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The least squares method has been widely recognized in the statistical and mathematical 

fields for its ability to fit linear models to observed data sets. This research focuses on 

the application of this method in constructing predictive temperature models, given its 

critical influence on tomato planting and production. In this study, the least squares 

method is used to develop and fit linear temperature prediction models and compares its 

effectiveness and precision with other predictive models in the agricultural context. 

Temperature data was collected from the Babahoyo Weather Station in the Province of 

Los Ríos – Ecuador, a key tomato growing area. Our results indicate that, while the least 

squares method provides a solid and reliable fit for certain conditions and periods, other 

models may offer advantages in specific scenarios. However, by integrating predictions 

based on least squares with agronomic practices, it is possible to generate more informed 

planting strategies, optimizing tomato yield against thermal variations. 
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1. INTRODUCTION

In the last decade, the application of temperature predictive 

models in agriculture has gained increasing interest due to 

their capability to optimize production. Smith et al. [1] have 

demonstrated the effectiveness of artificial intelligence models 

in predicting temperatures in wine-growing regions, achieving 

remarkable accuracy that facilitates the planning of planting 

and harvesting, and adapting agricultural practices to climatic 

fluctuations. Furthermore, Johnson et al. [2] explored the use 

of neural networks to model temperature variations in cereal 

crop fields, allowing farmers to manage irrigation and 

fertilization more efficiently. These advances have shown 

significant improvement in the capacity to respond to extreme 

weather events, which is vital for the long-term sustainability 

of agriculture.  

Temperature plays a decisive role in the growth and 

development of various crops, including tomatoes (Solanum 

lycopersicum). In the world of agriculture, predicting and 

understanding temperature trends can be crucial for 

maximizing production and ensuring the health of the plants. 

With technological advancement, predictive models have 

become essential tools in this field, allowing for the 

anticipation of climate trends with increasing accuracy [3]. In 

particular, the least squares method, a technique widely 

recognized in regression analysis [4], promises to be a 

valuable tool for adjusting these predictive models in 

agricultural contexts. Although the application of advanced 

modeling techniques has been widely explored in other fields, 

such as biodiesel production [5], their adaptation and 

optimization for agricultural production, and particularly for 

crops as temperature-sensitive as tomatoes, are still in process. 

In this sense, tomato production, whether in open fields or 

greenhouses, is deeply affected by thermal variations [6], 

reinforcing the need for precise predictive models. This 

research seeks to address this need and explore how the least 

squares method can improve our ability to predict and respond 

to temperature fluctuations in the context of tomato planting. 

Agricultural scientific research, like in other branches, 

requires conducting experiments to verify previously 

established working hypotheses. The development of these 

experiments brings with it the need to control various effects 

that influence the subject leading to the establishment and 

verification of the hypothesis [7]. 

2. METHODOLOGY

2.1 Least squares 

The least squares method is a fundamental statistical 

technique that seeks to minimize the sum of the squares of the 

differences between observed values and the values predicted 

by a mathematical model. This methodology is crucial in the 

field of applied sciences, particularly for obtaining accurate 

estimates of unknown parameters in both linear and non-linear 

models. By fitting the best line or curve that summarizes the 

relationship between independent and dependent variables, 

this method provides a solid foundation for statistical 

inference and prediction. Its application is extensive, ranging 
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from economics to engineering and biology, where models are 

used to describe complex phenomena and make reliable 

predictions about future events based on historical data. 

It is a numerical analysis technique framed within 

mathematical optimization, in which, given a set of ordered 

pairs (independent variable, dependent variable) and a family 

of functions, it attempts to find the continuous function, within 

that family, that best approximates the data (a "best fit"), 

according to the criterion of minimum squared error [8]. 

In its simplest form, it attempts to minimize the sum of 

squares of the differences in the ordinates (called residuals) 

between the points generated by the chosen function and the 

corresponding values in the data. Specifically, it is called 

average least squares (LMS) when the number of measured 

data is 1 and the gradient descent method is used to minimize 

the squared residual. It is used to find the minimum or 

maximum of an objective function and is based on the idea of 

descending or ascending the slope of the function in the 

direction of the gradient (vector of partial derivatives) until 

reaching a point where the rate of change is zero. 

From a statistical point of view, an implicit requirement for 

the least squares method to work is that the errors of each 

measurement are distributed randomly. The Gauss-Markov 

theorem proves that the least squares estimators are unbiased, 

and that data sampling does not have to fit, for example, to a 

normal distribution. 

