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 Marine transport is still famous and claimed to be part of human civilization, but in 

practice, marine vessels still experience accidents quite frequently, which can result in 

large losses. Therefore, this research aims to integrate multiple data sources on marine 

accidents, classify them to identify patterns, and create a model to forecast and prevent 

future accidents. The first step in the methodology is to connect several variables from 

multiple data sources and generate target variables. We then feed this ready data set into 

10 machine learning algorithms to determine which one best suit the data type and quality. 

The training results provided four algorithms with the best performance, namely label 

spreading, label propagation, random forest, and XGB classifier algorithms. After 

comparing the training and testing results, we found that XGB performed slightly better 

than the other three models, where the developed model and dataset only had a 

performance of 70%-74% in predicting marine accidents in the corresponding class. 
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1. INTRODUCTION 

 

Ocean transportation plays a crucial role in international 

trade because it can increase economic growth, human 

mobility, and national security. As such, all global activities 

rely heavily on maritime transportation, with approximately 

90% of commodity goods being transported by sea [1]. More 

than 50,000 merchant ships are involved in international trade 

every day [2], which causes the level of shipping traffic to 

increase, especially in narrow waters, and creates a great 

opportunity for marine accidents [3]. Based on the records of 

the European Maritime Safety Agency Report [4], in 2014–

2021, the total number of marine accidents that occurred in the 

world was 23,623 cases, and according to the Allianz Global 

Corporate & Specialty Report [1], during the last decade, the 

total number of marine accidents in the world was 44,264 

cases. The types of accidents that occurred included sinking or 

reversing ships, collisions, fires or explosions, and aground, 

with varying degrees of severity. From the records of these 

accidents, it is necessary to conduct further studies on the 

severity of marine accidents to improve the security and safety 

of shipping around the world. 

 Previously, the assessment of the severity of marine 

accidents has been carried out by several researchers, in which 

Weng and Yang [5] analyzed the development of the binary 

logistic regression model and the zero-truncated binomial 

model using data sourced from the database managed by 

Lloyd's List Intelligence Company from 2001-2011. 

Meanwhile, Wang and Yang [6] developed the Naïve Bayes 

model on the Chinese Maritime Safety Administration (MSA) 

investigation report data from 1979-2015. Both of these 

studies focus on the severity of marine accidents based on 

contributing factors such as the type of accident, crew’s 

educational background, accident location, and vessel age. 

Furthermore, in Lu et al. [7], a model using the Random 

Oversampling (RO) technique was developed to predict the 

severity of non-traditional security (NTS) incidents or piracy 

on the sea route, with the most contributing factors being 

accident time and ship type using Global Integrated Shipping 

Information System (GISIS) data from 2015–2020. 

Then, Cakir et al. [8] with the Decision Tree (DT) model 

was used to predict the severity of oil spills due to marine 

accidents, where this level is influenced by the type of accident 

and type of ship, using USCG (United States Coast Guard) 

data from 2002–2015. Then, in the research conducted by 

Wang et al. [9], a Zero Inflated Ordered Probit (ZIOP) model 

was developed to predict the severity factor of marine accident 

injuries. The data used was sourced from the results of the 

TSB (Transportation Safety Board of Canada), MAIB (Marine 

Accident Investigation Branch), ATSB (Australian Transport 

Safety Board), NTSB (National Transportation Safety Board), 

JTSB (Japan Transport Safety Board), MSA (Maritime Safety 

Administration), and BSU (The Federal Bureau of Maritime 

Casualty) investigation reports from 2000–2019. Finally, a 

research study conducted by Zhou et al. [10] applied a spatial 

fuzzy multi-criteria evaluation model to assess and map the 

risk level of marine transportation hazard zones in China’s 

seas with five levels: very high, high, medium, low,    and very 
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low risk zones, using various data sources including 

governments, international organizations, and commercial 

companies from 1980-2019. 

Mullai and Paulsson [11] conducted research on marine 

accidents in 2011 for the benefit of Swedish shipping, 

developing a conceptual model to analyze marine accidents 

using empirical data from the Swedish Maritime 

Administration database. The model is based on eleven 

categories, including non-metric and metric variables such as 

fatalities, ship property, the number of people on board, and 

accidents. The model's combined predictive power accounts 

for 65% of the fatality variance. Other datasets can apply the 

model, which holds theoretical and practical value. The results 

of this 2011 study will serve as a comparison to the final 

findings of the study we developed. 

