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The burgeoning demand for effective predictive maintenance in industrial systems 

necessitates accurate prognostics of equipment's Remaining Useful Life (RUL). In 

particular, the prediction of RUL plays a crucial role in MOSFET devices for many 

applications to prevent failures and maintenance schedule optimization. Motivated by the 

potential requirement for more than what traditional models can provide, this study sought 

to improve upon these estimates. This research aimed to solve the problem of accurately 

estimating RUL for MOSFET devices, since these systems are characterized by substantial 

uncertainties and non-linear processes. To address this issue, we introduced a high-

performance prognostic model that promises to take advantage of both the Adaptive 

Particle Filter (APF) and Gaussian Process Regression (GPR), which is called as PF-GPR 

method. The model used a genetic algorithm to control when and how many particles were 

adaptively resampled applying different weighted strategies (mean or median) in response 

of the stochastic system deterioration. We designed and conducted a series of experiments 

based on the PF-GPR approach with two objectives: i) to benchmark different systematic 

resampling schemes; ii) demonstrate that even in case of small number (i.e. FloatTensor 

section {newString 10}0/75k). Systematic comparisons with standard particle filtering 

techniques showed the model performed well in tracking RUL as it degraded through wear 

degrees and estimated prediction errors were obtained. The results showed that the PF-

GPR model significantly outperformed traditional methods, in particular their adpative 

resampling version based on the median. The PF-GPR median approach performed 

consistently better with respect to true RUL approximation and had the lowest RMSE for 

all time points. These results highlight the improved strength of prediction power for 

equipment RULs using our provided approach, thus reinforcing that real-world predictive 

maintenance applications are possible by said model. 
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1. INTRODUCTION

Prognostics--a critical part of predictive maintenance that 

provides an estimate of the time when system / component 

failure (e. g., MOSFET) will occur or degrade to a level where 

appropriate action can be taken [1]. MOSFETs play a key role 

in electronic device because it acts as switch and amplifier [2]. 

Health state prediction and lifetime estimation of MOSFETs 

form the essence to reliability and functionality in an 

electronic system [3]. The on-state resistance (R_on) of 

MOSFETs is another parameter that govern efficient operation 

and typical increases during lifetime owing to the effects like 

thermal stress, electrical overstress or dielectric breakdown etc. 

[4]. Tracking the evolution of R_on through time offers useful 

information about its wear-out modes, which can be further 

exploited to predict their remaining life (RUL) [5]. R_on 

degradation path modelling enables the ability to predict when 

a MOSFET will fail beyond its performance design 

specifications - in doing so defining end-of-life (EOL) limit 

[6]. 

Particle filtering is an estimation approach for a system state 

that integrates measurements. Of course [7], this is simply a 

fact that we always deal with in practice since everything we 

measure occurs over some finite time window. Regarding 

MOSFET Prognotics, the particles filters could fused with 

instantaneous measurements of to form a posterior on health 

state [8]. We use Bayesian sequential estimation for this case. 

But you are going to have to use a set of particles, or 

probability distribution over states for your system. The first 

step that particles pass to fitter is association and the second 

one updating [9]. The current state estimate is then computed 

by taking a weighted average of the particles, with weights 
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reflecting the likelihood that each particle currently represents 

the true unknown state. This is particularly well suited for 

systems with nonlinear behaviors or non-Gaussian noise, as 

commonly found in the operational environment of electronic 

devices [10]. 

While powerful, particle filters are not perfect. One 

important problem is that of particle deprivation, where over 

time the variance in the set decreases drastically. This is an 

issue in the case where only a handful of particles were 

weighted heavily and it may produce poor estimate for actual 

probability distribution [11]. This impoverishment lessens the 

performance of the filter, since it requires a high diversity in 

particles to properly achieve an approximation for 

𝑝(𝑥𝑡|𝑧1: 𝑡). A reduction in the diversity of particle set causes 

a breakdown of ability to make future state predictions by the 

filter, and this is especially significant in prognostics case 

since accurate estimation involves RUL [12]. 

In the particle filtering framework, optimization-like 

strategies are adopted to tackle this problem: some methods 

have been shown in [13]. These strategies are less drastic and 

have the target of re-shuffling particles in a manner that is 

closer to the true posterior distribution (and especially 

correcting for it after resampling, where impoverishment can 

be most severe). Optimization is based on the introduction of 

perturbation to particles, resampling from a larger distribution 

or by guiding selection and particle movement using 

algorithms [14]. 

To resolve the particle impoverishment, meta-heuristic 

algorithms are crucial [15]. These algorithms are based on 

nature and have the ability to provide optimal, or near-optimal 

solutions in difficult search spaces where other methods can 

fail [16]. The particle filter process can be enhanced by using 

meta-heuristics, as e.g., genetic algorithms (GA), to guide the 

particles toward high likelihood regions of the state space [17]. 

A special class of GAs use selection, crossover and mutation 

operations on the particle set (due to which it is called 

PSO+GA), all the above steps are directly evolved by means 

an EA algorithm for preserving diversity, in escaping from 

some local maxima where many particles satisfyingly cluster 

otherwise [18]. 

The integration of particle filtering with meta-heuristic 

optimization provides a reliable method for prognosis in 

electronic components. In this fusion, the prediction of particle 

filters is improved to predict MOSFET health status and life 

more accurately [19]. At the point when executed, this makes 

for a very significant improvement to predictive methods in 

maintenance which then translates into less down time and 

longer operational life of equipment-one lead directly back to 

greater reliability and additional cost savings [19]. Thus, the 

addition of meta-heuristic algorithms to particle filtering is a 

major improvement in predictive maintenance and reliability 

engineering [20]. 

It was a substantial gap in the prior prognostics literature 

which motivated the development of this work as an organized 

framework to undertake MOSFET device failure prognosis 

comprising statistics-based identification and model learning. 

Now granted, there are certainly some interesting 

computational structures that arise that may be very attractive 

for mining big data streams (like particle filtering), summary 

functions typically do not show the kind of awareness in their 

use resource compared to "classic" adaptive techniques. 3D 

Array Family of seq: adapted to this family. You are in the 

same external phase as another probe Move too often Classic 

issue from particles is not solved with a larger version, that 

will stop exploring probable states very soon due to lack or 

richness (space too fragmented / population size limit). 

These problems are reflected in a lesser degree of particle 

diversity, hence this has devastating effects on the ability for 

this filtering process to make any useful predictions. The 

objective of this paper is to address and bridge that gap through 

proposing a novel framework, which integrates statistical 

filtering with model-based learning techniques but also 

promotes efficiency and robustness in the context of particle 

filter. 

The aim of this article is to enhance the prognostics of 

MOSFET devices by incorporating a meta-heuristic 

algorithm—specifically, a genetic algorithm—into the particle 

filter framework for improved particle classification and 

resampling. Our objective is to maintain a diverse and 

representative sample of particles to effectively counteract 

particle degeneracy. With this innovation, we aim to introduce 

a more powerful approach to outlier management with the 

implementation of median-based weight allocation and 

elimination of the skewing concept perpetuated by traditional 

mean-based concepts. We also expect the current innovation 

to significantly increase ISFET prognostics robustness and 

accuracy, thereby allowing for higher-precision, more 

trustworthy predictive electronic maintenance. The rest of the 

article is organized as follows. In section 2, we present the 

literature survey. Preliminaries are presented in section 3. 

Section 4 presents experimental results and analysis. 

Ultimately, in section 5, we present the conclusion and future 

works. 