It is also important that the data to be processed are well 

chosen, to allow visibility into the variables to be resolved (to 

give more weight to a particular data). Tomato cultivation is 

an important agricultural activity worldwide, as tomatoes are 

a valuable source of nutrients and vitamins. However, the 

growth and production of tomatoes are influenced by 

environmental factors, especially temperature. To optimize 

tomato production, it is important to understand how 

temperature affects their growth and how temperature can be 

controlled to improve production. In this context, the least 

squares method is an advanced statistical technique that can be 

used to analyze and model the behavior of tomatoes in relation 

to temperature. 

 

2.2 Mathematical models of a data series 

 

Mathematical models of a data series are mathematical tools 

used to describe and analyze the behavior of a series of data, 

with the goal of predicting its future behavior [9]. 

A fundamental methodology in modern science consists of 

collecting data, organizing it, and then describing it through a 

mathematical model 𝑦 = 𝑓(𝑥). The data can be the result of 

some experiment or observation, as well as those that come 

from sources of global or national organisms. In this context, 

if a mathematical model is developed to represent real data, it 

must strive to meet two objectives: simplicity and accuracy. 

A convenient strategy for creating a mathematical model of 

a statistical nature consists of generating an approximation 

function 𝑓(𝑥) that fits the general shape or trend of the data 

without necessarily matching at all points as shown in Figure 

1. It is observed that the curves representing various functions 

(including from the same family) can pass through the points 

without coinciding with them. Therefore, it is necessary to 

establish a method that allows excluding some of them and in 

this way be able to choose the appropriate fitting function. In 

this context, there is a method that is often found in the 

literature as the least squares regression method which is 

presented below. 

 

 

 
 

Figure 1. Approximation function 
 

2.3 Mathematical models by least squares 
 

Least squares mathematical models are a technique used in 

statistics and data analysis to fit a line or curve to a set of data, 

minimizing the sum of the squares of the differences between 

the observed values and the values predicted by the model [10]. 
 

 
(a) 

 
(b) 

 

Figure 2. Sum of the squares of the errors and data 

dispersion 
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The least squares method is a procedure for fitting a curve 

to a collection of points that represent a set of data. Consider 

the scatter diagram of Figure 2(a), which consists of a plot on 

the 𝑥, 𝑦  plane of some data points {(𝑥𝑖 , 𝑦𝑖);  𝑖 = 1, 2, … , 𝑁}. 
Consequently, as a measure of how well a model 𝑦 = 𝑓(𝑥) fits 

the collection of points, it involves summing the squares of the 

differences between the actual values and the values given by 

the model to obtain the sum of the squares of the errors or 

squared errors [11]. 

 

𝑆𝑟 =∑[𝑦𝑖 − 𝑓(𝑥𝑖)]
2

𝑛

𝑖=1

 (1) 

 
Graphically, 𝑆𝑟  can be interpreted as the sum of the squares 

of the vertical distances between the graph of f and the given 

points in the plane. It is noteworthy that before applying this 

method, the curve that will be adjusted to the set of given 

points must be chosen. 

On the other hand, the efficiency of the fit of the chosen 

curve (by least squares) is quantified by the coefficient of 

determination 𝑅2  which is calculated using the following 

expression [12]: 

 

𝑅2 =
𝑆𝑡 − 𝑆𝑟
𝑆𝑡

 (2) 

 

Being 𝑆𝑡 the measure of data dispersion that is defined as 

 

𝑆𝑡 =∑[𝑦𝑖 − 𝑦̅]
2

𝑛

𝑖=1

 (3) 

 
with 𝑦̅ being an average quantity. Note that 𝑆𝑡 is the sum of 

the squares of the vertical distances between the average value 

of 𝑦̅ and the data points as illustrated in Figure 2(b). Therefore, 

a perfect fit is given by 𝑆𝑟 = 0 and 𝑅2 = 1 which means that 

the curve explains 100% of the data variability. However, if 

𝑅2 = 0 and𝑆𝑡 = 𝑆𝑟  the fit does not show improvement. 

 

2.4 Least squares fitting of a sine wave 

 

The least squares fitting of a sine wave is a technique used 

to fit a sinusoidal function to a dataset. This technique seeks to 

find the optimal values for the parameters of the sinusoidal 

function so that the sum of the squares of the differences 

between the observed values and the predicted values is 

minimized [13]. 

