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 In this paper, we propose a novel model-based testing approach designed to consider the 

nuances of interactions among agents, allowing for inclusive, exclusive, or parallel 

execution. The aim is to prevent the activation of multiple behavioural scenarios during 

the testing of a specific scenario, ensuring that each detected error is uniquely associated 

with the tested scenario and not influenced by parallel scenarios. This approach involves 

generating a set of individual test cases that individually cover the interactions of the 

scenario under test. To achieve this purpose, the approach uses the AUML sequence 

diagram as a model and the constraints, expressed in object constraint language (OCL), 

necessary for the execution of each interaction to introduce plugs. These plugs must be 

able to eliminate from the interval of the test case inputs, compatible with the execution 

constraints of the interactions of the scenario under test, the part of the inputs compatible 

with the execution constraints of the other interactions that can be executed in parallel 

inclusively or exclusively with the interactions of the same scenario. The proposed 

approach is supported by a formal framework and applied to a concrete case study to 

illustrate its usefulness.  
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1. INTRODUCTION 

 

A multi-agent system (MAS) is a computational system 

composed of multiple interacting autonomous entities called 

agents. Each agent operates independently, making decisions 

and taking actions to achieve its goals, often in a dynamic and 

uncertain environment. The distinctive functional and 

behavioural characteristics of MAS, such as autonomy and 

proactivity, and the concept of organisation, which are still 

relatively new, have made it possible to model and develop 

many complex systems, where the interactions among agents 

give rise to emergent behaviors that may not be apparent from 

the individual behaviors of the agents [1]. These new features 

pave the way for research in a variety of domains at various 

design stages, particularly software testing. Testing multi-

agent systems presents a complex challenge, primarily due to 

several factors. These include the simultaneous and 

independent operation of multiple agents, the manipulation of 

substantial amounts of data by each agent, each with its own 

set of goals, the unpredictable evolution of the system's 

behaviour, the non-reproducible effect where identical input 

data may not guarantee identical states in different executions, 

the autonomy of agents, and the escalating complexity 

inherent in the distributed nature of applications comprising 

multiple components. Moreover, interactions between agents 

can occur inclusively, exclusively, or in parallel, leading to the 

simultaneous execution of various behavioural scenarios. This 

complicates the testing phase, making it difficult to generate 

test cases that exclusively cover the interactions of the targeted 

scenario. Consequently, ensuring that each identified error in 

a specific scenario is not linked to another scenario running 

concurrently becomes a formidable task. In the existing 

literature, there are relatively few studies on MAS testing. 

Notably, the previous studies [2-6] focus on the unit testing 

level; the researches [7-13] address the agent testing level; the 

researches [14-17] explore multiple testing levels; and the 

researches [18-22] concern the system testing level. However, 

these studies have not adequately addressed the unique aspects 

of interactions between agents, which can occur inclusively, 

exclusively, or concurrently. 

Testing scenarios individually requires the generation of a 

set of test cases, composed of test case inputs and test case 

outputs, where the inputs must be compatible only with the 

execution constraints of the interactions of the scenario under 

test. These inputs must not be compatible with the execution 

constraints of the other interactions that can be executed in 

parallel inclusively or exclusively, with the interactions of this 

scenario. To do this, it suffices to introduce, for each 

interaction involved in a given scenario under test, plugs able 

to eliminate, from the interval of inputs compatible with the 

execution constraint of the interactions of the scenario under 

test, the part of the inputs compatible with the execution 

constraints of the other interactions able to be executed in 

parallel inclusively or exclusively with the interactions of this 
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scenario. This represents the central idea of the proposed 

approach. 

We present in this paper a novel MBT approach designed 

for testing interactions among agents in a multi-agent system 

[23, 24]. The aim is to guarantee that, during the testing of a 

specific scenario, no multiple behavioural scenarios are 

triggered, and any identified errors are not interconnected with 

concurrently running scenarios. For this purpose, we use: (i) 

the AUML sequence diagram as a model to systematically 

generate test cases, thus ensuring complete coverage of the 

system's various interactions and scenarios; (ii) the constraints, 

expressed in OCL, necessary for the execution of each 

interaction in order to introduce plugs, thus generating test 

cases capable of avoiding the problem of several behaviour 

scenarios being triggered simultaneously during testing. This 

allows the approach to take into account the particularities of 

interactions between agents, which can be conducted 

exclusively, inclusively or in parallel. Furthermore, it also 

improves test coverage, facilitates early detection of errors and 

streamlines test process automation. 

The rest of this paper is divided into the following sections. 

A brief synopsis of major-related work is presented in Section 

2. The basic concept of MBT is presented in Section 3. In 

Section 4, the proposed approach is explained. A specific case 

study is used in Section 5 to demonstrate the suggested 

strategy. In Section 6, several conclusions and additional 

ramifications are provided. 

 

 

2. RELATED WORK 

 

In the literature, there have been relatively few approaches 

proposed for testing Multi-Agent Systems in recent years. The 

following section outlines some of the selected approaches: 

Núñez et al. [3] presented a formal framework for 

delineating the behaviour of autonomous e-commerce agents. 

The anticipated behaviours of the agents undergoing testing 

are expressed through a novel formalism known as the utility 

state machine, which embeds users' preferences within its 

states. The paper introduces two testing methodologies for 

assessing whether an implementation of a specified agent 

behaves as expected, i.e., conformance testing—one active 

and the other passive. In the active testing approach, a 

dedicated test agent is employed for each agent under scrutiny. 

This test agent, acting as a special agent, utilizes the formal 

specification of the agent to guide it toward a specific state. 

The operational trace of the agent is then compared to the 

specification to identify any faults. The authors also advocate 

passive testing, where the agents under examination are solely 

observed without simulation, as is done in active testing. Any 

invalid traces are subsequently pinpointed through the formal 

specifications of the agents. 

Thangarajah et al. [6] introduced a technique to gauge the 

degree of completion of goals within a BDI (belief, desire, and 

intention) agent system. The evaluation of completeness 

considers the resources utilized to attain a goal and assesses 

the impact of goals in relation to the achieved desired results. 

Goals completion is measured based on efforts expended, 

successes achieved, the agent's inactivity, and the time needed 

for the action. The authors embraced the concept of a goal-

plan tree, where goals are annotated with relevant plans to 

create a tree structure. 

In study of Nguyen et al. [10], the authors introduced and 

evaluated a technique for examining autonomous agents which 

generates demanding test scenarios through evolutionary 

optimization. This paper outlined a systematic procedure for 

evaluating the quality of autonomous agents. Initially, 

stakeholder requirements are identified as quality metrics, and 

their associated thresholds are subsequently utilized as testing 

criteria. Fulfilling these requirements is crucial for ensuring 

the reliability of autonomous agents. The evolutionary test 

generation method employs fitness functions aligned with 

testing objectives to automatically generate test cases. 