 

 

2. LITERATURE SURVEY 

 

The development of Particle Filter methodologies has 

centered on the effort to solve the fundamental challenge of 

the computational burden, specifically when utilized in 

nonlinear and non-Gaussian tracking issues. Advances in this 

sector have prioritized the improvement of PFs in terms of 

their efficiency and accuracy, allowing them to be used more 

universally and effectively in several tracking conditions. This 

saga paper assesses the development of upgraded PF versions 

that have diminished computational demands while improving 

state estimation accuracy. The auxiliary particle filter is the 

central approach, offering a technique for enhancing sample 

dimensionality to ensure sample diversity. This approach 

improves not only the Run time Remaining assessment with 

minor deviations when applied to the Insulated Gate Bipolar 

Transistor but also eliminates the NDL through its efficient use 

of a simple slope-based mechanism for critical degradation 

point identification [21]. Building upon the APF, the 

regularized auxiliary particle filter (RAPF) emerges as a 

notable development, incorporating regularization techniques 

and a rejection/resampling strategy. Therefore, these 

adaptations enhance the particle distribution, stiffen the 

resampling stage, resulting in an enhanced filter able to 

forecast system states more efficiently and more accurately 

[22].  

A more recent development towards reducing the 

computational cost is a Particle filter on sequence importance 

sampling based, using a bank of unscented filters that can 

generate heavy-tailed proposals efficiently and rigorously 

incorporate information on the latest observations to achieve 

substantial performance over conventional PF approaches and 

other nonlinear filters [23]. 
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This scheme is also suitable for addressing the challenges 

of multimodal distributions via regularized RBPF, which uses 

of robust and cluster-based approach called a marginalized 

particle filter [24]. This innovation improves the accuracy of 

TPs because it efficiently addresses the complexities of 

multimodal posterior distributions. Secondly, the fusion of a 

model-based and data-driven approach to the prediction of the 

RUL of lithium-ion batteries using AFSA and PF implies the 

possibility of boosting accuracy significantly. It is possible to 

achieve the proposed objectives by utilizing optimization 

algorithms and PF combined in the optimization algorithm. 

Prior particles are efficiently nudged into high likelihood 

domains, feeding the distribution richness that damping 

degeneracy [25]. Lastly, the mutated particle filtering 

technique is a strategic innovation that enhances the 

exploration of posterior ones. It refers to a computational 

approximation of mutation methods and particle selection 

schemes. The strategy is thus concerned with a complete 

approximation of probability density functions, serving a 

computational load issue since particles are more efficiently 

employed in this version [26]. A better performance in 

adaptive sampling is presented with the GPF algorithm, where 

Kullback-Leibler divergence sampling is applied in the 

accuracy performance named the KLGPF. This model changes 

partway quickly the size of the particle set when abrupt noise 

changes are detected a more advanced approach to mandating 

computational resources [27]. The Self-Adaptive Particle 

Filter (SAPF) method involves an iterative set of number of 

particles and the propagation function and effectively and 

efficiently adjusts to different conditions while maintaining 

computational performance similar to the classic PF [28]. 

Meanwhile, in medical imaging, particularly the state-of-the-

art task of delineating coronary arteries in 3D computed 

tomography angiograms, a Bayesian tracking algorithm 

developed on PFs is accompanied by a new sampling scheme 

and mean-shift clustering. The result is notable, with the 

bifurcation detection aspect becoming both quick and accurate, 

which illustrates how various PF enhancements can be pooled 

for a single implementation but taken from different 

application areas [29]. 

TAN exploration using adaptive PFs, with Fox’s extension 

based on KLD, not only resolves the computational load issue 

but also does so dynamically by altering the number of 

encountered particles. This particular case, particularly when 

its up-to-date modification of varying bin sizes is considered, 

suggests that the efforts are still persistent to slow down the 

growth in computational load of processing the first levels of 

filtering [30]. In keeping with this trend, a new method has 

been developed that combines genetic algorithms with PFs to 

alleviate the problems of particle degeneracy and 

impoverishment. Exploiting the strengths of GA to push 

particles towards areas with new high-probability state values, 

it is possible to reshape the approximated posterior probability 

density function (PDF) and increase the accuracy of state 

estimation without compromising particle diversity. By 

determining the weight threshold for particle classification and 

running the GA operations to ensure the strength of the mating 

process based only on them, the posterior PDF approximation 

has been vastly improved by a factor of four, and the error in 

expected state estimation has been cut by a factor of over 

twenty, representing a significant leap forward in enhancing 

PF methodologies for complex applications [31].  

In the study [32], a utilization of resampling at each iteration 

to minimize sample degeneracy was performed by duplicating 

high weight particles and removing those with negligible 

weights. An additional work [33] that is based on regularized 

PF is while in the study [34], a modified particle filter, i.e., 

intelligent particle filter (IPF), was proposed where the 

genetic-operators-based strategy is designed to further 

improve the particle diversity. Lastly, In the work of [35], an 

Introduction of a self-evaluation method to monitor the 

posterior PDF and an adaptive weight adjustment to process 

low-weight particles were proposed.  

A summary table of the existing methods that compares 

various particle filtering techniques is presented in Table 1.  

 

Table 1. The comparisons of various particle filtering techniques  

 
Method Description Improvement Aimed Limitation 

SIR-PF [32] 

Utilizes resampling at each iteration 

to minimize sample degeneracy by 

duplicating high weight particles and 

removing those with negligible 

weights. 

Reduce sample degeneracy 
Leads to sample 

impoverishment, reducing 

diversity among particles 

Auxiliary PF [21] 
Generates an auxiliary index to guide 

resampling, aiming to improve 

particle diversity. 
Enhance particles diversity 

May still suffer from noise and 

resampling imperfections, 

leading to a discrete rather than 

continuous distribution 

Unscented PF [23] 
Integrates the unscented Kalman 

Filter (KF) into the PF process to 

improve the proposal distribution. 
Improve proposal distribution 

Particle diversity may 

deteriorate due to noise and the 

inherent limitations of 

resampling 
Regularized PF [33] 

Regularized Auxiliary PF 

[22] Mixture Regulated 

Rao-Blackwellized PF [24] 

Implement strategies to smooth the 

posterior density and conduct 

resampling based on a continuous 

distribution. 

Improve particle diversity by 

smoothing posterior density 

High computational cost; 

reliability issues if posterior 

PDF cannot accurately represent 

the high-likelihood region 

Intelligent PF [14, 25, 26, 

34] 

Employs softcomputing tools (e.g., 

genetic algorithms, swarm 

optimization) to track and optimize 

particle distribution. Includes 

operations like crossover and 

mutation. 

Optimize particle distribution 

and enhance diversity 

Sensitive to noise and 

parameters setting; high 

computational costs and 

implementation challenges in 

real applications 

Adaptive PF [27-30] 
Adjusts the number of particles at 

each iteration based on various 

Adjust particle count for better 

posterior PDF representation 
High computational costs due to 

determining particle number and 
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criteria (e.g., Kullback–Leibler 

divergence, statistical measures) to 

ensure adequate representation of the 

posterior PDF space. 

multiple resampling; reliability 

issues with normalized weights 

for error estimation 

The Reference [35] 

Introduces a self-evaluation method 

to monitor the posterior PDF and an 

adaptive weight adjustment to 

process low-weight particles. 

Enhances representation of 

posterior PDF and enriches 

diversity without parameter 

resetting and resampling 

Not handling the lack of 

measurements during the 

Remaining Useful Life (RUL) 

process 

Genetic Algorithm-

Enhanced Particle Filter 

(GA-PF) [36] 

GA-PF utilizes genetic algorithms to 

direct particles towards high-

likelihood states and refine the 

posterior PDF. 

