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This paper presents an efficient wayside acoustic and vibration-based detection for wheelset 

faults on metro trains, which is crucial for the safety of the run. The proposed condition 

monitoring scheme includes four main steps: data acquisition, signal segmentation by one-

period analysis, feature extraction; Time-Domain Features (TDF), Wavelet Packet Energy 

(WPE) features, and Linear Configuration Pattern Kurtograms (LCP-K), which applies a 

location invariant textural descriptor to Kurtogram images of the signal, and classification 

with state-of-art; Fisher’s Linear Discriminant Analysis (FLDA), Support Vector Machine 

(SVM),  Decision Tree (Dec. Tree) and Linear Perceptron classifiers alongside classifier 

combination techniques. During the research, results are obtained on both measured and 

boosted data. Thus, two databases (A1 and A2), each of which consists of measured 

vibration and acoustic signals belonging to healthy and faulty cases of the wheelsets of 

Prague metros, are established.  Due to a limited number of faulty instances, features are 

augmented with Adaptive Synthetic Sampling (ADASYN), and larger vibration and acoustic 

databases SA1 and SA2 are established to validate methods. Obtained results show that TDF 

with Dec. Tree classifier can detect wheelset faults by 100% with vibrations signals (A1), 

and the novel LCP-K algorithm outperforms both acoustic databases (A2 and SA2) up to 

93%, and finally, WPE features via combined classifies, reaches a 100% fault detection 

performance. The proposed framework provides cost-effective maintenance, which can aid 

metro train specialists, with potential further applicability to other types of railway vehicles. 
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1. INTRODUCTION

In recent advancements in railway vehicle condition 

monitoring methods, researchers are focusing extensively on 

wayside condition monitoring. This involves real-time 

assessment of sensor data to identify potential mechanical 

issues with the railway vehicles. The aim is to achieve cost-

effective maintenance strategies, which offer greater 

advantages than periodic servicing or repairs based on 

condition [1]. Monitoring the condition of the wheelset in 

railway vehicles is particularly critical for ensuring operational 

safety. Traditional stationary techniques often require 

complex static or dynamic laboratory tests and the installation 

of onboard sensors at specific points on vehicle components. 

However, wayside condition monitoring offers a more 

convenient approach for detecting faults in dynamic systems 

with minimal effort compared to stationary methods. 

Employing an appropriate evaluation process enables cost-

effective maintenance. Additionally, it allows for detecting 

faults that may gradually or suddenly appear due to significant 

changes in system parameters, such as the dynamic response 

of a wheelset, during real-world operations. The scarcity of 

wheelset fault detection schemes for metro trains in literature, 

coupled with the limited accuracy observed in existing 

research compared to our proposed framework, highlights the 

need for comprehensive understanding and unique approaches 

to address the metro train and operating company-specific 

details, underscoring the significance of this research for 

specialists, especially those in PPTC- Prague Public Transport 

Company and similar regions across Europe. 

Proposed approaches utilizing sensor data from onboard 

systems have emerged for enhancing running safety 

monitoring. These techniques require multiple sensor arrays 

and assessment protocols, along with comprehensive vehicle 

specifications, to ensure precise condition monitoring [2]. 

Successful application of these methods demands robust 

dynamic modelling, effective signal filtration, and addressing 

calibration challenges. 

Fundamental methods for detecting anomalies in railway 

vehicle operation include utilizing strain, acoustic, 

accelerometer, or gyroscope sensors [3, 4]. 

References to wayside condition monitoring systems in 

Europe are available in the literature [5]. In Czechia, a wayside 

condition monitoring system called ASDEK enables the 

measurement of physical parameters such as weight and 

temperature. This is achieved through sensors installed on or 

near the railway tracks, catering to train speeds of up to 

160km/h at over 40 locations. Real-time detection of wheelset 
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eccentricity, wheel defects, and hot axle-box/brake disk issues 

is also feasible, facilitating the implementation of decision-

making systems, including railway vehicle stoppage. However, 

there is currently no available application for metros in the 

Czechia area. 

In the Netherlands, GOTCHA can detect wheel anomalies 

and offer load measurements with a tolerance of 3% within the 

operational speed range of 30-70km/h. AVI tags are utilized 

for vehicle identification. LASCA, on the other hand, utilizes 

laser beam deflection to detect Q-forces with a 2-3% tolerance 

at speeds of up to 350km/h, identifying railway vehicles 

through ZLV bus technology. MULTIRAIL, on the other hand, 

monitors safety parameters such as wheelset loads and vertical 

wheel forces, employing RFID for vehicle identification. 

ARGOS, developed in Austria, employs strain-gauge sensors 

to monitor axle loads with precision up to 99.5%, offering 

insights into wheel irregularities at speeds ranging from 10-

40km/h. It also assesses wheel roundness with a precision of 

0.01mm, utilizing RFID for vehicle recognition. Various other 

company-specific systems are mentioned in existing literature 

[6]. 

The initial adoption of wayside methodologies [7] for 

identifying wheel anomalies through impact load 

measurement occurred in New York in 1983. Subsequently, 

Sweden devised a technique employing strain gauges to detect 

wheel problems, establishing wayside condition monitoring 

systems in over 190 locations. 

With new advancements, various devices are employed to 

identify wheel irregularities such as out-of-roundness, shelling, 

and wheel flats. Strain gauge measurement techniques 

commonly utilize vertical force and maximum quantities for 

detecting wheel defects [7]. Utilizing a total of 128 strain 

gauges enables the identification of such defects for wheels of 

varying sizes [8]. 