Abushark et al. [11] formulated an approach to detect design 

flaws in agent designs by scrutinizing the plan structure 

against specified requirements. Utilizing Prometheus design 

files, including the goal overview and scenario diagram, the 

authors transformed these design models into Petri nets. They 

employed agent role grouping and agent design to generate a 

plan graph, from which plan traces were extracted and 

analyzed using Petri nets. Furthermore, a comparative report 

was generated, and the validation process yielded 21 plan 

graphs. 

In study of Nguyen et al. [14], Goal-Oriented Software 

Testing (GOST), a thorough testing technique, was suggested. 

In order to generate test suites at all testing levels, from unit to 

acceptance, goal-oriented analysis and design was used. 

GOST offers a model of the testing process that makes the 

relationships between goals and test cases apparent, and 

outlines a systematic methodology for generating test cases 

from goal analysis. By doing so, errors may be found early on 

and incorrect requirements may not be implemented. 

Additionally, GOST includes a tool that facilitates the creation, 

design, and execution of test cases.  

Barnier et al. [15] compared multi-agent system testing and 

software testing in an embedded context. The AEIO aspects 

for multi-agent systems were used to analyse key multi-agent 

system testing approaches in this work. In order to test MAS 

on embedded systems, a specific methodology was to be 

provided. Agent test, collective resource test, and acceptance 

test are the three fundamental levels on which the suggested 

methodology was developed.  

Nguyen et al. [13] presented a method for testing 

autonomous agents employing evolutionary optimization to 

create challenging test cases. The authors introduced a 

systematic approach to assess the effectiveness of autonomous 

agents. Initially, stakeholder requirements are translated into 

quality measures, and associated thresholds serve as testing 

criteria. The reliability of autonomous agents is contingent 

upon meeting these criteria. Corresponding fitness functions 

outlining testing objectives are defined to guide the 

evolutionary test generation technique in the automatic 

creation of test cases. 

In studies of El Houda Dehimi [18] and Dehimi et al. [19], 

we propose a new model-based testing method for holonic 

agents. The method makes use of genetic algorithms and 

considers an agent's evolution (successive versions). The 

strategy is divided into two key iterative phases. A new version 

of an agent that is being tested must be found during the first 

phase. The testing of each recently discovered version is 

covered in the second step. To create a behavioural model that 

is based on the creation of test cases, the new version of the 

agent is examined. The process of creating test cases 

concentrates on the new (and/or modified) facets of the agent 

behaviour. In this approach, the technique provides an 

incremental update of the test cases, which is a critical issue.  

Gonçalves et al. [20] provided a thorough technique using 

the Moise+ organisational model for analysing and rating the 
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social level of the MAS. This framework uses a Moise+ 

requirements set as an information artefact mapped in the 

CPN4M coloured Petri net model to generate test cases. The 

test adequacy criteria used by CPN4M are all-paths and 

statetransition path. The shift from Moise+ to CPN has been 

documented in this work, along with the processes for creating 

test cases and running several tests in a case study. The 

findings show that this methodology can improve the degree 

of social level adjustment in a Moise+ model-specified multi-

agent system, highlighting the system context that may cause 

the MAS to fail.  

In study of Dehimi et al. [21], we propose a new method of 

producing test cases that can account for various behavioural 

situations in a multi-agent system. The goal is to locate the 

scenario that generated the detected error among the parallel 

scenarios in the event that an error is identified. In order to 

accomplish this, the method first uses mutation analysis and 

parallel genetic algorithms to pinpoint the instances of the 

agents performing the interactions shown in the sequence 

diagram of the test scenario, and only those instances will be 

used as inputs in the test case. The second part of the technique 

involves identifying the expected outputs of the test case based 

on its inputs, using the activities shown in the activity diagram.  

In study of El Houda et al. [22], we propose a novel 

approach for generating test cases that consider emerging 

interactions stemming from the unpredictable behaviour of 

MAS undergoing testing. This method involves dynamically 

applying a model-based test to each new iteration of the 

system in question. It achieves this by: (i) utilizing the AUML 

sequence diagram of each updated version of the system to 

create test cases that encompass the new interactions 

introduced; (ii) incorporating constraints articulated in OCL, 

essential for executing each interaction to accommodate the 

intricacies of inclusive, exclusive, or parallel interactions 

between agents; and (iii) employing genetic algorithms to 

adhere to the rules governing each interaction. 

These works greatly advanced the field by introducing 

novel MAS test methods, but they did not sufficiently address 

the tests of interactions between agents that can be conducted 

inclusively, exclusively, or in parallel. As a result, these 

approaches can detect errors, but they cannot accurately 

determine the origin of these errors, which complicates the 

error correction phase. In this paper, we introduce a novel test 

case generation method based on the AUML sequence 

diagram that can account for the particularities of interactions 

between agents, which can be carried out inclusively, 

exclusively, or concurrently. The main objective is to ensure 

that no multiple behaviour scenarios are activated when testing 

a particular scenario, and that any errors discovered during 

testing a particular scenario are unrelated to any other 

scenarios that may be running concurrently. 

 

 

3. BASIC CONCEPT OF MBT 

 

Model-Based Testing is an advanced software testing 

methodology based on the use of formal models to represent 

the expected behaviour of a system. The main objective of 

MBT is to automatically generate test cases from these models, 

thereby ensuring exhaustive and systematic coverage of the 

functionalities of the system under test. Indeed, by using 

specialised tools, testers can generate test cases automatically, 

which considerably reduces manual effort and reduces the risk 

of human error. This automation also makes it possible to 

generate a large number of test cases, covering a variety of 

scenarios, including extreme cases and error situations, which 

could be overlooked when creating tests manually. In addition, 

as the models are based on formal system specifications, the 

tests generated are perfectly consistent with the expectations 

defined, ensuring rigorous validation of the requirements. 

MBT is also highly beneficial in terms of maintenance. 

Software systems often evolve, with frequent updates and 

changes to functionality. With traditional testing methods, this 

means manually rewriting the test cases for each change, 

which can be tedious and error-prone. With MBT, on the other 

hand, it is simply a question of updating the model to reflect 

the new specifications. Test cases can then be regenerated 

automatically from the updated model, ensuring that tests 

remain aligned with the new system requirements without the 

need for exhaustive rewriting of test scripts. MBT involves 

several steps to ensure rigorous and systematic validation of 

software systems. The first step is to create a formal model that 

represents the expected behaviour of the system. This model 

can be a finite state machine, a sequence diagram, or any other 

type of formal representation adapted to the system's 

specifications. Next, the test cases are generated from this 

model. Specialised tools are often used to automate this stage, 

enabling tests to be created covering a wide range of possible 

scenarios, including those that are difficult to predict manually. 

