

Testing Inclusive, Exclusive, and Parallel Interactions in Multi-Agents System: A New

Model-Based Approach

Nour El Houda Dehimi1* , Zakaria Tolba1 , Nassima Djabelkhir2

1 LIAOA Laboratory, Department of Mathematics and Computer Science, University of Oum El Bouaghi,

Oum El Bouaghi 04000, Algeria
2 Department of Mathematics and Computer Science, University of Oum El Bouaghi, Oum El Bouaghi 04000, Algeria

Corresponding Author Email: dehimi.nourelhouda@univ-oeb.dz

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.140411

ABSTRACT

Received: 16 August 2023

Revised: 2 June 2024

Accepted: 18 June 2024

Available online: 30 August 2024

 In this paper, we propose a novel model-based testing approach designed to consider the

nuances of interactions among agents, allowing for inclusive, exclusive, or parallel

execution. The aim is to prevent the activation of multiple behavioural scenarios during

the testing of a specific scenario, ensuring that each detected error is uniquely associated

with the tested scenario and not influenced by parallel scenarios. This approach involves

generating a set of individual test cases that individually cover the interactions of the

scenario under test. To achieve this purpose, the approach uses the AUML sequence

diagram as a model and the constraints, expressed in object constraint language (OCL),

necessary for the execution of each interaction to introduce plugs. These plugs must be

able to eliminate from the interval of the test case inputs, compatible with the execution

constraints of the interactions of the scenario under test, the part of the inputs compatible

with the execution constraints of the other interactions that can be executed in parallel

inclusively or exclusively with the interactions of the same scenario. The proposed

approach is supported by a formal framework and applied to a concrete case study to

illustrate its usefulness.

Keywords:

multi-agent systems (MAS), model-based

testing (MBT), test case, AUML sequence

diagram, object constraint language (OCL)

1. INTRODUCTION

A multi-agent system (MAS) is a computational system

composed of multiple interacting autonomous entities called

agents. Each agent operates independently, making decisions

and taking actions to achieve its goals, often in a dynamic and

uncertain environment. The distinctive functional and

behavioural characteristics of MAS, such as autonomy and

proactivity, and the concept of organisation, which are still

relatively new, have made it possible to model and develop

many complex systems, where the interactions among agents

give rise to emergent behaviors that may not be apparent from

the individual behaviors of the agents [1]. These new features

pave the way for research in a variety of domains at various

design stages, particularly software testing. Testing multi-

agent systems presents a complex challenge, primarily due to

several factors. These include the simultaneous and

independent operation of multiple agents, the manipulation of

substantial amounts of data by each agent, each with its own

set of goals, the unpredictable evolution of the system's

behaviour, the non-reproducible effect where identical input

data may not guarantee identical states in different executions,

the autonomy of agents, and the escalating complexity

inherent in the distributed nature of applications comprising

multiple components. Moreover, interactions between agents

can occur inclusively, exclusively, or in parallel, leading to the

simultaneous execution of various behavioural scenarios. This

complicates the testing phase, making it difficult to generate

test cases that exclusively cover the interactions of the targeted

scenario. Consequently, ensuring that each identified error in

a specific scenario is not linked to another scenario running

concurrently becomes a formidable task. In the existing

literature, there are relatively few studies on MAS testing.

Notably, the previous studies [2-6] focus on the unit testing

level; the researches [7-13] address the agent testing level; the

researches [14-17] explore multiple testing levels; and the

researches [18-22] concern the system testing level. However,

these studies have not adequately addressed the unique aspects

of interactions between agents, which can occur inclusively,

exclusively, or concurrently.

Testing scenarios individually requires the generation of a

set of test cases, composed of test case inputs and test case

outputs, where the inputs must be compatible only with the

execution constraints of the interactions of the scenario under

test. These inputs must not be compatible with the execution

constraints of the other interactions that can be executed in

parallel inclusively or exclusively, with the interactions of this

scenario. To do this, it suffices to introduce, for each

interaction involved in a given scenario under test, plugs able

to eliminate, from the interval of inputs compatible with the

execution constraint of the interactions of the scenario under

test, the part of the inputs compatible with the execution

constraints of the other interactions able to be executed in

parallel inclusively or exclusively with the interactions of this

International Journal of Safety and Security Engineering
Vol. 14, No. 4, August, 2024, pp. 1125-1138

Journal homepage: http://iieta.org/journals/ijsse

1125

mailto:dehimi.nourelhouda@univ-oeb.dz
https://orcid.org/0000-0001-9402-2304
https://orcid.org/0000-0003-4839-8663
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.140411&domain=pdf

scenario. This represents the central idea of the proposed

approach.

We present in this paper a novel MBT approach designed

for testing interactions among agents in a multi-agent system

[23, 24]. The aim is to guarantee that, during the testing of a

specific scenario, no multiple behavioural scenarios are

triggered, and any identified errors are not interconnected with

concurrently running scenarios. For this purpose, we use: (i)

the AUML sequence diagram as a model to systematically

generate test cases, thus ensuring complete coverage of the

system's various interactions and scenarios; (ii) the constraints,

expressed in OCL, necessary for the execution of each

interaction in order to introduce plugs, thus generating test

cases capable of avoiding the problem of several behaviour

scenarios being triggered simultaneously during testing. This

allows the approach to take into account the particularities of

interactions between agents, which can be conducted

exclusively, inclusively or in parallel. Furthermore, it also

improves test coverage, facilitates early detection of errors and

streamlines test process automation.

The rest of this paper is divided into the following sections.

A brief synopsis of major-related work is presented in Section

2. The basic concept of MBT is presented in Section 3. In

Section 4, the proposed approach is explained. A specific case

study is used in Section 5 to demonstrate the suggested

strategy. In Section 6, several conclusions and additional

ramifications are provided.

2. RELATED WORK

In the literature, there have been relatively few approaches

proposed for testing Multi-Agent Systems in recent years. The

following section outlines some of the selected approaches:

Núñez et al. [3] presented a formal framework for

delineating the behaviour of autonomous e-commerce agents.

The anticipated behaviours of the agents undergoing testing

are expressed through a novel formalism known as the utility

state machine, which embeds users' preferences within its

states. The paper introduces two testing methodologies for

assessing whether an implementation of a specified agent

behaves as expected, i.e., conformance testing—one active

and the other passive. In the active testing approach, a

dedicated test agent is employed for each agent under scrutiny.

This test agent, acting as a special agent, utilizes the formal

specification of the agent to guide it toward a specific state.

The operational trace of the agent is then compared to the

specification to identify any faults. The authors also advocate

passive testing, where the agents under examination are solely

observed without simulation, as is done in active testing. Any

invalid traces are subsequently pinpointed through the formal

specifications of the agents.

Thangarajah et al. [6] introduced a technique to gauge the

degree of completion of goals within a BDI (belief, desire, and

intention) agent system. The evaluation of completeness

considers the resources utilized to attain a goal and assesses

the impact of goals in relation to the achieved desired results.

Goals completion is measured based on efforts expended,

successes achieved, the agent's inactivity, and the time needed

for the action. The authors embraced the concept of a goal-

plan tree, where goals are annotated with relevant plans to

create a tree structure.