Observing variations in the refractive index of ultraviolet 

rays, fiber-optic sensors offer diagnostic capabilities that 

outperform strain gauge measurements. They exhibit superior 

resistance to electromagnetic interference and allow fewer 

challenges in fabrication, recalibration, and installation. 

Additionally, they are immune to temperature fluctuations, 

give faster response times, and ensure reliability [9]. 

Employing fiber-optic sensors enables the detection of rail 

shear strain, facilitating the identification of vertical impact 

force. Reports indicate that in addition to axle counting, weight 

monitoring, and wheel imperfection detection [10] are 

possible. Literature already presents various other wayside 

implementations of fiber-optic technologies [11-13]. 

Utilizing lasers and high-speed cameras offers an 

alternative method for monitoring wheelset condition and 

capturing images of wheel profiles. By comparing these 

images with standard profiles, prognostic wear monitoring is 

attained [14-16]. 

The literature also discusses the use of ultrasonic sensors 

[17-19], employing pulse-echo transmission for detecting 

wheel defects such as wheel cracks [20]. However, these 

sensors typically require complex infrastructures and operate 

at consistent, slow speeds. 

Acoustic sensor technology offers a viable approach for 

monitoring conditions under varying speeds [21-24], 

particularly focusing on the wheelset. This is because 

abnormal structures on the wheelset generate a periodic 

acoustic impulse corresponding to train velocity. Various 

methods have been explored, including time-domain and 

frequency energy statistics [25], implementing low-pass 

filtering and root mean square analysis within suitable time 

frames, followed by Fourier transform [26]. However, these 

methods are less effective than vibration signals [27]. 

Nonetheless, the effectiveness of acoustic wayside 

applications is reportedly compromised when employing 

Doppler correction before STFT-Short Time Fourier 

Transform variants [28]. 

Vibration sensors provide another efficient means for 

diagnosing wheel defects. They can effectively detect wheel 

flats and corrugation, even in noisy signals, through analyzing 

power cepstrum and comparing energy levels [29]. However, 

a notable limitation of this approach is the necessity for a 

constant speed. Additionally, fuzzy logic methods can be 

employed to monitor the severity of failure on the wheel [30]. 

In this approach, sensors for detecting vibrations are 

positioned at the base of the rail, where they assess the centre 

frequency, train speed, and vibration magnitude. Accordingly, 

findings suggest that the central frequency and train velocity 

are the most critical factors affecting output signals. An 

additional study [31] discusses the efficiency of wavelet-based 

techniques and direct thresholding in effectively determining 

the extent of wheel damage when utilizing piezoelectric 

accelerometer sensors. While employing shear bridges, which 

include multiple strain gauges, is said to yield superior results 

compared to accelerometers [32], establishing such trackside 

systems is challenging due to calibration complexity and cost 

considerations. 

It is essential to select the most appropriate approach for 

vibration-based condition monitoring of a railway vehicle 

within its unique wayside setting. Vibration signals typically 

exhibit non-stationary random characteristics [33]. An 

efficient method for processing non-stationary signals is STFT, 

which employs overlapping time windows. However, it 

requires repeating experiments for consistent performance. 

Similarly, CWT-Continuous Wavelet Transform) offers fast 

and convenient non-stationary signal processing. [34], PCA-

Principal Component Analysis is utilized to identify frequency 

differences in the faulty signal despite its unreliability [35]. 

In contrast to traditional methods, alternative techniques 

such as AR-Auto-Regressive model [35, 36], ARMA-Auto-

regressive Moving Average [37], and EMD-Empirical Mode 

Decomposition [38] have demonstrated their effectiveness in 

diagnosing mechanical faults, particularly in conditions with 

varying speeds, as documented in the literature. Various 

methods have been proposed, including time-domain 

statistical features like kurtosis, crest factor [39], variance, 

skewness, kurtosis, higher-order moments [40], impulse and 

clearance factors [41], DWT-Discrete Wavelet Transform for 

denoising, TSA-Time-synchronous Averaging, [42], 

Kurtograms and wavelets [43, 44], MCKD-Maximum 

Correlated Kurtosis Deconvolution [45], Gabor wavelets and, 

wavelet transform [46], HHT-Hilbert Huang Transform and 

SVMs-Support Vector Machines [47], time domain analysis 

combined with fuzzy C-means [48], envelope analysis from 

the Kurtogram [49] as well as various statistical features [50], 

have been proposed in the literature for detecting rotating 

component faults. Moreover, recent advancements in deep 

learning techniques such as LSTM (Long Short Time 

Memory), RNN (Recurrent Neural Networks), DBN (Deep 

Belief Network) [51], Multi-Layer Perceptron (MLP) [52], 

and CNN-Convolutional Neural Networks [53] are also 

examined in vibration based condition monitoring. 

Various techniques discussed in the introduction part 

require complex mathematical models or sensor calibrations, 
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which gradually can decrease performance, and specialized 

personal periodic checks, which make it much more costly (on 

device measurements) or suffer from low performance in 

detection (other data-driven methods) and lack of availability 

to train networks (deep neural networks) and none of them 

provide a straightforward speed adaptive and short length 

features via both vibration and acoustic signals with reliability 

in boosting as ADASYN offers. 

