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 A cryptography algorithm for data transfer encryption provides confidentiality, requires 

considerable computing power, and is not commonly implemented in embedded systems 

with limited computing power, such as Programmable Logic Controller (PLC). PLC is 

the core component for automation and control in industrial automation. For decades, PLC 

has prioritized speed over security; program execution in PLC must be as efficient as 

possible. The cryptography algorithm uses a seed, the initialization vector, to encrypt the 

data with the cryptography key to strengthen the encryption. Pseudo Random Number 

Generator (PRNG) can be used as the initialization vector. This paper proposes the 

XORasm PRNG algorithm, the lightweight XORshift-based algorithm with a modified 

seed from the system’s clock. The applied methodology generates and visualizes PRNG, 

tests the randomness, and implements the PRNG on compact PLC. XORasm is evaluated 

statistically with runs-test in simulation by comparing the algorithm to one of the 

simulated compact PLC’s PRNG implementations. The findings from this research are 

that p-values demonstrate that XORasm is statistically and significantly more random than 

the current implementation, and there is evidence that XORasm’s generated data 

distribution is practically random at a 99.95% confidence level, suitable for 

implementation in embedded systems as a lightweight PRNG. 
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1. INTRODUCTION 

 

In Industrial Automation, Manufacturers of embedded 

systems like PLC design simple and very efficient algorithms 

[1]. Automation and control have existed for decades [2]. One 

of the earliest industrial automation papers was in 

“Cybernetics: or Control and Communication in the Animal 

and Machine” by Wiener, N. in 1948 [3]. There are four eras: 

1. early control (before 1900), 2. pre-classical (1900-1940), 3. 

classical (1935-1960), and 4. modern control (1995-now). The 

Industrial Revolution was referenced in 1776 [4].  

Since the 1970s, PLC [5, 6], the core automation component 

in industrial automation [7], has been the catalyst for 

revolutionizing the industrial transition from mechanical 

(Industry 2.0) to computerized (Industry 3.0) by replacing 

mechanical timers, counters, and relays with programmable 

equivalents. 

As part of the embedded systems (a set of hardware and 

software with limited computing power and resources 

designed for a specific purpose [8]), there are some identified 

issues in PLC security [9]. As PLC prioritizes speed over 

security, for many years, security has been a significant 

concern [10]. Typical attacks exploit the PLC-based system’s 

vulnerabilities in the communication industry protocols. The 

payload attack is a key concern against data integrity in 

Industry 4.0, particularly in IT/OT integration [11]. 

Encryption is part of the confidentiality of cryptography, 

which protects data at rest or in transit. Without encryption, 

data is stored or transferred in plaintext [12, 13]. 

Cryptography algorithms depend on an initialization vector, 

a fixed value, or randomly generated by RNG for increased 

security [14]. The lack of implementation of RNG in 

embedded systems such as PLC makes it challenging to 

perform security-related functions, such as data encryption. 

The initialization vector is typically used as the seed for 

modern cryptography algorithms, AES, for example, the 

accepted standard of symmetric encryption [15, 16], widely 

adopted since weaknesses found in DES and 3DES [17]. 

Existing PLCs mostly run at 32 bits—thus, the addressing 

capacity is up to 232 (4,294,967,296) locations. A 64-bit PLC 

with an addressing capacity of up to 264 locations is less likely 

to be needed. Older PLCs run at 8 or 16 bits.  

RNG is commonly implemented as PRNG (usually 

software-based) [18, 19] rather than TRNG [20, 21], usually 

hardware-based [22-25]. PRNG is a trivial function in high-

level programming languages (e.g., Java or Python). There is 

also a hardware implementation [7]. In PLC, RNG is not 

usually part of the standard functionalities in the PLC’s 

common programming languages: LAD/LLD, ST/STX, SFC, 

or FB. 
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Figure 1. Paper organization 

 

Stronger PRNG is possible (64 bits and above) for PC or PC 

Servers based on the XORshift algorithm (fast and lightweight) 

[26] and further explored in previous studies [27, 28]. 