The third stage is the execution of the generated tests on the 

real system or a simulation. This involves comparing the 

results obtained with the expectations defined in the model to 

identify any discrepancies. Finally, the analysis of the results 

enables anomalies to be detected and the compliance of the 

system with the specifications to be verified. If faults are found, 

the model and test cases can be updated accordingly, and the 

tests rerun. These iterative steps ensure exhaustive coverage 

and ongoing quality of the system under test. 

MBT is particularly useful for MAS because of the 

complexity and dynamics of their interactions. In MAS, 

autonomous agents interact in often unpredictable ways to 

achieve specific goals or common goals, creating a multitude 

of possible execution scenarios. MBT allows these 

interactions and behaviours to be formally modelled, 

facilitating the automatic generation of exhaustive test cases. 

This makes it possible to cover a wide range of situations, 

including rare scenarios and exception behaviours that are 

difficult to anticipate manually. Using this approach, it is 

possible to systematically check the compliance of individual 

agents and their collective interactions with the specifications 

in various situations. In addition, the ability to easily update 

models to reflect unpredictable changes in MAS behaviour 

ensures that tests remain pertinent, making it easier to cover 

new system behaviours. In this way, MBT offers a powerful 

solution for successfully managing the complexity of multi-

agent systems, guaranteeing better quality and reliability of the 

final system. 

 

 

4. THE PROPOSED APPROACH  

 

The proposed approach involves creating a set of test cases 

based on an AUML sequence diagram, aiming to cover each 

scenario independently. To achieve this, the approach 

introduces plugs for every interaction associated with a 

specific scenario being tested. The plugs are able to eliminate, 

from the interval of inputs compatible with the execution 

constraint of the interactions of this scenario, the part of the 
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inputs compatible with the execution constraints of the other 

interactions involved in the other scenario that can be executed 

in parallel, inclusively, or exclusively with the interactions of 

the scenario under test. This avoids the triggering of the 

execution of several scenarios with the scenario under test, and 

ensures that each error detected during the test of a given 

scenario is not associated with another scenario that can be 

running in parallel with it.  

The approach collects, in the first stage, the information 

necessary for the execution of each interaction (presented in 

the AUML sequences diagram), namely the execution 

constraints of each interaction (expressed in OCL), the range 

of inputs, and the expected outputs of the task that will be 

executed following each interaction, etc. In the second stage, 

the approach applies an algorithm that is able to recalculate the 

execution constraints (collected in the first stage) of each 

interaction. This is to obtain, for each interaction, a new 

execution constraint that contradicts the execution constraints 

of the other interactions that can be performed inclusively, 

exclusively, or in parallel with it. The sub-interval of inputs 

(included in the global range of inputs collected in the first 

stage) compatible with each new constraint only ensures the 

triggering of the execution of the desired interaction. 

Consequently, the union of the sub-intervals of the interactions 

of a given scenario under test ensures the triggering of this 

scenario only, which ensures an individual test for the latter. 

These sub-intervals will be considered as test case inputs and 

can be retrieved from the information already collected. They 

will be used, with their expected outputs, subsequently, for the 

detection of possible errors.  

The approach is divided into three phases (Figure 1). 

 

 
 

Figure 1. The methodology of the proposed approach 

 

Transformation of the AUML sequence diagram into a 

graph: To automate the phases within our approach, we 

employed the AUML sequence diagram to create an 

AUML_SDG graph (AUML Sequence Diagram Graph). In 

this graph, each path Pk represents a scenario Scek in the 

sequence diagram, for which we must find the inputs Inputsk 

that ensure the execution of the interactions of this scenario 

only, and the outputs Outputsk expected for these inputs. Each 

interaction between two agents in the AUML sequence 

diagram is represented by a node (Interaction node type) in the 

graph AUML_SDG that contains the set of information, 

collected from the class diagram and used case diagram, 

necessary for the generation of test cases namely: the 

execution constraints of each interaction (expressed in OCL), 

the range of inputs, and the expected outputs of the task that 

will be executed following each interaction, etc. The 

interaction nodes that can be executed inclusively, exclusively, 

or in parallel are grouped in another node, an AUML node type. 

The latter contains information on how its interaction nodes 

(sub-nodes) are executed (inclusively, exclusively, in parallel). 

This information collected from the AUML sequences 

diagram is necessary for the generation of plugs. 

Generation of test cases: In this phase, we have proposed an 

algorithm to generate a set of test cases (composed of input of 

test cases and expected outputs) from the graph AUML_SDG 

generated in the first phase. These test cases are able to cover 

all the paths of the graph individually. This is ensured by: (i) 

redefining the constraints expressed in OCL of each sub-node 

in the AUML nodes of each path; this redefinition depends on 

how the subs interactions of these nodes are executed; (ii) 

retrieving, from the information already collected, the sub-

interval of inputs that is compatible only with the redefined 

constraints. This sub-interval will be considered as test case 

inputs and their expected outputs will be considered as test 

case outputs.  

(3) Detection of errors: following the generation of test 

cases, the error detection phase begins to identify interaction 

and scenario errors. To achieve this, we execute the agents of 

the system under test using the inputs of the test cases, and 

subsequently compare the obtained results with the expected 

ones.  

The proposed algorithm for the generation of test cases is 

described, together with a formal definition of the proposed 

graph and a description of the error detection phase, in the 

sections that follow. 

 

4.1 The formal definition of the AUML_SDG 

 

AUML_SDG= {Int_N, AUML_N, E, S0, Sf}, where, 

E is the set of transitions from one state to another.  

S0 is the initial node. It contains the Pre-conditions that 

trigger all possible scenarios in the AUML_SDG. This 

information is obtained from the use case diagram. 

Sf is the set of final nodes. It contains the post-condition 

associated with the possible scenarios. This information is 

obtained from the use case diagram. 

Int_N is a set of simple interaction nodes. Each node S_Inti 

 Int_N is defined as follows: S_Inti = {mi, from_Agent, 

to_Agent, inf_Inti}, where, mi is the name of the message, 

from_Agent is the sender of the message, to_Agent is the 

receiver of the message, inf_Inti is a set of information on the 

interactions represented by the node S_Inti. It is defined as 

follows: Inf_Inti = {R_Inputsi, Outputsi, Guard_conditioni} 

where, 

(1) R_Inputsi: represents the range of inputs of the tasks that 

will be executed following the interaction represented by the 

node. This information is collected from the class diagram and 

from constraints, expressed in OCL, specified in the 

corresponding task in the class diagram. 

(2) Outputsi: represents the expected outputs of the tasks 

that will be executed following the interaction represented by 

the node. Theseinformation are collected from the class 

diagram and from the use case diagram. 

