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Emerging technology like Internet of Things (IoT) seeks to facilitate the linking of 
numerous smart devices and diverse networks. IoT enabled platform architecture heavily 
relies on ad hoc networks because of their efficient, adaptable, low-cost, and dynamic 
infrastructures. To keep Quality of Service (QoS) intact in a multi-hop transmission, these 
networks make good use of the resources that are available. Secure and trustworthy data 
transmission is crucial because malevolent relay nodes can occur in multi-hop 
communication. Quality of service is considered in the suggested secure communication 
approach for networks based on the IoT that uses a trusted route model. Routing and 
security are the two most important components of a wireless network. With massive 
networks like the Internet of Things, these instances become two times as important. The 
novel nature of the IoT makes its far-reaching repercussions on healthcare stand out, yet 
it has had an influence on many aspects of society. When coupled with mobile computing, 
the IoT becomes even more beneficial due to mobile computing's characteristics. The 
beneficial impacts of the Internet of Things on healthcare are mostly attributable to mobile 
health, which is enabled by mobile computing. Wearables flood Internet of Things devices 
with data from their many sensors, actuators, and transceivers. Data on the IoT is 
vulnerable to a plethora of threats, assaults, and vulnerabilities. Consequently, a strong 
security solution is required to resolve concerns regarding the privacy, security, and 
vulnerabilities of the Internet of Things. This research presents an efficient routing 
protocol-based architecture for the secure and scalable transfer of healthcare data in the 
IoT. The presence of malicious nodes makes this network vulnerable to numerous attacks. 
This research presents a brief comparative analysis on the proposed routing model, group 
key management model and malicious nodes detection model in which these models are 
compared with the traditional models. The comparative analysis showed that the proposed 
models are efficient and effective in providing Denial of Service (DoS). 
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1. INTRODUCTION

The IoT is a relatively new technology in the realm of 

intelligent communication; several institutions and businesses 

are joining this technology daily due to its benefits. The 

research allows us to envision the communication landscape 

of the future within the framework of the IoT. Because of these 

characteristics, academics are considering using new 

technology to build the IoT, such as the 5G network [1]. 

Expanding the number of supported devices beyond what is 

now possible is a critical component of the IoT [2]. One of the 

new planned uses for the IoT is the management of 

communication between billions of linked sensors and radio 

devices [3]. There will be additional security risks associated 

with providing a communication platform for so many 

devices. In such a network, victims of cyber attacks may, for 

instance, be unable to use devices in their homes, vehicles, or 

cell phones. This is why numerous studies have offered ways 

to make these networks more secure for communication [4]. 

This network still needs better security measures, and the issue 

is not yet resolved. 

DoS assaults and other threats are becoming more common 

in the IoT due to the proliferation of linked devices and apps. 

To avoid impersonation or man-in-the-middle attacks, this 

network's users should employ more efficient two-way 

authentication than earlier generations [5]. This is why a quick, 

precise, and resilient security solution for secure 

communications in the IoT is essential. However, new 

research suggests that encryption techniques alone won't be 

enough to secure data and communications transmitted by the 

IoT. Security must accompany efficiency when performing 

one of the most fundamental tasks in communication networks 

routing [6]. Failing to do so results in wasted processing 

resources and makes it impossible to detect attackers. To 

ensure the safety of the IoT data routing [7], it is necessary to 

have a well-structured system for arranging network devices 

and to have a methodical strategy for detecting potential 

threats by analyzing massive volumes of network data [8]. The 

specified security processes cannot be fully assigned to things 

due to concerns such as heterogeneity, limited computational 
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capabilities, and lack of full reliability [9]. However, owing to 

the significant overhead, traditional centralized security 

systems are ill-equipped to safeguard communications across 

massive networks like the IoT. Because of these problems, IoT 

routing security solutions need to be reviewed [10]. The 

network structure is shown in Figure 1. 

 

 
 

Figure 1. IoT network structure 

 

This research impetus comes from the pressing need to 

develop a unified and effective approach to real-time threat 

detection and secure routing in the IoT. Given this 

background, the primary goal of this research has been to 

address the limitations of existing solutions by developing a 

thorough and efficient method for secure routing that can 

identify assaults in the IoT. Many parts of IoT security have 

progressed, such as communications, privacy, authentication 

[11], and trust. To prevent future assaults and ensure the data 

of users is properly protected, it is essential to encrypt IoT 

connections [12]. Because n-to-n communication, which 

refers to group communication, is more difficult to encrypt 

than one-to-one communication, developers will find it 

problematic. It is necessary to encrypt messages in n-to-n 

communication for a group of receivers [13]. Group Key 

Management (GKM) is an essential component of safe group 

chat protocols. On decentralized systems, GKM is used to 

handle secret keys for secure group communication and 

distributes them to all members of the group [14]. Signing and 

encrypting group communications, authenticating members 

and messages, and granting access to group resources and 

traffic are all done via the shared group key [15].  

A safe method that allows for the production, distribution, 

and revocation of cryptographic keys is vital for the devices to 

accomplish this goal. The robustness of proposed scheme is 

dependent on the cryptographic strength of the group key and 

the key management protocol [16]. A big leap forward in this 

direction has been the creation of trustworthy cryptographic 

protocols that can protect the confidentiality of both data and 

communications [17]. In addition, there are two main 

categories for cryptographic security mechanisms: symmetric 

and asymmetric. Symmetric, asymmetric, and hybrid group 

key management techniques are the three main types [18]. 

Secure communication channels between numerous parties 

can be established with the help of asymmetric key techniques 

[19], which are more powerful but also consume more power. 

Because of its importance in highly-connected networks, this 

technology is fundamental to the IoT. Elliptical Curve 

Cryptography (ECC) and Advanced Encryption Systems 

(AES) are two examples of cryptographic primitives that have 

been made lighter by the reduction of processing time and cost 

[20]. The level of difficulty of the problem is considered when 

deciding whether the algorithm is more attack-resistant or not. 

Number theory and discrete logarithms are the foundations of 

current group key management techniques [21], but they are 

susceptible to quantum computers. There will be a meteoric 

rise in the number of IoT devices as well as the capability of 

quantum computers in the next years. These two technologies 

challenge the present crypto techniques [22]. The 

cryptography model in key pair generation is shown in Figure 

2. 