To enhance state estimation 

accuracy by preventing particle 

degeneracy and impoverishment 

Requires validation of new 

offspring weights to ensure 

replacement leads to improved 

particle distribution 

 

The existing literature on prognostics reveals a notable gap: 

the absence of a comprehensive framework for the 

prognostication of MOSFET devices that effectively 

integrates statistical filtering with a trained-based model. 

Additionally, while particle filtering is a promising approach 

for such applications, it often lacks efficiency awareness, with 

key issues like particle degeneracy impeding its efficacy. 

These issues manifest as a reduced diversity in the particle set, 

which significantly compromises the predictive power of the 

filtering process. Our goal in this article is to bridge this gap 

by presenting an innovative framework that not only merges 

statistical filtering and model-based training but also addresses 

the efficiency and robustness of particle filtering. The aim of 

this article is to enhance the prognostics of MOSFET devices 

by incorporating a meta-heuristic algorithm—specifically, a 

genetic algorithm—into the particle filter framework for 

improved particle classification and resampling. Our objective 

is to maintain a diverse and representative sample of particles 

to effectively counteract particle degeneracy. With this 

innovation, we aim to introduce a more powerful approach to 

outlier management with the implementation of median-based 

weight allocation and elimination of the skewing concept 

perpetuated by traditional mean-based concepts. We also 

expect the current innovation to significantly increase ISFET 

prognostics robustness and accuracy, thereby allowing for 

higher-precision, more trustworthy predictive electronic 

maintenance. 

 

 

3. METHODOLOGY 

 

This section presents the developed methodology of the 

article. It consists of adaptive genetic algorithm-based particle 

filter which is presented in sub-section 3.1. Next, the problem 

formulation is presented in sub-section 3.2. Afterwards, the 

mathematical model is presented in sub-section 3.3. 

Subsequently, the architecture is presented in sub-section 3.4. 

Finally, in sub-section 3.5. The enhanced adaptive-based 

particle (EAPF) is presented. 

 

3.1 Adaptive genetic algorithm-based particle filter (AGA-

PF) 

 

Another related problem in particle filters is degeneracy and 

impoverishment in which after resampling several iterations, 

one or very few particles may end up having most if not all the 

necessary weight. This state of degeneracy means that the 

diversity of the particle group is greatly reduced leading to a 

poor representation of the real posterior distribution. 

Impoverishment, on the other hand, is when the particles are 

forced to get closer to a small limited number of states leading 

to reduced effective sample size which is critical in ensuring 

the filter can model multiple hypotheses. The new algorithm 

in Figure 1 [36] addresses the above problems by 

reintroducing adaptive genetic algorithm operations using the 

Particle Filter framework. The adaptive idea behind this 

system is to change the rule of operation based on the current 

state of the particles. Below is a high-level characterization, of 

how the algorithm works. The algorithm begins by initializing 

a combination of particles from a before distribution, to 

represent the case space of the system being estimated. For 

each time step, particles are propagated according to the 

dynamic model and their weights are evaluated based on how 

well they predict the current observations. Particles are then 

classified into two sets based on their weights: a low-weight 

set (which are at risk of contributing to degeneracy) and a 

high-weight set. Genetic algorithm operations, specifically 

crossover and mutation, are adaptively applied to the low-

weight particles. The decision to apply crossover or mutation 

is based on a comparison with the effective sample size (ESS) 

threshold. The crossover operation combines features from a 

pair of particles, one with low weight and another with high 

weight, hoping to introduce beneficial traits from the high-

weight particles into the low-weight population. Mutation 

introduces random changes to a low-weight particle, guided by 

the variance of the state evolution noise, aiming to explore new 

regions of the state space. After the GA operations, new 

weights are evaluated. If the new particle's weight is greater 

than the average, it replaces its low-weight parent in the high-

weight set, increasing the diversity of the high-weight particles. 

If the new weight is not better than the average but still 

improves on the original low-weight particle, it replaces the 

parent. Otherwise, the new particle is discarded, and the 

original particle is retained. This cycle repeats for each low-

weight particle. The process aims to enhance the diversity of 

particles and prevent the filter from collapsing to a small 

number of states. By adaptively applying GA principles, the 

algorithm seeks to mitigate degeneracy and impoverishment, 

leading to more robust state estimation. 

For more elaboration, about the genetic operations a 

flowchart that depicts an adaptive genetic algorithm-based 

approach for enhancing particle filter performance by 

addressing particle degeneracy and impoverishment is 

presented in Figure 1 and we present the pseudocode in 

Algorithm 1.  

The algorithm begins by initializing a set of particles 𝑥0
𝑖 , 

which are drawn from the initial distribution 𝑝(𝑥0) for 𝑖 =
{1, … , 𝑁}. This step establishes the initial state of the particles 

based on the prior knowledge of the system. The time step 𝑘 

is initialized to 1, setting up the starting point for the iterative 

process that follows. At each time step 𝑘 , particles 𝑥𝑘
𝑖  are 

updated by drawing from the transition distribution 𝑝(𝑥𝑘 ∣

𝑥𝑘−1
𝑖 ) for 𝑖 = {1, … , 𝑁}.  
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Figure 1. Adaptive genetic algorithm-based approach for enhancing particle filter performance by addressing particle degeneracy 

and impoverishment 

 

Algorithm 1. Genetic algorithm-based adaptive resampling 

 

Require:  

Initial particle set{𝑥0
𝑖 }

𝑖=1

𝑁
, with weights {𝑤0

𝑖 }
𝑖=1

𝑁
, 

Ensure:  

Updated particle set {𝑥0
𝑖 }

𝑖=1

𝑁
, with normalized weights 

{𝑤0
𝑖 }

𝑖=1

𝑁
, 

Start 

1:   Initialize particles: 𝑥0
𝑖 ~𝑝(𝑥0) for 𝑖 =  {1, . . . , 𝑁} 

2:   Set time step k = 1 

3:   while measurement data available do 

4:      Draw particles: 𝑥0
𝑖 ~ 𝑝(𝑥𝑘|𝑥𝑘−1

𝑖 ), for 𝑖 =  {1, . . . , 𝑁} 

5:      Evaluate weights: 𝑤𝑘
𝑖 = 𝑝(𝑦𝑘|𝑥𝑘

𝑖 ) 

6:      Classify particles: 

7:      for i =1to N do 

8:         if 𝑤𝑘
𝑖 < 𝑤𝑘

𝑎𝑣𝑔
 then 

9:            𝑥𝑘
𝑖 ∈ 𝐶𝑘

𝐿 

10:       else 

11:          𝑥𝑘
𝑖 ∈ 𝐶𝑘

𝐻 

12:       end if 

13:    end for 

14:    Set 𝑙 = 1 

15:    while 𝑙 < 𝑁𝑘
𝐿 do 

16:       Select 𝑥𝑘𝐿
𝑙 ∈ 𝐶𝑘

𝐿 

17:       Draw h from {1, . . . , 𝑁𝑘
𝐻} 

18:       Select 𝑥𝑘𝐻
𝑙 ∈ 𝐶𝑘

𝐻 

19:       Generate offspring 𝑥𝑘𝑜
𝑙 : 

20:       𝑢~𝑈(0,1) 