Marine accident research using the data-driven Bayes 

method is used to analyze vessels on the Istanbul Strait, which 

is a narrow and busy waterway. using only 418 accident data, 

with the type of accident that is targeted. 

As for the results obtained, the data shows that all vessels, 

especially those under 300 GRT, are more likely to experience 

adrift accidents. Thus, research using a small amount of data 

that is based on the facts of the incident can be a research 

dataset [12]. 

This marine accident research has also been reviewed and 

collected from publications on the WOS (Web of Science) 

database from 2000 to 2022, with the conclusion that the 

researchers found that emerging accident analysis methods 

such as machine learning and big data mining have also shown 

powerful insights in the analysis of marine accidents [13]. 

Therefore, to look deeper into the analysis of marine 

accidents that occur, it is necessary to machine learning and to 

classify the severity of accidents by focusing on contributing 

features, including ship type, accident type, accident factors, 

and severity. Thus, it is expected to improve the effectiveness 

of prevention strategies for future shipping safety. The data 

used is sourced from the official websites of the investigation 

reports of the NTSB, ATSB, NTSB, TSB, MAIB, and JTSB 

of marine accidents that occurred from 2003 to 2022. 

In addition, there is also research using data-driven 

Bayesian network models (BN) to analyze the relationship 

between marine accident severity and relevant accident-

influencing factors (AIF). This study uses data based on 

marine accident investigation reports involving 1,294 vessels 

from 2000 to 2019. The severity of marine accidents is 

classified, and a database of factors affecting the severity of 

marine accidents is created. It only uses the Tree Augmented 

Naive Bayesian (TAN) algorithm to create a data-driven BN 

model [14]. This distinguishes the research conducted by the 

author by comparing several machine learning algorithm 

models. 

The structure of this research paper consists of an 

introductory section that explains the importance of sea 

transportation for the economic growth of countries around 

the world and its impact. In the data and methods section, data 

processing is performed and research methods are 

implemented. The next section presents the results of data 

processing and analyses the factors that contribute to the 

severity of marine accidents. The last section contains 

conclusions that summarize the research findings. 

 

 

2. DATA AND METHOD 

 

In this research, there are several stages that must be 

performed on the data and methods used to suit the research 

objectives. These stages are shown in Figure 1. 

 

 
 

Figure 1. Research stages 

 

2.1 Marine accident data and data collection 

 

The data used in this research were obtained from the 

official website of the results of marine accident investigation 

reports in several countries, as shown in Table 1. The accident 

data that occurred consisted of the results of the NTSB report 

of 220 cases, the ATSB report of 165 cases, the NTSB report 

of 333 cases, the TSB report of 228 cases, and the MAIB report 

of 715 cases recorded from 2003–2022. Meanwhile, 107 cases 

of JTSB were recorded from 2008 to 2020. 

Then, all of these data were combined so that the total 

accident data became 1,768 cases (observations) with 9 

variables; one of the targeted variables was severity, as shown 

in Figure 2. 

 

 
 

Figure 2. Dataset overview 

 

Table 1. Dataset sources 

 
Organization Source of Data Period Num of Data 

KNKT https://knkt.go.id 2003-2022 220 

ATSB https://www.atsb.gov.au/ 2003-2022 165 

NTSB https://www.ntsb.gov 2003-2022 333 

TSB https://www.tsb.gc.ca 2003-2022 228 

MAIB https://www.gov.uk 2003-2022 715 

JTSB https://www.mlit.go.jp 2008-2020 107 

Total 1,768 
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Marine accident severity categories are based on the 

International Maritime Organization (IMO) guidelines [15], 

which are divided into the following four categories: 

(1) In the "very serious" accident category, when the victim 

ship is lost, washed away, or suffers loss of life or death, 

pollution occurs due to oil spills of more than 500 tons. 

(2) "Serious" accident category, when the crew suffers 

injuries and damage to the ship, such as system damage, 

environmental damage, hull damage, or severe structural 

damage to the ship, that resulting in the ship being unable to 

continue the voyage. 