In study of Nguyen et al. [10], the authors introduced and

evaluated a technique for examining autonomous agents which

generates demanding test scenarios through evolutionary

optimization. This paper outlined a systematic procedure for

evaluating the quality of autonomous agents. Initially,

stakeholder requirements are identified as quality metrics, and

their associated thresholds are subsequently utilized as testing

criteria. Fulfilling these requirements is crucial for ensuring

the reliability of autonomous agents. The evolutionary test

generation method employs fitness functions aligned with

testing objectives to automatically generate test cases.

Abushark et al. [11] formulated an approach to detect design

flaws in agent designs by scrutinizing the plan structure

against specified requirements. Utilizing Prometheus design

files, including the goal overview and scenario diagram, the

authors transformed these design models into Petri nets. They

employed agent role grouping and agent design to generate a

plan graph, from which plan traces were extracted and

analyzed using Petri nets. Furthermore, a comparative report

was generated, and the validation process yielded 21 plan

graphs.

In study of Nguyen et al. [14], Goal-Oriented Software

Testing (GOST), a thorough testing technique, was suggested.

In order to generate test suites at all testing levels, from unit to

acceptance, goal-oriented analysis and design was used.

GOST offers a model of the testing process that makes the

relationships between goals and test cases apparent, and

outlines a systematic methodology for generating test cases

from goal analysis. By doing so, errors may be found early on

and incorrect requirements may not be implemented.

Additionally, GOST includes a tool that facilitates the creation,

design, and execution of test cases.

Barnier et al. [15] compared multi-agent system testing and

software testing in an embedded context. The AEIO aspects

for multi-agent systems were used to analyse key multi-agent

system testing approaches in this work. In order to test MAS

on embedded systems, a specific methodology was to be

provided. Agent test, collective resource test, and acceptance

test are the three fundamental levels on which the suggested

methodology was developed.

Nguyen et al. [13] presented a method for testing

autonomous agents employing evolutionary optimization to

create challenging test cases. The authors introduced a

systematic approach to assess the effectiveness of autonomous

agents. Initially, stakeholder requirements are translated into

quality measures, and associated thresholds serve as testing

criteria. The reliability of autonomous agents is contingent

upon meeting these criteria. Corresponding fitness functions

outlining testing objectives are defined to guide the

evolutionary test generation technique in the automatic

creation of test cases.

In studies of El Houda Dehimi [18] and Dehimi et al. [19],

we propose a new model-based testing method for holonic

agents. The method makes use of genetic algorithms and

considers an agent's evolution (successive versions). The

strategy is divided into two key iterative phases. A new version

of an agent that is being tested must be found during the first

phase. The testing of each recently discovered version is

covered in the second step. To create a behavioural model that

is based on the creation of test cases, the new version of the

agent is examined. The process of creating test cases

concentrates on the new (and/or modified) facets of the agent

behaviour. In this approach, the technique provides an

incremental update of the test cases, which is a critical issue.

Gonçalves et al. [20] provided a thorough technique using

the Moise+ organisational model for analysing and rating the

1126

social level of the MAS. This framework uses a Moise+

requirements set as an information artefact mapped in the

CPN4M coloured Petri net model to generate test cases. The

test adequacy criteria used by CPN4M are all-paths and

statetransition path. The shift from Moise+ to CPN has been

documented in this work, along with the processes for creating

test cases and running several tests in a case study. The

findings show that this methodology can improve the degree

of social level adjustment in a Moise+ model-specified multi-

agent system, highlighting the system context that may cause

the MAS to fail.

In study of Dehimi et al. [21], we propose a new method of

producing test cases that can account for various behavioural

situations in a multi-agent system. The goal is to locate the

scenario that generated the detected error among the parallel

scenarios in the event that an error is identified. In order to

accomplish this, the method first uses mutation analysis and

parallel genetic algorithms to pinpoint the instances of the

agents performing the interactions shown in the sequence

diagram of the test scenario, and only those instances will be

used as inputs in the test case. The second part of the technique

involves identifying the expected outputs of the test case based

on its inputs, using the activities shown in the activity diagram.

In study of El Houda et al. [22], we propose a novel

approach for generating test cases that consider emerging

interactions stemming from the unpredictable behaviour of

MAS undergoing testing. This method involves dynamically

applying a model-based test to each new iteration of the

system in question. It achieves this by: (i) utilizing the AUML

sequence diagram of each updated version of the system to

create test cases that encompass the new interactions

introduced; (ii) incorporating constraints articulated in OCL,

essential for executing each interaction to accommodate the

intricacies of inclusive, exclusive, or parallel interactions

between agents; and (iii) employing genetic algorithms to

adhere to the rules governing each interaction.

These works greatly advanced the field by introducing

novel MAS test methods, but they did not sufficiently address

the tests of interactions between agents that can be conducted

inclusively, exclusively, or in parallel. As a result, these

approaches can detect errors, but they cannot accurately

determine the origin of these errors, which complicates the

error correction phase. In this paper, we introduce a novel test

case generation method based on the AUML sequence

diagram that can account for the particularities of interactions

between agents, which can be carried out inclusively,

exclusively, or concurrently. The main objective is to ensure

that no multiple behaviour scenarios are activated when testing

a particular scenario, and that any errors discovered during

testing a particular scenario are unrelated to any other

scenarios that may be running concurrently.

3. BASIC CONCEPT OF MBT

Model-Based Testing is an advanced software testing

methodology based on the use of formal models to represent

the expected behaviour of a system. The main objective of

MBT is to automatically generate test cases from these models,

thereby ensuring exhaustive and systematic coverage of the

functionalities of the system under test. Indeed, by using

specialised tools, testers can generate test cases automatically,

which considerably reduces manual effort and reduces the risk

of human error. This automation also makes it possible to

generate a large number of test cases, covering a variety of

scenarios, including extreme cases and error situations, which

could be overlooked when creating tests manually. In addition,

as the models are based on formal system specifications, the

tests generated are perfectly consistent with the expectations

defined, ensuring rigorous validation of the requirements.

MBT is also highly beneficial in terms of maintenance.

Software systems often evolve, with frequent updates and

changes to functionality. With traditional testing methods, this

means manually rewriting the test cases for each change,

which can be tedious and error-prone. With MBT, on the other

hand, it is simply a question of updating the model to reflect

the new specifications. Test cases can then be regenerated

automatically from the updated model, ensuring that tests

remain aligned with the new system requirements without the

need for exhaustive rewriting of test scripts. MBT involves

several steps to ensure rigorous and systematic validation of

software systems. The first step is to create a formal model that

represents the expected behaviour of the system. This model

can be a finite state machine, a sequence diagram, or any other

type of formal representation adapted to the system's

specifications. Next, the test cases are generated from this

model. Specialised tools are often used to automate this stage,

enabling tests to be created covering a wide range of possible

scenarios, including those that are difficult to predict manually.

The third stage is the execution of the generated tests on the

real system or a simulation. This involves comparing the

results obtained with the expectations defined in the model to

identify any discrepancies. Finally, the analysis of the results

enables anomalies to be detected and the compliance of the

system with the specifications to be verified. If faults are found,

the model and test cases can be updated accordingly, and the

tests rerun. These iterative steps ensure exhaustive coverage

and ongoing quality of the system under test.

MBT is particularly useful for MAS because of the

complexity and dynamics of their interactions. In MAS,

autonomous agents interact in often unpredictable ways to

achieve specific goals or common goals, creating a multitude

of possible execution scenarios. MBT allows these

interactions and behaviours to be formally modelled,

facilitating the automatic generation of exhaustive test cases.