(3) Guard_conditioni: is the constraints necessary for the 

execution of the interaction of the node S_Inti. This 

information is collected from constraints, expressed in OCL, 

specified in the sequences diagram. 
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(4) AUML_N is a set of interaction nodes that can be 

executed inclusively, exclusively, or in parallel. Each node 

S_AUMLi  AUML_N is defined as follows: S_AUMLi = 

{Set_Ni, Inf_AUMLi}, where, Set_Ni represents a set of sub-

node of the node S_AUMLi. Each node Sj  Set_Ni can be an 

Int_N or AUML_N, Inf_AUMLi is a set of information on 

S_AUMLi node. It is defined as follows: Inf_AUMLi= {Modei, 

Guard_conditioni}, where, 

(1) Modei represents the way in which the sub-nodes Sj of 

the nodes S_AUMLj are executed. This information can take 

the following values Inclusive, Exclusive, or Parallel. It is 

collected from the AUML sequences diagram. 

(2) Guard_conditioni is the constraint necessary for the 

execution of the interaction of the node S_AUMLi. This 

information is collected from constraints, expressed in OCL, 

specified in the sequences diagram. The guard condition of 

each sub-node Sj of the nodes S_AUMLj will be redefined 

according to the Modei of S_AUMLi, where,  

If Modei = Inclusive then Sj.Guard_condition = 

(Sj.Guard_condition  S_AUMLi.Guard_condition)  ( ! 

Sm.Guard_condition ) where: Sm {Set_Ni – Sj}, 

If Modei = Exclusive then Sj.Guard_condition = 

(Sj.Guard_condition S_AUMLi.Guard_condition) ∩ 

(Sm.Guard_condition) where: Sm = {Set_Ni - Sj}, 

If Modei = Parallel then Sj.Guard_condition = 

S_AUMLi.Guard_condition ( !Sm.next.Guard_condition) 

where, Sm = {Set_Ni - Sj}. 

 

4.2 The algorithm of the test cases generation 

 

The set of test cases T that can cover all potential paths in 

the AUML_SDG can be calculated using the algorithm for test 

case creation (Figure 2). The algorithm does this by doing the 

following steps: 

 

 
 

Figure 2. The algorithm used to generate test cases 

-The generation of all possible paths Pk from the 

AUML_SDG. 

-For each Sj in the path Pk where Sj is a sub-interaction node 

of an AUML_N node S_AUMLi, the algorithm recalculates its 

guard conditions according to Modei of S_AUMLi in order to 

introduce necessary plugs.  

-After redefining the guard condition, the algorithm 

calculates the set of test cases Tk of the path Pk. For this the 

algorithm retrieves, from each Int_N S_Intj, the Range of 

inputs R_Inputsj stored in the nodes of the path Pk, which is 

compatible with the new guard condition. 

When the test cases generation algorithm is applied to an 

AUML SDG, a set of test cases T that may independently 

cover each path of the AUML SDG is obtained. Each resulting 

test case includes a set of inputs that can cover the desired path 

(pk) as well as a set of expected outputs when the agents are 

run with these inputs. It also includes the precondition required 

to execute the path (pk) and the anticipated postcondition upon 

executing the test case's inputs on the system under test's 

agents. The second part of the algorithm, which consists of 

redefining the guard conditions in order to introduce plugs, is 

best illustrated by the following example: 

To cover the interaction Int1 (Figure 3), it is crucial to 

adhere to the guard conditions C0 and C1. To achieve this, it 

is essential that the values of X fall within the range of 10 to 

100, and Y is greater than 0. By doing so, during the error 

detection phase, when executing agents with inputs falling 

within these specified intervals, the agent can successfully 

perform other interactions, namely Int2 and Int3. This is 

because the inputs used for agent execution do not conflict 

with the guard conditions of the other interactions, preventing 

any deviation from the desired testing path that includes Int1. 

 

 
 

Figure 3. Inclusive interaction 

 

To prevent such deviation, it is necessary to redefine the 

guard conditions C1. This involves transforming them into C1 

= C0 ∪ C1 ∪ (!C2 ∪ !C3). Consequently, the new conditions 

require that X is in the range of 18 to 100, and Y is greater than 

19. This adjustment ensures that the inputs used for agent 

execution exclusively cover the interaction Int1. As a result, 

any errors detected in a particular scenario are not associated 

with another scenario executed concurrently or in parallel, 

maintaining the desired testing focus. 

 

4.3 Detection of errors 

 

For error detection, it is sufficient to compare (for each path 

Pk) the expected outputs and the outputs attained after the 

agents' execution. There may be an interaction error if the 

obtained results do not match the expected ones, and there may 

be a scenario error if the obtained post-condition does not 

match the expected one. Figure 4 summarizes the error 

detection process. 
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Figure 4. Error detection process 

 

 

5. CASE STUDY 

 

To validate our approach, we apply it to a concrete case 

study involving a Planning and Distribution System (PDS). 

The PDS is designed to optimize the logistics of transporting 

goods by assigning driver agents to deliver specific quantities 

of products to designated points (xi). These points are located 

within specified geographic zones, which can include zone A, 

zone B, or a combination of both (xi ∈ A or xi ∈ B or xi ∈ A 

∪ B). The actors involved in this system are: 

Agent GUI: represents the interface between the user and 

the PDS. 

Human resource agent: responsible for managing and 

assigning tasks to the various driver agents, namely the drivers 

of zone A or B. 

Material resource agent: responsible for managing and 
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assigning tasks to the various truck agents, namely light or 

heavy trucks. 

Truck agent: responsible for transport, once the goods are 

assigned to it depending on the number of goods to be 

transported; there are two types of trucks, namely: 

-Light truck: which transports a number of goods less than 

or equal to 100 units. 

-Heavy truck: which transports a number of goods greater 

than 100 units. 

Driver: responsible for transporting the goods to 

destination points in zones A or B. There are two types of 

drivers for this: 

-Zone A driver: transports the goods only to destination 

points belonging to zone A. 

-Zone B driver: transports the goods only to destination 

points belonging to zone B. 

Depending on the overall number of goods to be transported 

(equal to the sum of the quantities transported to the various 

points xi), the Material Resource agent sends a request to 

specialized light or heavy truck agents. These trucks, 

depending on their availability, can accept or refuse requests 

from the Material Resource agent. The user has the option of 

choosing the express service where particular trucks are 

provided with a high transport capacity in terms of transport 

time. At the same time, depending on the recipient zone A or 

B, the Human Resource agent sends a request to zone A driver 

agents and/or zone B driver agents. These drivers, depending 

on their availability, can accept or refuse the request. Once the 

requested quantity is appropriately allocated to trucks and 

drivers, the material and human resource agents each establish 

a transport plan.  