(3) "Less serious" accident category, when the accident 

victim does not meet the criteria in the very serious and serious 

accident categories. 

(4) "Marine incident" category, when it is directly related to 

the operation of a vessel that has not been repaired, thus 

endangering shipping activities and the environment. 

However, this research uses only three categories of severity: 

less serious, serious, and very serious. After the data are 

collected, they are converted into.csv (comma- separated 

values) format. This is done to facilitate the process of 

processing data into programming software, and the dataset 

can be used in the next stage. 

 

2.2 Data preprocessing 

 

This stage is the most important for data preparation before 

further analysis [16, 17]. The first step of the dataset must go 

through the data cleaning process. From this process, the 

dataset dimensions were obtained with as many as 1,768 

observations with nine variables, including date, month, year, 

ship type, type of accident, ship age, factor, country, and 

severity level, as shown in Table 2. 

According to Table 2, a missing label with the number 0 

indicates the absence of missing values in each data variable. 

The next step is to identify the distribution of each variable. 

The date variable contains numeric data ranging from 1 to 31. 

The data distribution reveals that accidents occur frequently 

from the beginning to the middle of the month, with the 

average occurring on the 15th. Secondly, the variable 'month' 

contains numerical data ranging from 1 to 12, with the highest 

frequency of marine accidents occurring between June and 

July. Thirdly, the variable 'year' contains numerical data 

ranging from 2003 to 2022, with the highest frequency of 

marine accidents occurring between 2012 and 2013. 

Fourth, the ship type variable has categorical data consisting 

of nine categories: fishing vessel, passenger ship, cargo, tanker, 

bulk carrier, container, tugboat, barge, and other types of ships. 

These variables show that the type of ship that is prone to 

marine accidents is fishing vessels. Fifth, the type of accident 

variable has categorical data consisting of six categories: ship 

sinking or turning, collision, aground, fire or explosion, contact, 

and others. This variable shows that the most common type of 

accident is other types of accidents (various types of accidents 

not covered by the previous categories). Sixth, the ship age 

variable has categorical type data consisting of two categories: 

beginner ship age (< 30 years of operation) and old ship age (> 

30 years of operation). This variable shows that the age of the 

ship that has more accidents is the age of the beginner ship. 

Seventh, the factor variable has categorical data consisting 

of four categories: human factors, systems, nature, and 

overload. This variable shows that humans are the most 

common factor that causes accidents. Eighth, the country 

variable has categorical data consisting of six categories 

namely the UK (United Kingdom), USA (United States of 

America), Canada, Indonesia, AUS (Australia), and Japan. 

This variable shows that most ship accidents occur in UK 

waters. Finally, the severity variable, which has categorical 

data consisting of 3 categories, namely less serious, very 

serious, and serious severity, shows the impact of accidents 

that occur frequently, resulting in serious severity. 

The next step is the feature selection stage. This stage is 

carried out to select the nine dataset variables used so that the 

most relevant and informative variables are obtained in 

accordance with the research objectives. The selection of these 

variables was based on the results of the correlation between 

the target severity variable and other variables.  

The variables with the strongest association with the first 

severity are the accident type variable, which produces a 

correlation value of 0.24; the factor variable, which produces 

a correlation value of 0.1; the year variable, which produces a 

correlation value of 0.078; the date variable, which produces a 

correlation value of 0.014; and the ship type variable, which 

produces a correlation value of 0. The country variable, with a 

correlation value of -0.096, was the least significant of the 

variables. The month variable, with a correlation value of -

0.016, was also not a significant contributor. Finally, the ship 

age variable, with a correlation value of -0.0016, was the least 

significant of the variables. Based on the correlation results, 

the research will focus on four variables that significantly 

contributed to the occurrence of marine accidents. These 

variables are the accident type, factor, ship type, and severity. 