This study introduces advanced model-based techniques 

combined with cutting-edge feature extraction and 

classification methods to develop an effective framework for 

monitoring wheelset-related faults. The proposed methods 

combine one-period signal segmentation, which ensures one 

rotation of the wheelset under speed-varying conditions, with 

feature extraction algorithms (TDF, WPE, and LCP-K). These 

algorithms provide representative features with a fixed output 

size, and they also benefit from classifier combination 

techniques. According to the obtained results and validation 

from metro maintenance specialists, the efficiency of various 

feature extraction techniques, as compared across different 

scenarios, is demonstrated. 

The paper is structured as follows: Firstly, it outlines the 

wayside measurement system and details the preparation of 

the acoustic and vibration databases. Secondly, it presents the 

methods utilized for signal processing, feature extraction, and 

classification of wheelset-related faults. Thirdly, it provides 

the experimental study and analysis of results. Finally, the 

conclusion is given, followed by a distinct highlights section 

emphasizing our methodology highlights. 

 

 

2. EXPERIMENTAL SETUP 

 

In this research, a diagnostic measurement system is built 

inside the Prague Metro tunnel (metro line A) on the wayside 

to develop an effective framework for diagnosing faults in 

metro trains. 

 

2.1 Location and description of the wayside measurement 

system 

 

The development of the wayside measurement system 

began in 2013, with optimization of its configuration based on 

ad-hoc measurements conducted between 2013 and 2014. The 

initial version of the autonomous system underwent testing in 

2015, but validated measurements were only obtained much 

later due to permission and stability issues. The setup 

comprises a cabinet housing the Measurement System (MS), 

track sensors including accelerometers (Z1, Z2, Z3, Z4) and 

microphones (M1, M2), and optical gates (OGA, OGB). On 

the measuring track, two pairs of mono-axial accelerometers 

were installed vertically at the base of the rail between sleepers 

[54] because the dominant vibration is vertical [55], while two 

microphones were positioned in the centre of the track 

between rails. The accelerometers and microphones are 

installed in the same cross-sections as optical gate sensors 

OGA and OGB (Figure 1). 

Within the MS Cabinet, industrial computer from 

AXIOMTEK, alongside the NI cDAQ-9234 system, facilitates 

data collection at a high sampling rate of up to 51.2kHz 

(satisfies the minimum required 20kHz in acoustic diagnosis 

[56]) per channel which should cover most of the characteristic 

frequencies including those associated with worn wheels. The 

2.4GHz Wi-Fi connection between the measuring system and 

trains allows for the identification of each passing train based 

on MAC address up to 1km distance with an average of 30 

seconds before the arrival of the train operating at 80km/h. The 

system additionally offers remote control and monitoring 

functionalities, including monitoring cabinet temperature, 

available disk space, CPU load, power supply status, etc. 

Optical gates allow the initialization of the measurement 

process; however, a pre-trigger function is needed to record 

the entire passing. They also enable the calculation of speed 

and acceleration so that speed-adaptive one-period analysis 

can be used. 

The location of the system was determined based on the 

experience from previous measurements at other sections. The 

system is designed to detect other rotational problems in 

gearboxes and traction motors, which are more detectable with 

positive traction force. To reduce influences, the search for a 

suitable location must adhere to fundamental criteria: a 

straight path, positive elevation (ensuring positive traction 

force), maximum distance from isolated rails (between 

signalling sections), maximal distance from lateral service 

tunnels, and minimal distance from the power supply cabinet. 

After examining various sections, the ultimate location was 

selected on Prague Metro Line-A between Dejvická and 

Bořislavka stations (km 15.1). This track segment features a 

straight track with a 40‰ elevation, ensuring relatively 

consistent train speeds and positive high traction force. 

 

 
 

Figure 1. DiMet-autonomous measurement system, 

configuration inside the tunnel 

 

 

3. METHODOLOGY 

 

Effective fault characterization is essential for achieving a 

precise diagnostic mechanism. Whether conducted offline or 

in real-time, the process of sensor data can indicate potential 

mechanical faults within the structure, provided that suitable 

signal processing techniques are applied. This section presents 

the methodologies dealing with signal processing, feature 

extraction, and classification employed in this study. 

 

3.1 Fault characteristics of a wheelset 

 

Various potential fault modes for the wheelsets can be 

characterized based on the mechanical model of the wheelset 

and its components. Leveraging model-based methodologies 
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facilitates the estimation of expected fault frequencies 

associated with the wheelsets of the railway vehicle. 

Subsequently, these characteristic frequencies can be 

examined upon using a filtering mechanism prior to 

subsequent diagnostic procedures. 

Two predominant types of faults that can noticeably impact 

ride quality are wheelset eccentricity (see Figure 2 (a)) and 

wheel defects (see Figure 2 (b)). Wheel defects, especially 

those that affect both the rail and vehicle structures, should 

urgently be identified due to their potential propagation. The 

characteristic frequency associated with this type of fault is 

harmonically related to the rotational frequency of the 

wheelset, and its calculation is shown in Eq. (1). 

 

 
 

Figure 2. Wheelset-related faults; wheelset eccentricity (a), 

flat-wheel defect (b) 

 

Eccentric faults in the wheelset imbalance contribute to the 

wheel rotational frequency in the spectrum. Eq. (1) 

demonstrates the calculation of this fault frequency, where 𝑣 

represents the translational velocity of the train, and 𝐷𝑘 refers 

to the wheel diameter. Having the possibility to measure the 

maximum and minimum speed of the train in Dejvická passage, 

the expected faulty frequency interval can be calculated as in 

Table 1. 