This makes it possible to cover a wide range of situations,

including rare scenarios and exception behaviours that are

difficult to anticipate manually. Using this approach, it is

possible to systematically check the compliance of individual

agents and their collective interactions with the specifications

in various situations. In addition, the ability to easily update

models to reflect unpredictable changes in MAS behaviour

ensures that tests remain pertinent, making it easier to cover

new system behaviours. In this way, MBT offers a powerful

solution for successfully managing the complexity of multi-

agent systems, guaranteeing better quality and reliability of the

final system.

4. THE PROPOSED APPROACH

The proposed approach involves creating a set of test cases

based on an AUML sequence diagram, aiming to cover each

scenario independently. To achieve this, the approach

introduces plugs for every interaction associated with a

specific scenario being tested. The plugs are able to eliminate,

from the interval of inputs compatible with the execution

constraint of the interactions of this scenario, the part of the

1127

inputs compatible with the execution constraints of the other

interactions involved in the other scenario that can be executed

in parallel, inclusively, or exclusively with the interactions of

the scenario under test. This avoids the triggering of the

execution of several scenarios with the scenario under test, and

ensures that each error detected during the test of a given

scenario is not associated with another scenario that can be

running in parallel with it.

The approach collects, in the first stage, the information

necessary for the execution of each interaction (presented in

the AUML sequences diagram), namely the execution

constraints of each interaction (expressed in OCL), the range

of inputs, and the expected outputs of the task that will be

executed following each interaction, etc. In the second stage,

the approach applies an algorithm that is able to recalculate the

execution constraints (collected in the first stage) of each

interaction. This is to obtain, for each interaction, a new

execution constraint that contradicts the execution constraints

of the other interactions that can be performed inclusively,

exclusively, or in parallel with it. The sub-interval of inputs

(included in the global range of inputs collected in the first

stage) compatible with each new constraint only ensures the

triggering of the execution of the desired interaction.

Consequently, the union of the sub-intervals of the interactions

of a given scenario under test ensures the triggering of this

scenario only, which ensures an individual test for the latter.

These sub-intervals will be considered as test case inputs and

can be retrieved from the information already collected. They

will be used, with their expected outputs, subsequently, for the

detection of possible errors.

The approach is divided into three phases (Figure 1).

Figure 1. The methodology of the proposed approach

Transformation of the AUML sequence diagram into a

graph: To automate the phases within our approach, we

employed the AUML sequence diagram to create an

AUML_SDG graph (AUML Sequence Diagram Graph). In

this graph, each path Pk represents a scenario Scek in the

sequence diagram, for which we must find the inputs Inputsk

that ensure the execution of the interactions of this scenario

only, and the outputs Outputsk expected for these inputs. Each

interaction between two agents in the AUML sequence

diagram is represented by a node (Interaction node type) in the

graph AUML_SDG that contains the set of information,

collected from the class diagram and used case diagram,

necessary for the generation of test cases namely: the

execution constraints of each interaction (expressed in OCL),

the range of inputs, and the expected outputs of the task that

will be executed following each interaction, etc. The

interaction nodes that can be executed inclusively, exclusively,

or in parallel are grouped in another node, an AUML node type.

The latter contains information on how its interaction nodes

(sub-nodes) are executed (inclusively, exclusively, in parallel).

This information collected from the AUML sequences

diagram is necessary for the generation of plugs.

Generation of test cases: In this phase, we have proposed an

algorithm to generate a set of test cases (composed of input of

test cases and expected outputs) from the graph AUML_SDG

generated in the first phase. These test cases are able to cover

all the paths of the graph individually. This is ensured by: (i)

redefining the constraints expressed in OCL of each sub-node

in the AUML nodes of each path; this redefinition depends on

how the subs interactions of these nodes are executed; (ii)

retrieving, from the information already collected, the sub-

interval of inputs that is compatible only with the redefined

constraints. This sub-interval will be considered as test case

inputs and their expected outputs will be considered as test

case outputs.

(3) Detection of errors: following the generation of test

cases, the error detection phase begins to identify interaction

and scenario errors. To achieve this, we execute the agents of

the system under test using the inputs of the test cases, and

subsequently compare the obtained results with the expected

ones.

The proposed algorithm for the generation of test cases is

described, together with a formal definition of the proposed

graph and a description of the error detection phase, in the

sections that follow.

4.1 The formal definition of the AUML_SDG

AUML_SDG= {Int_N, AUML_N, E, S0, Sf}, where,

E is the set of transitions from one state to another.

S0 is the initial node. It contains the Pre-conditions that

trigger all possible scenarios in the AUML_SDG. This

information is obtained from the use case diagram.

Sf is the set of final nodes. It contains the post-condition

associated with the possible scenarios. This information is

obtained from the use case diagram.

Int_N is a set of simple interaction nodes. Each node S_Inti

 Int_N is defined as follows: S_Inti = {mi, from_Agent,

to_Agent, inf_Inti}, where, mi is the name of the message,

from_Agent is the sender of the message, to_Agent is the

receiver of the message, inf_Inti is a set of information on the

interactions represented by the node S_Inti. It is defined as

follows: Inf_Inti = {R_Inputsi, Outputsi, Guard_conditioni}

where,

(1) R_Inputsi: represents the range of inputs of the tasks that

will be executed following the interaction represented by the

node. This information is collected from the class diagram and

from constraints, expressed in OCL, specified in the

corresponding task in the class diagram.

(2) Outputsi: represents the expected outputs of the tasks

that will be executed following the interaction represented by

the node. Theseinformation are collected from the class

diagram and from the use case diagram.

(3) Guard_conditioni: is the constraints necessary for the

execution of the interaction of the node S_Inti. This

information is collected from constraints, expressed in OCL,

specified in the sequences diagram.

1128

(4) AUML_N is a set of interaction nodes that can be

executed inclusively, exclusively, or in parallel. Each node

S_AUMLi AUML_N is defined as follows: S_AUMLi =

{Set_Ni, Inf_AUMLi}, where, Set_Ni represents a set of sub-

node of the node S_AUMLi. Each node Sj Set_Ni can be an

Int_N or AUML_N, Inf_AUMLi is a set of information on

S_AUMLi node. It is defined as follows: Inf_AUMLi= {Modei,

Guard_conditioni}, where,

(1) Modei represents the way in which the sub-nodes Sj of

the nodes S_AUMLj are executed. This information can take

the following values Inclusive, Exclusive, or Parallel. It is

collected from the AUML sequences diagram.

(2) Guard_conditioni is the constraint necessary for the

execution of the interaction of the node S_AUMLi. This

information is collected from constraints, expressed in OCL,

specified in the sequences diagram. The guard condition of

each sub-node Sj of the nodes S_AUMLj will be redefined

according to the Modei of S_AUMLi, where,

If Modei = Inclusive then Sj.Guard_condition =

(Sj.Guard_condition S_AUMLi.Guard_condition) (!

Sm.Guard_condition) where: Sm {Set_Ni – Sj},

If Modei = Exclusive then Sj.Guard_condition =

(Sj.Guard_condition S_AUMLi.Guard_condition) ∩

(Sm.Guard_condition) where: Sm = {Set_Ni - Sj},

If Modei = Parallel then Sj.Guard_condition =

S_AUMLi.Guard_condition (!Sm.next.Guard_condition)

where, Sm = {Set_Ni - Sj}.