Based on data on marine accidents during the period 

between 2003 and 2022, it was found that the highest type of 

vessel involved in accidents was fishing vessel with 344 cases 

(19.5%), and the lowest type of vessel was barge with 38 cases 

(2.1%). Then, other types of accidents are the highest type, 

recorded at 428 cases (24.2%). This, type of accident tends to 

be more diverse and cannot be classified, while the lowest type 

is contact, recorded at only 195 cases (11.0%). Furthermore, 

the highest factor that can cause accidents is human, recorded 

in 890 cases (50.3%), and the lowest accident factor is 

overload, recorded in only 44 cases (2.5%). Finally, in terms of 

severity, the highest number of crashes were serious, with 808 

cases (45.7%), while the lowest severity was less serious, with 

only 459 cases (26.0%), as shown in Table 3. 
 

Table 2. Dataset descriptive statistic of each variable 
 

Variable Data Type Mean Median Dispersion Min Max Missing Data 

Date Numerical 15.27 15 0.56 1 31 0 

Month Numerical 6.54 7 0.52 1 12 0 

Year Numerical 2012.56 2013 0 2003 2022 0 

Ship Type Categorical Fishing vessel Fishing vessel 2.06 - - 0 

Type of Accident Categorical Other Other 1.76 - - 0 

Ship Age Categorical Beginner Beginner 0.533 - - 0 

Factor Categorical Human Human 1.08 - - 0 

Country Categorical UK UK 1.6 - - 0 

Severity Level Categorical Serious Serious 1.07 - - 0 
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Table 3. Description of the variable selected for analysis 

 
Variables Description Frequency Percentage 

Ship Type 

Bulk carrier 137 7.7 

Cargo 326 18.4 

Container 130 7.4 

Fishing 344 19.5 

Passenger 335 18.9 

Tanker 151 8.5 

Barge 38 2.1 

Tugboat 128 7.2 

Other 179 10.1 

Type of Accident 

Aground 282 16 

Fire 256 14.5 

Contact 195 11 

Other 428 24.2 

Collision 284 16.1 

Sinking 323 18.3 

Factor 

Nature 257 14.5 

Human 890 50.3 

Overload 44 2.5 

Systems 577 32.6 

Severity Level 

Less serious 459 26 

Very serious 501 28.3 

Serious 808 45.7 

 

Next, proceed with the data transformation stage. This stage 

is carried out because the four variables selected above are 

categorical. At this stage, these variables are converted into 

numerical data, which is carried out so that the dataset can later 

be processed into the analysis method used by changing the 

ship type variables (features), which include the bulk carrier 

category coded "0", cargo coded "1", container coded "2", 

other coded "3", fishing vessel coded "4", passenger ship 

coded "5", tanker coded "6", barge coded "7", and tugboat 

coded "8". Accident type variables (features), which include 

the run-aground category, are coded "0", fire or explosion 

is coded "1", contact is coded "2", other is coded "3", collision 

is coded "4", and sinking or turning is coded "5".  

 

Table 4. Dataset transformation 

 
Variables Status Category Output Code 

Ship Type Features 

Bulk carrier 

 Cargo  

Container  

Other 

Fishing vessel 

Passenger ship 

Tanker 

Barge  

Tugboat 

0 

1 

2 

3 

4 

5 

6 

7 

8 

Type of Accident Features 

Aground 

Fire or explosion 

Contact 

Others 

Collision 

Sinking or turning 

0 

1 

2 

3 

4 

5 

Factor Features 

Nature  

Human  

Overload 

System 

0 

1 

2 

3 

Severity Level Target 

Less serious  

Very serious 

Serious 

0 

1 

2 

 

Factor variables (features) that include the categories of 

nature are coded "0", human is coded "1", overload is coded 

"2", and system are coded "3". Finally, labelling was 

performed on the marine accident severity variable (target), 

including the less serious class labelled "0", the very serious 

class labelled "1", and the serious class labelled "2", as shown 

in Table 4. 

Based on Table 5, the distribution of the severity target 

variable has a total of 1,768 data points, showing imbalanced 

data classes where class "0" amounts to 459 data points, 

class "1" amounts to 501 data points, and class "2" amounts to 

808 data points. Therefore, the focus of model selection is 

the f1-score value. This unbalanced dataset is then separated 

for the machine learning process. Before entering the process, 

the dataset must be separated into two datasets, namely 

training data and testing data, using the data splitting method 

of 80:20. The visualization of splitting dataset are shown in 

Figure 3, where the training data amounted to 1,414 data points, 

whereas the testing data was 354 data points. 