 

k

ws

v

D
f


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Table 1. Wheelset eccentricity (imbalance) fault frequency 

range for the train set 81-71M 

 

Location 
Wheel Diameter 

[mm] 

Speed 

[m/s] 

Frequency 

[Hz] 

Dejvická 
Dmin Dmax Vmin, Vmax fws min fws max 

730 785 15-22.2 6.5-9.7 6.1-9.0 

 

3.2 One-period signal segmentation 

 

This method assumes that vehicle vibrations transmit to the 

rail on the contact points with the wheel. The wheelset serves 

as the fundamental unit for diagnosis within the train running 

gear. By referencing the train identification and maintenance 

database, one can link the measured wheelset to its 

identification and maintenance history, as well as that of 

related components like traction motors, gearboxes, and 

bearings. The initial step involves segmenting the recorded 

signals into blocks, each representing a single wheelset 

rotation, with the block length determined by the wheel 

diameters and train speed obtained from the maintenance 

database and optical gate signals, respectively. Eq. (2) shows 

the calculation of the signal block length: 

 

2 round
2

i s

i

i

d f
n

v

  
= 



 
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 

 (2) 

Assuming that i as the index of wheelset, 𝑛𝑖 as the sample 

count in the block, 𝑑𝑖 as the mean diameter of left and right 

wheels, 𝑣𝑖  is the velocity of wheelset, 𝑓𝑠  as the sampling 

frequency. Train speed is calculated by Eq. (3) with a tolerance 

of  0.5km/h validated through hundreds of passes: 

 

s
i

Bi Ai

L f
v

s s


=

−
 (3) 

 

Given L as the distance between optical gate sensors, 𝑠𝐴𝑖 as 

the sample number for detecting the centre of the wheelset 

number i by optical gate OGA, similarly  𝑠𝐵𝑖  is the sample 

number from optical gate OGB. Centre of the block should be 

positioned at sample 𝑠𝐴𝑖  for segmenting signals from Z1 and 

Z2 sensors or at sample 𝑠𝐵𝑖  in case of segmenting signals from 

Z3 and Z4 sensors. 

Wheelset velocities are retrieved from the train and are 

fitted by a linear function. A histogram of speed values is 

given in Figure 3, while Figure 4 shows an example of one 

period block signal with the following parameters: 𝑣𝑖 =
22m.s-1;  𝑑𝑖 = 0.745m; train ID: 108, wheelset No: 13, passing 

ID: 20160713_070409. 

 

 
 

Figure 3. Histogram of train velocity measurement in one 

day 

 

 
 

Figure 4. One-period segmented vibration signal 
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3.3 Wavelet packet analysis 

 

Fault transients can appear randomly, their exact location 

can be dominated by significant environmental noise, even 

with a full understanding of the dynamic system model. 

However, in mechanical fault diagnosis, these transients 

exhibit periodicity, making frequency domain methods 

feasible. To investigate such periodic transients, WPT-

Wavelet Packet Analysis offers a solution, as in STFT [57], 

but provides variable frequency resolution, as highlighted in 

academic literature for time-frequency analysis. Through 

wavelet packet analysis, the Fourier spectrum can be 

partitioned into numerous frequency bands, allowing for the 

desired frequency resolution. WPT shares a structure similar 

to DWT-Discrete Wavelet Transform, which enables a multi-

scale time-frequency representation of signal data [58]. 

Various wavelet functions such as Haar, Daubechies, and 

Symlets [59] can be utilized in the calculation of DWT. The 

mathematical representation of the DWT for a discrete signal 

𝑥[𝑛] is shown in equations Eq. (4) and Eq. (5) with the wavelet 

basis function 𝜓𝑎,𝑏 while 𝑎 is the dilation and 𝑏 is the location 

parameter. 

 

a,b

1
[ ]

n b
n

aa
 

− 
=   

 (4) 

 

a,bX[a,b] [ ] [ ]
n

x n n


=−

=   (5) 

 

Utilizing filter banks known as QMF-Quadrature Mirror 

Filters, DWT operates as a multiresolution analysis tool [60], 

employing both low-pass and high-pass filtering operations. 

The low-pass filter generates approximation coefficients (A), 

while the high-pass filter produces detail coefficients (D). This 

method outperforms STFT in offering improved time 

resolution at high frequencies while maintaining adequate 

frequency resolution at lower frequencies. However, DWT 

suffers from reduced frequency resolution at higher 

frequencies compared to WPT, which employs linear 

combinations of wavelet functions and retains the advantages 

of orthonormality and time-frequency domain localization. If 

we assume the number of levels 𝑛𝑤; 𝑘𝑤 = 2𝑛𝑤  refers to the 

number of wavelet packets in WPT. The signal is then filtered 

to capture low and high-frequency components, followed by 

downsampling for the subsequent level. Figure 5 illustrates a 

two-level decomposition of the wavelet packet tree for a 

discrete signal 𝑥[𝑛], where h[𝑛] is a low-pass (L) and 𝑔[𝑛] is 

a high-pass (H) QMF results yielding approximation (A) and 

detail (D) coefficients, respectively. 

