

Lightweight Pseudo Random Number Generator for Embedded Systems

Andi Sama1* , Meyliana2 , Yaya Heryadi1 , Taufik Roni Sahroni3

1 Computer Science Department BINUS Graduate Program - Doctor of Computer Science, Bina Nusantara University, Jakarta

11480, Indonesia
2 Information System Department School of Information System, Bina Nusantara University, Jakarta 11480, Indonesia
3 Industrial Engineering Department BINUS Graduate Program - Master of Industrial Engineering, Bina Nusantara University,

Jakarta 11480, Indonesia

Corresponding Author Email: andi.sama@binus.ac.id

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.140409

ABSTRACT

Received: 11 May 2024

Revised: 16 July 2024

Accepted: 1 August 2024

Available online: 30 August 2024

 A cryptography algorithm for data transfer encryption provides confidentiality, requires

considerable computing power, and is not commonly implemented in embedded systems

with limited computing power, such as Programmable Logic Controller (PLC). PLC is

the core component for automation and control in industrial automation. For decades, PLC

has prioritized speed over security; program execution in PLC must be as efficient as

possible. The cryptography algorithm uses a seed, the initialization vector, to encrypt the

data with the cryptography key to strengthen the encryption. Pseudo Random Number

Generator (PRNG) can be used as the initialization vector. This paper proposes the

XORasm PRNG algorithm, the lightweight XORshift-based algorithm with a modified

seed from the system’s clock. The applied methodology generates and visualizes PRNG,

tests the randomness, and implements the PRNG on compact PLC. XORasm is evaluated

statistically with runs-test in simulation by comparing the algorithm to one of the

simulated compact PLC’s PRNG implementations. The findings from this research are

that p-values demonstrate that XORasm is statistically and significantly more random than

the current implementation, and there is evidence that XORasm’s generated data

distribution is practically random at a 99.95% confidence level, suitable for

implementation in embedded systems as a lightweight PRNG.

Keywords:

embedded system, lightweight, PLC, PRNG,

programmable logic controller, pseudo-

random number generator, runs-test,

simulation

1. INTRODUCTION

In Industrial Automation, Manufacturers of embedded

systems like PLC design simple and very efficient algorithms

[1]. Automation and control have existed for decades [2]. One

of the earliest industrial automation papers was in

“Cybernetics: or Control and Communication in the Animal

and Machine” by Wiener, N. in 1948 [3]. There are four eras:

1. early control (before 1900), 2. pre-classical (1900-1940), 3.

classical (1935-1960), and 4. modern control (1995-now). The

Industrial Revolution was referenced in 1776 [4].

Since the 1970s, PLC [5, 6], the core automation component

in industrial automation [7], has been the catalyst for

revolutionizing the industrial transition from mechanical

(Industry 2.0) to computerized (Industry 3.0) by replacing

mechanical timers, counters, and relays with programmable

equivalents.

As part of the embedded systems (a set of hardware and

software with limited computing power and resources

designed for a specific purpose [8]), there are some identified

issues in PLC security [9]. As PLC prioritizes speed over

security, for many years, security has been a significant

concern [10]. Typical attacks exploit the PLC-based system’s

vulnerabilities in the communication industry protocols. The

payload attack is a key concern against data integrity in

Industry 4.0, particularly in IT/OT integration [11].

Encryption is part of the confidentiality of cryptography,

which protects data at rest or in transit. Without encryption,

data is stored or transferred in plaintext [12, 13].

Cryptography algorithms depend on an initialization vector,

a fixed value, or randomly generated by RNG for increased

security [14]. The lack of implementation of RNG in

embedded systems such as PLC makes it challenging to

perform security-related functions, such as data encryption.

The initialization vector is typically used as the seed for

modern cryptography algorithms, AES, for example, the

accepted standard of symmetric encryption [15, 16], widely

adopted since weaknesses found in DES and 3DES [17].