 

 
 

Figure 2. Cryptography model for key pair generation 

 

Even though IoT devices pose a multitude of security 

vulnerabilities, the network is advancing at a rapid pace. 

Because IoT networks are complicated, IoT devices could be 

attacked in many different ways [23]. When an attacker uses a 

wireless control to eavesdrop on communications between 

nodes, it is considered a passive attack. Passive attacks are 

difficult to detect because they simply gather data without 

making any changes to the way a protocol normally operates. 

A attacker node breaches the security strategy and endangers 

the availability and integrity of the network by actively 

inserting fake information, deleting and modifying data 

packets, and negatively impacting on network protocols [24]. 

The source determines whether an attack is considered internal 

or external. In a network, an attack can be either external, 

coming from a node outside the network, or internal, coming 

from nodes inside the network, which are allowed to illegally 

use its resources [25]. Malicious nodes can cause significant 

damage to system and network operations if not eliminated, 

hence it is critical to find them quickly [26].  

The proliferation of IoT devices has made it imperative for 

businesses to oversee the functioning, testing, debugging, and 

security of these devices in real-time. Nevertheless, there are 

three primary reasons why this work is challenging: First, the 

dispersed nature of the devices makes them hard to keep track 

of, and second, the diversity of the environment hinders 

people's ability to communicate clearly. As a last point, the job 

is difficult. Finally, and maybe most importantly, there is the 

issue of safeguarding systems and data against assaults, 

vulnerabilities, and other defects. They derive behavioral 

qualities that can be utilized to make decisions in domains 

1280



 

where privacy and security are still crucial by viewing 

machine learning via the classic Confidentiality, Integrity, 

Authentication (CIA) model. This research presents a brief 

comparative analysis on the proposed routing model, group 

key management model and malicious nodes detection model 

in which these models are compared with the traditional 

models. The comparative analysis showed that the proposed 

models are efficient and effective in providing QoS. 

The introduction section 1 discussed about the cryptography 

models for secure data transmission models in IoT. Section 2 

provides brief literature survey by analyzing numerous models 

using cryptography for data transmission to maintain security. 

Section 3 considers 3 traditional models and discussed their 

working model. Section 4 explains the proposed methodology 

considered using cryptography for secure data transmission. 

Section 5 provides the evaluation metrics and comparison of 

proposed model with traditional methods. Section 6 concludes 

the paper. 

 

 

2. LITERATURE SURVEY 

 

With cognitive radio (CR) capabilities, IoT devices can 

dynamically allocate spectrum and are finding widespread use 

in a variety of smart applications. Improving throughput in 

CR-enabled IoT communication is the primary goal in this 

study. In an IoT setting based on cognitive radio networks 

(CRNs), Malik et al. [1] suggested a routing method based on 

reinforcement learning (RL). To reduce EED and packet 

collisions, the network layer will be endowed with the 

decision-making power for channel selection. The author 

compared the network performance of our proposed RL-IoT 

routing mechanism to that of the recent AODV-IoT, ELD-

CRN, and SpEED-IoT routing approaches, and simulated the 

cognitive radio cognitive network (CRCN) communication 

environment. This allows us to perform a thorough 

performance evaluation of the proposed mechanism.  

While designing routing algorithms for IoT applications 

that employ multihop networking, conventional energy 

efficiency is only one of numerous distinct factors to be 

considered. Different security requirements, scalability, and 

heterogeneity are further unique factors. Zhang et al. [2] 

proposed a multilayer safe routing solution for IoT networks 

that is energy efficient. Combining clustering with a multihop 

routing system that is itself based on clusters helps alleviate 

the severe communication load associated with scaling in IoT 

networks, which is a natural method to save energy. When 

dealing with heterogeneous IoT networks that serve a varied 

range of IoT entities and services, it is essential to improve 

inter cluster routing and assign appropriate weights using 

genetic algorithms and a more realistic analytical hierarchy 

method. The trust factor on routing and clustering is estimated, 

and several forms of risk mitigation, including data fusion, 

communication trust, and data perception, are employed.  

To reduce data latency and bandwidth between the cloud 

server and the IoT edge devices, the concept of edge 

computing was proposed. One of the biggest obstacles to 

getting reliable results from data mining is inefficient routing, 

which can cause transmission failure or unnecessary data 

(re)transmission. With link correlation in mind, Zhou et al. [3] 

investigated ways to improve wireless IoT infrastructure 

energy efficiency by combining network coding with 

opportunistic routing. The current routing methods are based 

on the assumption of link independence, yet research has 

shown that packet receptions on wireless networks are 

coupled. This assumption leads to estimation errors, which 

affect the accuracy of the predicted number of transmissions 

for forwarders. As a result, the selection of the forwarder set 

and the performance of the protocol are affected. An 

intrasession network coding mechanism was proposed by the 

author, with link correlation mining serving as its basis. An 

algorithm for selecting a set of forwarders with the optimum 

number of transmissions is part of a new smart routing 

technique, the purpose of which is to accurately estimate the 

quantity of transmissions required by forwarders. 

The reliability of routing algorithms in wireless networks is 

assessed using the widely used Packet Delivery Ratio (PDR) 

statistic.  

To put it simply, PDR is offered with the optimistic premise 

that the topology has been perfectly set up and that the nodes 

have started sending packets. Nodes still need to join the 

network and keep connected in order to send packets, but this 

remains true. The general stability of the routing protocols is 

critically dependent on this in mobile IoT applications due to 

the frequent disconnections. Unfortunately, there is a lack of 

appropriate criteria that could evaluate the routing systems 

from this perspective. Because of this, Safaei et al. [4] present 

attachability as a new metric to evaluate routing systems' 

ability to let mobile or stationary nodes establish and maintain 

their network connections. The author calculated the recently 

proposed measure using Markov chain analysis and the sample 

frequency-based estimate method. The author conducted 

extensive testing on multiple versions of the IPv6 Routing 

Protocol for Low-power and lossy networks (RPL) to evaluate 

attachability in a simulator for mobile IoT infrastructure. 