 

 
 

Figure 5. Two-level wavelet packet decomposition 

 

However, the components of WPT remain non-translation 

invariant, and addressing this issue can be accomplished by 

computing the energy levels of each wavelet packet 𝑘𝑤  as 

given in Eq. (6) where 𝑐𝑗,𝑛 denotes the wavelet coefficients at 

index 𝑗 − 𝑡ℎ  on 𝑛𝑤 − 𝑡ℎ  level. Utilizing these energy 

measures directly as a feature vector is feasible due to the 

reduction of feature dimension enabled by WPE [61], ensuring 

that periodic transients propagate effectively in WPE 

coefficients [61]. 
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3.4 Linear configuration pattern Kurtograms 

 

Methods based on spectral kurtosis are widely used in 

monitoring the condition of rotating machinery to detect signal 

non-stationarities. Recently, a more efficient approach called 

Kurtogram has been introduced as a fourth-order analysis tool 

[62]. In the Kurtogram method, signals are transformed into 

frequency-delta frequency spectra, allowing for the 

investigation of transients associated with faulty conditions, 

which exhibit high kurtosis in a dyad view (𝑓, 𝛥𝑓). However, 

the main drawback of Kurtogram is its computational 

inefficiency. To address this, a faster algorithm called FK-Fast 

Kurtogram has been developed, which has a similar 

complexity to FFT-Fast Fourier Transform [49]. FK divides 

frequency bands finely and presents the magnitude of each 

spectral kurtosis in a grid view, represented as a dynamic 

intensity image [49]. Additionally, LBP-Local Binary Patterns 

is a popular method in two-dimensional pattern recognition 

that focuses on texture recognition and bioinformatics [63]. 

LBP aims to maximize mutual information by comparing pixel 

intensities in the surrounding area while labelling 

discriminative features of a two-dimensional signal. For a 

given circular window radius, it calculates binary patterns for 

each neighbourhood using a specific formulation as described 

in the study [64] in Eq. (7): 

 

( )
1

0

, ( )2
P

i

i c
iLBP P R u g g

−

=

= −  (7) 

 

where, 𝑔𝑖 denotes the intensity for 𝑖𝑡ℎ pixel while 𝑔𝑐 refers to 

the centre pixel intensity, 𝑃 is the number of pixels at radius R. 

Therefore, the LBP method can function effectively across 

varying colour maps. A recent study [65] introduces an 

enhanced variant of LBP known as LCP-Local Configuration 

Pattern, which is capable of identifying similar patterns with 

differing orientations. This algorithm integrates LBP features 

with microstructural details of the image, ensuring a consistent 

output. By combining LCP with the FK method, a novel 

approach, LCP-K-Linear Configuration Pattern-Kurtograms, 

is developed, offering robust dimension reduction and 

accurate representation of fault signatures in any one-

dimensional signal. 

Initially, the five-level Fast Kurtogram (FK) is computed. 

Subsequently, the Kurtogram image is resized to 128x128 

pixels using bi-cubic interpolation [66] and converted to 

grayscale. 

Lastly, the LCP is applied to the grayscale image, which is 

partitioned into 16×16 blocks, extracting 81×1 feature vectors 

of double precision. 
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Figure 6. LCP-K Feature extraction scheme for a one-period 

segmented healthy signal 

 

In conclusion, our LCP-K algorithm (Figure 6) [67] applies 

a location invariant textural descriptor to Kurtogram images of 

the signal to discard fluctuation effects in Kurtogram images 

ensuring the representative output feature vectors with the 

same size addressing signal sample size issues. 

 

3.5 Time-domain features 

 

In vibration-based analysis, anomaly signals exhibit similar 

temporal characteristics statistically. Utilizing statistical 

features in time domain is a fundamental and effective way in 

feature extraction, in machinery condition monitoring. In this 

investigation, mean (𝜇 ), standard deviation (𝜎 ), maximum 

(max), minimum (min), kurtosis, skewness and crest factor; a 

measure of RMS-Root Mean Square and energy, are computed, 

as inspired by studies [48, 50] for mechanical fault detection. 

The proposed TDF-Time Domain Features are computed via 

Eqs. (8)-(11) for a given discrete signal 𝑥𝑛 with length 𝑁, and 

then concatenated in a matrix of double precision. 
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3.6 Adaptive synthetic sampling 

 

The most common data encountered in wayside railway 

vehicle fault detection is healthy, leading to the observation of 

a significantly greater number of normal signal samples than 

abnormal ones. Moreover, obtaining abnormal samples for 

vehicles of the same type is costly unless a real-time 

measurement system is consistently maintained. 

Typically, the number of observations (𝑚𝑜)  within each 

class should exceed the length of each feature vector (𝑛𝑜), or 

an insufficient case scenario (𝑛𝑜 ≥ 𝑚𝑜)  arises [68]. This 

insufficient case is often encountered in applications such as 

signature and voice recognition due to limited observed 

samples. Misclassifying faulty samples as healthy (false 

negatives) can be highly challenging to recover from. In such 

cases, the minority class, comprising less frequent feature 

vectors, requires oversampling. A straightforward approach to 

tackle this issue is to accurately interpolate the minority class 

samples to generate new samples. 

To address imbalanced datasets, the literature suggests 

using SMOTE-Synthetic Over Sampling Method [69]. This 

approach involves linearly interpolating existing feature 

vectors from the minority class to create new vectors. 