4.2 The algorithm of the test cases generation

The set of test cases T that can cover all potential paths in

the AUML_SDG can be calculated using the algorithm for test

case creation (Figure 2). The algorithm does this by doing the

following steps:

Figure 2. The algorithm used to generate test cases

-The generation of all possible paths Pk from the

AUML_SDG.

-For each Sj in the path Pk where Sj is a sub-interaction node

of an AUML_N node S_AUMLi, the algorithm recalculates its

guard conditions according to Modei of S_AUMLi in order to

introduce necessary plugs.

-After redefining the guard condition, the algorithm

calculates the set of test cases Tk of the path Pk. For this the

algorithm retrieves, from each Int_N S_Intj, the Range of

inputs R_Inputsj stored in the nodes of the path Pk, which is

compatible with the new guard condition.

When the test cases generation algorithm is applied to an

AUML SDG, a set of test cases T that may independently

cover each path of the AUML SDG is obtained. Each resulting

test case includes a set of inputs that can cover the desired path

(pk) as well as a set of expected outputs when the agents are

run with these inputs. It also includes the precondition required

to execute the path (pk) and the anticipated postcondition upon

executing the test case's inputs on the system under test's

agents. The second part of the algorithm, which consists of

redefining the guard conditions in order to introduce plugs, is

best illustrated by the following example:

To cover the interaction Int1 (Figure 3), it is crucial to

adhere to the guard conditions C0 and C1. To achieve this, it

is essential that the values of X fall within the range of 10 to

100, and Y is greater than 0. By doing so, during the error

detection phase, when executing agents with inputs falling

within these specified intervals, the agent can successfully

perform other interactions, namely Int2 and Int3. This is

because the inputs used for agent execution do not conflict

with the guard conditions of the other interactions, preventing

any deviation from the desired testing path that includes Int1.

Figure 3. Inclusive interaction

To prevent such deviation, it is necessary to redefine the

guard conditions C1. This involves transforming them into C1

= C0 ∪ C1 ∪ (!C2 ∪ !C3). Consequently, the new conditions

require that X is in the range of 18 to 100, and Y is greater than

19. This adjustment ensures that the inputs used for agent

execution exclusively cover the interaction Int1. As a result,

any errors detected in a particular scenario are not associated

with another scenario executed concurrently or in parallel,

maintaining the desired testing focus.

4.3 Detection of errors

For error detection, it is sufficient to compare (for each path

Pk) the expected outputs and the outputs attained after the

agents' execution. There may be an interaction error if the

obtained results do not match the expected ones, and there may

be a scenario error if the obtained post-condition does not

match the expected one. Figure 4 summarizes the error

detection process.

1129

Figure 4. Error detection process

5. CASE STUDY

To validate our approach, we apply it to a concrete case

study involving a Planning and Distribution System (PDS).

The PDS is designed to optimize the logistics of transporting

goods by assigning driver agents to deliver specific quantities

of products to designated points (xi). These points are located

within specified geographic zones, which can include zone A,

zone B, or a combination of both (xi ∈ A or xi ∈ B or xi ∈ A

∪ B). The actors involved in this system are:

Agent GUI: represents the interface between the user and

the PDS.

Human resource agent: responsible for managing and

assigning tasks to the various driver agents, namely the drivers

of zone A or B.

Material resource agent: responsible for managing and

1130

assigning tasks to the various truck agents, namely light or

heavy trucks.

Truck agent: responsible for transport, once the goods are

assigned to it depending on the number of goods to be

transported; there are two types of trucks, namely:

-Light truck: which transports a number of goods less than

or equal to 100 units.

-Heavy truck: which transports a number of goods greater

than 100 units.

Driver: responsible for transporting the goods to

destination points in zones A or B. There are two types of

drivers for this:

-Zone A driver: transports the goods only to destination

points belonging to zone A.

-Zone B driver: transports the goods only to destination

points belonging to zone B.

Depending on the overall number of goods to be transported

(equal to the sum of the quantities transported to the various

points xi), the Material Resource agent sends a request to

specialized light or heavy truck agents. These trucks,

depending on their availability, can accept or refuse requests

from the Material Resource agent. The user has the option of

choosing the express service where particular trucks are

provided with a high transport capacity in terms of transport

time. At the same time, depending on the recipient zone A or

B, the Human Resource agent sends a request to zone A driver

agents and/or zone B driver agents. These drivers, depending

on their availability, can accept or refuse the request. Once the

requested quantity is appropriately allocated to trucks and

drivers, the material and human resource agents each establish

a transport plan.

The transport plan includes the following elements:

The identifier of the zone driver who is responsible for

transporting the requested quantity to the destination zones.

The identifier of the light or heavy truck agent who is

responsible for transporting the requested quantity.

The quantity to be transported.

The type of transport service selected, namely: Simple or

express.

The various parameters linked to the agents themselves,

namely the availability of light or heavy truck agents and the

availability of drivers.

The AUML SDG graph creation, test case generation, and

error detection are the three stages of our technique that are

required for testing the PDS system, and we will detail each of

these in the sections that follow. Following the usage of a

software tool that we have built, the findings shown in each

phase are obtained automatically.

5.1 Generation of the AUML_SDG graph from the AUML

sequence diagram

The generation of the AUML_SDG graph represents the

first step in the process of generating the test cases. It is done

automatically based on the three AUML diagrams involved in

the modelling of the system studied, namely the AUML

sequence diagram (Figure 5) for the creation of the various

nodes of the AUML_SDG graph (the simple nodes and the

AUML nodes), Use Case Diagram (Figure 6), and Agent Class

Diagram (Figure 7) for the filling of the nodes by the necessary

information during the generation of the test cases.

The generation of the AUML_SDG graph goes through an

intermediate step which consists of transforming, first of all,

the sequence diagram, use case diagram, and agent class

diagram into an XML file. The purpose of this is to simplify

the creation and the filling of the various nodes of the graph.

Figure 5. Sequence diagram of the "PDS"

1131

Figure 6. Use case diagram of the "PDS"

Figure 7. Class diagram of the PDS

1132

Figure 8 represents the generated AUML_SDG graph, each

node of which represents an interaction. It contains all the

information necessary for the generation of test cases. All

nodes in a dotted circle are nodes included in an AUML type

node (an AUML interaction) where the blue node represents

parallel interactions, the green node represents inclusive

interactions, and the red nodes represent exclusives

interactions.

5.2 Test case generation

In this phase, the test case generation algorithm is applied

to the generated AUML_SDG. Table 1 represents the

generated paths from the graph AUML_SDG. Each path Pk of

the graph G represents a possible behaviour scenario Scek for

the system under test.

After generating all paths from the graph AUML_SDG, the

algorithm recalculates the guard conditions of each sub-

interaction node Sj (according to Modei of S_AUMLi in which

it belongs) in order to introduce the necessary plugs. Table 2

represents the new guards of each sub-interaction node Sj of

each path after the introduction of the plugs.

After redefining the guard condition, the algorithm

calculates the set of test cases Tk of the path Pk. For this the

algorithm retrieves the Range of inputs R_Inputsj stored in the

nodes of the path Pk, which is compatible with the new guard

condition. Parts 1, 2, and 3 represent the test cases that have

been generated.