According to the results, attachability is significantly affected 

by the metrics used in routing algorithms and the strategies 

used for path selection. 

One of the several possible applications of WSNs is in the 

development of more advanced IoT systems. Sensor nodes in 

WSNs do not allow battery replacement due to the 

inaccessibility or infrequency of the event being studied. Low-

capacity batteries power WSNs with limited resources. 

Operating WSNs for extended periods of time poses 

challenges for Internet of Things applications due to the 

energy consumption of individual nodes and the overall 

lifetime of the network. Improving the longevity of WSNs 

requires the use of energy-efficient techniques, which are both 

necessary and challenging. Most on-demand routing methods 

consider hop count and other parameters when determining the 

best path from one node to another. Energy usage rises, IoT 

system lifespans drop, and route failures multiply when hop 

count is the only metric considered. Patel et al. [5] suggested 

a cross-layer variant of AODV by replacing the hop count 

statistic with the connection quality and collision count 

metrics. The proposed method retrieves connection quality 

data from the Physical layer and collision information from the 

MAC layer, and then applies the ZScore algorithm to aid the 

Network layer in making intelligent routing decisions. In order 

to create a solid and long-term routing plan, the proposed route 

metric considers this data.  

While research on source-location-privacy (SLP) in WSNs 

has lately become popular, it is still in its infancy in the realm 

of underwater acoustic sensor networks (UASNs). Two crucial 

domains where SLP excels are underwater resource 

exploration and battle monitoring. A protocol for UASNs, 

LSLPR (layering and SLP-based routing), was proposed by 

Tian et al. [6]. To protect the SLP from passive attacks, the 
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LSLPR protocol makes use of multipath technology and proxy 

nodes; the precise location of the proxy nodes used by a source 

node is irrelevant when selecting a proxy node. In source-to-

proxy area routing, the next-hop node is determined by the 

priorities of candidate nodes, which consider the node's 

distance and layer. This further reduces the long detour 

problem. In addition, a multipath routing approach based on 

the nodes layer and forwarding probability is proposed to 

avoid the void area problem and protect the SLP. When 

evaluating energy economy, safety period, and delay, the 

LSLPR protocol stands head and shoulders over 2hop-AHH-

VBF, SSLP, and PP-SLPP, the Push-based probabilistic 

technique for source location privacy protection. 

The proliferation of IoT devices that process sensitive data 

has prompted the development of new access control 

mechanisms to prevent their misuse. Particularly concerning 

is the fact that valid subscribers' mobility in an IoT 

environment with a high signaling overhead poses a 

significant threat to the security of data delivery. Thus, in these 

ever-changing contexts, GKM is the fundamental technique 

for managing key distribution for safe data distribution and 

access control. The scalability problem that arises with the 

proliferation of IoT devices and subscribers is too big for the 

centralized models utilized by the majority of current GKM-

based IoT access control approaches. Also, no GKM plan that 

is currently in place respects members' independence. 

Inefficient subgroup communications occur when subscribers' 

behavior is highly dynamic and dependent symmetric group 

keys are the only means of communication. In response to 

these concerns, Dammak et al. [7] introduced DLGKM-AC, a 

novel architecture for Decentralized Lightweight Group Key 

Management in an Internet of Things context. In a hierarchical 

design with a single Key Distribution Center (KDC) and 

numerous Sub Key Distribution Centers (SKDCs), the 

proposed method enhances subscriber group management 

while decreasing rekeying overhead on the KDC. 

Furthermore, a master token—a unique method for managing 

the distribution of keys among a group of subscribers—is 

introduced. This protocol ensures that storage, processing, and 

communication are not overloaded during join and depart 

events. 

Due to their massive computing overhead, existing 

cryptographic methods are severely insufficient for IoT 

scenarios, especially for terminal-embedded devices with 

limited resources. Even more so, the computing power of the 

server side is far more than that of the terminal devices in the 

majority of IoT environments. An approach to guaranteeing 

scenario security, the asymmetric computing cryptosystem is 

presented here. Wang et al. [8] created ACKE, an asymmetric 

computing key exchange protocol, by combining the Diffie-

Hellman key exchange protocol with the Subset Product issue. 

One party's computational complexity can be significantly 

reduced while another party's computational complexity can 

be raised to an acceptable level; this is the fundamental idea 

underlying this build. A simulated IoT environment using the 

proposed protocol is constructed on a 2.2 GHz Intel i5-5200U 

laptop with 8G of RAM and a 1.2 GHz MTK6062 wristwatch 

with 512M of RAM.  

The IoT has made it possible for low-resource sensors and 

actuators to establish Internet connections. There are a lot of 

security risks and attacks, so it needs defenses like encryption, 

message authentication codes, authentication, etc. Data 

transfer security between networks of devices is essential for 

various Internet of Things use cases. It is also important to 

keep the group keys used for multicasting information inside 

the group up-to-date because devices in dynamic IoT settings 

may join or exit a group at any time. A novel method based on 

factorial trees and the Chinese Remainder Theorem was 

proposed by Sudheeradh et al. [9] for efficient Group Key 

Management. By efficiently updating the group keys when 

devices join or leave a group, the proposed approach ensures 

forward and backward secrecy and prevents unauthorized 

users from obtaining group information. After testing the 

proposed method with precise mathematical analysis and 

numerical computations, the author proved that it outperforms 

prior work with regard to the processing and communication 

costs experienced by IoT devices. 

It is extremely difficult to ensure the validity, integrity, and 

secrecy of data when it is collected and transmitted by IoT 

applications. Given the potential use of numerous limited 

devices in these applications, minimizing the communication 

and processing cost of security services is an important 

consideration. The IoT and group authentication/key 

management are the primary topics of this article. Asymmetric 

ciphers are used for calculations by the current group 

authentication and key management protocols in the literature, 

which can be expensive for the IoT. As a result, most apps use 

weak security measures that might be exploited by 

cybercriminals exploiting IoT devices. Yıldız et al. [10] 

presented PLGAKD, a system for lightweight group 

authentication and key distribution that uses physically 

unclonable functions (PUF), factorial trees, and the Chinese 

remainder theorem (CRT). To simplify group member 

authentication and key distribution in PLGAKD, PUF is used. 