Existing PLCs mostly run at 32 bits—thus, the addressing

capacity is up to 232 (4,294,967,296) locations. A 64-bit PLC

with an addressing capacity of up to 264 locations is less likely

to be needed. Older PLCs run at 8 or 16 bits.

RNG is commonly implemented as PRNG (usually

software-based) [18, 19] rather than TRNG [20, 21], usually

hardware-based [22-25]. PRNG is a trivial function in high-

level programming languages (e.g., Java or Python). There is

also a hardware implementation [7]. In PLC, RNG is not

usually part of the standard functionalities in the PLC’s

common programming languages: LAD/LLD, ST/STX, SFC,

or FB.

International Journal of Safety and Security Engineering
Vol. 14, No. 4, August, 2024, pp. 1107-1114

Journal homepage: http://iieta.org/journals/ijsse

1107

https://orcid.org/0009-0005-1700-7051
https://orcid.org/0000-0003-4142-4312
https://orcid.org/0000-0001-7966-2573
https://orcid.org/0000-0002-8497-3947
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.140409&domain=pdf

Figure 1. Paper organization

Stronger PRNG is possible (64 bits and above) for PC or PC

Servers based on the XORshift algorithm (fast and lightweight)

[26] and further explored in previous studies [27, 28].

However, PLCs, as embedded systems, commonly operate in

32 bits. While PRNG has been implemented using the system

timer, the PRNG algorithm for generating better randomness

for embedded systems such as PLCs is underexplored.

The research questions in this paper are RQ1: “Can we have

a better PRNG algorithm for lightweight embedded systems?”

RQ2: What is the base for measuring such an algorithm, and

how can we measure such an algorithm for better randomness?”

and RQ3: How can we apply the algorithm to embedded

systems?”

The key theoretical contribution in this paper is the

XORasm PRNG algorithm, the PRNG-type algorithm based

on the XORshift algorithm, targeted for lightweight, low-

power computing systems with generated random numbers

that are statistically proven and randomly distributed at a

99.95% significance level. The main practical contribution is

that XORasm can be used as the PRNG for lightweight, low-

power computing power embedded systems. This is

demonstrated through experiments on the actual PLC.

Figure 1 illustrates the paper organization. It starts with the

introduction, followed by the method and main results, and

ends with the discussion and conclusion sections. The method

consists of four stages: generating random numbers,

visualizing the generated random numbers, testing for

randomness, and practical implementation on the actual PLC.

2. METHOD

Figure 2 illustrates the four stages to generate two different

sets of random numbers. A: Generate two sets of random

numbers with XORasm and LGF algorithms, B: Visualize the

generated random numbers, C: Test with runs-test in dieharder

testing suite [29] to produce p-values and analyze the

randomness using p-values, and D: Implement the XORasm

on an embedded system (using FB, LAD, and ST

programming language on a PLC). One implementation of

RNG in PLC is in Siemens’ LGF.

2.1 Stage A – Random number generation

First, 32-bit random numbers are generated with XORasm–

simulated in a laptop rather than in PLC due to constrained

resources. Second, 32-bit random numbers are also generated

with a simulated Siemens LGF random function in the same

laptop. In this stage within Figure 1, XORasm and simulated

LGF random functions generate 2 to the power of 32 random

numbers. This is written as pow (2, 32) in C language. The

pow (base, exponent) is a function as part of the math library.

With 4 Bytes for each random number (32 bits equals 4 Bytes),

the 232 random numbers stored in disk space are 4 Bytes times

4,294,967,296, which equals 17,179,869,184 Bytes (16GB).

Therefore, two datasets of four billion random numbers, with

a size of 4 Bytes for each random number, totaling 16GB per

file, are generated. Those two datasets are treated as two

different independent distributions.

Figure 3 illustrates the pseudocode for generating seed for

XORshift. On the right is the pseudocode of XORshift (run

multiple times). In combination, the code is called XORasm.