21:       if 𝑢 ≤
𝐸𝑆𝑆𝑘

𝑁
 then 

22:          Crossover: 𝑥𝑘𝑂
𝑙 = 𝛼𝑘

𝑙 𝑥𝑘𝐿
𝑙 + (1 − 𝛼𝑘

𝑙 )𝑥𝑘𝐻
ℎ  

23:          where 𝛼𝑘
𝑙  ~ 𝑈(0,1) 

24:       else 

25:          Mutation: 𝑥𝑘𝑂
𝑙 ~𝑁(𝑥𝑘𝐻

ℎ , 𝜎𝑢
2𝐼𝑑𝑥

)  

26:       end if 

27:       Evaluate weight: 𝑤𝑘𝑂
𝑙 = 𝑝(𝑦𝑘|𝑥𝑘𝑂

𝑙 ) 

28:       Verify and replace: 

29:       if 𝑤𝑘𝑂
𝑙 ≥  𝑤𝑘

𝑎𝑣𝑔
 then 

30:          Replace 𝑥𝑘𝐿
𝑙  with 𝑥𝑘𝑂

𝑙  

31:       else 

32:       if 𝑤𝑘𝑂
𝑙 > 𝑤𝑘𝐿

𝑙  then 

33:          Replace 𝑥𝑘𝐿
𝑙  with 𝑥𝑘𝑂

𝑙  

34:       else 

35:          Discard 𝑥𝑘𝑂
𝑙  

36:       end if 

37:    end if 

38:    Increment 

39:    end while 

40:    Normalize weights: {𝑤𝑘
𝑖 }

𝑖=1

𝑁
 

41:    Increment time step 𝑘 

42: end while 

End 
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This step propagates the particles according to the system's 

dynamics, incorporating the information from the previous 

time step. The weights 𝑤𝑘
𝑖  of the particles are then evaluated 

using the likelihood function 𝑝(𝑦𝑘 ∣ 𝑥𝑘
𝑖 ). This assesses how 

well each particle represents the observed data at the current 

time step. Particles are classified into two categories based on 

their weights.  

Particles with weights 𝑤𝑘
𝑖  less than the average weight 𝑤𝑘

avg
 

are classified as low-weight particles (𝐶𝑘
𝐿) , and those with 

weights greater than or equal to the average weight 𝑤𝑘
avg

 are 

classified as high-weight particles (𝐶𝑘
𝐻). This classification 

helps identify particles that need improvement through genetic 

operations. The genetic operations begin with the initialization 

of the counter 𝑙 to 1. For each low-weight particle 𝑥𝑘𝐿
𝑙  in 𝐶𝑘

𝐿, a 

high-weight particle 𝑥𝑘𝐻
ℎ  is selected from 𝐶𝑘

𝐻 , where ℎ  is 

randomly drawn from {1, … , 𝑁𝑘
𝐻}. An offspring particle 𝑥𝑘𝑂

𝑙  is 

then generated using either crossover or mutation, depending 

on a random variable 𝑢  drawn from a uniform distribution 

𝒰(0,1) . The offspring particle 𝑥𝑘𝑂
𝑙  is generated using the 

formula: 

 

GA operation: {
Crossover (Step 5.1), if 𝑢 ≤

𝐸𝑆𝑆𝑘

𝑁

Mutation (Step 5.2), if 𝑢 >
𝐸𝑆𝑆𝑘

𝑁

  (1) 

 

where, 𝑢 ∼ 𝒱(0,1). 

After generating the offspring, its weight 𝑤𝑘𝑂
𝑙  is evaluated 

using the likelihood function 𝑝(𝑦𝑘 ∣ 𝑥𝑘𝑂
𝑙 ) . This evaluation 

assesses the offspring's performance in representing the 

observed data.  

The offspring's weight is then verified against the average 

weight. If the offspring's weight 𝑤𝑘𝑂
𝑙  is greater than or equal 

to the average weight 𝑤𝑘
avg

, the offspring replaces the low-

weight parent particle 𝑥𝑘𝐿
𝑙 . If the offspring's weight is less than 

the average weight, a further check is performed to see if 𝑤𝑘𝑂
𝑙  

is greater than the low-weight parent particle's weight 𝑤𝑘𝐿
𝑙 . If 

so, the offspring replaces the parent; otherwise, the offspring 

is discarded, and the parent is retained. 

After processing all low-weight particles, the weights of all 

particles are normalized to ensure they sum to one. This step 

prepares the particle set for the next time step. The entire 

process repeats for the next time step, continuing until there 

are no more available measurement data. This iterative 

approach allows the algorithm to continuously adapt and 

refine the particle set, thereby improving state estimation over 

time. 

 

3.2 Problem formulation  

 

Given a prediction framework for Remaining Useful Life 

(RUL) of MOSFET devices utilizing Particle Filter-Gaussian 

Process Regression (PF-GPR), our objective is to enhance the 

PF-GPR model by introducing an Adaptive Particle Filter 

(APF) mechanism. This enhancement aims to modify the 

resampled particles based on an Adaptive Genetic Algorithm 

(AGA) approach, thereby addressing the critical issues of 

degeneracy and impoverishment that are prevalent in standard 

particle filter applications. The core problem is formulated as 

follows: we seek to accurately forecast the on-state resistance 

(𝑅𝐷𝑆−𝑜𝑛(𝑡)) of MOSFET devices until the point of failure, 

utilizing a dataset that encapsulates the behavior of 𝑅𝐷𝑆−𝑜𝑛(𝑡) 

from the start of observation 𝑡0 to a predetermined prediction 

moment 𝑡𝑝 . The goal is to minimize the prognostic error, 

which is defined as the absolute difference between the inverse 

function of the actual on-state resistance at failure time 

(𝑅𝐷𝑆−𝑜𝑛
−1 (𝑡𝑓)) and the inverse function of the predicted on-

state resistance at the estimated failure time (𝑅𝐷𝑆−𝑜𝑛
−1 (𝑡̂𝑓)): 

 

Errorprognostic = |𝑅𝐷𝑆−𝑜𝑛
−1 (𝑡̂𝑓) − 𝑅𝐷𝑆−𝑜𝑛

−1 (𝑡𝑓)|  (2) 

 

The introduction of the APF component into the PF-GPR 

framework is designed to dynamically adjust the genetic 

operations (crossover and mutation) applied to the particles, 

particularly focusing on those with low weights that are at risk 

of contributing to the filter's degeneracy and impoverishment. 

By leveraging the median weight as a robust threshold for 

classifying particles into low and high-weight sets, and by 

adaptively applying genetic algorithm techniques based or the 

state of the particle set, the APF aims to enhance the diversity 

of the particle set and improve the accuracy of state estimation. 

This adaptive approach ensures that the PF-GPR model not 

only maintains its capacity for accurate RUL prediction of 

MOSFET devices but also significantly improves its resilience 

against the limitations that traditionally hamper particle filter 

performance. By addressing these challenges, the enhanced 

PF-GPR framework (incorporating APF) promises more 

reliable and robust future forecasting of 𝑅𝐷𝑆−𝑜𝑛(𝑡), leading to 

improved predictive maintenance strategies for MOSFET 

devices. 

 

3.3 Mathematical model  

 

Sequential parameter state estimation in prognostic systems, 

such as those designed for predicting the RUL of MOSFET 

devices, necessitates two critical functions: the state evolution 

function 𝑓𝑡(⋅) and the measurement function 𝑔𝑡(⋅), which are 

defined as follows: 

 
𝑥𝑡  = 𝑓𝑡(𝑥𝑡 − 1, 𝑢𝑡)
𝑦𝑡  = 𝑔𝑡(𝑥𝑡 , 𝑣𝑡)

  (3) 

 

Here, 𝑥𝑡 and 𝑦𝑡  represent the parameter state vector and the 

measurement vector at time step 𝑡, respectively. The vector 𝑢𝑡 

denotes the noise (or random values) introduced during the 

state evolution from time step 𝑡 − 1 to 𝑡, and 𝑣𝑡  denotes the 

noise present during data measurement at time step 𝑡 . 