Figure 8. The generated AUML_SDG graph

Table 1. Generated paths (all paths)

All

Paths
Generated Paths

Sce 1 Initial S2: (m2,gui, RH) Final_2

Sce 2 Initial S2: (m2, GUI, RH) S15: (c16, m15, RH, driver)
S17: (c18, m17, driverA,

RH)
S22: (m22, RH, gui) Final_5

Sce 3 Initial S2: (m2, GUI, RH) S15: (c16, m15, RH, driver)
S18: (c19, m18, driverA,

RH)
Final_4

Sce 4 Initial S2: (m2, gui, RH)
S16: (c17, m16, RH,

driverB)

S19: (c20, m19, driverB,

RH)
S22: (m22, RH, gui) Final_5

Sce 5 Initial S2: (m2, gui, RH) S16: (c17, m16, RH,driver) S20: (c21, m20, driverB, R) Final_3

Sce 6 Initial S1: (m1, GUI,RM) Final_1

Sce 7 Initial S1: (m1,GUI,RM) S3: (c4, m3, RM, FLT) S7: (c8,m7, FLT,RM) S21: (m21,RM, gui) Final_5

Sce 8 Initial S1: (m1, GUI,RM) S3: (c4, m3, RM,FL) S8: (c9, m8,FLT, RM) Final_4

Sce 9 Initial S1: (m1, GUI,RM) S4: (c5, m4, RMLT) S9: (c10, m9,LT, RM)
S21: (m21, RM,

gui)
Final_5

Sce 10 Initial
S1: (m1, GUI,

RM)
S4: (c5, m4, RM, LT) S10 (c11, m10, LT, RM) Final_4

Sce 11 Initial
S1: (m1, GUI,

RM)
S5: (c6, m5,RM, FHT) S11: (c12, m11, FHT, RM)

S21: (m21, RM,

gui)
Final_5

Sce 12 Initial S1: (m1, GUI,RM) S5: (c6, m5, RM, FHT) S12: (c13, m12, FHT, RM) Final_4

Sce 13 Initial S1: (m1, GUI,RM) S6: (c7,m6, RM,HT) S13: (c14, m13, HT, RM)
S21: (m21, RM,

gui)
Final_5

Sce 14 Initial S1: (m1, GUI,RM) S6: (c7, m6, RM, HT) S14: (c15, m14, HT, RM) Final_4

1133

Table 2. The new guards of the nodes of each path after the introduction of the plugs

AUML_N New Guards AUML_N New Guards

P

S1.guard= Sp. guard(!SIn. guard)

S2.guard= Sp. guard(!SE4. guard)

Sp. guard= Ø

S1.guard = Ø∪ (xi∉A et/ou xi∉B)

S1.guard= xi∉A et/ou xi∉B

S2.guard = Ø∪ (∑Q≤100)

S2.guard=∑Q≤100

E5

S9.guard=(S9.guardSE5.guard)∩(S10.guar

d)

S10.guard=(S10.guardSE5.guard)∩(S9.gu

ard)

SE5.guard= Ø

S.9guard =(Nb>0∪Ø)∩(Nb<0)

S.9guard =(Nb>0∪Ø)∩(Nb<0)

S.10guard = (Nb<0∪Ø)∩(Nb>0)

S.10guard = (Nb<0∪Ø)∩(Nb>0)

E1

S3.guard=(S3.guardSE1.guard)∩(S4.gua

rd)

S4.guard=(S4.guardSE1.guard)∩(S3.gua

rd)

SE1.guard= ∑Q<100

S3.guard =(FS=1∑Q<100)∩(FS=0)

S3.guard= FS=1∑Q<100)∩(FS=0)

S4.guard = (FS=0∑Q<100)∩(FS=1)

S3.guard= (FS=1∑Q<100)∩(FS=0)

S4.guard= FS=0∑Q<100)∩(FS=1)

E6

S11.guard=(S11.guard∪SE6.guard)∩(S12.g

uard)

S12.guard=(S12.guard∪SE6.guard)∩(S11.g

uard)

SE6.guard= Ø

S11.guard =(Nb>0∪Ø)∩(Nb<0)

S.11guard =(Nb>0∪Ø)∩(Nb<0)

S12.guard = (Nb<0∪Ø)∩(Nb>0)

S.12guard =(Nb<0∪Ø)∩(Nb>0)

E2

S5.guard=(S5.guard∪SE2.guard)∩(S6.gua

rd)

S6.guard=(S6.guard∪SE2.guard)∩(S5.gua

rd)

SE2.guard= ∑Q>100

S5.guard =(FS=1∑Q>100)∩(FS=0)

S5.guard= FS=1∑Q>100∩(FS=0)

S6.guard = (FS=0∑Q>100)∩(FS=1)

S6.guard= FS=0∑Q>100∩(FS=1)

E7

S13.guard=(S13.guard∪SE7.guard)∩(S14.g

uard)

S14.guard=(S14.guard∪SE7.guard)∩(S13.g

uard)

SE7.guard= Ø

S.13guard =(Nb>0∪Ø)∩(Nb<0)

S.14guard = (Nb<0∪Ø)∩(Nb>0)

S.13guard =(Nb>0∪Ø)∩(Nb<0)

S.14guard =(Nb<0∪Ø)∩(Nb>0)

E3

S7.guard=(S7.guard∪SE3.guard)∩(S8.gua

rd)

S8.guard=(S8.guard∪SE3.guard)∩(S7.gua

rd)

SE3.guard= Ø

S.7guard =(Nb>0Ø)∩(Nb<0)

S7.guard= (Nb>0Ø)∩(Nb<0)

S.8guard = (Nb<0Ø)∩(Nb>0)

S8.guard= (Nb<0Ø)∩(Nb>0)

In

S15.guard=(S15.guard∪SIn.guard)∪(!S16.g

uard)

S16.guard=(S16.guard∪SIn.guard)∪(!S15.g

uard)

SIn.guard= xi∊A et/ou xi∊B

S15.guard = (xi∊A ∪ xi∊A et/ou xi∊B) ∪

(xi∉B)

S16.guard = (xi∊B ∪ xi∊A et/ou xi∊B) ∩

(xi∉A)

E4

SE1.guard=(SE1.guard∪SE4.guard)∩(SE2.g

uard)

SE2.guard=(SE2.guard∪SE4.guard)∩(SE1.g

uard)

SE4.guard= =∑Q≤100

SE1.guard

=(∑Q<100∪∑Q≤100)∩(∑Q>100)

SE2.guard =

(∑Q>100∪∑Q≤100)∩(∑Q<100)

E8

S17.guard=(S17.guard∪SE8.guard)∩(S18.g

uard)

S18.guard=(S18.guard∪SE8.guard)∩(S17.g

uard)

SE8.guard= Ø

S.17guard =(Nb>0∪Ø)∩(Nb<0)

S.18guard = (Nb<0∪Ø)∩(Nb>0)

S.17guard =(Nb>0)∩(Nb<0)

S.18guard =(Nb<0)∩(Nb>0)

E9

S19.guard=(S19.guard∪SE9.guard)∩(S20.guard)

S20.guard=(S20.guard∪SE9.guard)∩(S19.guard)

SE9.guard= Ø

S.19guard =(Nb>0∪Ø)∩(Nb<0)

S.20guard =(Nb<0∪Ø)∩(Nb>0)

S.19guard =(Nb>0∪Ø)∩(Nb<0)

S.20guard = (Nb<0∪Ø)∩(Nb>0)

Precondition: The system is ready to receive request

Test case of Scenario_1 (initial/2/final)