The transport plan includes the following elements: 

The identifier of the zone driver who is responsible for 

transporting the requested quantity to the destination zones. 

The identifier of the light or heavy truck agent who is 

responsible for transporting the requested quantity. 

The quantity to be transported. 

The type of transport service selected, namely: Simple or 

express. 

The various parameters linked to the agents themselves, 

namely the availability of light or heavy truck agents and the 

availability of drivers. 

The AUML SDG graph creation, test case generation, and 

error detection are the three stages of our technique that are 

required for testing the PDS system, and we will detail each of 

these in the sections that follow. Following the usage of a 

software tool that we have built, the findings shown in each 

phase are obtained automatically. 

 

5.1 Generation of the AUML_SDG graph from the AUML 

sequence diagram  

 

The generation of the AUML_SDG graph represents the 

first step in the process of generating the test cases. It is done 

automatically based on the three AUML diagrams involved in 

the modelling of the system studied, namely the AUML 

sequence diagram (Figure 5) for the creation of the various 

nodes of the AUML_SDG graph (the simple nodes and the 

AUML nodes), Use Case Diagram (Figure 6), and Agent Class 

Diagram (Figure 7) for the filling of the nodes by the necessary 

information during the generation of the test cases.  

The generation of the AUML_SDG graph goes through an 

intermediate step which consists of transforming, first of all, 

the sequence diagram, use case diagram, and agent class 

diagram into an XML file. The purpose of this is to simplify 

the creation and the filling of the various nodes of the graph. 

 

 

 
 

Figure 5. Sequence diagram of the "PDS" 
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Figure 6. Use case diagram of the "PDS" 

 

 
 

Figure 7. Class diagram of the PDS 
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Figure 8 represents the generated AUML_SDG graph, each 

node of which represents an interaction. It contains all the 

information necessary for the generation of test cases. All 

nodes in a dotted circle are nodes included in an AUML type 

node (an AUML interaction) where the blue node represents 

parallel interactions, the green node represents inclusive 

interactions, and the red nodes represent exclusives 

interactions. 

 

5.2 Test case generation 

 

In this phase, the test case generation algorithm is applied 

to the generated AUML_SDG. Table 1 represents the 

generated paths from the graph AUML_SDG. Each path Pk of 

the graph G represents a possible behaviour scenario Scek for 

the system under test. 

After generating all paths from the graph AUML_SDG, the 

algorithm recalculates the guard conditions of each sub-

interaction node Sj (according to Modei of S_AUMLi in which 

it belongs) in order to introduce the necessary plugs. Table 2 

represents the new guards of each sub-interaction node Sj of 

each path after the introduction of the plugs. 

After redefining the guard condition, the algorithm 

calculates the set of test cases Tk of the path Pk. For this the 

algorithm retrieves the Range of inputs R_Inputsj stored in the 

nodes of the path Pk, which is compatible with the new guard 

condition. Parts 1, 2, and 3 represent the test cases that have 

been generated. 

 

 
 

Figure 8. The generated AUML_SDG graph 

 

Table 1. Generated paths (all paths) 

 
All 

Paths 
Generated Paths 

Sce 1 Initial S2: (m2,gui, RH) Final_2    

Sce 2 Initial S2: (m2, GUI, RH) S15: (c16, m15, RH, driver) 
S17: (c18, m17, driverA, 

RH) 
S22: (m22, RH, gui) Final_5 

Sce 3 Initial S2: (m2, GUI, RH) S15: (c16, m15, RH, driver) 
S18: (c19, m18, driverA, 

RH) 
Final_4  

Sce 4 Initial S2: (m2, gui, RH) 
S16: (c17, m16, RH, 

driverB) 

S19: (c20, m19, driverB, 

RH) 
S22: (m22, RH, gui) Final_5 

Sce 5 Initial S2: (m2, gui, RH) S16: (c17, m16, RH,driver) S20: (c21, m20, driverB, R) Final_3  

Sce 6 Initial S1: (m1, GUI,RM) Final_1    

Sce 7 Initial S1: (m1,GUI,RM) S3: (c4, m3, RM, FLT) S7: (c8,m7, FLT,RM ) S21: (m21,RM, gui) Final_5 

Sce 8 Initial S1: (m1, GUI,RM) S3: (c4, m3, RM,FL) S8: (c9, m8,FLT, RM) Final_4  

Sce 9 Initial S1: (m1, GUI,RM) S4: (c5, m4, RMLT) S9: (c10, m9,LT, RM) 
S21: (m21, RM, 

gui) 
Final_5 

Sce 10 Initial 
S1: (m1, GUI, 

RM) 
S4: (c5, m4, RM, LT) S10 (c11, m10, LT, RM) Final_4  

Sce 11 Initial 
S1: (m1, GUI, 

RM) 
S5: (c6, m5,RM, FHT) S11: (c12, m11, FHT, RM) 

S21: (m21, RM, 

gui) 
Final_5 

Sce 12 Initial S1: (m1, GUI,RM) S5: (c6, m5, RM, FHT ) S12: (c13, m12, FHT, RM) Final_4  

Sce 13 Initial S1: (m1, GUI,RM) S6: (c7,m6, RM,HT) S13: (c14, m13, HT, RM) 
S21: (m21, RM, 

gui) 
Final_5 

Sce 14 Initial S1: (m1, GUI,RM) S6: (c7, m6, RM, HT) S14: (c15, m14, HT, RM) Final_4  
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Table 2. The new guards of the nodes of each path after the introduction of the plugs 

 
AUML_N New Guards AUML_N New Guards 

P 

 

S1.guard= Sp. guard(!SIn. guard) 

S2.guard= Sp. guard(!SE4. guard) 

Sp. guard= Ø 

S1.guard = Ø∪ (xi∉A et/ou xi∉B) 

S1.guard= xi∉A et/ou xi∉B 

S2.guard = Ø∪ (∑Q≤100) 

S2.guard=∑Q≤100 

E5 

 

S9.guard=(S9.guardSE5.guard)∩(S10.guar

d) 

S10.guard=(S10.guardSE5.guard)∩(S9.gu

ard) 

SE5.guard= Ø 

S.9guard =(Nb>0∪Ø)∩(Nb<0) 

S.9guard =(Nb>0∪Ø)∩(Nb<0) 

S.10guard = (Nb<0∪Ø)∩(Nb>0) 

S.10guard = (Nb<0∪Ø)∩(Nb>0) 

E1 

 

S3.guard=(S3.guardSE1.guard)∩(S4.gua

rd) 

S4.guard=(S4.guardSE1.guard)∩(S3.gua

rd) 

SE1.guard= ∑Q<100 

S3.guard =(FS=1∑Q<100)∩(FS=0) 

S3.guard= FS=1∑Q<100)∩(FS=0) 

S4.guard = (FS=0∑Q<100)∩(FS=1) 