Two encryptions, one decryption, four XORs, and three 

HMAC operations are executed by each member of the group. 

In contrast to the binary tree, the factorial tree and CRT allow 

us to decrease the amount of communication messages and 

keys held in nodes during the key renewal process.  

When it comes to protecting group communications, group 

key establishment methods are a crucial building piece. 

Protocols for group key agreement work best in distributed 

settings where participants in different locations can reach a 

consensus on the group key. The members of a group are 

entrusted with important information using methods like 

secret sharing schemes (SSS), polynomials, and bilinear 

pairing. Among these methods, secret sharing schemes 

outperform the competition. Such key agreement protocols are 

essential in contexts with limited resources, which has been 

highlighted by the recent explosion in IoT-related 

applications. To achieve sufficient security with smaller key 

sizes, elliptic curves are commonly used in resource-

constrained applications. For situations when resources are 

limited, Subrahmanyam et al. [11] proposed an elliptic curve 

secret sharing scheme (ECSSS). An alternative group key 

agreement protocol called Authenticated Distributed Group 

Key Agreement Protocol (ADGKAP) is suggested, which 

shares information about group keys via the Elliptic Curve 

Secret Sharing Scheme (ECSSS).  

To keep monitoring and prevent undesirable traffic flows in 

the IoT network, it is vital for IoT security to identify 

anomalies and malicious traffic. Many academics have 

proposed models using ML techniques to prevent harmful 

traffic flows in the IoT network. Unfortunately, a number of 

ML models frequently misclassify traffic flows, the majority 

of which are malicious, because of poor feature selection. 

Nevertheless, a great deal of research into the best practices 

for feature selection in order to accurately detect fraudulent 
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traffic in IoT networks is still required. Shafiq et al. [12] 

offered a new framework model to fix the issue. A new feature 

selection algorithm, CorrAUC, is built and designed using the 

wrapper technique to accurately filter features and select 

effective features for the selected ML algorithm by using the 

area under the curve (AUC) metric. The algorithm is based on 

a novel feature selection metric approach, CorrAUC. 

Afterwards, the author validated selected features for 

malicious traffic identification in the IoT network using the 

combined TOPSIS and Shannon entropy based on a bijective 

soft set. 

The IoT is rapidly gaining popularity and is poised to 

dramatically alter our daily lives. The IoT has many potential 

uses, such as in healthcare, smart homes, and smart industrial 

networks. The security of the Internet of Things devices is an 

ongoing concern due to the fact that these devices produce and 

process copious amounts of sensitive data. Many people's 

lives, and the entire planet, could be impacted by a security 

breach. In contrast, AI is being extensively investigated as a 

potential security solution for IoT devices, among its many 

other potential uses. One of the major concerns regarding the 

security of IoT devices is the possibility of an insider attack. 

While the majority of studies on Internet of Things security 

have focused on ways to stop hackers from getting into 

systems and data, nobody has yet tackled the problem of 

malicious insider attacks, which can be just as devastating and 

are often the result of internal exploitation in IoT networks. 

Consequently, Khan et al. [13] primary objective is to develop 

AI capable of detecting hostile insider attacks in an IoT setting. 

In resource-constrained IoT settings, this study introduced a 

lightweight method for identifying insider threats that may 

detect anomalies emanating from incoming data sensors.  

With its many uses and networked smart gadgets, the IoT 

has changed the way we live. There are a lot of ways in which 

these IoT gadgets simplify life by communicating with one 

another automatically. Security and privacy preservation in the 

face of malevolent or compromised nodes in the network are 

two major worries brought up by the autonomy of these 

devices. An alternative to more conventional methods, such as 

cryptography, that does not require as much computing power 

is trust management. A solution to these problems is the 

FedTrust technique, which uses federated learning to detect 

compromised and malicious nodes is proposed by Awan et al. 

[14]. FedTrust uses a dataset that is provided to train edge 

nodes and create a global model that can detect and predict 

when IoT nodes are acting abnormally. An innovative trust 

dataset with nineteen trust parameters derived from three main 

sources reputation, knowledge, and experience forms the basis 

of the suggested method. Using the idea of communities with 

dedicated servers, FedTrust partitions the dataset into smaller 

pieces for more efficient training, thus reducing the 

computational strain. 

IoT devices are infamously susceptible to compromise, 

even from very minor attacks. It is also not feasible to secure 

IoT installations with conventional endpoint and network 

security solutions due to resource limitations and the variety 

of IoT devices. Hafeez et al. [15] offered IoT-Keeper, a 

lightweight technology that encrypts IoT connectivity, to 

tackle this issue. IoT-Keeper analyzes traffic at edge gateways 

using the suggested anomaly detection method. The system 

analyzes network traffic and detects malicious network 

activity using a fuzzy interpolation approach and fuzzy C-

means clustering. In the case that IoT-Keeper identifies 

malicious activity, it will immediately block the device's 

network connection so that it cannot harm other devices or 

services. Using a large dataset gathered from a real-world test 

bed that includes common IoT devices, the author had 

assessed IoT-Keeper. 

 

 

3. COMPARATIVE ANALYSIS 

 

3.1 Secure Routing Protocol in the IoT (SRP-IOT) 

 

For better communication security in the IoT architecture, 

this traditional SRP-IOT model is considered for analysis for 

its working process description. With Software Defined 

Networks (SDN), SRP-IOT establishes a safe channel for data 

exchange between connected devices. Here, a collection of 

subnets constitutes the network architecture. Network 

topology communication will remain stable since members of 

each subnet will have very similar positions and movement 

patterns. Additionally, in this setup, a controller node is 

responsible for authenticating users and overseeing their 

communication within each subnet. Network traffic is also 

monitored by a learning model based on neural networks in 

addition to this communication structure. This learning model 

is then used by each controller node in its subnet to detect 

assaults and security concerns.  

The working process of SRP-IOT model is: 

•Network nodes exhibit non-homogeneous communication 

characteristics as a result of the many technologies used to 

manufacture radio equipment in wireless networks. Thus, the 

presumptive network is not homogeneous. 