However, SMOTE solely targets the minority class vectors, 

disregarding the majority class samples, which may not always 

be a practical method for generating additional data. This issue 

is addressed by an extension of the SMOTE technique known 

as ADASYN-Adaptive Synthetic Sampling [70]; ADASYN 

considers samples across each class boundary and dynamically 

generates samples for the minority class. 

The application of ADASYN for feature generation is 

illustrated in Figure 7 using our wayside measurement 

database. Specifically, we demonstrate its utilization for the 

minority class, which comprises 16 observations associated 

with wheel faults (𝑚0
𝐹𝑎𝑢𝑙𝑡𝑦

= 16) and the majority healthy 

class with 128 normal observations (𝑚0
𝑁𝑜𝑟𝑚𝑎𝑙 = 128). The 

parameters k-ADASYN and k-SMOTE, which are required 

for density estimation in the k-Nearest Neighbour (kNN) 

utilizing Euclidean distance, are both set to a default value of 

5. ADASYN boosts each specific feature within the minority 

class by considering both classes, resulting in the creation of a 

total of 𝑚0
𝑁𝑜𝑟𝑚𝑎𝑙 -𝑚0

𝐹𝑎𝑢𝑙𝑡𝑦
= 112  number of feature vectors 

that contribute to reinforcing the minority class. It is important 

to highlight that the synthesized feature vectors gather near the 

boundaries between classes, and the outlier sample on the right 

top was not used to generate a new sample by algorithm 

automatically. This enhances the reliability and complexity of 

the database, minimizing the impact of outliers rather than 

solely relying on in-class interpolation. 

 

 
 

 
 

Figure 7. Utilizing ADASYN to generate synthetic samples 

in the minority class to achieve a balance with the majority 

class [71] 
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4. RESULTS AND DISCUSSION 

 

In this section, three primary analyses linked to the 

detection of faults in metro train wheels have been presented. 

To do so, advanced feature extraction and classification 

techniques were applied to our database to assess both acoustic 

and vibration-based diagnostic methods. 

 

4.1 Acoustic and vibration signal databases 

 

The signal repository comprises original acoustic and 

vibration signals obtained from the wayside measurement 

system situated between Dejvická and Bořislavka metro 

stations. Within this database framework, signal classification 

is treated as a two-class (normal and defective) challenge. 

Faulty data was gathered from a wheelset (axle 7 on ID-108 

metro train), exhibiting wheel flats on both wheels. In contrast, 

normal data was retrieved from the remaining wheelsets (axles: 

1-4, 11-14) of the same train set, captured during daily 

operations using Z1-Z2 accelerometers and M1-M2 acoustic 

sensors. Eight train passages were recorded in total, with the 

faulty wheelset being inspected in the depot (faulty wheel 

shown in Figure 8). Detailed database specifications are 

provided in Table 2. 

Before further processing, all signals are segmented 

according to one-period analysis for each axle. 

To construct a robust model, the database is prepared with 

comprehensive information sourced from metro maintenance 

records, ensuring a balanced representation of both healthy 

and faulty conditions. Furthermore, in response to the limited 

observations of faulty conditions during the eight passing 

times of the trainset with a defective wheel (ID-108), 

additional samples are wisely generated by adapting feature 

vectors from measured vibration (A1) and acoustic (A2) 

signals using ADASYN. This strategic approach results in the 

creation of synthetically oversampled databases SA1 and SA2 

for vibration and acoustic signals, respectively, thereby 

facilitating a more comprehensive evaluation of the 

framework efficiency. 

 

 
 

Figure 8. A wheel flat developed at the center of the contact 

area due to blockage or partial blockage on the seventh 

wheelset of metro train ID-108 

 

Table 2. Description of vibration and acoustic databases 

 
Measured 

Faulty 

Samples 

Synth. 

Faulty 

Samples 

Total 

Normal 

Samples 

Sensors Dataset 

16 0 16 Z1-Z2 A1 

8 0 8 M1-M2 A2 

16 112 128 Z1-Z2 SA1 

8 56 64 M1-M2 SA2 

4.2 Results of vibration-based wheelset condition 

monitoring 

 

In the proposed method for wayside diagnosis, the 

fluctuating speed leads to varying sample sizes in the output 

signals during one-period signal segmentation. 

Hence, feature extraction techniques are applied to 

standardize the outputs and achieve substantial dimension 

reduction for the classification of normal and faulty instances. 

This section examines the performance of three feature 

extraction methodologies; WPE features [62] (32×1) come 

from five-level wavelet decomposition tree, eleven time-

domain statistical features (TDF), and a Kurtogram textural 

descriptor; LCP-K features (81×1) classified with four cutting-

edge classifiers: support vector machine with linear kernel 

(SVM-I) [72], PERLC-Linear Perceptron [73], FLDA-

Fisher’s Linear Discriminant Classifier [74] and Dec. Tree-

Decision Tree [75]. The assessment of these models is 

performed either via n-fold cross-validation, which yields the 

highest classification performance, or splitting the training and 

testing samples in half for each class and applying classifier 

combining techniques. 

The results presented in bold text in Table 3 indicate that the 

most effective feature extraction method for the two-class 

classification of wheel defects in vibration-based diagnosis is 

TDF. While SVM-I demonstrates superior performance in 

classifying the synthesized cases (SA1), PERLC performs 

comparably to SVM-I and outperforms SVM-I in classifying 

measured-only data (A1). According to the results, wayside 

diagnosis of wheel defects can be achieved with a 100% 

success rate without employing any pre-processing when 

utilizing TDF features with the Dec. Tree classifier. 