Although true parameter states cannot be exactly determined, 

the full posterior Probability Density Function (PDF) of the 

state at time step 𝑡 can be recursively calculated using Bayes' 

rule as follows: 

 

𝑝(𝑋𝑡 ∣ 𝑌𝑡) =
𝑝(𝑋𝑡−1∣𝑌𝑡−1)𝑝(𝑦𝑡∣𝑥𝑡)𝑝(𝑥𝑡∣𝑋𝑡−1)

𝑝(𝑦𝑡∣𝑌𝑡−1)
  (4) 

 

In this equation, 𝑋𝑡 = {𝑥1, 𝑥2, … , 𝑥𝑡}  and 𝑌𝑡 =
{𝑦1, 𝑦2, … , 𝑦𝑡}  are sets that contain all state vectors and all 

measurements up to the discrete time step 𝑡 . The densities 

𝑝(𝑦𝑡 ∣ 𝑥𝑡) , 𝑝(𝑥𝑡 ∣ 𝑋𝑡 − 1) , and 𝑝(𝑦𝑡 ∣ 𝑌𝑡−1)  represent the 

likelihood function, the state evolution distribution, and a 

normalizing constant, respectively. 

To address the issue of degeneracy and impoverishment in 

Particle Filters (PFs)-where a few or even one particle may end 

up with the majority of the weight after several iterations of 

resampling, leading to a poor representation of the posterior 

distribution-an adaptive genetic algorithm Based Particle 
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Filter (AGA-PF) is extended from the study [36] and 

integrated within our framework. The AGA-PF introduces 

adaptive genetic algorithm (GA) operations within the PF 

framework, aiming to maintain diversity among the particles 

and prevent the filter from collapsing to a small number of 

states. This is achieved through the use of adaptive crossover 

and mutation operations based on the particles' weights, 

effectively exploring new regions of the state space and 

enhancing the filter's performance. The classical weights of 

the particles at time, w𝑡
𝑖 , are re-adjusted to generate. The 

likelihood of the state of each particle relative to the 

observation with an expectation at this point; each particle is 

subsequently resampled on the basis of their calculated 

weights. Formally, the process of weight update and 

resampling maybe defined as follows: 

 

w𝑡
𝑖 ∝

𝑝(𝑋𝑡
𝑖∣𝑌𝑡)

𝑞(𝑋𝑡
𝑖∣𝑌𝑡)

  (5) 

 

where, w𝑡
𝑖  denote the weight of the th particle out of particles 

at time 𝑡, w̃𝑡
𝑖  is the normalized th particle weight such that 

∑𝑖=1
𝑁  𝑤𝑡

𝑖 = 1, 𝛿(⋅) is the Dirac delta function; and 𝑞(𝑋𝑡 ∣ 𝑌𝑡) is 

the importance density for drawing particles 𝑋𝑡
𝑖 . By 

optimizing the particle filtering process through the generation 

of more controlling parameters via AGA-PF extension and 

connecting it with our prosystem of MOSFET, our system 

aims to improve RUL’s predictive precision for MOSFET 

devices and assure the sturdy state estimation even under the 

under the challenge of parameter degeneracy and 

impoverishment.  

By improving the particle filtering process through 

extending AGA-PF approach to include more controlling 

parameters and integrating it with our prognostic system of 

MOSFET, our system purposes to enhance the predictive 

accuracy of the RUL for MOSFET devices, ensuring robust 

state estimation even under the challenge of parameter 

degeneracy and impoverishment. 

 

3.4 Architecture  

 

The diagram depicted in Figure 2 illustrates the architecture 

of the proposed advanced predictive maintenance framework. 

This framework is developed with the explicit aim to improve 

the accuracy of the RUL prediction for MOSFET devices. 

Specifically, the core of the developed architecture is the 

integration of adaptive particle filter, hereinafter referred to as 

APF, with Gaussian Process Regression to form an Enhanced 

PF-GPR model. This novel statistical technique allows finding 

solutions to three existing PF problems, including degeneracy, 

collapse, and sample impoverishment, as a result greatly 

enhancing the prognostic capabilities. The process initiated by 

the collection of “Measurement Data 𝑅𝐷𝑆−𝑜𝑛(𝑡)”, which is 

multiple MOSFET devices’ switch’s on-state resistance over 

time. It is then put through “Data Preprocessing,” where it is 

normalized, and relevant features are extracted in creating a 

more relevant and easier-to-analyze feature set. Preprocessed 

data is input in the EAPF, being at the heart of the enriched 

model. In EAPF, particles are initiated, and low and high-

weight sets are distinguished by a mean/median weight 

threshold chosen for its sensitivity to the outlier. Genetic 

operations – crossover and mutation – are adaptively applied 

to low-weight particles, allowing for a spectrum of particles. 

The enriched particle set from APF is utilized by the "Gaussian 

Process Regression (GPR)" module. Here, the model is trained, 

and predictions regarding 𝑅𝐷𝑆−𝑜𝑛(𝑡) are made, forecasting the 

device's condition up until the point of failure. The final step 

in the framework is the "Prognostic Error Calculation", where 

the inverse function of predicted and actual on-state resistance 

at the estimated failure time is computed to determine the 

prognostic error. This measure of error provides critical 

feedback, allowing for the continuous refinement of the APF 

process, thereby enhancing the overall prediction accuracy of 

the PF-GPR model. 

 

  
 

Figure 2. The architecture of an enhanced PF-GPR model with adaptive particle filter for improved RUL prediction of MOSFET 

devices 

 

3.5 Enhanced adaptive based particle (EAPF) 

 

EAPF uses the average weight as a criterion to classify 

particles into low-weight and high-weight sets in a particle 

filter could be influenced by outliers, which might not 

accurately reflect the typical distribution of particle weights. 

In situations with significant weight disparities among 

particles, the mean can be skewed by extremely high or low 

weights, which do not represent the majority of the particle set. 

This skewing can lead to a misclassification of particles and, 

consequently, poor performance of the filter, as it may fail to 

effectively focus computational resources on the most 

promising regions of the state space. Replacing the average 

with the median weight can mitigate this issue as the median 
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is more robust to outliers. The median, by definition, is the 

middle value of a dataset when ordered from the lowest to the 

highest value, or the average of the two middle values when 

the dataset has an even number of observations. Therefore, it 

is unaffected by extremely large or small values and can 

provide a better central tendency measure for weight 

distribution. The mean weighting strategy calculates the 

average weight of all particles at a given time step. This 

average weight is used as a benchmark to classify particles and 

guide the genetic operations. 

1. Weight Evaluation: At each time step 𝑘, the weights of 

the particles 𝑤𝑘
𝑖  are evaluated using the likelihood 

function 𝑝(𝑦𝑘 ∣ 𝑥𝑘
𝑖 ). 

2. Mean Weight Calculation: The average weight 𝑤𝑘
avg

 is 

calculated as follows: 
 

𝑤𝑘
avg

=
1

𝑁
∑  𝑁

𝑖=1 𝑤𝑘
𝑖    (6) 

 

where, 𝑁 is the total number of particles. 