•The 5G network technology is the basis for the imagined 

network structure, thus it possesses all the traits and 

specifications of this communication technology. 

•One way to determine how far apart two nodes are is to 

guess how strong of a radio signal each one received. So, even 

without GPS, the network nodes can still roughly gauge their 

distance from one another by measuring the strength of the 

signals received from other nodes. 

•The SDN's learning models enable every controller node to 

capture and analyze data traffic. The purpose of this Artificial 

Neural Network (ANN) learning model is to detect security 

threats and attacks in the subnet associated with the controller 

node. 

The following procedures are included in SRP-IOT to 

enhance communication security in the IoT architecture based 

on SDN. 

•Network clustering structure formation using software-

defined networking. 

•Network topology formation based on hierarchical tree. 

•Routing data using a pre-existing structure. 

A clustering method based on the movement pattern of 

active nodes divides the SDN domain into numerous sub 

domains in the first step of SRO-IOT. Each portion of the sub 

domain is equipped with a controller to exchange security 

rules with the other parts. As part of SRP-IOT, every controller 

will share the list of authorized users associated with its sub 

domain with the others. Thus, the user's credit is accomplished 

by sending messages between the controllers in the event that 

two users need to establish communication. Data routing will 

be completed once both parties have been authenticated by a 

controller. 

The Prims algorithm and minimal spanning tree are 

employed to manage the topology of the network. Here, the 

topology of the network is formed locally by each node by 
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building minimum-spanning trees. The next step in creating a 

data routing hierarchy is to level the nodes in the network and 

assign weights to the links between them. After that, the 

information is guided to its final destination by means of the 

hierarchical tree structure. According to the proposed 

architecture of this study, each subnet's controller node acts as 

an intermediary for all of the nodes' traffic. Consequently, in 

order to detect assaults, each controller node constantly 

analyses network traffic data using a learning model. This 

algorithm, which detects potential attacks in traffic using 

statistical data retrieved from each flow, is made of three 

learning models.  

 

3.2 Group Key Management (GKM) 

 

The WSN plays an essential role in the IoT. The processing 

power, memory, and battery life of sensors are often quite low. 

Consequently, multicast messages are more energy efficient 

than sending numerous copies of unicast messages to 

individual devices, since they are sent to a group of devices 

instead. One of the most important features for ensuring the 

confidentiality, authenticity, and integrity of messages is the 

creation of a secure group key [27]. Protecting a large number 

of devices is becoming more important as new IoT use cases 

depend on multicast group communication [28]. To ensure the 

viability of IoT services in limited contexts, specialized 

multicast security must be provided. Improving the efficacy of 

group communication through multicast is possible. This 

greatly simplifies the process of establishing and 

administering numerous devices simultaneously.  

When a single source talks with multiple recipients 

simultaneously through a multicast session, numerous 

potential issues could emerge, including group privacy and 

key administration [29]. Protecting the session from harm is 

the group controller is in charge of authentication, 

authorization, and access control. The role of the key server is 

to oversee the essential key material. Models for IP multicast 

transmission have good scalability. The lack of protections to 

control access or ensure the confidentiality of group 

discussions is a major drawback of the strategy. With the 

ability to send data requests to any recipient without involving 

the sender, the sender has full control over the access controls 

for membership management. Using IP multicast applications 

in IoT use cases makes access control more challenging due to 

the broadcasting nature of the network.  

Access management is a top priority for GKM when it 

comes to security. The encryption and control of group 

communication is accomplished through the use of a shared 

secret key, also called a group key. For privacy reasons, group 

key security is critical [30]. The management of important 

information changes while speaking to a group as opposed to 

an individual. It is possible to generate encryption keys during 

discussions using protocols such as the Diffie-Hellman key 

exchange protocol, or for one party to generate and provide the 

key to the other. When a communication fails on either end, 

the connection is immediately severed and the encryption key 

is erased, so there's no need to change the key. Making 

ensuring all allowed groups have the most recent keys is the 

primary worry, though, due to the large number of receivers in 

GKM. Even after a member leaves, the group's contact 

continues unabated, and no one can make them lose the key.  

An upgrade is necessary to ensure that former members 

cannot access any future communication keys. A new group 

key needs to be generated whenever a user is added to the 

group. A potential new member can listen in on the group's 

encrypted conversations before they join. The user must 

temporarily join the group in order to receive the group key in 

order to decode the stored data. It is also recommended to 

replace data encryption keys on a regular basis. 

Cryptographers do not like it when data is encrypted with the 

same key for a long amount of data since it leaves the data 

open to cryptanalysis assaults. Generating, distributing, and 

updating group keys are now all part of GKM. The 

achievement of GKM is hindered by the resource limitation 

aspect of the IoT. 

 

3.3 Detecting malicious nodes in IoT networks using 

machine learning and artificial neural networks (DMN-

ML-ANN) 

 

A technique for detecting malicious nodes using ANNs that 

could be detrimental to IoT devices is considered for analysis. 

The first step in the model is to create a representation of the 

source mote and destination mote of the network. The network 

is inundated with RREQ notifications when the source is 

moved. The starting mote determines the Routing Time (RRT) 

of Route Request (RREQ) and Route Reply (RREP) messages. 

When the RREQ flood starts, a timer is started at the source 

and stopped when all nodes have received the RREP; this 

process calculates the RRT. Each node's RREQ and RREP 

round journey times are stored in the source route. In order to 

find the best route to go, the source focuses on balancing two 

things. Finding the shortest and most sequence-number-

maximizing route between two points is ideal. Additionally, 

the source mole determines the target-to-source distance by 

factoring in the overall number of hops.  

This procedure is carried out in order to detect any 

malicious entities within the network. Following this, the 

chosen path between the two sites will be broadcasted by the 

source mote. When considering the total amount of time 

required for a data packet to go from its source to its 

destination, it is important to account for the amount of time it 

takes for the packet to arrive at each intermediate node. We 

compare the Round Trip Time (RTT) of the RREP messages 

with the time spent traveling between the nodes. Particularly 

among the nodes that transfer data packets with a high degree 

of timing sensitivity, a few of them have publicly declared 

themselves to be hostile. The network is protected against the 

hostile swarm via a multipath routing method. Consequently, 

the layout of the network will not take the wicked fly's flight 

path into account. 