From the above process, the pre-processing stage has ended, 

and the dataset can be processed for the machine learning 

model development stage. 

 

Table 5. Target variable dataset distribution 

 

Total Data 
Severity Level 

0 1 2 

1,768 459 501 808 

 

 
 

Figure 3. Splitting data 

 

2.3 Method 

 

To classify the severity of marine accidents, this research 

applies machine learning methods using the lazypredict 

classifier library [18, 19]. From the prediction process, 10 

best models were obtained to be tested on the dataset. These, 

models include AdaBoostClassifier (AD), LabelPropagation 

(LP), DecisionTreeClassifier (DT), ExtraTreeClassifier (ET), 

ExtraTreesClassifier (ETS), XGBClassifier (XGB), 

LGBMClassifier (LGBM), LabelSpreading (LS), 

BaggingClassifier (BC), and RandomForestClassifier (RF). 

 

 

3. RESULT AND DISCUSSION 

 

The results of data processing and analysis of factors 

contributing to the severity of marine accidents are presented 

based on several stages that have been carried out. 

 

3.1 Dataset analysis 

 

In this section, the dataset description is explained in depth 
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to gain insight into the dataset used so that, when modelling, 

the meaning of the classification model development can be 

known.  

Figure 4 displays a graph of marine accident data from 

2003-2022, illustrating the types of accidents experienced by 

ships. The most common type of accident was 'other' (24.2%), 

followed by sinking or turning (18.3%), collision (16.1%), 

aground (16%), fire or explosion (14.5%), and contact with 

floating objects on the sea surface (11%). During this 

timeframe, many marine accidents also occurred in 2018, 

totaling 137 cases, with the highest type of accident being 

sinking or turning. In 2019, there were 122 cases, with the 

highest type of accident being collisions, and the lowest 

accident occurred in 2022, with 29 cases, with the most 

frequent type of accident being fire or explosion. 

 

 
 

Figure 4. Accident data by year 

 

Figure 5 displays the number of accidents based on the 

severity level and year. The highest number of accidents in 

the less serious class occurred in 2008, while the lowest 

occurred in 2022. In the very serious class, the highest number 

of accidents occurred in 2019, and the lowest occurred in 

2022. The most severe accidents happened in 2018, and the 

least severe occurred in 2003. Therefore, the data indicates 

that there are numerous marine accidents resulting in serious 

severity every year. 

 

 
 

Figure 5. Accident severity by year 

 

Figure 6 shows data on the type of accident and its severity. 

Based on the data, grounding tends to have a less serious 

severity impact, whereas other types of accidents tend to have 

a very serious severity impact, and types of accidents such 

as collision and fire or explosion tend to have a serious severity 

impact. 

 

 
 

Figure 6. Types of accidents and their severity 

 

Figure 7 shows the distribution of factors causing marine 

accidents by severity. During the period from 2003 to 2022, 

the highest contributing factor to accidents was human factors 

(50.3%), followed by ship system failure or damage (32.6%) 

and nature (14.5%). The three factors provide varying degrees 

of severity, ranging from less serious to serious and to very 

serious, while the overloading factor (2.5%), which exceeds 

the safety standardization limit, contributes little to the 

occurrence of marine accidents but tends to have an impact 

with a very serious severity. 

 

 
 

Figure 7. Accident factors and their severity 

 

Figure 8 shows a type of ship that is prone to marine 

accidents based on their severity. Based on this data, the types 

of vessels that are prone to the highest number of marine 

accidents are fishing vessels (19.5%), which tend to have very 

serious impacts, while the types of vessels that tend to have 

serious impacts include passenger ships (18.9%), cargo 
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(18.4%), tankers (8.5%), containers (7.4%), and tugboats 

(7.2%). Ship types that tend to have less serious impacts 

include bulk carriers (7.7%), barges (2.1%), and other ship 

types (10.1%). 