The seed is generated by computing the nanosecond portion of

system time and storing it in 32 bits as unsigned integers. XOR

operation with log2(232) is performed on each Byte of the

system time. For the 32 bits, the system time is XOR-ed with

the constant 0x05050505 (0x represents the following values

in hexadecimal), which enhances randomness. The seed,

representing the initial value of the XORshift algorithm, is

stored in a file for reproducibility.

Figure 2. Method for generating, visualizing, and testing random numbers

1108

Figure 3. Xorasm pseudocode

2.2 Stage B - Visualizing the generated random numbers

Figure 4 illustrates the normalized distribution of the first

10,000 generated random numbers for the XORasm. Figure 5

illustrates the normalized distribution of the first 10,000

generated random numbers for the simulated LGF random

function. Both are used by dieharder for testing. Please refer

to stage B in Figure 2.

Figure 4. Normalized distribution (XORasm)

Figure 5. Normalized distribution (simulated LGF)

Normalized distribution means the chart does not directly

visualize the random numbers, as the 32 bits of generated

random numbers are too big for the chart to handle. Using

Python programming, the generated random numbers are first

normalized to be within the 0.0 to 1.0 (0-100%) range by

dividing the random numbers by 232 – 1, the highest random

numbers produced in 32 bits. This is step one. The result is

then mapped to a certain range for plotting purposes and, in

this case, mapped to minimum = 0 to maximum = 10,000. The

normalized generated random numbers for visualization are

minimum + results_from_step_one * (maximum – minimum).

Therefore, 0 + results_from_step_one * (10,000 - 0) becomes

results_from_step_one * 10,000. This is for the y-axis. The x-

axis is a sequence of 32 bits of unsigned integer numbers

ranging from 0 to 10,000.

2.3 Stage C - Testing for randomness and technique for

statistical randomness testing

2.3.1 Testing for randomness

Dieharder tests the data generated from the XORasm and

the simulated LGF random function using a custom-developed

Linux shell script for each sample size. Each time it executes,

it performs two runs-tests. Thus, for five runs-tests for each

sample size, the script generates ten p-values and ten

assessments. Please refer to stage C in Figure 2. The

pseudocode for the LGF random function is illustrated below.

First, the function exchanges Byte 3 and 0 of the generated

system’s time (nanosecond part). Then, Byte 2 and Byte 1 are

swapped.

The dieharder processes the generated random numbers.

The following options were used to run the dieharder,

selecting only necessary tests. “-d test_number” is set to run

only the intended test for randomness. “-t sample_size” is set

for taking the sample_size from the filename, how many

random numbers that we want to test. “-p psample” is set for

how many times we want to run the test to generate the p-value.

“-f filename” is the file name containing the binary sequence

of 32 bits generated random numbers, 4 Bytes each

($dieharder -d test_number -t sample_size -p psample -f

filename).

For the 32-bit XORasm algorithm, XORasm32 algorithm,

the following command runs dieharder from the Linux shell:

“$dieharder -d 15 -t 10000 -p 100 -f xorasm32_data.bin.”

Options are set: “-d 15 option” to run only the runs-test for

randomness, “-t 10000” to generate ten thousand random

numbers with 4 Bytes each (32 bits). “-f filename” is the file

name containing the binary sequence of 32 bits numbers (4

Bytes each), in this case, filename: xorasm32_data.bin.

2.3.2 Techniques for statistical randomness testing

The p-values output from dieharder is used for statistical

tests. The p-value for testing randomness has the following

conditions: Null Hypothesis (H0) and Alternate Hypothesis

(H1). H0 = Data is random. H1 = Data is not random.

By using alpha = 0.005 (0.5% confidence level) as set by

default in dieharder, the decision will be as follows (equivalent

to the assessment in the dieharder test result):

If p-value <= alpha, then we reject the Null Hypothesis. At

(1-alpha) confidence level, we believe the evidence shows that

the data is statistically significant and not random. There is a

chance, at p-value, that the data is random.

1109

Figure 6. Experiment setup

If p-value > alpha, we fail to reject the Null Hypothesis. At

(1-alpha) confidence level, we believe the evidence shows that

the data is random (statistically insignificant).