However, PLCs, as embedded systems, commonly operate in 

32 bits. While PRNG has been implemented using the system 

timer, the PRNG algorithm for generating better randomness 

for embedded systems such as PLCs is underexplored.  

The research questions in this paper are RQ1: “Can we have 

a better PRNG algorithm for lightweight embedded systems?” 

RQ2: What is the base for measuring such an algorithm, and 

how can we measure such an algorithm for better randomness?” 

and RQ3: How can we apply the algorithm to embedded 

systems?”  

The key theoretical contribution in this paper is the 

XORasm PRNG algorithm, the PRNG-type algorithm based 

on the XORshift algorithm, targeted for lightweight, low-

power computing systems with generated random numbers 

that are statistically proven and randomly distributed at a 

99.95% significance level. The main practical contribution is 

that XORasm can be used as the PRNG for lightweight, low-

power computing power embedded systems. This is 

demonstrated through experiments on the actual PLC. 

Figure 1 illustrates the paper organization. It starts with the 

introduction, followed by the method and main results, and 

ends with the discussion and conclusion sections. The method 

consists of four stages: generating random numbers, 

visualizing the generated random numbers, testing for 

randomness, and practical implementation on the actual PLC. 

 

 

2. METHOD 

 

Figure 2 illustrates the four stages to generate two different 

sets of random numbers. A: Generate two sets of random 

numbers with XORasm and LGF algorithms, B: Visualize the 

generated random numbers, C: Test with runs-test in dieharder 

testing suite [29] to produce p-values and analyze the 

randomness using p-values, and D: Implement the XORasm 

on an embedded system (using FB, LAD, and ST 

programming language on a PLC). One implementation of 

RNG in PLC is in Siemens’ LGF. 

 

2.1 Stage A – Random number generation 

 

First, 32-bit random numbers are generated with XORasm– 

simulated in a laptop rather than in PLC due to constrained 

resources. Second, 32-bit random numbers are also generated 

with a simulated Siemens LGF random function in the same 

laptop. In this stage within Figure 1, XORasm and simulated 

LGF random functions generate 2 to the power of 32 random 

numbers. This is written as pow (2, 32) in C language. The 

pow (base, exponent) is a function as part of the math library. 

With 4 Bytes for each random number (32 bits equals 4 Bytes), 

the 232 random numbers stored in disk space are 4 Bytes times 

4,294,967,296, which equals 17,179,869,184 Bytes (16GB). 

Therefore, two datasets of four billion random numbers, with 

a size of 4 Bytes for each random number, totaling 16GB per 

file, are generated. Those two datasets are treated as two 

different independent distributions. 

Figure 3 illustrates the pseudocode for generating seed for 

XORshift. On the right is the pseudocode of XORshift (run 

multiple times). In combination, the code is called XORasm. 

The seed is generated by computing the nanosecond portion of 

system time and storing it in 32 bits as unsigned integers. XOR 

operation with log2(232) is performed on each Byte of the 

system time. For the 32 bits, the system time is XOR-ed with 

the constant 0x05050505 (0x represents the following values 

in hexadecimal), which enhances randomness. The seed, 

representing the initial value of the XORshift algorithm, is 

stored in a file for reproducibility. 

 

 
 

Figure 2. Method for generating, visualizing, and testing random numbers 
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Figure 3. Xorasm pseudocode 

 

2.2 Stage B - Visualizing the generated random numbers 

 

Figure 4 illustrates the normalized distribution of the first 

10,000 generated random numbers for the XORasm. Figure 5 

illustrates the normalized distribution of the first 10,000 

generated random numbers for the simulated LGF random 

function. Both are used by dieharder for testing. Please refer 

to stage B in Figure 2. 