T_Scenario_1 = {Precondition: The user sends a

Request, Input: ∑Q≤0, (Xi not in A) ∩ (Xi not in B), Output:

Displays “send the quantity to transported to the trucks”,

Displays “not available Xi points”, Displays” RH plan: not

available drivers”, Postcondition: Displays” repeat your

request”}

Possible test case for scenario_1

Case1

Input: quantity1=0, quantity2=0, quantity3=0, (Xi not in

A) ∩ (Xi not in B)

Output: Displays “send the quantity to transported to the

trucks”

Displays “don’t send the Xi points to the drivers A, B”

Displays “drivers not available”

Postcondition: Displays” repeat your request”

Test case of Scenario_2 (initial/2/15/17/22/final)

T_Scenario_2 = {Precondition: The user sends a

Request, Input: ∑Q≤0, Xi in A, Nbdriver A>0, Output:

1134

Displays “send the quantity to transported to the trucks”,

Displays “send the Xi points to the drivers A, B”, Displays

“send Xi in A”, Displays “driver A accept the request”,

Postcondition: Displays “RH plan: driver A is available”}

Possible test case for scenario_2

Case1

Input: quantity1=0, quantity2=0, quantity3=0, Xi in A,

Nbdriver A>0

Output: Displays “send the quantity to transported to the

trucks”

Displays “send the Xi points to the drivers A, B”

Displays “send Xi in A”

Displays “driver A accept the request”

Postcondition: Displays “RH plan: driver A is available”

Test case of Scenario_3 (initial/2/15/18/final)

T_Scenario_3 = {Precondition: The user sends a

Request, Input: ∑Q≤0, Xi in A, Nbdriver A<0, Output:

Displays “send the quantity to transported to the trucks”,

Displays “send the Xi points to the drivers A, B”, Displays

“send Xi in A”, Displays” driver A refuse the request

Postcondition: Displays “driver A is not available”}

Possible test case for scenario_3

Case1

Input: quantity1=0, quantity2=0, quantity3=0, Xi in A,

Nbdriver A>0

Output: Displays “send the quantity to transported to the

trucks”

Displays “send the Xi points to the drivers A, B”

Displays “send Xi in A”

Displays “driver A refuse the request”

Postcondition: Displays “driver A is not available”

Test case of Scenario_4 (initial/2/16/19/22/final)

T_Scenario_4 = {Precondition: The user sends a

Request, Input: ∑Q≤0, Xi in B, Nbdriver B>0, Output:

Displays “send the quantity to transported to the trucks”,

Displays “send the Xi points to the drivers A, B”, Displays

“send Xi in B”, Displays “driver B accept the request”,

Postcondition: Displays “RH plan: driver B is available”}

Possible test case for scenario_4

Case1

Input: quantity1=0, quantity2=0, quantity3=0, Xi in B,

Nbdriver B>0

Output: Displays “send the quantity to transported to the

trucks”

Displays “send the Xi points to the drivers A, B”

Displays “send Xi in B”

Displays “driver B accept the request”

Postcondition: Displays “RH plan: driver B is available”

Test case of Scenario_5 (initial/2/16/20/final)

T_Scenario_5 = {Precondition: The user sends a

Request, Input: ∑Q≤0, Xi in B, NbdriverB<0, Output:

Displays “send the quantity to transported to the trucks”,

Displays “send the Xi points to the drivers A, B”, Displays

“send Xi in B”, Displays “driver B refuse the request”,

Postcondition: Displays “driver B is not available”,}

Possible test case for scenario_5

Case1

Input: quantity1=0, quantity2=0, quantity3=0, Xi in A,

Nb driver B<0

Output: Displays “send the quantity to transported to the

trucks”

 Displays “send the Xi points to the drivers A, B”

 Displays “send Xi in B”

 Displays “driver B refuses the request”

Postcondition: Displays “driver B is not available”

Test case of Scenario_6 (initial/1/final)

T_Scenario_6 = {Precondition: The user sends a

Request, Input: ∑Q≤0, (Xi not in A) ∩ (Xi not in B), Output:

Displays “send the quantity to transported to the trucks”,

Displays “not available Xi points”, Displays” drivers not

available”, Postcondition: Displays “repeat your request”}

Possible test case for scenario_6

Case1

Input: quantity1=0, quantity2=0, quantity3=0, (Xinot in

A) ∩ (Xinot in B)

Output: Displays “send the quantity to transported to the

trucks”

 Displays “don’t send the Xi points to the drivers A, B”

 Displays “quantity not available”

Postcondition: Displays “repeat your request”

Test case of Scenario_7 (initial/1/3/7/21/final)

T_Scenario_7 = {Precondition: The user sends a

Request, Input: ∑Q<100,(Xinot in A) ∩ (Xi not in

B),FS=true, NbFLT>0, Output: Displays “send the quantity

to transported to the trucks”, Displays “don’t send the Xi

points to the drivers A,B”, Displays “the fast service is

available”, Displays “the fast light truck accept the

request”, Postcondition: Displays “RM plan: Fast Light

Truck is available”}

Possible test case for scenario_7

Case1

Input: quantity1=10, quantity2=50, quantity3=20,

FS=true, NbFLT>0

Output: Displays “don’t send the Xi points to the drivers

A, B”

 Displays “the fast service is available”

 Displays “the fast light truck accept the request”

Postcondition: Displays “RM plan: Fast Light Truck is

available”}

Test case of Scenario_8 (initial/1/3/8/final)

T_Scenario_8 = {Precondition: The user sends a

Request, Input: Q<100, (Xinot in A) ∩ (Xinot in B),

FS=true, NbFLT<0, Output: Displays “send the quantity to

transported to the trucks”, Displays “don’t send the Xi

points to the drivers A, B”, Displays “the fast service is

available”, Displays “the fast light truck refuse the request”,

Postcondition: Displays “Fast Light Truck is not

available”}

Possible test case for scenario_8

Case1

Input: quantity1=30, quantity2=15, quantity3=25,

FS=true, NbFLT<0

Output: Displays “don’t send

the Xi points to the drivers A, B”

 Displays “the fast service is available”

 Displays “the fast light truck refuse the request”

Postcondition: Displays “Fast Light Truck is not

available”}

Test case of Scenario_9 (initial/1/4/9/21/final)

T_Scenario_9 = {Precondition: The user sends a

Request, Input: ∑Q<100, (Xi not in A) ∩ (Xi not in B),

FS=false, NbLT>0, Output: Displays “send the quantity to

transported to the trucks”, Displays “don’t send the Xi

points to the drivers A, B”, Displays “the fast service is not

available”, Displays “the light truck accept the request”,

Postcondition: Displays “RM plan: Light Truck is

1135

available”}

Possible test case for scenario_9

Case1

Input: quantity1=5, quantity2=30, quantity3=40,

FS=false, NbLT>0

Output: Displays “don’t send the Xi points to the drivers

A, B”

 Displays “the fast service is not available”

 Displays “the light truck accept the request”

Postcondition: Displays “RM plan: Light Truck is

available”}

Test case of Scenario_10 (initial/1/4/10/final)

T_Scenario_10 = {Precondition: The user sends a

Request, Input: Q<100, (Xi not in A) ∩ (Xi not in

B),FS=false, NbLT<0, Output: Displays “send the quantity

to transported to the trucks ”,Displays ”don’t send the Xi

points to the drivers A,B”, Displays “the fast service is not

available”, Displays “the light truck refuse the request”,

Postcondition: Displays ”Light Truck is not available”}

Possible test case for scenario_10

Case1

Input: quantity1=11, quantity2=65, quantity3=18, FS=

false, NbLT<0

Output: Displays “don’t send the Xi points to the drivers

A, B”