2.4 Stage D - Practical implementation on the embedded

system, a PLC

We apply XORasm to an embedded system, the Siemens

1200 Compact PLC. SCL includes a callable function that

implements the XORasm. The initial seed (32-bit unsigned

doubleword) is derived from the nanoseconds portion of the

PLC’s system time. FB is called from the LLD program, which

resides within the main program block. The main program

transmits a signal to industrial-grade lamps, switching ON or

OFF randomly.

Figure 6 illustrates the experiment setup in which a Siemens

Simatic S7-1200 PLC runs the compiled program driving four

industrial-grade lamps: White, green, yellow, and red. The

industrial-grade lamps act as the actuator and are configured

to connect to the PLC’s digital outputs, the PLC DO ports. In

the illustration, the yellow lamp is in the ON state, as the

current value from the program output, as shown on the

laptop’s monitor, is x48 (in hexadecimal, translated to 72 in

decimal). The output 72 is between 51 and 75, including 51

and 75, in which the programmed condition triggers the yellow

lamp to an ON state. When a lamp is in the ON state, all other

lamps are set to the OFF state.

Figure 7 illustrates the pseudocode of the simulated LGF

random function.

A 24VDC power supply powered the PLC, the Siemens

SITOP PSU 100S, which sources power from the regular

220VAC. In this setup, the voltages for all digital inputs and

outputs are 24VDC.

Table 1 lists the values range and the corresponding lamps

the program switches ON. Figures 8 and 9 illustrate the

pseudocode of the XORasm algorithm (generating the initial

seed and the main function, respectively), and Figure 10

illustrates the pseudocode of the PLC main program.

Figure 7. Pseudocode (simulated LGF random function)

Table 1. Values range and lamps to switch ON

 Industrial-grade Lamps

 White Green Yellow Red

0-25 ON OFF OFF OFF

26-50 OFF ON OFF OFF

51-75 OFF OFF ON OFF

76-100 OFF OFF OFF ON

The laptop configuration includes an Intel i7 with 2.8GHz

and 4 Cores processors, 16GB RAM, 1TB SSD storage, a

Windows 11 OS, and Python version 3.19 with Anaconda. It

also includes WSL2 with Ubuntu v22.00.04, a gcc compiler

version 11.3.0, and the dieharder RNG testing suite version

3.31.1.

The source program was developed using the Siemens TIA

Portal software application, version 17. The source program

was compiled and downloaded to the PLC through an ethernet

cable connecting the laptop to the PLC directly without an

ethernet hub.

1110

The PLC program starts when the green push button is

pressed and stops when the red push button is pressed. The

green and red push buttons are set as sensors and connected to

the PLC’s digital inputs (DI ports).

Figure 8. Pseudocode (XORasm) – Inital seed

Figure 9. Pseudocode (XORasm) – Main function

Initially, all lamps are set to the OFF state by setting each

of the DO ports connected to them to 0VDC (OFF state). To

set the lamp to the ON state, the corresponding DO port is set

to 24VDC. When the PLC program runs, Siemens TIA Portal

software shows live real-time monitoring of real-time values.

The TIA Portal Software is the digital twin of the real PLC

hardware running the program.

Figure 10. Pseudocode (PLC program)

3. MAIN RESULTS

Table 2 summarizes the statistical analysis for both

algorithms: The XORasm and LGF random function. The

table lists the p-values of the XORasm runs test’s simulation

result compared to the p-values of the simulated LGF random

function for a sample size of 10,000 (dieharder’s default). The

assessment is PASS if the p-value > alpha (p-value above

0.5%) and WEAK if the p-value <= alpha.

The data distribution is random if the p-value has a value

above alpha. All p-values are consistently above alpha.

Therefore, all p-values are statistically non-significant,

meaning we fail to reject the Null Hypothesis.

For XORasm, all generated data are tested through runs test

with p-values above alpha. Therefore, we believe the evidence

shows that the XORasm’s data distribution is random

(statistically insignificant).