 

 
 

Figure 4. Normalized distribution (XORasm) 

 

 
 

Figure 5. Normalized distribution (simulated LGF) 

 

Normalized distribution means the chart does not directly 

visualize the random numbers, as the 32 bits of generated 

random numbers are too big for the chart to handle. Using 

Python programming, the generated random numbers are first 

normalized to be within the 0.0 to 1.0 (0-100%) range by 

dividing the random numbers by 232 – 1, the highest random 

numbers produced in 32 bits. This is step one. The result is 

then mapped to a certain range for plotting purposes and, in 

this case, mapped to minimum = 0 to maximum = 10,000. The 

normalized generated random numbers for visualization are 

minimum + results_from_step_one * (maximum – minimum). 

Therefore, 0 + results_from_step_one * (10,000 - 0) becomes 

results_from_step_one * 10,000. This is for the y-axis. The x-

axis is a sequence of 32 bits of unsigned integer numbers 

ranging from 0 to 10,000. 

 

2.3 Stage C - Testing for randomness and technique for 

statistical randomness testing 

 

2.3.1 Testing for randomness 

Dieharder tests the data generated from the XORasm and 

the simulated LGF random function using a custom-developed 

Linux shell script for each sample size. Each time it executes, 

it performs two runs-tests. Thus, for five runs-tests for each 

sample size, the script generates ten p-values and ten 

assessments. Please refer to stage C in Figure 2. The 

pseudocode for the LGF random function is illustrated below. 

First, the function exchanges Byte 3 and 0 of the generated 

system’s time (nanosecond part). Then, Byte 2 and Byte 1 are 

swapped. 

The dieharder processes the generated random numbers. 

The following options were used to run the dieharder, 

selecting only necessary tests. “-d test_number” is set to run 

only the intended test for randomness. “-t sample_size” is set 

for taking the sample_size from the filename, how many 

random numbers that we want to test. “-p psample” is set for 

how many times we want to run the test to generate the p-value. 

“-f filename” is the file name containing the binary sequence 

of 32 bits generated random numbers, 4 Bytes each 

($dieharder -d test_number -t sample_size -p psample -f 

filename). 

For the 32-bit XORasm algorithm, XORasm32 algorithm, 

the following command runs dieharder from the Linux shell: 
 

“$dieharder -d 15 -t 10000 -p 100 -f xorasm32_data.bin.” 

 

Options are set: “-d 15 option” to run only the runs-test for 

randomness, “-t 10000” to generate ten thousand random 

numbers with 4 Bytes each (32 bits). “-f filename” is the file 

name containing the binary sequence of 32 bits numbers (4 

Bytes each), in this case, filename: xorasm32_data.bin. 

 

2.3.2 Techniques for statistical randomness testing 

The p-values output from dieharder is used for statistical 

tests. The p-value for testing randomness has the following 

conditions: Null Hypothesis (H0) and Alternate Hypothesis 

(H1). H0 = Data is random. H1 = Data is not random. 

By using alpha = 0.005 (0.5% confidence level) as set by 

default in dieharder, the decision will be as follows (equivalent 

to the assessment in the dieharder test result): 

If p-value <= alpha, then we reject the Null Hypothesis. At 

(1-alpha) confidence level, we believe the evidence shows that 

the data is statistically significant and not random. There is a 

chance, at p-value, that the data is random. 
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Figure 6. Experiment setup 

 

If p-value > alpha, we fail to reject the Null Hypothesis. At 

(1-alpha) confidence level, we believe the evidence shows that 

the data is random (statistically insignificant). 

 

2.4 Stage D - Practical implementation on the embedded 

system, a PLC 

 

We apply XORasm to an embedded system, the Siemens 

1200 Compact PLC. SCL includes a callable function that 

implements the XORasm. The initial seed (32-bit unsigned 

doubleword) is derived from the nanoseconds portion of the 

PLC’s system time. FB is called from the LLD program, which 

resides within the main program block. The main program 

transmits a signal to industrial-grade lamps, switching ON or 

OFF randomly. 