When developing an ML system, selecting the right features 

is critical. Initially, a baseline profile is created from raw data 

packets as they arrive, from which a set of 21 features is 

extracted—this forms the basis of the malicious node detection 

method. From these, the six most crucial characteristics are 

identified. The raw data packets contain an excess of 

information, including source and destination IP addresses, 

ports, and protocols, which can introduce noise or overfitting 

if used directly in the learning process. In the neural network, 

a dot product using predetermined weights is applied to the test 

dataset, although this method can introduce bias. Each layer, 

including hidden and output layers, employs an activation 

function. The sigmoid function, defined as (1/(1 + exp (-x))), 

activates all relationship-associated weights. The effectiveness 

of node detection depends on the activation function. The 

training effectiveness of the neural network is assessed using 

its fourth hidden layer. 
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4. PROPOSED MODELS 

 

The number of people utilizing the internet has surpassed 3 

billion in the past few years, as per a UN assessment. 

Depicting the use of wired or wireless networking 

technologies to establish a channel of communication among 

technologies and networks accessible over the Internet, the 

Auto-ID Center, a research organization, first used the term 

IoT ten years ago. There has been a flurry of proposals for 

routing protocols in the literature, but developing one that is 

both safe and energy efficient is an ongoing effort. By taking 

this tack, several routing protocols developed specifically for 

low-power wireless devices have almost reached their 

maximum potential [31]. The proliferation of network-enabled 

gadgets used in people's daily lives, along with the associated 

limitations on their useful lifespan, has led to the rise of the 

IoT. For nodes to communicate with one another, routing 

knowledge is crucial. By collecting and distributing local 

information, a node should be able to learn, conFigure, and 

manage itself.  

Collaborative effort of dispersed mobile nodes is 

proportional to trust level. A degree of certainty derived from 

the actions of nodes is what the term trust alludes to. Based on 

node behavior, the trust level of the nodes is determined to 

guarantee secure and proper data transmission in the IoT 

network. Trust computation in IoT networks is challenging 

because to the unanticipated changes in network topology, the 

intricate nature of IoT networks, and the lack of established 

past trust relationships between nodes [32]. The suggested 

model has to specify the trust identity factors for all IoT nodes 

that are ready to transmit data, and each node is assigned a 

Digital Unique Identifier (DUI). Node authentication is carried 

out to authenticate legitimate and hostile nodes in the network 

using the DUI, in the suggested Swift Routing concept with 

Node Trust Identity Factor (SRM-NTIF) concept. When tested 

against more conventional approaches, the suggested model 

outperforms them in terms of both security and trust. The 

Figure 3 shows the architecture of the SRM-NTIF model. 

 

 
 

Figure 3. SRM-NTIF architecture 

 

There are growing concerns about privacy and security in 

the IoT research field, despite its rapid expansion. IoT devices 

cannot use traditional privacy and security solutions because 

of their decentralized design and limited resources. The IoT 

and cryptography, when combined, can make data 

transmission safe. Every IoT device must undergo 

authentication before it can be integrated into the network. 

Encrypted group communication can take place when all 

devices in the multicast group authenticate with each other. 

Patients, providers, and payers all need to be able to share and 

receive information more easily, and there has to be stronger 

regulation, more consolidation of health practitioners, better 

data security, and more use of digital patient information.  

Faster access to electronic health records is made possible 

with the help of a multi-key server strategy that distributes the 

workload evenly among all of the servers, and a new method 

for managing the keys that improves the security of healthcare 

information is introduced. A Priority-based Group Key 

Management with Cryptography Linked Approach (PbGKM-

CLA) is suggested to establish a setting for safe data 

transmission. When it comes to cryptography, the suggested 

model takes care of key production and distribution. When 

compared with more conventional models, the results show 

that the new model works much better. The Figure 4 shows the 

PbGKM-CLA Architecture. 

 

 
 

Figure 4. PbGKM-CLA architecture 

 

There are serious security risks due to the increased 

connectivity brought about by Internet of Things applications. 

The exponential growth of or IoT, equipment is inversely 

proportional to the diminishing probability of catastrophic 

security breaches, especially when malicious signals are 

present in the network. Every malicious signal is unique, but 

most of them will change, resend, or destroy data in some 

manner. Reviewing the received and broadcast messages of 

each signal is the main focus of an effective method for 

detecting hazardous signals during these attacks. Obtaining 

messages for each signal in the network would be time-

consuming and a waste of the IoT's limited resources. 

Efficiency, accuracy, and real-time functionality are the three 

most important characteristics of a system for identifying 

dangerous signals. 

The standard detection technique is inadequate for 

establishing an acceptable trust assessment model or designing 

a trust-based verification model to detect malicious signals 

because it requires artificial modification in different network 

contexts. It is possible for malevolent signals in this system to 

start any number of attacks. For example, a malicious signal 

could launch a DoS attack by overwhelming the target signal 

with packets. A machine learning-based neighbor feedback 

system has been launched by researchers to detect these 

harmful signals. The suggested technique can aid in the 

detection of an attacker signal by continuously tracking the 

signal's trust factor and activating a model when it above a 

specific level. To accurately detect harmful signals in IoT 

networks, this research introduces a paradigm called Secured 

Trust Level Verification with Neighbor Feedback based 
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Malicious Signal Detection (STVNF-MND). The suggested 

approach outperforms the conventional model in identifying 

harmful signals, which in turn increases the network's data 

transmission rate. The STVNF-MND Architecture is shown in 

Figure 5. 
 

 
 

Figure 5. STVNF-MND architecture 

 

 

5. RESULTS 

 

The discovery of routes between nodes is made possible by 

the routing protocol, which in turn allows for communication 

inside the IoT network. In an IoT network, the routing protocol 

finds the most effective way to send messages at the correct 

times to different nodes. Overhead usage and bandwidth are 

kept to a minimum in its design. Through conversation with 

nearby nodes, the nodes are able to plot a course to their final 

destination. Weak environmental memory, little 

computational power, and small communication nodes make 

up WSN, which detects events and reports them back to a 

central monitoring device. The fact that the nodes are 

connected wirelessly opens the door to many types of attacks. 