3. Classification Based on Mean Weight: Particles are 

classified into low-weight and high-weight categories 

based on the mean weight 𝑤𝑘
avg

: 

 

𝑥𝑘
𝑖 ∈ {

𝐶𝑘
𝐿 , if 𝑤𝑘

𝑖 < 𝑤𝑘
avg

𝐶𝑘
𝐻 , if 𝑤𝑘

𝑖 ≥ 𝑤𝑘
avg  (7) 

 

This classification helps identify particles that need 

improvement through genetic operations. The median 

weighting strategy uses the median of the particle weights as a 

reference to classify particles. The median provides a more 

robust measure in the presence of outliers, ensuring that the 

classification is not unduly influenced by extreme values. 

1. Weight Evaluation: Similar to the mean weighting 

strategy, the weights 𝑤𝑘
𝑖  are evaluated using the 

probability function 𝑝(𝑦𝑘 ∣ 𝑥𝑘
𝑖 ) at each time step 𝑘. 

2. Median Weight Calculation: 𝑤𝑘
med is calculated by sorting 

the weights {𝑤𝑘
𝑖 } and selecting the middle value: 

 

𝑤𝑘
med = median ({𝑤𝑘

𝑖 })  (8) 

 

3. Classification Based on Median Weight: Particles are 

classified into low-weight and high-weight categories 

based on the median weight 𝑤𝑘
med : 

 

𝑥𝑘
𝑖 ∈ {

𝐶𝑘
𝐿 , if 𝑤𝑘

𝑖 < 𝑤𝑘
med

𝐶𝑘
𝐻 , if 𝑤𝑘

𝑖 ≥ 𝑤𝑘
med

  (9) 

 

This method makes sure that particles are chosen in a 

balanced way for genetic operations, helping to maintain 

diversity within the particle set. A flowchart of Enhanced 

Adaptive based particle (EAPF) is presented in Figure 3.  

 

 

 
 

Figure 3. The enhanced adaptive particle filter algorithm utilizing median weight threshold and adaptive threshold function for 

particle classification and state estimation 
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4. EXPERIMENTAL WORKS AND ANALYSIS 

 

4.1 Experimental design  

 

The data collection and preprocessing methodology for the 

predictive maintenance model followed a structured approach 

to ensure the data accurately represented operational 

conditions while eliminating unnecessary noise. The process 

began with data sampling. Given the large volume and relative 

consistency of transient state data for drain-source voltage, 

gate signal voltage, and drain currents, a sampling strategy was 

implemented to refine the dataset, focusing on transient data 

relevant to the predictive model's requirements. Next, transient 

data extraction was performed, concentrating on File 36 Run 

1. Key parameters (𝑉𝐷𝑆, 𝐼𝐷, and 𝑉𝐺) were extracted to compute 

resistance during the transient state, reflecting actual 

MOSFET operational conditions. Resistance calculation 

followed, using the Eq. (10): 

 

𝑅𝐷𝑆=𝑉𝐷𝑆/𝐼𝐷  (10) 

 

This equation was applied to derive resistance values 

indicative of various device operational states. State 

determination involved distinguishing between ON and OFF 

states based on average gate signal voltages. Values above this 

average were classified as ON, while those below were 

considered OFF. This classification allowed for the calculation 

of on-state resistance values, denoted as 𝑅𝐷𝑆𝑜𝑛 . Finally, 

temperature normalization was performed to account for the 

temperature dependence of resistance. Using flange 

temperature readings from steady state files, resistance 

calculations were standardized across different temperatures. 

The main data transformations involved sampling transient 

data and calculating temperature-normalized resistance. Due 

to discrepancies between transient and steady state data, only 

transient data was used, with further sampling to reduce data 

volume.  

Figure 4 illustrates gate control, drain source voltage, and 

drain current signals during a transient phase at the beginning 

and end of the device's lifecycle. The sampling process 

involved reading file 36 run 1, extracting Transient State file 

data (𝑉𝐷𝑆, 𝐼𝐷 , 𝑉𝑆𝐺), and calculating resistance using Eq. (10). 

The clear separation of ON and OFF states allowed for the 

computation of average values for both states. Resistance 

values during the ON state were designated as 𝑅𝐷𝑆𝑜𝑛 . 

Temperature normalization was crucial due to the temperature 

dependence of resistance. The process involved characterizing 

resistance changes over time at different degradation stages, 

using flange temperature readings from steady state files.  

 
(a) 

 
(b) 

Figure 4. Gate control, drain-source voltage, and drain 

current signals during a transient phase at both the start and 

end of its operational life [37] 

 

Figures 5 and 6 demonstrate the evolution of package and 

flange temperatures before and after normalization for one 

experiment. The final resistance was determined by 

normalizing resistance values obtained from a regression 

model describing temperature-resistance relationships.  

Figure 7 depicts this process. The MOSFET was considered 

failed when the normalized 𝑅𝐷𝑆𝑜𝑛 reached 0.05, serving as the 

failure threshold in the predictive maintenance model. 

 

 
(a) 

 
(b) 

Figure 5. Flange and package temperatures for different time 

instants, before and after the normalization process [37] 
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Figure 6. Change of resistance with flange temperature [37] 

 
Figure 7. ∆𝑅𝐷𝑆𝑜𝑛(t) after normalization with respect to 

temperature [37] 

 

In our experimental design, we meticulously tailored the 

parameters listed in Table 2 to optimize our predictive 

maintenance model. This model is centered around the 

prediction of Remaining Useful Life (RUL) for MOSFET 

devices by harmonizing Particle Filter (PF) and Gaussian 

Process Regression (GPR) methodologies. The above 

parameters are set throughout the two experiments to ensure 

comparability and enhance the model’s verification.  

 

Table 2. Experimental design parameters 

 
Parameter Description Experiment 1 Experiment 2 

Resampling 

Method 

Technique for 

resampling particles 

Systematic 

Resampling 

Systematic 

Resampling 

Number of 

Particles 

Number of particles 

used in the filter 
1000 1000 

Process Noise  

Mean and Standard 

deviation of process 

noise 

Mean: 0.0004 

Std Dev: 

0.011 

Mean: 0.0004  

Std Dev: 

0.0115 

Measurement 

Noise  

Mean and Standard 

deviation of 

measurement noise 

Mean: 0 

Std Dev: 0.02 

Mean: 0  

Std Dev: 0.02 

 

In addition, they validate the model’s robustness across 

different contexts. Feature Resampling, another type of 

resampling, is included as Resampling method applied to the 

two Experiments. Instead, as important mitigator of 

resampling, Systematic Resampling is deployed to minimize 

particle degeneration, ensuring a correct distribution of 

particles.  

Therefore, diversity is preserved, which is pivotal to the 

accuracy of state estimation. The number of particles is set at 

1000, in both experimental studies. The fixed number of 

particles factor achieves a trade-off between increased 

computational efficiency and enhanced representation of the 

state space, which permits the accurate identification of system 

response and enhances the capacity to predict RUL accurately.  

The process noise is defined with a mean of 0.0004, which 

allows for the incorporation of subtle variability at system 

evolution. Although in Experiment 1, the standard deviation is 

0.011, in Experiment 2, it is adjusted insignificantly to 0.0115.  

This slight variation is implemented to determine how PF is 

sensitive to the alterations in process noise and assess whether 

the assumed model is reliable when process noise varies in a 

marginally drastic manner. In both experiments, the 

measurement noise is the same and does not exhibit a mean 

and a standard deviation of 0 and 0.02, correspondently.  