Figure 6 illustrates the experiment setup in which a Siemens 

Simatic S7-1200 PLC runs the compiled program driving four 

industrial-grade lamps: White, green, yellow, and red. The 

industrial-grade lamps act as the actuator and are configured 

to connect to the PLC’s digital outputs, the PLC DO ports. In 

the illustration, the yellow lamp is in the ON state, as the 

current value from the program output, as shown on the 

laptop’s monitor, is x48 (in hexadecimal, translated to 72 in 

decimal). The output 72 is between 51 and 75, including 51 

and 75, in which the programmed condition triggers the yellow 

lamp to an ON state. When a lamp is in the ON state, all other 

lamps are set to the OFF state. 

Figure 7 illustrates the pseudocode of the simulated LGF 

random function. 

A 24VDC power supply powered the PLC, the Siemens 

SITOP PSU 100S, which sources power from the regular 

220VAC. In this setup, the voltages for all digital inputs and 

outputs are 24VDC. 

Table 1 lists the values range and the corresponding lamps 

the program switches ON. Figures 8 and 9 illustrate the 

pseudocode of the XORasm algorithm (generating the initial 

seed and the main function, respectively), and Figure 10 

illustrates the pseudocode of the PLC main program. 

 
 

Figure 7. Pseudocode (simulated LGF random function) 

 

Table 1. Values range and lamps to switch ON 

 
 Industrial-grade Lamps 

 White Green Yellow Red 

0-25 ON OFF OFF OFF 

26-50 OFF ON OFF OFF 

51-75 OFF OFF ON OFF 

76-100 OFF OFF OFF ON 
 

The laptop configuration includes an Intel i7 with 2.8GHz 

and 4 Cores processors, 16GB RAM, 1TB SSD storage, a 

Windows 11 OS, and Python version 3.19 with Anaconda. It 

also includes WSL2 with Ubuntu v22.00.04, a gcc compiler 

version 11.3.0, and the dieharder RNG testing suite version 

3.31.1.  

The source program was developed using the Siemens TIA 

Portal software application, version 17. The source program 

was compiled and downloaded to the PLC through an ethernet 

cable connecting the laptop to the PLC directly without an 

ethernet hub. 
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The PLC program starts when the green push button is 

pressed and stops when the red push button is pressed. The 

green and red push buttons are set as sensors and connected to 

the PLC’s digital inputs (DI ports).  

 

 
 

Figure 8. Pseudocode (XORasm) – Inital seed  

 

 
 

Figure 9. Pseudocode (XORasm) – Main function 

 

Initially, all lamps are set to the OFF state by setting each 

of the DO ports connected to them to 0VDC (OFF state). To 

set the lamp to the ON state, the corresponding DO port is set 

to 24VDC. When the PLC program runs, Siemens TIA Portal 

software shows live real-time monitoring of real-time values. 

The TIA Portal Software is the digital twin of the real PLC 

hardware running the program. 

 

 
 

Figure 10. Pseudocode (PLC program) 

 

 

3. MAIN RESULTS 

 

Table 2 summarizes the statistical analysis for both 

algorithms: The XORasm and LGF random function. The 

table lists the p-values of the XORasm runs test’s simulation 

result compared to the p-values of the simulated LGF random 

function for a sample size of 10,000 (dieharder’s default). The 

assessment is PASS if the p-value > alpha (p-value above 

0.5%) and WEAK if the p-value <= alpha. 

The data distribution is random if the p-value has a value 

above alpha. All p-values are consistently above alpha. 

Therefore, all p-values are statistically non-significant, 

meaning we fail to reject the Null Hypothesis. 

For XORasm, all generated data are tested through runs test 

with p-values above alpha. Therefore, we believe the evidence 

shows that the XORasm’s data distribution is random 

(statistically insignificant). 