In contrast, for the simulated LGF random function, the p-

values have values below alpha several times. Three tests with

p-values 0.0001234, 0.00026679, and 0.00320486 are

statistically significant, meaning we reject the Null Hypothesis

for those p-values. We accept the alternative hypothesis (data

is not random for all p-values below alpha). Therefore, we

believe the evidence shows that the data distribution for the

LGF random function is statistically significant and not

random. There is a chance, at p-value, that the data is random.

1111

Table 2. XORasm runs-test and LGF random function

Dieharder Testing Suite for Randomness (runs test)*2)

Runs Test*3) for sample size: 10,000*1)

1 2 3 4 5

1 2 1 2 1 2 1 2 1 2

A. XORasm algorithm

- p-value 0.1086568 0.0490162 0.1226328 0.0067232 0.2227413 0.2219964 0.0298953 0.0546924 0.0931555 0.2600096

- assessment PASSED PASSED PASSED PASSED PASSED PASSED PASSED PASSED PASSED PASSED

B. Siemens PLC random algorithm*4)

- p-value 0.0001234 0.7644705 0.0002668 0.0032049 0.1014579 0.7473626 0.0161754 0.1249053 0.0533751 0.0919376

- assessment WEAK PASSED WEAK WEAK PASSED PASSED PASSED PASSED PASSED PASSED
*1) dieharder default sample size.

*2) The filename for xorasm algorithm: "xorasm32_data.bin", and for simulated Siemens' PLC: "rndlgf_data.bin".

The random numbers are taken from a .bin file. Number of generated random numbers in each .bin file: 4,294,967,295 Bytes.

Each random number is 4 Bytes (32 bits). Thus, total file size is 16GB (Giga Bytes).
*3) Simulated and tested by the dieharder RNG testing suite on an x86 laptop.

*4) The Siemens PLC LGF random algorithm function simulated on an x86 laptop.

4. DISCUSSION

Based on the p-value results, statistically, we fail to reject

the Null Hypothesis. We conclude that there is evidence that

the data distribution generated by the XORasm PRNG

algorithm is practically random at a 99.95% confidence level

(Table 2).

In contrast, from the p-values results for the LGF random

function runs-test, statistically, we conclude that there is

evidence that data distribution generated from the LGF

random function algorithm is not random at a 99.95%

confidence level. Random function in Siemens PLC LGF

represents the design and implementation of common random

number algorithm in embedded systems. Provided the

hardware supports it, a better random generator to increase

randomness can use another system clock or independent

timing cycle [30].

The assessment results conclude that for the default

sample_size = 10,000 sets by the dieharder RNG testing suite,

the XORasm has a better random number distribution as it

passed all the tests (assessment = PASSED). In contrast, the

simulated LGF random function has the result, assessment =

WEAK, in three of the ten runs, indicating it does not have a

good distribution of random numbers for all the tests.

The findings show that XORasm is a good PRNG,

according to runs-test performed in a dieharder testing suite.

The theoretical implication of this research is the

contribution to the literature in Computer Science and

Computer Engineering for embedded systems with

lightweight, low computing power. The advantage for

embedded devices is straightforward, as the XORasm PRNG

algorithm is statistically proven and randomly distributed at a

99.95% significance level. While the algorithm is lightweight

and suitable for embedded devices such as PLC, IoT, and edge

computing devices, it provides better randomness over the

random generator based on the system’s clock. XORasm can

serve as the seed for modern encryption algorithms such as

AES. Possible further research is by setting a lower alpha

value and inspecting whether the test conclusion still holds.

The practical implication is that the XORasm PRNG

algorithm can be used for low-power computing devices such

as PLC to increase data transfer security among embedded

systems. Further research is possible using 64-bit PLCs or

combining embedded systems with higher-power devices,

including PCs and servers.