 

 
 

Figure 8. Vessel types and their severity 

 

Apart from that, when observing the age of ships that have 

experienced accidents (referring to Table 2), based on the 

dataset, 78% (1,373 rows of observation data) are beginner 

ships (ship age less than 30 years), while the remaining 22% 

(395 rows of data) are old ships that are more than 30 years 

old. The results of the analysis show that ships with an age of 

less than 30 years have many accidents due to the most 

dominant human factor, followed by disruption of the shipping 

system. The details of the data visualization on this matter are 

shown in Figure 9. With visualization results such as Figure 9, 

it raises the question of whether new ships under 30 years old 

with better technology than old ships have complex systems, 

so that humans such as captains and crew find it difficult to 

take avoidance actions before an accident occurs. 

 

 
 

Figure 9. Visual relation between Ship age and factors 

contributes to accident 

This question is answered when looking at Figure 10. It can 

be seen that system disturbances that cause accidents on ships 

are mostly caused by fires or explosions, while human-caused 

factors mostly cause collisions between ships, shipwrecks 

(aground), and collisions with objects other than ships. 

 

 
 

Figure 10. Visualization data between type of accident 

versus ship age 

 

3.2 Development of the model 

 

After analyzing the dataset used, the next step is to develop 

a model for classifying the severity of marine accidents. At 

this stage, the research target is the severity level consisting of 

3 classes, namely the less serious, serious, and very serious 

classes. However, the model development process only 

focuses on the serious class f1- score value. This is because 

the serious class is more likely to occur in marine accidents 

than the less serious and very serious classes. Furthermore, the 

model is analyzed using training and testing data so that the 

results of the calculation of the performance. 

 

3.2.1 Model analysis using training data 

The performance results of each model are shown in table 

6. In this machine learning model development stage, using 

the 10 best models obtained from the lazypredict classifier 

library. The model with the highest F1 score for class 2 was 

selected as the target model based on the results (Table 6).  

The best model is chosen from a pool of four models, which 

are then summarized and presented in Table 7. The best 4 

models out of 10 trained in classifying the severity of marine 

accidents focusing on the serious class were obtained, and the 

best models included LP, XGB, LS, and RF, with the highest 

f1-score value in that class of 0.71. Meanwhile, a serious class 

classification with an f1-score value of 0.70 was generated 

from the DT, ET, ETS, LGBM, and BC models. Finally, at 

serious class classification with the lowest f1-score value of 

0.65 was generated from the AD model.  

 

3.2.2 Model analysis using testing data 

After the training model is obtained, model testing is then 

carried out using data that has been separated previously for 
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testing, namely 354 observation data points (Figure 3), while 

the results of the test are shown in Table 8. 

Table 8 shows the result of comparing the model evaluation 

matrix using testing data. After obtaining the four best models 

generated from training data, the models were tested using 

testing data (20%). This is done to determine the performance 

of each model when tested using test data. Furthermore, we 

analyze the performance of the f1-score value of each model, 

as shown in Table 9. Based on this table, the results of testing 

the serious class severity classification model using testing 

data show that the LP, RF, and LS models produced the highest 

f1-score value of 0.76. Then, the XGB models produced a fi-

score value of 0.75. 

 