 Displays “the fast service is not available”

 Displays “the light truck refuse the request”

Postcondition: Displays” Light Truck is not available”}

Test case of Scenario_11 (initial/1/5/11/21/final)

T_Scenario_11 = {Precondition: The user sends a

Request, Input: ∑Q>100,(Xinot in A) ∩ (Xi not in

B),FS=true, NbFHT>0, Output: Displays “send the quantity

to transported to the trucks”, Displays “don’t send the Xi

points to the drivers A,B”, Displays “the fast service is

available”, Displays “the fast heavy truck accept the

request”, Postcondition: Displays ”RM plan: fast heavy

truck is available”}

Possible test case for scenario_11

Case1

Input: quantity1=40, quantity2=55, quantity3=60,

FS=true, NbFHT>0

Output: Displays “don’t send the Xi points to the drivers

A, B”

 Displays “the fast service is available”

 Displays “the fast heavy truck accept the request”

Postcondition: Displays “RM plan: fast heavy truck is

available”}

Test case of Scenario_12 (initial/1/5/12/final)

T_Scenario_12 = {Precondition: The user sends a

Request, Input: Q>100, (Xi not in A) ∩ (Xi not in B),

FS=true, NbFHT<0, Output: Displays “send the quantity to

transported to the trucks”, Displays “don’t send the Xi

points to the drivers A,B”, Displays “the fast service is

available”, Displays “the fast heavy truck refuse the

request”, Postcondition: Displays “fast heavy truck is not

available”}

Possible test case for scenario_12

Case1

Input: quantity1=25, quantity2=56, quantity3=80,

FS=true, NbFHT<0

Output: Displays “don’t send the Xi points to the drivers

A, B”

 Displays “the fast service is available”

 Displays “the fast heavy truck refuse the request”

Postcondition: Displays” fast heavy truck is not

available”}

Test case of Scenario_13 (initial/1/6/13/21/final)

T_Scenario_13 = {Precondition: The user sends a

Request, Input: ∑Q>100, (Xi not in A) ∩ (Xi not in B),

FS=false, NbHT>0, Output: Displays “send the quantity to

transported to the trucks”, Displays “don’t send the Xi

points to the drivers A,B”, Displays “the fast service is

available ”,Displays ”the heavy truck accept the request”,

Postcondition: Displays ”RM plan: heavy truck is

available”}

Possible test case for scenario_13

Case1

Input: quantity1=70, quantity2=69, quantity3=45,

FS=true, NbHT>0

Output: Displays “don’t send the Xi points to the drivers

A, B”

 Displays “the fast service is not available”

 Displays “the fast heavy truck accept the request”

Postcondition: Displays” RM plan: heavy truck is

available”}

Test case of Scenario_14 (initial/1/6/14/final)

T_Scenario_14 = {Precondition: The user sends a

Request, Input: Q>100, (Xi not in A) ∩ (Xi not in B),

FS=false, NbHT<0, Output: Displays “send the quantity to

transported to the trucks”, Displays “don’t send the Xi

points to the drivers A, B”, Displays “the fast service is not

available”, Displays “the heavy truck refuse the request”,

Postcondition: Displays “heavy truck is not available”}

Possible test case for scenario_14

Case1

Input: quantity1=50, quantity2=76, quantity3=96, FS=

false, NbHT<0

Output: Displays “don’t send the Xi points to the drivers

A, B”

 Displays “the fast service is not available”

 Displays “the heavy truck refuse the request”

Postcondition: Displays” heavy truck is not available”}

Postcondition: Displays “Enter your request”

5.3 Detection of errors

This phase requires running the system with test case inputs

and comparing the obtained results with the expected ones.

The purpose is to determine if there are any interactions or

scenario errors. For instance, Figure 9 shows a case where no

errors are detected which means that we have conformity

between the obtained results and the expected results.

However, Figure 10 shows the existence of an error in

interaction 5 which means that there is no conformity between

the results obtained and the expected results. Although

interactions 2, 15, and 17 of the tested scenarios (scenario 2)

run in parallel, exclusively, and inclusively with interactions 1,

16, and 18 respectively, these latter were not performed. This

is guaranteed by the introduction of plugs that minimized the

interval of test case inputs. Indeed, when running agents of the

system under test with these inputs (whose interval is

minimized), agents find themselves forced to perform only the

1136

desired interactions. In this way, it will be possible to ensure

that each detected error in a given scenario is not associated

with another scenario running simultaneously or in parallel.

Figure 9. End of test with no error

Figure 10. End of test with the detection of an error

5.4 Discussion and limitations

By applying our testing approach to the chosen case study,

we were able to show how important it is to test each

interaction and behavioural scenario separately. In reality, this

has made it possible for us to pinpoint the interactions and

scenarios that, in the case of error detection, led to the

observed error among those that were operating concurrently,

making it easier to repair the problems that were found.

Through the implementation of our testing approach on the

selected case study, we successfully demonstrated the critical

importance of individually testing each interaction and

behavioural scenario. This approach allowed us to precisely

identify the specific interactions and scenarios that, when

scrutinized for error detection, directly contributed to the

observed errors within the system. Indeed, by isolating and

examining each interaction and behavioural scenario

separately, our testing methodology provided a nuanced

understanding of system behaviour, enhancing the overall

effectiveness of error detection and remediation efforts.

Despite its strengths, our approach cannot be applied for

some systems where the execution constraints of the

interactions are not available due to the complexity and

indeterminism of these systems. Furthermore, our

methodology is not suitable for application in open multi-

agent systems, where the introduction of new interactions is

possible upon the inclusion of new agents in the system [24,

25]. Specifically, the test case inputs generated through our

approach, aimed at ensuring comprehensive coverage of

behavioural scenarios during system testing, may lack

relevance when confronted with the emergence of new

interactions due to the involvement of additional agents.

Additionally, the generation of test case outputs poses

challenges since it relies on meta-models that articulate the

behaviour expected from new agents joining the system.

6. CONCLUSION

MAS testing continues to be understudied despite the rapid

developments of MAS. Despite the fact that there have been

only a few proposals in the literature addressing the testing of

MAS, these proposals have made a considerable impact in this

area. Nonetheless, they have not taken into account the

particulars of the interactions between the agents that can be

carried out solely, inclusively, or in parallel. In this paper, we

have presented a new model-based testing approach for testing

agent interactions in a multi-agent system. The suggested

approach considers the distinctive properties of interactions

between agents that can operate inclusively, exclusively, or in

parallel. In reality, the approach is able to generate a set of test

cases that cover each interaction and each scenario separately,

indicating that any errors discovered in one interaction or

scenario are independent of any errors discovered in other

scenarios that are run simultaneously with it. For this, the

AUML sequences diagram is utilised as a model, and the OCL

constraints are employed to introduce the appropriate plugs.