5. CONCLUSION

This research paper proposes a lightweight, software-based

PRNG called XORasm for embedded systems such as PLC,

based on the XORshift algorithm, combined with a modified

seed taken randomly from the PLC’s system clock. The

randomness of the 32-bit XORasm PRNG algorithm is

demonstrated through a simulation using statistics (runs-test)

using the dieharder RNG testing suite. The result is

statistically analyzed to the simulated Siemens implemented

32-bit random function, LGF_RandomRange_Dint, as part of

Siemens’ LGF. XORasm demonstrated in Siemens 1200

Compact PLC. This has answered RQ1: Yes, and RQ2: Taking

one of the implementations in PLC as a base, the LGF in

Siemens PLC, and using statistical runs-tests within the

dieharder testing suite.

Based on the p-values analysis, the findings demonstrated

that XORasm is statistically and significantly better at

generating randomness than the current implementation.

Statistically, at a 99.95% confidence level, there is evidence

that the generated data distribution is practically random and

suitable for implementation as a lightweight PRNG for

embedded systems.

XORasm uses the XORshift algorithm with the seed, the

initialization vector. XORasm significantly improves the

randomness of generated random numbers and is suitable for

lightweight embedded systems like PLC. By comparing

XORasm and the simulated Siemens PLC implementation, the

LGF random function, the XORasm implementation in

Siemens PLC, has answered RQ3.

The experiment shows that the 32-bit version of the

proposed XORasm successfully passed the dieharder RNG

testing suite for runs-test. XORasm is generally suited to 32-

bit PLCs and can be implemented using LLD, SFC, ST, or FB.

The XORasm PRNG algorithm (32 bits) is based on the

XORshift algorithm. Its primary design purpose is to be fast

and efficient for a lightweight system with limited computing

power. The demonstrated implementation is limited to only

one PLC, Siemens PLC.

This research’s practical implications may include

enhancing existing random number generation algorithms for

PLCs, not just Siemens, and low computing power embedded

systems in general, including edge computing devices.

Potential future work for theoretical contribution may

include improving the algorithm, making the PRNG more

random using a different modified seed, and testing using a

1112

statistical runs-test with lower alpha (lower than 0.5%),

considering lightweight computing power and limited

resources in embedded systems.

Potential future work on the practical application could

involve applying the XORasm PRNG algorithm to several 32-

bit PLC brands, 16-bit earlier PLCs, CPS, and possibly 64-bit

future PLCs. Using XORasm as a seed (initialization vector)

for a symmetric cryptography algorithm (e.g., AES) in CBC

mode, for example, can improve data transfer security between

PLC and SCADA systems and other external systems such as

MES or IoT.

REFERENCES

[1] Tarnawski, J., Kudełka, P., Korzeniowski, M. (2022).

Advanced control with PLC—Code generator for aMPC

controller implementation and cooperation with external

computational server for dealing with

multidimensionality, constraints and LMI based

robustness. IEEE Access, 10: 10597-10617.

https://doi.org/10.1109/ACCESS.2022.3142054

[2] Cheng, F.T. (2021). Evolution of automation and

development strategy of intelligent manufacturing with

zero defects. In: Cheng, F.T. (e.d.) Industry 4.1:

Intelligent Manufacturing with Zero Defects. IEEE Press,

New York, USA, pp. 1-23.

https://doi.org/10.1002/9781119739920.CH1

[3] Bennett, S. (1996). A brief history of automatic control.

IEEE Control Systems Magazine, 16(3): 17-25.

https://doi.org/10.1109/37.506394

[4] Smith, A. (1997). An Inquiry into the Nature and Causes

of the Wealth of Nations. University of Chicago Press,

Chicago, USA.

https://doi.org/10.7208/chicago/9780226763750.001.00

01

[5] Zaheer, M.A., Nauman, M., Fai, R.B. (2022). Identify

components to manage security requirements in RAMI

4.0: An explanatory case study on industrial architecture.

Advances in Automobile Engineering, 11(2): 1-7.

https://doi.org/10.35248/2167-7670.1000186

[6] Luo, J., Kang, M., Bisse, E., Veldink, M., Okunev, D.,

Kolb, S., Canedo, A. (2020). A quad-redundant PLC

architecture for cyber-resilient industrial control systems.