Further exploration is conducted to assess the performance 

of various classifier combination techniques, which may yield 

superior results compared to individual classifiers. Proposed 

methods with different classifier combining methods are 

employed with our base classifiers: FLDA, SVM-I, Dec. Tree, 

and PERLC. Multiple classifier combination techniques are 

performed, including Prod-C (Product Combiner), Mean-C 

(Average Combiner), Med-C (Median Combiner), Max-C 

(Maximum Combiner), Min-C (Minimum Combiner), and 

Vote-C (Majority Voting) [76]. Each dataset (A1, SA1) is 

divided equally for each class (normal, faulty) to conduct 

training and testing stages. 

Table 4 and Figure 9 show the recognition rates (ACC) 

along with ROC-Receiver Operating Characteristic curves, 

which encompass AUC-Area Under Curve values offering 

insights into false positive detection rates of wheel defects, 

both for measured and synthesized data, when employing 

classifier combination techniques. 

 

Table 3. Wheelset fault detection accuracies for measured 

and boosted data from Z1-Z2 sensors 

 

Classifier 
Classification Performance (%) 

WPE TDF LCP-K Average Dataset 

FLDA 
59.4 93.8 62.5 71.9 A1 (8-fold) 

95.7 99.2 95.5 96.8 SA1 (16-fold) 

SVM-I 
93.8 93.8 68.8 85,5 A1 (8-fold) 

99.6 100 96.9 98.8 SA1 (16-fold) 

Dec. Tree 
90.6 100 84.4 91.7 A1 (8-fold) 

98.1 100 91.8 96.6 SA1 (16-fold) 

PERLC 
96.9 93,8 87.5 92.7 A1 (8-fold) 

99.2 99.2 97.7 98.7 SA1 (16-fold) 

1277



 

Table 4. Wheelset fault detection accuracies for measured 

and boosted data using combined classifiers 

 

Combined 

Classifier 

Classification 

Performance (%) Train Test Dataset 

WPE TDF LCP-K 

Prod-C 
68.8 81.3 68.8 16 16 A1 

76.7 92.2 90.6 128 128 SA1 

Mean-C 
100 87.5 81.3 16 16 A1 

73.4 89.1 89.8 128 128 SA1 

Med-C 
100 87.5 81.3 16 16 A1 

70.4 88.3 88.3 128 128 SA1 

Max-C 
68.8 81.3 62.5 16 16 A1 

82.8 96.1 89.8 128 128 SA1 

Min-C 
68.8 81.3 68.8 16 16 A1 

80.5 96.1 89.8 128 128 SA1 

Vote-C 
100 93.8 75.0 16 16 A1 

87.5 88.3 91.4 128 128 SA1 

 

 
 

 
 

Figure 9. ROC curves (classifier combination techniques) for 

TDF on dataset SA1 (top), WPE on dataset A1 (bottom) 

 

Obtained results show that, among classifier combination 

methods like Med-C, Mean-C, and Vote-C, WPE stands out as 

the only technique capable of classifying measured wheelset 

faults. However, in the case of synthetically generated 

databases, TDF remains the top performer with an accuracy of 

96.1%, while LCP-K outperforms WPE with a success rate of 

up to 91.4%. 

 

4.3 Results of acoustic-based wheelset condition 

monitoring 

 

This section presents acoustic-based condition monitoring 

results. The same procedure in vibration-based diagnosis is 

carried out in the feature extraction and classification process 

(WPE, TDF, and LCP-K techniques with the classifiers FLDA, 

SVM-I, Dec. Tree, and PERLC). To ensure reliable 

assessment, a 4-fold cross-validation is conducted for the 

measured signals database (A2), whereas for the hybrid 

database (SA2) comprising both measured and synthetically 

oversampled features, an 8-fold cross-validation is employed. 

As indicated in Table 5, the LCP-K algorithm, when used with 

the Dec. Tree classifier, can effectively identify faulty 

wheelsets with a success rate of 87.5% in the A2 dataset. In 

the SA2 dataset, its accuracy increases significantly to 93% 

with the SVM-I classifier. While other feature extraction 

methods exhibit similar accuracies in either A2 or SA2 

datasets, LCP-K stands out as the only method capable of 

classifying samples in both acoustic-based databases. Note 

that the utilization of microphone sensors in diagnosis yields 

notably lower results compared to vibration-based diagnosis, 

when only measured cases are utilized in the training and 

testing. However, the inclusion of synthetic feature samples 

demonstrates a considerable improvement in classification. 

To conclude, in acoustic-based condition monitoring, the 

impact of noise and the Doppler effect is not considered, which 

may lead to performance losses in the application of a high-

speed train passage. This is because the authors attempted to 

present a more straightforward and practical approach aiming 

to show the performance of the features proposed without 

further adjustment or pre-processing. 