The proposed approach, supported by the tool that we have

developed, has been validated in a concrete case study: PDS

« Planning and Distribution System». Based on the obtained

results, it would be interesting to incorporate our tool into

agent development platforms as a separate library, to facilitate

the process of testing interactions between the agents. In the

short and medium term, we plan to adapt our approach to the

complexities of open multi-agent systems. This strategic

evolution involves extending the applicability of our testing

methodology to scenarios where new agents can dynamically

join the system, introducing additional complexity. Our goal

is to fortify the versatility of our approach, making it adaptable

to the evolving landscape of multi-agent systems and ensuring

its continued relevance in addressing the challenges posed by

open and dynamic environments.

REFERENCES

[1] Kamdar, R., Paliwal, P., Kumar, Y. (2018). A state of art

review on various aspects of multi-agent system. Journal

of Circuits, Systems and Computers, 27(11): 1830006.

https://doi.org/10.1142/S0218126618300064

[2] Zhang, Z., Thangarajah, J., Padgham, L. (2008).

Automated unit testing intelligent agents in PDT. In

Proceedings of the 7th International Conference on

Autonomous Agents and Multi Agent Systems, Estoril,

Portugal, pp. 1673-1674.

https://doi.org/10.1145/1402744.1402759

[3] Núñez, M., Rodríguez, I., Rubio, F. (2005). Specification

and testing of autonomous agents in e‐commerce systems.

Software Testing, Verification and Reliability, 15(4):

211-233. https://doi.org/10.1002/stvr.323

[4] Padgham, L., Zhang, Z., Thangarajah, J., Miller, T.

(2013). Model-based test oracle generation for

automated unit testing of agent systems. IEEE

Transactions on Software Engineering, 39(9): 1230-1244.

https://doi.org/10.1109/TSE.2013.10

1137

[5] Duff, S., Thangarajah, J., Harland, J. (2014).

Maintenance goals in intelligent agents. Computational

Intelligence, 30(1): 71-114.

https://doi.org/10.1111/coin.12000

[6] Thangarajah, J., Harland, J., Morley, D., Yorke-Smith, N.

(2014). Towards quantifying the completeness of BDI

goals. In Proceedings of the 13th International Joint

Conference on Autonomous Agents and Multiagent

Systems (AAMAS), Paris, France, pp. 1369-1370.

[7] Coelho, R., Kulesza, U., von Staa, A., Lucena, C. (2006).

Unit testing in multi-agent systems using mock agents

and aspects. In Proceedings of the 2006 International

Workshop on Software Engineering for Large-Scale

Multi-Agent Systems, Shanghai, China, pp. 83-90.

https://doi.org/10.1145/1138063.1138079

[8] Lam, D.N., Barber, K.S. (2004). Debugging agent

behavior in an implemented agent system. In

International Workshop on Programming Multi-Agent

Systems, New York, NY, USA, pp. 104-125.

https://doi.org/10.1007/978-3-540-32260-3_6

[9] Nguyen, C.D., Perini, A., Tonella, P. (2008). Ontology-

based test generation for multiagent systems. In

Proceedings of the 7th International Joint Conference on

Autonomous Agents and Multiagent Systems, Estoril,

Portugal, pp. 1315-1320.

[10] Nguyen, C.D., Perini, A., Bernon, C., Pavón, J.,

Thangarajah, J. (2009). Testing in multi-agent systems.

In Proceedings of the International Workshop on Agent-

Oriented Software Engineering, Budapest, Hungary, pp.

180-190. https://doi.org/10.1007/978-3-642-19208-1_13

[11] Abushark, Y., Thangarajah, J., Miller, T., Harland, J.,

Winikoff, M. (2015). Early detection of design faults

relative to requirement specifications in agent-based

models. In Proceedings of the 14th International

Conference on Autonomous Agents and Multiagent

Systems, Istanbul, Turkey, pp. 1073-1079.

[12] Winikoff, M. (2017). BDI agent testability revisited.

Autonomous Agents and Multi-Agent Systems, 31:

1094-1132. https://doi.org/10.1007/s10458-016-9356-2

[13] Nguyen, C.D., Miles, S., Perini, A., Tonella, P., Harman,

M., Luck, M. (2012). Evolutionary testing of

autonomous software agents. Autonomous Agents and

Multi-Agent Systems, 25: 260-283.

https://doi.org/10.1007/s10458-011-9175-4

[14] Nguyen, C.D., Perini, A., Tonella, P. (2010). Goal-

oriented testing for MASs. International Journal of

Agent-Oriented Software Engineering, 4(1): 79-109.

https://doi.org/10.1504/IJAOSE.2010.02981

[15] Barnier, C., Mercier, A., Jamont, J.P. (2017). Toward an

embedded multi-agent system methodology and

positioning on testing. In 2017 IEEE International

Symposium on Software Reliability Engineering

Workshops (ISSREW), Toulouse, France, pp. 239-244.

https://doi.org/10.1109/ISSREW.2017.57

[16] El‐Far, I.K., Whittaker, J.A. (2002). Model‐based

software testing. Encyclopedia of Software Engineering.

https://doi.org/10.1002/0471028959.sof207

[17] Guassmi, D., Dehimi, N.E.H., Derdour, M. (2023). A

state of art review on testing open multi-agent systems.

In Novel & Intelligent Digital Systems Conferences,

Athens, Greece, pp. 262-266.

https://doi.org/10.1007/978-3-031-44097-7_28

[18] El Houda Dehimi, N. (2014). Towards a novel testing

approach for holonic agents. In Proceedings of the 18th

International Conference on Evaluation and Assessment

in Software Engineering, London, UK, pp. 59.

https://doi.org/10.1145/2601248.2613079

[19] Dehimi, N.E.H., Mokhati, F., Badri, M. (2015). Testing

HMAS-based applications: An ASPECS-based approach.

Engineering Applications of Artificial Intelligence, 46:

232-257. https://doi.org/10.1016/j.engappai.2015.09.013

[20] Gonçalves, E.M.N., Machado, R.A., Rodrigues, B.C.,

Adamatti, D. (2022). Cpn4m: Testing multi-agent

systems under organizational model Moise+ using

colored petri nets. Applied Sciences, 12(12): 5857.

https://doi.org/10.3390/app12125857

[21] Dehimi, N.E.H., Benkhalef, A.H., Tolba, Z. (2022). A

novel mutation analysis-based approach for testing

parallel behavioural scenarios in multi-agent systems.

Electronics, 11(22): 3642.

https://doi.org/10.3390/electronics11223642

[22] El Houda, D.N., Soufiene, B., Djaber, G. (2022, October).

Towards a new dynamic model-based testing approach

for multi-agent systems. In 2022 4th International

Conference on Pattern Analysis and Intelligent Systems

(PAIS), Oum El Bouaghi, Algeria, pp. 1-6.

https://doi.org/10.1109/PAIS56586.2022.9946659

[23] Apfelbaum, L., Doyle, J. (1997). Model based testing. In

Software Quality Week Conference, pp. 296-300.

[24] Boukeloul, S., Dehimi, N.E.H., Derdour, M. (2023). A

state-of-the-art review of the mutation analysis technique

for testing multi-agent systems. In Novel & Intelligent

Digital Systems Conferences, Athens, Greece, pp. 230-

235. https://doi.org/10.1007/978-3-031-44146-2_23

[25] Hendrickx, J.M., Martin, S. (2016). Open multi-agent

systems: Gossiping with deterministic arrivals and

departures. In 2016 54th Annual Allerton Conference on

Communication, Control, and Computing (Allerton),

Monticello, IL, USA, pp. 1094-1101.

https://doi.org/10.1109/ALLERTON.2016.7852357

1138

