.W. (2022). An

application of machine learning regression to feature

selection: a study of logistics performance and economic

attribute. Neural Computing and Application, 34(8):

15781-15805. http://doi.org/10.1007/s00521-022-

07266-6

[39] Wang, W., Liang, J., Liu, R., Song, Y., Zhang, M. (2022).

A robust variable selection method for sparse online

regression via the elastic net penalty. Mathematics,

10(16): 2985. https://doi.org/10.3390/math10162985

[40] Sahebalam, H., Gholizadeh, M., Hafezian, H., Ebrahimi,

F. (2022). Evaluation of bagging approach versus

GBLUP and Bayesian LASSO in genomic prediction.

Journal of Genetics, 101(1): 19.

http://doi.org/10.1007/s12041-022-01358-x

[41] Bearing Formula. https://www.movable-

type.co.uk/scripts/latlong.html, accessed on Aug. 25,

2021.

[42] Gonzalo-Martin, C., Lillo-Saavedra, M., Garcia-Pedrero,

A., Lagos, O., Menasalvas, E. (2017). Daily

evapotranspiration mapping using regression random

forest models. IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, 10(12):

5359-5368.

https://doi.org/10.1109/JSTARS.2017.2733958

[43] Zhao, L., Lee, S., Jeong, S.P. (2021). Decision tree

application to classification problems with boosting

algorithm. Electronics, 10(16): 1903.

https://doi.org/10.3390/electronics10161903

[44] Rahmatian, M., Chen, Y.C., Palizban, A., Moshref, A.,

Dunford, W.G. (2017). Transient stability assessment via

decision trees and multivariate adaptive regression

splines. Electric Power Systems Research, 142: 320-328.

https://doi.org/10.1016/j.epsr.2016.09.030

[45] Ilyas, Q.M., Mehmood, A., Ahmad, A., Ahmad, M.A.

(2022). Systematic study on a customer’s next-items

recommendation techniques. Sustainability, 14(12):

7175. http://doi.org/10.3390/su14127175

[46] Koren, Y. (2009). The Bellkor solution to the Netflix

grand prize. Netflix Prize Documentation, 81(2009): 1-

10.

[47] Ma, H., Yang, X., Mao, J., Zheng, H. (2018). The energy

efficiency prediction method based on gradient boosting

regression tree. In 2018 2nd IEEE Conference on Energy

Internet and Energy System Integration (EI2), Beijing,

China, pp. 1-9.

https://doi.org/10.1109/EI2.2018.8581904

[48] Wu, F., Fu, K., Wang, Y., Xiao, Z. (2017). A spatial-

temporal-semantic neural network algorithm for location

prediction on moving objects. Algorithms, 10(2): 37-42.

https://doi.org/10.3390/a10020037

[49] Novatel GNSS. https://www.novatel.com/products/gnss-

receivers/, accessed on Aug. 25, 2021.

[50] Ublox GNSS. https://www.u-

blox.com/sites/default/files/products/documents/GNSS-

product_Overview_%28UBX-14000426%29.pdf,

accessed on Aug. 25, 2021.

[51] Shoab, M., Jain, K., Anulhaq, M., Shashi, M. (2013).

Development and implementation of NMEA interpreter

for real-time GPS data logging. In 2013 3rd IEEE

International Advance Computing Conference (IACC),

Ghaziabad, India, pp. 143-146.

https://doi.org/10.1109/IAdCC.2013.6514210

[52] Li, S., Pischinger, S., He, C., Liang, L., Stapelbroek, M.

(2018). A comparative study of model-based capacity

estimation algorithms in dual estimation frameworks for

lithium-ion batteries under an accelerated aging test.

Applied Energy, 212: 1522-1536.

https://doi.org/10.1016/j.apenergy.2018.01.008

[53] Tang, X., Zou, C., Yao, K., Chen, G., Liu, B., He, Z., Gao,

F. (2018). A fast estimation algorithm for lithium-ion

battery state of health. Journal of Power Sources, 396:

453-458.

[54] Abidin, D.Z., Nurmaini, S., Erwin, E., Rasywir, E.,

Pratama, Y. (2021). Indoor positioning system in

learning approach experiments. Journal of Electrical and

Computer Engineering, 2021(8).

https://doi.org/10.1155/2021/6592562

[55] Ponnmoli, K.M., Selvamuthukumaran, S. (2017).

Analysis of face recognition using Manhattan distance

algorithm with image segmentation. International

Journal of Computer Science and Mobile Computing,

3(7): 18-27.

[56] Ahmed, M., Seraj, R., Islam, S.M.S. (2020). The k-

means algorithm: A comprehensive survey and

performance evaluation. Electronics, 9(8): 1295.

https://doi.org/10.3390/electronics9081295

[57] Ikotun, A.M., Almutari, M.S., Ezugwu, A.E. (2021). K-

means-based nature-inspired metaheuristic algorithms

for automatic data clustering problems: Recent advances

and future directions. Applied Sciences, 11(12): 11246.

https://doi.org/10.3390/app112311246

[58] Ersan, Z.G., Zontul, M., Yelmen, I. (2020). Map

matching with Kalman filter and location estimation.

Cumhuriyet Science Journal, 41(1): 43-48.

http://doi.org/10.17776/csj.634940

1450