Building a foundation that takes into account the security, 

robustness, authenticity, and authorization of wireless sensor 

networks is, consequently, crucial.  

The IoT is a system of networked, addressable items that 

may share data and collaborate on larger projects. New 

developments in wireless communication for distributed 

systems have greatly altered the future of internet access, 

which was previously restricted to small devices but is now 

expanding to high-performance smart ones. Things that are 

fully functional as part of the IoT concept, middleware uses 

the information shared by sensors, actuators, and aggregators 

to guide the behavior of automated systems. The inherent 

complexity, risk, and unpredictability of the Internet of Things 

makes the relationships that emerge through communications 

between things, between humans, and between robots and 

humans all the more intricate than they initially appear. Due to 

the increased visibility of the entire IoT network 

conFigureuration in the public domain and the fact that all 

interactions are accessible to anyone—including intruders—it 

is challenging to identify vulnerabilities using conventional 

methods such as encrypted communication models, operating 

system security models, and identity models. The most recent, 

state-of-the-art models necessitate more network bandwidth, 

battery life, and processing power from IoT devices. 

In the IoT, a dynamic distributed network offers services 

and builds communication protocols among the pervasive 

smart devices, and various automated algorithms use this data 

to make judgments. It will be difficult to get from the world of 

pervasive computing to the benefit of human existence unless 

specific anticipated problems in this IoT area are resolved. The 

dispersed and randomly generated nature of the data processed 

by IoT network components heightens the concerns of those 

involved in infrastructure security, privacy, trust, data 

integrity, secrecy, authentication, access control, and device 

safety. Every one of these contextual factors is crucial to the 

IoT's success. By incorporating the cryptography model into 

the IoT healthcare network, the security standards are raised. 

The suggested SRM-NTIF is compared with the traditional 

RL-IoT and energy-efficient multilevel SRP-IOT. The 

PbGKM-CLA is compared with the traditional decentralized 

lightweight GKM for dynamic access control in IoT 

environments and ACKE protocol for IoT environments. The 

STVNF-MND is compared with the traditional Malicious Bot-

IoT Traffic Detection Method in IoT Network Using Machine-

Learning Techniques (CorrAUC) and DMN-ML-ANN. 

The proposed model calculates the trust factor of nodes that 

are used to identify the node properties. The nodes 

performance measures like packet delivery rate, energy 

consumption, computational capabilities are considered in 

trust factor calculation. The Trust factor calculation time levels 

are indicated in Table 1 and Figure 6. 

 

Table 1. Trust factor calculation time levels 

 

Nodes in the 

Network 

Models Considered 

SRM-NTIF 

Model 

RL-IoT 

Model 

SRP-

IOTModel 

50 15.1 22.1 26.1 

100 15.3 22.3 26.3 

150 15.5 22.5 26.5 

200 15.6 22.6 26.6 

250 15.8 22.8 26.8 

300 16 23 27 

 

 
 

Figure 6. Trust factor calculation time levels 

 

The proposed model performs node validation to check 

whether a node is a trusted node or a malicious node. The 

1286



 

proposed model node validation verifies the node properties 

by considering the nodes secret key. The node validation time 

levels are shown in Table 2 and Figure 7. 

 

Table 2. Node validation time levels 

 
Nodes in the 

Network 

Models Considered 

SRM-NTIF 

Model 

RL-IoT 

Model 

SRP-

IOTModel 

50 12.2 16.2 19.5 

100 12.4 16.4 19.7 

150 12.6 16.6 19.9 

200 12.7 16.8 20.1 

250 12.8 16.9 20.3 

300 13 17 20.5 

 

 
 

Figure 7. Node validation time levels 

 

Table 3. Packet delivery ratio 

 

Nodes in the 

Network 

Models Considered 

SRM-NTIF 

Model 

RL-IoT 

Model 

SRP-

IOTModel 

50 97.9 94.3 93.7 

100 98.1 94.5 93.9 

150 98.3 94.7 94.1 

200 98.5 94.9 94.3 

250 98.6 95.0 94.5 

300 98.8 95.2 94.7 

 

 
 

Figure 8. Packet delivery ratio 

The total number of packets transmitted from the source 

node to the destination node in the network divided by the total 

number of packets delivered is known as the Packet Delivery 

Ratio (PDR). The maximum number of data packets should be 

delivered to the destination. The reliability of a network can 

be measured by its PDR, which is the percentage of packets 

that are successfully delivered out of all the packets that are 

sent. Ambient noise, link quality, and energy expenditure are 

a few of the elements that can impact PDR. The Packet 

Delivery Ratio are shown in Table 3 and Figure 8. 

The proposed model selects the trusted nodes in the routing 

process. The nodes that are authenticated and are in trusted 

node category only is considered and updated in the routing 

table. The trusted route is used to securely transmit the data 

from sender to receiver. The routing time levels are 

represented in Table 4 and Figure 9. 
 

Table 4. Routing time levels 
 

Nodes in the 

Network 

Models Considered 

SRM-NTIF 

Model 

RL-IoT 

Model 

SRP-

IOTModel 

50 15.0 21.1 27.0 

100 15.2 21.3 27.1 

150 15.4 21.5 27.3 

200 15.7 21.7 27.5 

250 15.8 21.9 27.8 

300 16 22 28 

 

 
 

Figure 9. Routing time levels 

 

The proposed model generates the key pairs that are used to 

identify the normal and malicious nodes in the network. The 

trusted nodes will use a key in the key pair for node 

authentication and for initiating data transmission. The key 

generation time levels are indicated in Table 5 and Figure 10. 

 

Table 5. Key generation time levels 

 

Nodes in the 

Network 

Models Considered 

PbGKM-CLA 

Model 

GKM 

Model 

ACKE 

Model 

50 11.1 16.1 18.0 

100 11.3 16.3 18.2 

150 11.5 16.5 18.4 

200 11.7 16.7 18.6 

250 11.9 16.9 18.9 

300 12 17 19 
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Figure 10. Key generation time levels 

 

Each node is allocated with a priority based on trust factor 

and the nodes that have highest priority are considered for data 

transmission. The nodes that are trusted and having high 

performance metrics are considered as high priority nodes. 