 

Table 5. Wheelset fault detection accuracies for measured 

and boosted data from acoustic M1-M2 sensors 

 

Classifier 
Classification Performance (%) 

WPE TDF LCP-K Sensors Dataset 

FLDA 
62.5 56.3 62.5 

M1-M2 
A2 (4-fold) 

82.0 93.0 87.5 SA2 (8-fold) 

SVM-I 
68.8 62.5 81.3 

M1-M2 
A2 (4-fold) 

82.8 85.9 93.0 SA2 (8-fold) 

Dec. Tree 
87.5 68.8 87.5 

M1-M2 
A2 (4-fold) 

87.5 85.2 87.5 SA2 (8-fold) 

PERLC 
68.8 75.0 81.3 

M1-M2 
A2 (4-fold) 

76.6 89.8 89.9 SA2 (8-fold) 

 

 

5. CONCLUSIONS 

 

Wayside systems for monitoring rail vehicle conditions 

offer more benefits compared to scheduled maintenance or 

condition-based repairs (when a fault inevitably appears), 

particularly in terms of safety and cost-effectiveness. This 

study focuses on collecting vibration and acoustic signals from 

the Prague metro tunnel during regular metro operations to 

establish an effective framework for monitoring the metro 

wheelset condition. By employing the proposed methods, a 

precise procedure for detecting wheelset faults is developed. 

Initially, vibration sensor data is utilized to identify wheel 

defects known to exist on the ID-108 metro train set. This is 

achieved through the application of TDF, WPE, and LCP-K 

algorithms, coupled with advanced classifiers like SVM-I, Dec. 

Tree, and PERLC, following speed-adaptive segmentation. 

Subsequently, ADASYN is employed to ensure the reliability 

and alignment of measured faulty signals with healthy ones. 

The results reveal that the two-class problem is addressed with 

100% accuracy for both the A1 and SA1 datasets using TDF 

features and the Dec. Tree classifier. 

In addition, the vibration signal dataset is split into two parts, 
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and a two-class classification is conducted using classifier 

combination techniques. The results indicate that WPE 

performs exceptionally well when combined with Med-C, 

Mean-C, and Vote-C, achieving a 100% success rate in 

classifying the A1 dataset. However, TDF continues to 

perform remarkably in classifying the SA1 dataset, achieving 

an accuracy of 96.1% while LCP-K outperforms WPE in this 

scenario. 

In conclusion, the acoustic signal database is used to assess 

faulty wheelsets compared to the vibration-based system. 

While LCP-K shows superior classification accuracy in both 

measured (A2) and synthesized (SA2) databases (87.5% and 

93% respectively), overall accuracy is notably lower in 

acoustic-based monitoring. 

Hence, the methodologies proposed in this study offer the 

potential to develop suitable frameworks for both acoustic and 

vibration-based condition monitoring systems, offering 

simplicity and cost-effectiveness. 

The efficiency and applicability of the proposed framework 

are limited to the complexity of the number of interactions of 

the rotating device and speed (e.g.: high speed-trains) which 

can require increased number of wavelet scales or levels in the 

Kurtogram calculation to prevent low resolution. As a future 

work, after having adjusted the parameters of the proposed 

methods to the model-based natural behaviour of the problem 

in railways, this framework has the potential to assist 

maintenance specialists and can be adapted for the use of 

various railway vehicles. 

 

 

6. METHODOLOGY HIGHLIGHTS 

 

The proposed wayside condition monitoring comprehensive 

framework includes the following contributions: Model-based 

one-period analysis for rotating machinery condition 

monitoring ensures computational efficiency and speed 

adaptivity. Utilizing ADASYN to address the problem of 

having a rare number of faulty samples in real-world scenarios 

helps to balance the datasets. Remarkable recognition 

accuracies of up to 100% in vibration-based methodologies 

and up to 93% in acoustic-based methodologies, achieved 

through leveraging known techniques (WPE and TDF) and the 

novel LCP-K algorithm, which also address sample length 

variation problems due to speed fluctuations. The superiority 

of LCP-K demonstrated in fault detection accuracy, especially 

in acoustic databases, by employing combined classifier and 

ADASYN. The presented machine learning scheme is also 

advantageous over deep learning systems due to the necessity 

of low number samples and better explanation of the problem. 
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NOMENCLATURE 

 

𝑓𝑤𝑠 rotating frequency of the wheelset, s-1 

v  translational velocity of the train, m.s-1 

𝐷𝑘 wheel diameter on k-th index, mm 

𝑛𝑖 number of samples in the block 

𝑑𝑖 mean diameter of right and left wheels, mm 

𝑓𝑠 
sampling frequency of the recorded signals, 

s-1 

L distance between optical gates, m 

𝑠𝐴𝑖  sample number of detecting centre for OGA 

𝑠𝐵𝑖  sample number of detecting centre for OGB 

𝑥[𝑛] sample discrete signal 

𝑛𝑤 
number of levels (scales) in wavelet 

transform 

𝑘𝑤 number of packets in wavelet transform 

ℎ[ 𝑛] low-pass filter in wavelet transform 

𝑔[𝑛] high-pass filter in wavelet transform 

𝑐𝑗,𝑛 wavelet coefficients in wavelet transform 

𝑛𝑜 size of feature vector in each class 

𝐸𝑛𝑤,𝑘𝑤
 wavelet packet energy in w-th packet 

𝑔𝑐 centre pixel intensity in LBP 

𝑚𝑜 number observations in each class 

𝑚0
𝐹𝑎𝑢𝑙𝑡𝑦

 number observations in faulty class 

𝑚0
𝑁𝑜𝑟𝑚𝑎𝑙  number observations in normal class 

 

Greek symbols 

 

𝜓 wavelet basis function 

𝜇 mean value in TDF 

𝜎 standard deviation value in TDF 

 

Subscripts 

 

a, b 
dilation, location parameters for wavelet 

function 

𝑅 circular radius in LBP algorithm 

N number of samples in the signal sample 
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