IEEE Embedded Systems Letters, 13(4): 218-221.

https://doi.org//10.1109/LES.2020.3011309

[7] Namekar, S.A., Yadav, R. (2020). Programmable Logic

Controller (PLC) and its applications. International

Journal of Innovative Research in TechnologY (IJIRT),

6(11): 372-376.

[8] Grycel, J.T., Walls, R.J. (2019). A random number

generator built from repurposed hardware in embedded

systems. ArXiv.

https://doi.org/10.48550/arXiv.1903.09365

[9] Wu, H., Geng, Y., Liu, K., Liu, W. (2019). Research on

programmable logic controller security. IOP Conference

Series: Materials Science and Engineering, 569(4):

042031. https://doi.org/10.1088/1757-

899X/569/4/042031

[10] Buchanan, S.S. (2022). Cyber-attacks to industrial

control systems since Stuxnet: A systematic review.

Ph.D. Dissertation, Capitol Technology University,

South Laurel, Maryland, USA.

https://doi.org/10.5555/AAI29163646

[11] Wang, Z., Zhang, Y., Chen, Y., Liu, H., Wang, B., Wang,

C. (2023). A survey on programmable logic controller

vulnerabilities, attacks, detections, and forensics.

Processes, 11(3): 918.

https://doi.org/10.3390/PR11030918

[12] NIST. (2024). The NIST Cybersecurity Framework (CSF)

2.0. https://doi.org/10.6028/NIST.CSWP.29

[13] Stouffer, K., Pease, M., Tang, C.Y., Zimmerman, T.,

Pillitteri, V., Lightman, S., Hahn, A., Saravia, S., Sherule,

A., Thompson, M. (2023). Guide to operational

technology (OT) security. NIST Special Publication SP

800-82r3, Gaithersburg, Maryland.

https://doi.org/10.6028/NIST.SP.800-82r3

[14] Karell-Albo, J.A., Legón-Pérez, C.M., Madarro-Capó,

E.J., Rojas, O., Sosa-Gómez, G. (2020). Measuring

independence between statistical randomness tests by

mutual information. Entropy, 22(7): 741.

https://doi.org/10.3390/E22070741

[15] Mammeri, Z.Z. (2024). Cryptography: Algorithms,

Protocols, and Standards for Computer Security. John

Wiley & Sons, Inc., Hoboken, New Jersey, USA.

https://doi.org/10.1002/9781394207510

[16] Rastoceanu, F., Rughiniş, R., Tranca, D.C. (2023).

Lightweight cryptographic secure random number

generator for IoT devices. In 2023 24th International

Conference on Control Systems and Computer Science

(CSCS), Bucharest, Romania, pp. 180-185.

https://doi.org/10.1109/CSCS59211.2023.00036

[17] Dworkin, M.J., Barker, E., Nechvatal, J.R., Foti, J.,

Bassham, L.E., Roback, E., Dray Jr., J.F. (2023).

Advanced Encryption Standard (AES) (FIPS 197).

Federal Information Processing Standards Publication,

National Institute of Standards and Technology,

Gaithersburg, Maryland.

https://doi.org/10.6028/NIST.FIPS.197-upd1

[18] Parisot, A., Bento, L.M.S., Machado, R.C.S. (2021).

Testing and selecting lightweight pseudo-random

number generators for IoT devices. In 2021 IEEE

International Workshop on Metrology for Industry 4.0 &

IoT (MetroInd4.0&IoT), Rome, Italy, pp. 715-720.

https://doi.org/10.1109/MetroInd4.0IoT51437.2021.948

8454

[19] Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.,

Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert,

A., Dray, J., Vo, S. (2010). A statistical test suite for

random and pseudorandom number generators for

cryptographic applications. NIST Special Publication

800-22 Revision 1a, Gaithersburg, Maryland.