Such an adjustment enables disentangling the influence of 

process noise changes on the RUL prediction accuracy from 

the effects of measurement noise. Thus, one can clearly 

determine how the process noise parameters affect the 

prognostic precision.  

The above carefully chosen parameters form the backbone 

of our experimental setup and play a crucial role in moving the 

predictive maintenance domain forward. Indeed, since we 

have maintained the same parameters during testing, we hope 

to present a consistently dependable methodology in 

foreseeing the decline in equipment states, ensuring that the 

industrial systems are efficiently and proactively managed. 

 

4.2 Experimental results and analysis  

 

As shown in Figure 8, the curve represented as 

‘measurement’ is the actual RUL data; hence, it is the exact 

data the models are supposed to follow for the RUL.  

 

 
 

Figure 8. Remaining Useful Life (RUL) predictions over 

time based on Particle Filter with Genetic Algorithm with 

mean and median and a classic Particle Filter model using the 

root on-state drain-source resistance RMSE with its actual 

measurement – Experiment 1 

 

For each time point that falls under the curve, any model 

that predicts the RUL accurately operates on the data point of 

assessment. If the predictions of a model are fit well under the 

curve, then the model is more accurate. For our method, the 

‘PF-GA-median’ aligns more accurately under the 
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‘measurement’ data point at all the time points. 

This concludes that the RUL prediction is more accurate; 

fitting under the curve explained with. The mean is averaged 

and is generally affected by the highest weight, which offers a 

median weight a robust resampling threshold, and the largest 

weight affects the lowest weight.  

This phenomenon helps maintain a representative set of 

particles PF-GA-mean, which uses the mean weight to 

resample, diverges the most from the measurement curve, 

especially after 130 minutes. This implies that mean weight is 

not as effective in preserving predictive accuracy in the long 

term when particle weights are heavily variance. Finally, the 

PF curve demonstrates the most divergence from the 

measurement curve.  

This shows that pre-evolutions Particle Filter methods, 

without genetic algorithms, are least effective at predicting 

RUL accurately.  

To sum up, based on the results, it is possible to conclude 

that the adaptive particle filter with median-type weight 

performs better than the Particle Filter with mean weights and 

the default Particle Filter model.  

It can be assumed from the results that the adaptive 

approach and median-based resample are efficient instruments 

for improving the accuracy in RUL prediction in predictive 

maintenance. 

 

 
 

Figure 9. RMSE comparison of on-state drain-source 

resistance (−𝑜𝑛) forecasts using standard Particle Filter (PF) 

and Particle Filter with Genetic Algorithm using mean (PF-

GA-mean and median (PF-GA-median) resampling methods. 

Experiment 2 

 

Figure 9 presents Root Mean Square Error values for the 

PF-GA RDS-on (mouser Case: 2019) forecasts at various lead 

times. Mean and median PF-GA algorithms are compared to 

PF. In all time frames mean and median PF-GA cases have 

lower RMSE than PF, so it is safe to conclude that they are 

more accurate in predicting the RDS-on. In other words, the 

resampling based on the median statistics retains more 

diversity in the particle set, which maintains the state 

estimator’s accuracy over time. PF-GA-mean demonstrates 

higher variability in its RMSE, especially notable at the 100-

minute mark where a peak suggests a significant divergence 

from the actual RDS-on values. This could indicate that mean-

based resampling might be less resilient to the influence of 

outlier particles, which can adversely affect the predictive 

accuracy. Standard PF shows a general decline in RMSE as 

time progresses, yet it does not achieve the lower error levels 

of PF-GA-median. This suggests that while standard PF may 

improve with additional data, it lacks the adaptive 

characteristics that help PF-GA-median maintain higher 

accuracy throughout the prediction period. Overall, the lower 

RMSE associated with PF-GA-median signifies its superior 

performance in forecasting RDS-on, a crucial precursor 

variable for determining RUL. Its ability to deliver consistent 

and reliable predictions highlights the potential of adaptive 

median-based resamplir strategies in enhancing prognostic 

models for predictive maintenance applications. 

Similarly, for second experiment Figure 10 presents the 

RUL predictions at various time points. The 'measurement' 

curve, representing the ground truth, is the reference against 

which the other models are compared. The 'pf_GA_mean' and 

'pf_GA_median' curves, representing the Particle Filter with 

Genetic Algorithm using mean and median weights 

respectively, along with the standard Particle Filter ('pf'), show 

varying degrees of accuracy in tracking the 'measurement' 

curve. The 'pf_GA_median' appears to track the ground truth 

more closely than the 'pf_GA_mean', indicating a better 

performance. This suggests that the median resampling 

method provides a more robust performance, potentially due 

to its resilience to the effects of outlier weights. The standard 

'pf' algorithm follows, demonstrating reasonable accuracy but 

with more deviation from the ground truth than 

'pf_GA_median'. Figure 11 showcases the RMSE for each 

predictive method across the same time points. Consistent with 

the RUL predictions, 'pf_GA_median' maintains a lower 

RMSE throughout, corroborating its higher accuracy and 

stability in prediction. The 'pf_GA_mean' shows higher 

RMSE values, especially at the 110-minute mark, where it 

peaks significantly, indicating a momentary decline in 

predictive accuracy. Notably, all models converge towards 

similar RMSE values towards the end of the observed period, 

suggesting that as the failure event approaches, the models' 

predictions become more aligned, possibly due to 

accumulating more data that informs the prediction algorithms. 

The results from the two graphs—focusing on Remaining 

Useful Life (RUL) predictions and the corresponding Root 

Mean Square Error (RMSE) values—offer valuable insights 

into the performance of different particle filter-based 

prognostic approaches for MOSFET devices. In Experiment 2, 

we witness the comparative efficacy of the Particle Filter with 

Genetic Algorithm using both mean and median weights (PF-

GA-mean and PF-GA-median) against the standard Particle 

Filter (PF). 

 
 

Figure 10. The comparison of the Remaining Useful Life 

(RUL) predictions using Particle Filter with Genetic 

Algorithm mean (PF-GA-mean), median (PF-GA-median), 

standard Particle Filter (PF), and actual measurements over 

time – Experiment 2 
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Figure 11. RMSE comparison of on-state drain-source 

resistance ( −𝑜𝑛) forecasts using standard Particle Filter (PF) 

and Particle Filter with Genetic Algorithm using mean (PF-

GA-mean and median (PF-GA-median) resampling methods. 

Experiment 2 

 

The RUL predictions indicate that the PF-GA-median 

maintains a closer approximation to the actual measurements 

throughout the experiment. This is indicative of its superior 

capability in capturing the degradation pattern of the MOSFET 

devices, likely due to the robustness of median weighting in 

handling outliers and maintaining particle diversity. On the 

other hand, the PF-GA-mean shows larger deviations from the 

measurement curve, which suggests that the mean weighting 

is more susceptible to being skewed by extreme values, 

resulting in less accurate predictions. 

The RMSE graph provides a quantitative backing to these 

observations. It is evident from the consistently lower RMSE 

values that the PF-GA-median achieves greater predictive 

accuracy over time. The lower RMSE signifies that the 

median-based approach more effectively minimizes prediction 

errors, aligning with the known resilience of median values to 

extreme variations in datasets. Conversely, the peaks in the 

RMSE graph for PF-GA-mean highlight specific time points 

where the model's predictions were less reliable. 

The results of the paired t-test for the RMSE values are as 

follows: For the first graph, the t-statistic is 1.642 and the p-

value is 0.152. For the second graph, the t-statistic is 2.763 and 

the p-value is 0.033. For the first graph, the p-value (0.152) is 

greater than 0.05, indicating that the difference between the 

mean and median RMSE values is not statistically significant. 