Table 6. Training data evaluation matrix comparison 

 
Model Accuracy Severity Precision Recall F1-Score 

AD 

0.65 0 0.69 0.71 0.70 

 1 0.55 0.69 0.61 

 2 0.72 0.59 0.65 

 Mean/total 0.65 0.66 0.65 

LP 

0.69 0 0.75 0.69 0.72 

 1 0.64 0.64 0.64 

 2 0.69 0.72 0.71 

 Mean/total 0.69 0.68 0.69 

DT 0.69 0 0.71 0.75 0.73 

  1 0.63 0.66 0.65 

  2 0.72 0.68 0.70 

  Mean/total 0.69 0.70 0.70 

ET 

0.69 0 0.71 0.75 0.73 

 1 0.63 0.66 0.65 

 2 0.72 0.68 0.70 

 Mean/total 0.69 0.70 0.70 

ETS 

0.69 0 0.71 0.75 0.73 

 1 0.63 0.66 0.65 

 2 0.72 0.68 0.70 

 Mean/total 0.69 0.70 0.70 

XGB 

0.69 0 0.72 0.73 0.73 

 1 0.64 0.62 0.64 

 2 0.70 0.71 0.71 

 Mean/total 0.69 0.69 0.70 

LGBM 

0.69 0 0.72 0.71 0.72 

 1 0.64 0.62 0.63 

 2 0.69 0.71 0.70 

 Mean/total 0.69 0.68 0.69 

LS 

0.69 0 0.75 0.69 0.72 

 1 0.64 0.64 0.64 

 2 0.69 0.73 0.71 

 Mean/total 0.70 0.69 0.69 

BC 

0.69 0 0.74 0.70 0.72 

 1 0.62 0.66 0.64 

 2 0.70 0.70 0.70 

 Mean/total 0.69 0.69 0.69 

RF 

0.69 0 0.75 0.69 0.72 

 1 0.65 0.63 0.64 

 2 0.69 0.73 0.71 

 Mean/total 0.70 0.68 0.69 

 

Table 7. Performance of the f1-score models on training data 

 

Model Less Serious (0) Very Serious (1) Serious (2) 

LP 0.72 0.64 0.71 

XGB 0.73 0.64 0.71 

LS 0.72 0.64 0.71 

RF 0.72 0.64 0.71 

 

3.2.3 Analysis of training data and testing data result 

To determine the extent of the performance generated from 

the 4 best machine learning models in classifying the severity 

of sea accidents using training and testing data, further 

analysis will be carried out. To determine the best model, the 

average value produced by each model is compared. A 

comparison of the results of training data and testing data is 

shown in Table 10. Of the four models, the same average 

results were obtained. The models include LP, LS, and RF, 

with training data results of 0.69, whereas the XGB model is 

0.70. Thus, the XGB model is superior to the other 3 models, 

where this model produces an average training data model 

performance of 0.70 and test data of 0.74. The Table 10 also 

shows that the performance of all models is over fitted. Figure 

11 shows the classification results of training data and test data 

from the best model obtained from 10 model tests, namely the 

XGB model. 

 

Table 8. Comparison of the testing data evaluation matrix 

 
Model Accuracy Severity Precision Recall F1-score 

LP 

0.74 0 0.85 0.60 0.71 

 1 0.70 0.78 0.74 

 2 0.73 0.81 0.76 

 Mean/total 0.76 0.73 0.74 

XGB 

0.74 0 0.77 0.70 0.73 

 1 0.70 0.78 0.74 

 2 0.76 0.75 0. 75 

 Mean/total 0.74 0.74 0.74 

LS 

0.74 0 0.84 0.61 0.71 

 1 0.70 0.78 0.74 

 2 0.73 0.80 0.76 

 Mean/total 0.76 0.73 0.74 

RF 

0.69 0 0.82 0.64 0.72 

 1 0.70 0.78 0.74 

 2 0.74 0.79 0.76 

 Mean/total 0.75 0.73 0.74 

 

Table 9. F1-score performance of the models of testing 

 
Model Less Serious (0) Very Serious (1) Serious (2) 

LP 0.71 0.74 0.76 

XGB 0.73 0.74 0.75 

LS 0.71 0.74 0.76 

RF 0.72 0.74 0.76 

 

Table 10. Model performance results of training and testing 

data 

 
Training Data Testing Data 

Model 0 1 2 Mean 0 1 2 Mean 

LP 0.72 0.64 0.71 0.69 0.71 0.74 0.76 0.74 

XGB 0.73 0.64 0.71 0.70 0.73 0.74 0.75 0.74 

LS 0.72 0.64 0.71 0.69 0.71 0.74 0.76 0.74 

RF 0.72 0.64 0.71 0.69 0.72 0.74 0.76 0.74 

 

Apart from considering Table 10, these four algorithms also 

have advantages and disadvantages. The advantages of XGB 

are high performance, scalability, and flexibility, while the 

disadvantages of XGB are complexity, blackbox tendency, 

and computational cost. When looking at applicability, XGB 

is very suitable for structured data and data that has complex 

relationships. 

For RF, it is suitable for various data types and robust to 

noise. The advantages of RF are that it is interpretable and can 

handle high-dimensionality data. Next is the LP algorithm. 