https://doi.org/10.6028/NIST.SP.800-22r1a

[20] Gomez, H., Arenas, J., Roa, E. (2020). Low-cost TRNG

IPs. IET Circuits, Devices & Systems, 14(7): 942-946.

https://doi.org/10.1049/iet-cds.2019.0535

[21] Al-Shidaifat, A., Jayawickrama, C., Jung, Y., Song, H.,

Kahrama, N. (2020). Chaotic true random number

generator for secure communication applications. In

2020 International SoC Design Conference (ISOCC),

Yeosu, Korea (South), pp. 244-245.

https://doi.org/10.1109/ISOCC50952.2020.9333113

[22] Boyd, R. (1999). Random number generator. In:

Tolerance Analysis of Electronic Circuits Using

MATHCAD. CRC Press, Boca Raton, USA, p. 76.

https://doi.org/10.1201/9781315215402-27

[23] Nebhen, J. (2020). A low power CMOS variable true

random number generator for LDPC decoders. In: Goel,

1113

N., Hasan, S., Kalaichelvi, V. (eds) Modelling,

Simulation and Intelligent Computing: Proceedings of

MoSICom 2020. Lecture Notes in Electrical Engineering,

vol 659. Springer, Singapore.

https://doi.org/10.1007/978-981-15-4775-1_53

[24] Jofre, M., Curty, M., Steinlechner, F., Anzolin, G.,

Torres, J.P., Mitchell, M.W., Pruneri, V. (2011). True

random numbers from amplified quantum vacuum.

Optics Express, 19(21): 20665-20672.

https://doi.org/10.1364/OE.19.020665

[25] Matsuoka, S., Ichikawa, S., Fujieda, N. (2021). A true

random number generator that utilizes thermal noise in a

programmable system-on-chip (PSoC). International

Journal of Circuit Theory and Applications, 49(10):

3354-3367. https://doi.org/10.1002/cta.3046

[26] Marsaglia, G. (2003). XORshift RNGs. Journal of

Statistical Software, 8(14): 1-6.

https://doi.org/10.18637/jss.v008.i14

[27] Bhattacharjee, K., Das, S. (2022). A search for good

pseudo-random number generators: Survey and

empirical studies. Computer Science Review, 45: 100471.

https://doi.org/10.1016/J.COSREV.2022.100471

[28] Vigna, S. (2016). An experimental exploration of

Marsaglia's XORshift generators, scrambled. ACM

Transactions on Mathematical Software (TOMS), 42(4):

1-23. https://doi.org/10.1145/2845077

[29] Brown, R.G. (2023). Robert G. Brown’s General Tools

Page. Available:

https://webhome.phy.duke.edu/~rgb/General/dieharder.

php.

[30] BIN95 (2023). A universal PLC programming example

of how to generate a truer exponential random number.

https://bin95.com/articles/automation/plc-programming-

random.htm/.

NOMENCLATURE

3DES Triple DES

AES Advanced Encryption Standard

CBC Cipher Block Chaining

CPS Cyber-Physical Systems

DES Data Encryption Standard

DI Digital Input

DO Digital Output

FB Function Block

GB Giga Bytes

GHZ Giga Hertz

IoT Internet of Things

IT Information Technology

LAD/LLD Ladder Logic Diagram

LGF Library of Generic Functions (Siemens)

LSB Least Significant Byte

MES Manufacturing Execution System

MSB Most Significant Byte

OS Operating System

OT Operational Technology

PC Personal Computer

PLC Programmable Logic Controller

PRNG Pseudo-RNG

PSU 100S Siemens Power Supply Unit, 100S-type

RAM Random Access Memory

RNG Random Number Generator

RQ Research Question

SCADA Supervisory Control and Data Acquisition

SFC Sequential Function Chart

SSD Solid State Drive

ST/STX Structured Text

TB Terabyte

TIA Totally Integrated Automation

TRNG True RNG

VAC Voltage Alternating Current

VDC Voltage Direct Current

WSL2 Windows Subsystem for Linux version 2

XOR eXclusive OR bitwise operation

1114