For the second graph, the p-value (0.033) is less than 0.05, 

indicating that there is a statistically significant difference 

between the mean and median RMSE values, suggesting the 

superiority of the median RMSE over the mean RMSE. 

The standard PF's performance, while outpaced by the 

median approach, does show the ability to track the actual 

RUL values reasonably well, though with less precision as 

indicated by its RMSE. Its performance may be further 

improved with enhancements like those introduced in the PF-

GA-median method. 

 

4.3 Discussion and comparison with traditional methods  

 

Given this, the PF-GPR method aims to be robust against 

noise and uncertainties in sensor measurements. Several 

important features and mechanisms realized enable this 

robustness: 

1. Genetic Algorithm for Adaptive Resampling: The GA 

used in the PF-GPR method is critical to its robustness. 

This enables the GA to perform adaptive resampling, 

changing which particles are in existence, and thus being 

propagated forward based on regions of high likelihood 

within state space. Genetic operations, namely crossover 

and mutation introduce diversity which helps to prevent a 

loss of biomass particle set under the noise 

ridden/uncertainty conditions. 

2. Weighting Strategies for Mean and Median values: This 

helps the robustness even more by making empirical mean 

or median a nice stable guidelines to see in practice 

however it is less useful with respect to prior information. 

Mean weight gives an average, while median weight 

provides the more reliable data point that is not impacted 

by outliers. The Particle Filter-Gaussian Regression 

Process (PF-GPR) method uses these weights to classify 

the particles and guarantee that particles with a significant 

contribution in the state estimate keep through them, 

while smaller contribute ones are refined or replaced via 

genetic operations. 

3. Dealing with Measurement Noise: PF-GPR considers the 

presence of noise in measurements and evaluates particle 

weights using 𝑝(𝑦𝑘 ∣ 𝑥𝑘
𝑖  ), which is likelihood function 

that captures the sensor measurement characteristics 

about how likely yk to be observed given xki. The nature 

of adaptivity in genetic algorithm helps it to adjust the 

particle set according to variations present due 

measurement noise. Crossover and mutation operations 

add new particles that can explore the state space, thus 

mitigating noise effects on the global state estimation. 

4. Reducing Uncertainties: Briefly, the uncertainties in 

sensor measurements are reduced through resampling and 

evaluating particle weights. The effective sample size 

(ESS) analysis checks the level of degeneracy in the 

particles and triggers resampling when needed. The PF-

GPR method will converge to a robust state estimation by 

concentrating on high-weight particles and producing the 

offspring that explores the whole state space, which 

effectively moderates uncertainties. 

The PF-GPR approach exhibits enhanced robustness as 

compared to conventional particle filtering methods due its 

several merits: 

1. The classic method, in general, suffers from particle 

impoverishment since the diversity of particles is reduced 

through resampling and some information might be lost. 

The PF-GPR method tries to alleviate this problem by 

means of genetic operations which are intended for 

introducing variability and keeping the particle set diverse. 

2. Noise Adaptation: In general, the evolution of noise levels 

would cause traditional methods to break or experience 

reduced performance while our method's adaptive 

resampling and genetic algorithm guarantee accurate state 

estimation with continuous adaption to new 

characteristics of noise. 

3. Outliers: The median weighting scheme in PF-GPR is 

robust to the presence of outliers that would otherwise 

throw off traditional methods based on mean weights. 

This PF-GPR method using mean and median strategies 

makes a trade off on outlier handling. 

4. Efficient Sample Size (ESS): The way ESS functioning in 

PF-GPR causes the resampling only when it is necessary 

and avoids extra computational workload for where this 

necessity does not arise, which makes our method more 

efficient than other methodologies that usually trigger a 

resample at fixed time intervals. 
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5. CONCLUSION AND FUTURE WORKS 
 

We addressed the crucial problem of predicting Remaining 

Useful Life (RUL) for Metal-Oxide-Semiconductor Field-

Effect Transistor (MOSFET) devices, which is extremely 

important in the field predictive maintenance. In this work, to 

enhance the prediction accuracy of RUL predictions, we 

inspired with Particle filter and proposed a new model called 

Adaptive Particle Filter-Gaussian Process Regression (PF-

GPR) that incorporates advance resampling scheme for 

enhancing common issues in particle filtering. 

We have developed a genetically adapted particle filter 

based on mean and median weighting schemes; respectively 

designated as particle/genetic algorithm (PF-GA)-mean and 

PF-GA-median. The experimental methodology was designed 

systematically to resample a large number of particles in order 

to effectively represent the state space, simultaneously forcing 

incorporation realistic process and measurement noise 

parameters. 

Quantitative results were informative and showed PF-GA-

median pro- vided a better accuracy in estimating Actual 

Remaining Useful Life than both the other two filters, namely 

PFGAg-mean based filter, standard Particle Filter. The 

findings confirmed that median-based resampling method 

could remarkably enhance RUL prediction performance in 

terms of precision. 

These results have significant implications for predictive 

maintenance in the industrial setting. Our PF-GPR model, 

particularly the hybridized models and ensemble methods with 

finally-predicted output (PF-GA-median) may provide a more 

accurate forecasting of failures in MOSFET devices. For a 

certain class of components, this advance could result in 

maintenance schedules that are more optimal, less downtime 

and significant cost change for any industry weighed down by 

the dependency on these parts. 

Overall, the main contributions of our study to PHM can be 

summarized as follows. 

1. Design of an adaptive particle filter with genetic 

algorithms for enhanced particle diversity. 

2. A median-based weighting strategy to complement -

and which was observed to exhibit greater robustness 

than- the traditional mean-based approaches. 

3. This study is a detailed survey and comparison of 

various particle filtering methods used in MOSFET 

RUL prediction. 

Our study was based on a single dataset for MOSFET 

devices, which is the main limitation of this work; it reduced 

our obtainable insights to those operational conditions covered 

in that dataset. Nonetheless, the findings were robust enough 

to inform precise directions of work in future. 

Different directions for future work appear likely, though. 

1. Increasing range of dataset variety for MOSFET 

devices with a larger set of operational conditions to 

improve the generality aspect in model building. 

2. Performance evaluation of our PF-GPR model against 

noise (measurement and modeling uncertainty)-level 

variations to additionally verify the robustness. 

3. Further extending the developed methodology to other 

types of electronic components or systems, in order to 

evaluate its wider usage for performing predictive 

maintenance. 

4. Considering scalability of our method for large-scale 

industrial applications, and perhaps even integration 

with Internet of Things (IoT) frameworks for real-time 

prognostics. 

Our PF-GPR model, especially the PF-GA-median version 

achieves a great improvement in terms of MOSFET 

prognostics. It can help for better and more economical 

predictive maintenance strategies in the industrial context 

which require accurate estimates of RUL. We hope that as we 

further refine and develop this method, it will continue to 

result in new ways of increasing the reliability/lifetime of 

important electronic components for other industries. 
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NOMENCLATURE 

 

RDSon on-state resistance 

tf the moment of failure 

Ep prognostic error 

𝑤𝑘
med median weight calculation 

𝐶𝑘
𝐿 low-weight particles 

𝐶𝑘
𝐻 high-weight particles 

𝑤𝑘
avg

 the average weight 

VSG gate signal voltage  

RDS−on(t) drain and source 

tp prediction moment 

𝑅−1
𝐷𝑆−𝑜𝑛(𝑡𝑓) 

denotes the inverse function of on-state 

resistance at the moment of failure 
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