S3.guard= (FS=1∑Q<100)∩(FS=0) 

S4.guard= FS=0∑Q<100)∩(FS=1) 

E6 

 

S11.guard=(S11.guard∪SE6.guard)∩(S12.g

uard) 

S12.guard=(S12.guard∪SE6.guard)∩(S11.g

uard) 

SE6.guard= Ø 

S11.guard =(Nb>0∪Ø)∩(Nb<0) 

S.11guard =(Nb>0∪Ø)∩(Nb<0) 

S12.guard = (Nb<0∪Ø)∩(Nb>0) 

S.12guard =(Nb<0∪Ø)∩(Nb>0) 

E2 

 

S5.guard=(S5.guard∪SE2.guard)∩(S6.gua

rd) 

S6.guard=(S6.guard∪SE2.guard)∩(S5.gua

rd) 

SE2.guard= ∑Q>100 

S5.guard =(FS=1∑Q>100)∩(FS=0) 

S5.guard= FS=1∑Q>100∩(FS=0) 

S6.guard = (FS=0∑Q>100)∩(FS=1) 

S6.guard= FS=0∑Q>100∩(FS=1) 

E7 

 

S13.guard=(S13.guard∪SE7.guard)∩(S14.g

uard) 

S14.guard=(S14.guard∪SE7.guard)∩(S13.g

uard) 

SE7.guard= Ø 

S.13guard =(Nb>0∪Ø)∩(Nb<0)  

S.14guard = (Nb<0∪Ø)∩(Nb>0) 

S.13guard =(Nb>0∪Ø)∩(Nb<0) 

S.14guard =(Nb<0∪Ø)∩(Nb>0) 

E3 

 
 

S7.guard=(S7.guard∪SE3.guard)∩(S8.gua

rd) 

S8.guard=(S8.guard∪SE3.guard)∩(S7.gua

rd) 

SE3.guard= Ø 

S.7guard =(Nb>0Ø)∩(Nb<0) 

S7.guard= (Nb>0Ø)∩(Nb<0) 

S.8guard = (Nb<0Ø)∩(Nb>0) 

S8.guard= (Nb<0Ø)∩(Nb>0) 

In 

 

S15.guard=(S15.guard∪SIn.guard)∪(!S16.g

uard) 

S16.guard=(S16.guard∪SIn.guard)∪(!S15.g

uard) 

SIn.guard= xi∊A et/ou xi∊B 

S15.guard = (xi∊A ∪ xi∊A et/ou xi∊B) ∪ 

(xi∉B) 

S16.guard = (xi∊B ∪ xi∊A et/ou xi∊B) ∩ 

(xi∉A)  

E4 

 

SE1.guard=(SE1.guard∪SE4.guard)∩(SE2.g

uard) 

SE2.guard=(SE2.guard∪SE4.guard)∩(SE1.g

uard) 

SE4.guard= =∑Q≤100 

SE1.guard 

=(∑Q<100∪∑Q≤100)∩(∑Q>100) 

SE2.guard = 

(∑Q>100∪∑Q≤100)∩(∑Q<100) 

E8 

 

S17.guard=(S17.guard∪SE8.guard)∩(S18.g

uard) 

S18.guard=(S18.guard∪SE8.guard)∩(S17.g

uard) 

SE8.guard= Ø 

S.17guard =(Nb>0∪Ø)∩(Nb<0) 

S.18guard = (Nb<0∪Ø)∩(Nb>0) 

S.17guard =(Nb>0)∩(Nb<0) 

S.18guard =(Nb<0)∩(Nb>0) 

E9 

 

S19.guard=(S19.guard∪SE9.guard)∩(S20.guard) 

S20.guard=(S20.guard∪SE9.guard)∩(S19.guard) 

SE9.guard= Ø 

S.19guard =(Nb>0∪Ø)∩(Nb<0) 

S.20guard =(Nb<0∪Ø)∩(Nb>0) 

S.19guard =(Nb>0∪Ø)∩(Nb<0) 

S.20guard = (Nb<0∪Ø)∩(Nb>0) 

 

Precondition: The system is ready to receive request 

 

Test case of Scenario_1 (initial/2/final) 

T_Scenario_1 = {Precondition: The user sends a 

Request, Input: ∑Q≤0, (Xi not in A) ∩ (Xi not in B), Output: 

Displays “send the quantity to transported to the trucks”, 

Displays “not available Xi points”, Displays” RH plan: not 

available drivers”, Postcondition: Displays” repeat your 

request”} 

Possible test case for scenario_1 

Case1 

Input: quantity1=0, quantity2=0, quantity3=0, (Xi not in 

A) ∩ (Xi not in B) 

Output: Displays “send the quantity to transported to the 

trucks” 

Displays “don’t send the Xi points to the drivers A, B” 

Displays “drivers not available” 

Postcondition: Displays” repeat your request” 

 

Test case of Scenario_2 (initial/2/15/17/22/final) 

T_Scenario_2 = {Precondition: The user sends a 

Request, Input: ∑Q≤0, Xi in A, Nbdriver A>0, Output: 
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Displays “send the quantity to transported to the trucks”, 

Displays “send the Xi points to the drivers A, B”, Displays 

“send Xi in A”, Displays “driver A accept the request”, 

Postcondition: Displays “RH plan: driver A is available”} 

Possible test case for scenario_2 

Case1 

Input: quantity1=0, quantity2=0, quantity3=0, Xi in A, 

Nbdriver A>0 

Output: Displays “send the quantity to transported to the 

trucks” 

Displays “send the Xi points to the drivers A, B” 

Displays “send Xi in A” 

Displays “driver A accept the request” 

Postcondition: Displays “RH plan: driver A is available” 

Test case of Scenario_3 (initial/2/15/18/final) 

T_Scenario_3 = {Precondition: The user sends a 

Request, Input: ∑Q≤0, Xi in A, Nbdriver A<0, Output: 

Displays “send the quantity to transported to the trucks”, 

Displays “send the Xi points to the drivers A, B”, Displays 

“send Xi in A”, Displays” driver A refuse the request 

Postcondition: Displays “driver A is not available”} 

Possible test case for scenario_3 

Case1 

Input: quantity1=0, quantity2=0, quantity3=0, Xi in A, 

Nbdriver A>0 

Output: Displays “send the quantity to transported to the 

trucks” 

Displays “send the Xi points to the drivers A, B” 

Displays “send Xi in A” 

Displays “driver A refuse the request” 

Postcondition: Displays “driver A is not available” 

Test case of Scenario_4 (initial/2/16/19/22/final) 

T_Scenario_4 = {Precondition: The user sends a 

Request, Input: ∑Q≤0, Xi in B, Nbdriver B>0, Output: 