The priority allocation accuracy levels of the proposed and 

existing models are shown in Table 6 and Figure 11. 

 

Table 6. Priority allocation accuracy levels 

 

Nodes in the 

Network 

Models Considered 

PbGKM-CLA 

Model 

GKM 

Model 

ACKE 

Model 

50 97.5 92.8 94.2 

100 97.7 92.9 94.4 

150 97.9 93.1 94.6 

200 98.1 93.3 94.8 

250 98.3 93.5 94.9 

300 98.5 93.6 95 

 

 
 

Figure 11. Priority allocation accuracy levels 

 

The proposed model makes use of key pairs to secure the 

network by authenticating nodes in the network. The proposed 

model considers only trusted nodes in the network. The nodes 

are authenticated during transmission process so that normal 

nodes and malicious nodes can be easily identified. The data 

security levels are indicated in Table 7 and Figure 12. 

Table 7. Data security levels 

 

Nodes in the 

Network 

Models Considered 

PbGKM-CLA 

Model 

GKM 

Model 

ACKE 

Model 

50 97.7 93.1 92.5 

100 97.9 93.3 92.7 

150 98.1 93.5 92.9 

200 98.3 93.7 93.1 

250 98.5 93.9 93.3 

300 98.7 94 93.5 

 

 
 

Figure 12. Data security levels 

 

Table 8. Neighbor signal feedback consideration time levels 

 

Nodes in the 

Network 

Models Considered 

STVNF-

MND Model 

CorrAUC 

Model 

DMN-ML-

ANN Model 

50 13.1 20.1 26.0 

100 13.3 20.3 26.2 

150 13.5 20.5 26.4 

200 13.7 20.7 26.6 

250 13.9 20.9 26.8 

300 14 21 27 

 

 
 

Figure 13. Neighbor signal feedback consideration time 

levels 

 

The proposed model considers the trust factor of each node 

to involve them in communication process. The neighbor 
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feedback is also considered so that node behaviour and 

performance will be monitored and identified. The neighbor 

signal feedback consideration time levels of the proposed and 

existing models are shown in Table 8 and Figure 13. 

 

Table 9. Signal behaviour analysis time levels 

 

Nodes in the 

Network 

Models Considered 

STVNF-

MND Model 

CorrAUC 

Model 

DMN-ML-

ANN Model 

50 12.6 17.6 20.2 

100 12.8 17.7 20.4 

150 12.9 17.9 20.6 

200 13.0 18.0 20.8 

250 13.3 18.2 20.9 

300 13.5 18.4 21 

 

 
 

Figure 14. Signal behaviour analysis time levels 
 

Table 10. Malicious signal detection accuracy levels 
 

Nodes in the 

Network 

Models Considered 

STVNF-

MND Model 

CorrAUC 

Model 

DMN-ML-

ANN Model 

50 97.7 93.6 94.3 

100 97.9 93.7 94.6 

150 98.1 93.9 94.8 

200 98.3 94.0 94.9 

250 98.4 94.2 95.0 

300 98.6 94.4 95.2 

 

 
 

Figure 15. Malicious signal detection accuracy levels 

Each signal behaviour is analyzed by monitoring the 

similarities and changes in the signal patterns. The signal 

behaviour changes in detection of malicious actions in the 

network. The frequent signal behaviour analysis is used to 

enhance the network performance by immediately detecting 

the malicious signals. The signal behaviour analysis time 

levels are depicted in Table 9 and Figure 14. 

Malicious signals in the network will degrade the 

performance of the network and also increase the data loss 

rate. The proposed model accurately identifies the malicious 

signals based on the node performance monitoring and signal 

pattern analysis. The malicious signal detection accuracy 

levels are represented in Table 10 and Figure 15. 

 

 

6. CONCLUSION 

 

The establishment of a trusted route among the devices 

becomes more complex due to the association of trust between 

non-derived nodes, the immoral changes in the network 

topology, and the dynamic presence of IoT networks, all of 

which make trust calculation a challenging issue in any 

network. The network can be more exact because all the 

connecting IoT nodes have their trust factors determined. A 

node's trust value needs to be higher than the threshold range 

before it can be considered to be communicating data. In 

addition, to fix a problem with the integrated trust calculation's 

arbitrary weight allocation, a dynamic weight factor is also 

used. According to the proposed dynamic model of trust, node 

behavior can be used to accurately and objectively assess trust. 

Handling erroneous path selection and content alterations are 

two areas that could use improvement in order to guarantee the 

safe delivery of network packets. The healthcare industry's 

Internet of Things applications place a premium on secure 

group communication. In order for any entity to communicate 

securely over a network, mutual authentication is a must. Our 

solution for healthcare IoT network group key management is 

based on mutual authentication. Individual patient-moving 

sensor nodes are able to correctly transmit the group key to the 

gateways. Since the keys are generated in response to requests 

from healthcare resource servers and healthcare user groups, 

less space is required by both the key server and the group 

member. The act of managing cryptographic keys for different 

groups, including assigning and revoking them, is called 

Group Key Management. One can construct key pairs that can 

be utilized for both encoding and decoding. We can lessen the 

possibility of harmful behaviors occurring within the IoT 

network by restricting key distribution to authorized users. 

One effective strategy for identifying harmful signals in these 

types of assaults is to pay close attention to the messages that 

each signal sends and receives. It takes a lot of time to get 

information about each signal in the network, and gathering all 

of the messages from the network would be too much for the 

limited capabilities of the IoT. To find a secure way for data 

to travel between IoT devices, this research looks at the Swift 

Routing Model, which uses trustworthy nodes as an identifier. 

For data security, this study takes into account a group key 

management model, and for malicious node identification, it 

proposes a technique based on Secured Trust Level 

Verification with Neighbor Feedback. When compared to the 

current models, the performance levels of the suggested model 

are superior. Further enhancements to the trust factor 

computation and the maintenance of a central authority node 

for network monitoring are possible in the future, both of 
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which will increase the network's security. 
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