The LP algorithm is a machine learning algorithm in the semi-

supervised learning category. The advantages of the LP 
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algorithm are simplicity, ease of implementation, and 

interpretability, while the disadvantages are that it is very 

sensitive to initial labels and graph construction, has limited 

model complexity, and has no guarantee of convergence. 

The next algorithm is LS. This algorithm is almost the same 

as LP, which is part of machine learning for semi-supervised 

learning. The use of LS is very suitable for situations where 

very little amount of data is labeled, and the data used can be 

described naturally in the form of a graph. The advantages of 

the LS algorithm are that it is very effective for unlabeled data, 

flexibility in handling different types of data, simplicity, and 

interpretability. Then the disadvantages of LS are sensitivity 

to the similarity graph, limited model complexity, and the 

potential for label bias. 

 

 
(a) Training data 

 

 
(b) Testing data 

 

Figure 11. Classification result of the training and testing 

data from the XGB models 

 

 

4. LIMITATIONS 

 

This research has limitations on the amount of data used to 

develop a model. We did not augment the data because the 

data taken from several accident databases is factual and 

natural. If we add data in this way, the pattern of events based 

on the date and year can become more biased. To avoid this, 

Then the researcher keeps the data intact according to the facts 

from the database that has been collected. 

In addition, the parameter tuning process is not carried out 

because all algorithms used are collected in the “lazypredicts” 

library. So that the selection of the best model is only based on 

the results of training and testing and considering imbalanced 

class data so that to represent a balanced class distribution, the 

F1-Score value is chosen [20, 21]. 

5. THE PRACTICAL APPLICATION  

 

Using machine learning to classify the severity of marine 

accidents has practical applications. This research is highly 

valuable for enhancing maritime safety and improving 

response efforts. Here is an analysis of its practical uses: First, 

Improved Emergency Response: By rapidly evaluating the 

seriousness of accidents using machine learning algorithms, 

authorities can distribute resources with greater efficiency. 

This can result in the expedited deployment of search and 

rescue teams, the implementation of pollution control 

measures, and the provision of medical help for emergency 

cases. The second improvement is better accident 

investigation. Using machine learning, huge amounts of data 

from accident reports can be analyzed, showing complex 

patterns and links between different factors that cause serious 

accidents. This can assist investigators in identifying the 

fundamental reasons and formulating precise preventive 

actions. Third, regulatory authorities can develop targeted 

safety laws by identifying the key elements that have the 

greatest impact on serious accidents. This allows for the 

creation of regulations that specifically address the most 

significant hazards. Implementing a data-driven strategy can 

lead to more efficient safety standards. Fourth, Insurance Risk 

Assessment: Insurance firms can use these models to improve 

the precision of evaluating boat risk profiles and then modify 

premiums accordingly. This can motivate shipowners to give 

priority to safety measures. Fifth, Enhanced Route Planning: 

By combining machine learning models with weather 

forecasting and other marine data, it is possible to pinpoint 

locations with a high-risk factor and provide recommendations 

for safer routes for vessels. This can greatly diminish the 

probability of accidents. 

 

 

6. CONCLUSIONS 

 

The research analyzed historical and investigative marine 

accident data from 2003 to 2022, recording a total of 1,768 

cases. The findings indicate that ship-to-ship collisions tend 

to be more severe, while ship groundings tend to be less 

serious. Other types of accidents result in very serious severity. 

Fishing vessels are more prone to serious marine accidents 

compared to other types of vessels. The accident investigation 

report data reveals that human factors account for 

approximately 50.3% of accidents and have significant 

consequences. Additionally, a marine accident severity 

classification model was developed, and one of the ten 

machine learning models used yielded the best performance. 

The XGB classifier model is superior in classifying the 

severity of marine accidents due to its higher average F1 score 

compared to other models. While it can be used to predict 

future marine accidents, its reliability percentage is only 70-

74%. 

The results of this study show a better performance of about 

5%-10% compared to the study developed by Mullai and 

Paulsson, which showed a performance of 65%. This 

improvement is very significant in the development of marine 

transportation safety science so that accidents and misfortunes 

can be prevented. Thus, marine transportation safety is not just 

about reducing the risk of accidents but also about ensuring 

better access, economic development, and overall societal 

well-being. All of this contributes to the achievement of 

sustainable development goals. 
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