Displays “send the quantity to transported to the trucks”, 

Displays “send the Xi points to the drivers A, B”, Displays 

“send Xi in B”, Displays “driver B accept the request”, 

Postcondition: Displays “RH plan: driver B is available”} 

Possible test case for scenario_4 

Case1 

Input: quantity1=0, quantity2=0, quantity3=0, Xi in B, 

Nbdriver B>0 

Output: Displays “send the quantity to transported to the 

trucks” 

Displays “send the Xi points to the drivers A, B” 

Displays “send Xi in B” 

Displays “driver B accept the request” 

Postcondition: Displays “RH plan: driver B is available” 

Test case of Scenario_5 (initial/2/16/20/final) 

T_Scenario_5 = {Precondition: The user sends a 

Request, Input: ∑Q≤0, Xi in B, NbdriverB<0, Output: 

Displays “send the quantity to transported to the trucks”, 

Displays “send the Xi points to the drivers A, B”, Displays 

“send Xi in B”, Displays “driver B refuse the request”, 

Postcondition: Displays “driver B is not available”,} 

Possible test case for scenario_5 

Case1 

Input: quantity1=0, quantity2=0, quantity3=0, Xi in A, 

Nb driver B<0 

Output: Displays “send the quantity to transported to the 

trucks” 

 Displays “send the Xi points to the drivers A, B” 

 Displays “send Xi in B” 

 Displays “driver B refuses the request” 

Postcondition: Displays “driver B is not available” 

Test case of Scenario_6 (initial/1/final) 

T_Scenario_6 = {Precondition: The user sends a 

Request, Input: ∑Q≤0, (Xi not in A) ∩ (Xi not in B), Output: 

Displays “send the quantity to transported to the trucks”, 

Displays “not available Xi points”, Displays” drivers not 

available”, Postcondition: Displays “repeat your request”} 

Possible test case for scenario_6 

Case1 

Input: quantity1=0, quantity2=0, quantity3=0, (Xinot in 

A) ∩ (Xinot in B) 

Output: Displays “send the quantity to transported to the 

trucks” 

    Displays “don’t send the Xi points to the drivers A, B” 

    Displays “quantity not available” 

Postcondition: Displays “repeat your request” 

Test case of Scenario_7 (initial/1/3/7/21/final) 

T_Scenario_7 = {Precondition: The user sends a 

Request, Input: ∑Q<100,(Xinot in A) ∩ (Xi not in 

B),FS=true, NbFLT>0, Output: Displays “send the quantity 

to transported to the trucks”, Displays “don’t send the Xi 

points to the drivers A,B”, Displays “the fast service is 

available”, Displays “the fast light truck accept the 

request”, Postcondition: Displays “RM plan: Fast Light 

Truck is available”} 

Possible test case for scenario_7 

Case1 

Input: quantity1=10, quantity2=50, quantity3=20, 

FS=true, NbFLT>0 

Output: Displays “don’t send the Xi points to the drivers 

A, B” 

    Displays “the fast service is available” 

    Displays “the fast light truck accept the request” 

Postcondition: Displays “RM plan: Fast Light Truck is 

available”} 

 

Test case of Scenario_8 (initial/1/3/8/final) 

T_Scenario_8 = {Precondition: The user sends a 

Request, Input: Q<100, (Xinot in A) ∩ (Xinot in B), 

FS=true, NbFLT<0, Output: Displays “send the quantity to 

transported to the trucks”, Displays “don’t send the Xi 

points to the drivers A, B”, Displays “the fast service is 

available”, Displays “the fast light truck refuse the request”, 

Postcondition: Displays “Fast Light Truck is not 

available”} 

Possible test case for scenario_8 

Case1 

Input: quantity1=30, quantity2=15, quantity3=25, 

FS=true, NbFLT<0 

Output: Displays “don’t send 

the Xi points to the drivers A, B” 

    Displays “the fast service is available” 

    Displays “the fast light truck refuse the request” 

Postcondition: Displays “Fast Light Truck is not 

available”} 

 

Test case of Scenario_9 (initial/1/4/9/21/final) 

T_Scenario_9 = {Precondition: The user sends a 

Request, Input: ∑Q<100, (Xi not in A) ∩ (Xi not in B), 

FS=false, NbLT>0, Output: Displays “send the quantity to 

transported to the trucks”, Displays “don’t send the Xi 

points to the drivers A, B”, Displays “the fast service is not 

available”, Displays “the light truck accept the request”, 

Postcondition: Displays “RM plan: Light Truck is 
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available”} 

Possible test case for scenario_9 

Case1 

Input: quantity1=5, quantity2=30, quantity3=40, 

FS=false, NbLT>0 

Output: Displays “don’t send the Xi points to the drivers 

A, B” 

    Displays “the fast service is not available” 

    Displays “the light truck accept the request” 

Postcondition: Displays “RM plan: Light Truck is 

available”} 

 

Test case of Scenario_10 (initial/1/4/10/final) 

T_Scenario_10 = {Precondition: The user sends a 

Request, Input: Q<100, (Xi not in A) ∩ (Xi not in 

B),FS=false, NbLT<0, Output: Displays “send the quantity 

to transported to the trucks ”,Displays ”don’t send the Xi 

points to the drivers A,B”, Displays “the fast service is not 

available”, Displays “the light truck refuse the request”, 

Postcondition: Displays ”Light Truck is not available”} 

Possible test case for scenario_10 

Case1 

Input: quantity1=11, quantity2=65, quantity3=18, FS= 

false, NbLT<0 

Output: Displays “don’t send the Xi points to the drivers 

A, B” 

    Displays “the fast service is not available” 

    Displays “the light truck refuse the request” 

Postcondition: Displays” Light Truck is not available”} 

Test case of Scenario_11 (initial/1/5/11/21/final) 

T_Scenario_11 = {Precondition: The user sends a 

Request, Input: ∑Q>100,(Xinot in A) ∩ (Xi not in 

B),FS=true, NbFHT>0, Output: Displays “send the quantity 

to transported to the trucks”, Displays “don’t send the Xi 

points to the drivers A,B”, Displays “the fast service is 

available”, Displays “the fast heavy truck accept the 

request”, Postcondition: Displays ”RM plan: fast heavy 

truck is available”} 

Possible test case for scenario_11 

Case1 

Input: quantity1=40, quantity2=55, quantity3=60, 

FS=true, NbFHT>0 

Output: Displays “don’t send the Xi points to the drivers 

A, B” 

    Displays “the fast service is available” 

    Displays “the fast heavy truck accept the request” 

 

Postcondition: Displays “RM plan: fast heavy truck is 

available”} 

Test case of Scenario_12 (initial/1/5/12/final) 