In contrast, for the simulated LGF random function, the p-

values have values below alpha several times. Three tests with 

p-values 0.0001234, 0.00026679, and 0.00320486 are 

statistically significant, meaning we reject the Null Hypothesis 

for those p-values. We accept the alternative hypothesis (data 

is not random for all p-values below alpha). Therefore, we 

believe the evidence shows that the data distribution for the 

LGF random function is statistically significant and not 

random. There is a chance, at p-value, that the data is random. 
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Table 2. XORasm runs-test and LGF random function 
 

Dieharder Testing Suite for Randomness (runs test)*2) 

 
Runs Test*3) for sample size: 10,000*1) 

1 2 3 4 5 

1 2 1 2 1 2 1 2 1 2 

A. XORasm algorithm 

- p-value 0.1086568 0.0490162 0.1226328 0.0067232 0.2227413 0.2219964 0.0298953 0.0546924 0.0931555 0.2600096 

- assessment PASSED PASSED PASSED PASSED PASSED PASSED PASSED PASSED PASSED PASSED 

B. Siemens PLC random algorithm*4) 

- p-value 0.0001234 0.7644705 0.0002668 0.0032049 0.1014579 0.7473626 0.0161754 0.1249053 0.0533751 0.0919376 

- assessment WEAK PASSED WEAK WEAK PASSED PASSED PASSED PASSED PASSED PASSED 
*1) dieharder default sample size. 

*2) The filename for xorasm algorithm: "xorasm32_data.bin", and for simulated Siemens' PLC: "rndlgf_data.bin". 

The random numbers are taken from a .bin file. Number of generated random numbers in each .bin file: 4,294,967,295 Bytes. 

Each random number is 4 Bytes (32 bits). Thus, total file size is 16GB (Giga Bytes). 
*3) Simulated and tested by the dieharder RNG testing suite on an x86 laptop. 

*4) The Siemens PLC LGF random algorithm function simulated on an x86 laptop. 

 

 

4. DISCUSSION 

 

Based on the p-value results, statistically, we fail to reject 

the Null Hypothesis. We conclude that there is evidence that 

the data distribution generated by the XORasm PRNG 

algorithm is practically random at a 99.95% confidence level 

(Table 2). 

In contrast, from the p-values results for the LGF random 

function runs-test, statistically, we conclude that there is 

evidence that data distribution generated from the LGF 

random function algorithm is not random at a 99.95% 

confidence level. Random function in Siemens PLC LGF 

represents the design and implementation of common random 

number algorithm in embedded systems. Provided the 

hardware supports it, a better random generator to increase 

randomness can use another system clock or independent 

timing cycle [30]. 

The assessment results conclude that for the default 

sample_size = 10,000 sets by the dieharder RNG testing suite, 

the XORasm has a better random number distribution as it 

passed all the tests (assessment = PASSED). In contrast, the 

simulated LGF random function has the result, assessment = 

WEAK, in three of the ten runs, indicating it does not have a 

good distribution of random numbers for all the tests. 

The findings show that XORasm is a good PRNG, 

according to runs-test performed in a dieharder testing suite. 

The theoretical implication of this research is the 

contribution to the literature in Computer Science and 

Computer Engineering for embedded systems with 

lightweight, low computing power. The advantage for 

embedded devices is straightforward, as the XORasm PRNG 

algorithm is statistically proven and randomly distributed at a 

99.95% significance level. While the algorithm is lightweight 

and suitable for embedded devices such as PLC, IoT, and edge 

computing devices, it provides better randomness over the 

random generator based on the system’s clock. XORasm can 

serve as the seed for modern encryption algorithms such as 

AES. Possible further research is by setting a lower alpha 

value and inspecting whether the test conclusion still holds. 

The practical implication is that the XORasm PRNG 

algorithm can be used for low-power computing devices such 

as PLC to increase data transfer security among embedded 

systems. Further research is possible using 64-bit PLCs or 

combining embedded systems with higher-power devices, 

including PCs and servers. 