T_Scenario_12 = {Precondition: The user sends a 

Request, Input: Q>100, (Xi not in A) ∩ (Xi not in B), 

FS=true, NbFHT<0, Output: Displays “send the quantity to 

transported to the trucks”, Displays “don’t send the Xi 

points to the drivers A,B”, Displays “the fast service is 

available”, Displays “the fast heavy truck refuse the 

request”, Postcondition: Displays “fast heavy truck is not 

available”} 

 

Possible test case for scenario_12 

Case1 

Input: quantity1=25, quantity2=56, quantity3=80, 

FS=true, NbFHT<0 

Output: Displays “don’t send the Xi points to the drivers 

A, B” 

    Displays “the fast service is available” 

    Displays “the fast heavy truck refuse the request” 

Postcondition: Displays” fast heavy truck is not 

available”} 

 

Test case of Scenario_13 (initial/1/6/13/21/final) 

T_Scenario_13 = {Precondition: The user sends a 

Request, Input: ∑Q>100, (Xi not in A) ∩ (Xi not in B), 

FS=false, NbHT>0, Output: Displays “send the quantity to 

transported to the trucks”, Displays “don’t send the Xi 

points to the drivers A,B”, Displays “the fast service is 

available ”,Displays ”the heavy truck accept the request”, 

Postcondition: Displays ”RM plan: heavy truck is 

available”} 

Possible test case for scenario_13 

Case1 

Input: quantity1=70, quantity2=69, quantity3=45, 

FS=true, NbHT>0 

Output: Displays “don’t send the Xi points to the drivers 

A, B” 

    Displays “the fast service is not available” 

    Displays “the fast heavy truck accept the request” 

Postcondition: Displays” RM plan: heavy truck is 

available”} 

 

Test case of Scenario_14 (initial/1/6/14/final) 

T_Scenario_14 = {Precondition: The user sends a 

Request, Input: Q>100, (Xi not in A) ∩ (Xi not in B), 

FS=false, NbHT<0, Output: Displays “send the quantity to 

transported to the trucks”, Displays “don’t send the Xi 

points to the drivers A, B”, Displays “the fast service is not 

available”, Displays “the heavy truck refuse the request”, 

Postcondition: Displays “heavy truck is not available”} 

Possible test case for scenario_14 

Case1 

Input: quantity1=50, quantity2=76, quantity3=96, FS= 

false, NbHT<0 

Output: Displays “don’t send the Xi points to the drivers 

A, B” 

    Displays “the fast service is not available” 

    Displays “the heavy truck refuse the request” 

Postcondition: Displays” heavy truck is not available”} 

 

Postcondition: Displays “Enter your request” 

 

5.3 Detection of errors 

 

This phase requires running the system with test case inputs 

and comparing the obtained results with the expected ones. 

The purpose is to determine if there are any interactions or 

scenario errors. For instance, Figure 9 shows a case where no 

errors are detected which means that we have conformity 

between the obtained results and the expected results. 

However, Figure 10 shows the existence of an error in 

interaction 5 which means that there is no conformity between 

the results obtained and the expected results. Although 

interactions 2, 15, and 17 of the tested scenarios (scenario 2) 

run in parallel, exclusively, and inclusively with interactions 1, 

16, and 18 respectively, these latter were not performed. This 

is guaranteed by the introduction of plugs that minimized the 

interval of test case inputs. Indeed, when running agents of the 

system under test with these inputs (whose interval is 

minimized), agents find themselves forced to perform only the 
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desired interactions. In this way, it will be possible to ensure 

that each detected error in a given scenario is not associated 

with another scenario running simultaneously or in parallel.  

 

 
 

Figure 9. End of test with no error 

 

 
 

Figure 10. End of test with the detection of an error 

 

5.4 Discussion and limitations 

 

By applying our testing approach to the chosen case study, 

we were able to show how important it is to test each 

interaction and behavioural scenario separately. In reality, this 

has made it possible for us to pinpoint the interactions and 

scenarios that, in the case of error detection, led to the 

observed error among those that were operating concurrently, 

making it easier to repair the problems that were found.  

Through the implementation of our testing approach on the 

selected case study, we successfully demonstrated the critical 

importance of individually testing each interaction and 

behavioural scenario. This approach allowed us to precisely 

identify the specific interactions and scenarios that, when 

scrutinized for error detection, directly contributed to the 

observed errors within the system. Indeed, by isolating and 

examining each interaction and behavioural scenario 

separately, our testing methodology provided a nuanced 

understanding of system behaviour, enhancing the overall 

effectiveness of error detection and remediation efforts. 

Despite its strengths, our approach cannot be applied for 

some systems where the execution constraints of the 

interactions are not available due to the complexity and 

indeterminism of these systems. Furthermore, our 

methodology is not suitable for application in open multi-

agent systems, where the introduction of new interactions is 

possible upon the inclusion of new agents in the system [24, 

25]. Specifically, the test case inputs generated through our 

approach, aimed at ensuring comprehensive coverage of 

behavioural scenarios during system testing, may lack 

relevance when confronted with the emergence of new 

interactions due to the involvement of additional agents. 

Additionally, the generation of test case outputs poses 

challenges since it relies on meta-models that articulate the 

behaviour expected from new agents joining the system. 

 

 

6. CONCLUSION 

 

MAS testing continues to be understudied despite the rapid 

developments of MAS. Despite the fact that there have been 

only a few proposals in the literature addressing the testing of 

MAS, these proposals have made a considerable impact in this 

area. Nonetheless, they have not taken into account the 

particulars of the interactions between the agents that can be 

carried out solely, inclusively, or in parallel. In this paper, we 

have presented a new model-based testing approach for testing 

agent interactions in a multi-agent system. The suggested 

approach considers the distinctive properties of interactions 

between agents that can operate inclusively, exclusively, or in 

parallel. In reality, the approach is able to generate a set of test 

cases that cover each interaction and each scenario separately, 

indicating that any errors discovered in one interaction or 

scenario are independent of any errors discovered in other 

scenarios that are run simultaneously with it. For this, the 

AUML sequences diagram is utilised as a model, and the OCL 

constraints are employed to introduce the appropriate plugs. 

The proposed approach, supported by the tool that we have 

developed, has been validated in a concrete case study: PDS 

« Planning and Distribution System». Based on the obtained 

results, it would be interesting to incorporate our tool into 

agent development platforms as a separate library, to facilitate 

the process of testing interactions between the agents. In the 

short and medium term, we plan to adapt our approach to the 

complexities of open multi-agent systems. This strategic 

evolution involves extending the applicability of our testing 

methodology to scenarios where new agents can dynamically 

join the system, introducing additional complexity. Our goal 

is to fortify the versatility of our approach, making it adaptable 

to the evolving landscape of multi-agent systems and ensuring 

its continued relevance in addressing the challenges posed by 

open and dynamic environments.  
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