 

5. CONCLUSION 

 

This research paper proposes a lightweight, software-based 

PRNG called XORasm for embedded systems such as PLC, 

based on the XORshift algorithm, combined with a modified 

seed taken randomly from the PLC’s system clock. The 

randomness of the 32-bit XORasm PRNG algorithm is 

demonstrated through a simulation using statistics (runs-test) 

using the dieharder RNG testing suite. The result is 

statistically analyzed to the simulated Siemens implemented 

32-bit random function, LGF_RandomRange_Dint, as part of 

Siemens’ LGF. XORasm demonstrated in Siemens 1200 

Compact PLC. This has answered RQ1: Yes, and RQ2: Taking 

one of the implementations in PLC as a base, the LGF in 

Siemens PLC, and using statistical runs-tests within the 

dieharder testing suite. 

Based on the p-values analysis, the findings demonstrated 

that XORasm is statistically and significantly better at 

generating randomness than the current implementation. 

Statistically, at a 99.95% confidence level, there is evidence 

that the generated data distribution is practically random and 

suitable for implementation as a lightweight PRNG for 

embedded systems.  

XORasm uses the XORshift algorithm with the seed, the 

initialization vector. XORasm significantly improves the 

randomness of generated random numbers and is suitable for 

lightweight embedded systems like PLC. By comparing 

XORasm and the simulated Siemens PLC implementation, the 

LGF random function, the XORasm implementation in 

Siemens PLC, has answered RQ3. 

The experiment shows that the 32-bit version of the 

proposed XORasm successfully passed the dieharder RNG 

testing suite for runs-test. XORasm is generally suited to 32-

bit PLCs and can be implemented using LLD, SFC, ST, or FB.  

The XORasm PRNG algorithm (32 bits) is based on the 

XORshift algorithm. Its primary design purpose is to be fast 

and efficient for a lightweight system with limited computing 

power. The demonstrated implementation is limited to only 

one PLC, Siemens PLC. 

This research’s practical implications may include 

enhancing existing random number generation algorithms for 

PLCs, not just Siemens, and low computing power embedded 

systems in general, including edge computing devices. 

Potential future work for theoretical contribution may 

include improving the algorithm, making the PRNG more 

random using a different modified seed, and testing using a 
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statistical runs-test with lower alpha (lower than 0.5%), 

considering lightweight computing power and limited 

resources in embedded systems. 

Potential future work on the practical application could 

involve applying the XORasm PRNG algorithm to several 32-

bit PLC brands, 16-bit earlier PLCs, CPS, and possibly 64-bit 

future PLCs. Using XORasm as a seed (initialization vector) 

for a symmetric cryptography algorithm (e.g., AES) in CBC 

mode, for example, can improve data transfer security between 

PLC and SCADA systems and other external systems such as 

MES or IoT. 
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NOMENCLATURE 

3DES Triple DES 

AES Advanced Encryption Standard 

CBC Cipher Block Chaining 

CPS Cyber-Physical Systems 

DES Data Encryption Standard 

DI Digital Input 

DO Digital Output 

FB Function Block 

GB Giga Bytes 

GHZ Giga Hertz 

IoT Internet of Things 

IT Information Technology 

LAD/LLD Ladder Logic Diagram 

LGF Library of Generic Functions (Siemens) 

LSB Least Significant Byte 

MES Manufacturing Execution System 

MSB Most Significant Byte 

OS Operating System 

OT Operational Technology 

PC Personal Computer 

PLC Programmable Logic Controller 

PRNG Pseudo-RNG 

PSU 100S Siemens Power Supply Unit, 100S-type 

RAM Random Access Memory 

RNG Random Number Generator 

RQ Research Question 

SCADA Supervisory Control and Data Acquisition 

SFC Sequential Function Chart 

SSD Solid State Drive 

ST/STX Structured Text 

TB Terabyte 

TIA Totally Integrated Automation 

TRNG True RNG 

VAC Voltage Alternating Current 

VDC Voltage Direct Current 

WSL2 Windows Subsystem for Linux version 2 

XOR eXclusive OR bitwise operation 
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