The sinusoidal regression by least squares is the fitting of a 

dataset to a trigonometric function of the form 

 
𝑓(𝑥) = 𝐴0 + 𝐴1 cos(𝑤𝑥) + 𝐴2sin (𝑤𝑥) (4) 

 
with the parameter 𝑤 being the frequency. This type of fitting 

is recommended when the data show a tendency to fluctuate 

over time in wavy curves. For example, temperatures from one 

year to the next tend to undulate in a sinusoidal pattern (See in 

the following session). Sinusoidal waves are also commonly 

seen in signal processing and time series analysis, see Figure 

3(a). 

 

 
(a) 

 
(b) 

 

Figure 3. Sinusoidal regression 

 

Now, the problem of finding a sinusoidal curve that 

optimally fits a set of data is summarized as determining the 

values 𝐴0,  𝐴1 and 𝐴2 that minimize 
 

𝑆𝑟 =∑[𝑦𝑖 − 𝐴0 − 𝐴1 cos(𝑤𝑥𝑖) − 𝐴2 sin(𝑤𝑥𝑖)]
2

𝑛

𝑖=1

 (5) 

 

with 𝑥𝑖  and 𝑦𝑖  as constants while 𝐴0 , 𝐴1  and 𝐴2  are the 

variables (unknowns). Clearly, the equation results from 

substitution. Indeed, minimizing 𝑆𝑟  implies that the partial 

derivatives of 𝑆𝑟  with respect to the variables 𝐴0, 𝐴1 and 𝐴2 

must be zeroed out, that is 
 

𝜕𝑆𝑟
𝜕𝐴0

= −2∑[𝑦𝑖 − 𝐴0 − 𝐴1 cos(𝑤𝑥𝑖)

𝑛

𝑖=1

− 𝐴2 sin(𝑤𝑥𝑖)] = 0 

(6) 

 

𝜕𝑆𝑟
𝜕𝐴1

= −2∑[𝑦𝑖 − 𝐴0 − 𝐴1 cos(𝑤𝑥𝑖)

𝑛

𝑖=1

− 𝐴2 sin(𝑤𝑥𝑖)] cos(𝑤𝑥𝑖) = 0 

(7) 

 

𝜕𝑆𝑟
𝜕𝐴2

= −2∑[𝑦𝑖 − 𝐴0 − 𝐴1 cos(𝑤𝑥𝑖)

𝑛

𝑖=1

− 𝐴2 sin(𝑤𝑥𝑖)] sin(𝑤𝑥𝑖) = 0 

(8) 

 

Given that the summation operates over the elements with 

index i and applying a bit of algebra, the following system of 

equations (3 × 3) emerges. 

 

𝐴0𝑛 + 𝐴1∑cos(𝑤𝑥𝑖) + 𝐴2∑sin(𝑤𝑥𝑖) = ∑𝑦𝑖

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

 (9) 
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𝐴0∑cos(𝑤𝑥𝑖) + 𝐴1∑𝑐𝑜𝑠2(𝑤𝑥𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

+ 𝐴2∑sin(𝑤𝑥𝑖)

𝑛

𝑖=1

cos(𝑤𝑥𝑖)

=∑𝑦𝑖

𝑛

𝑖=1

cos(𝑤𝑥𝑖) 

(10) 

 

𝐴0∑sin(𝑤𝑥𝑖) + 𝐴1∑cos(𝑤𝑥𝑖) sin(𝑤𝑥𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

+ 𝐴2∑𝑠𝑖𝑛2(𝑤𝑥𝑖)

𝑛

𝑖=1

=∑𝑦𝑖

𝑛

𝑖=1

sin(𝑤𝑥𝑖) 

(11) 

 

Now, for a particular case of points, see Figure 3(b). 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . , (𝑥𝑛, 𝑦𝑛) equally spaced as 𝛥𝑥 =  𝑇/𝑛 

(being 𝑇  the period) of coordinates on the abscissas 𝑥𝑖  =
 𝑎 + (𝑖 −  1)𝛥𝑥  where, for 𝑖 = 1, 2, 3, . . . , 𝑛  the following 

equalities in the averages are met. 
 

1

𝑛
∑sin(𝑤𝑥𝑖) = 0

𝑛

𝑖=1

 (12) 

 

1

𝑛
∑cos(𝑤𝑥𝑖) = 0

𝑛

𝑖=1

 (13) 

 

1

𝑛
∑sin(𝑤𝑥𝑖) cos(𝑤𝑥𝑖) = 0

𝑛

𝑖=1

 (14) 

 

1

𝑛
∑𝑠𝑖𝑛2(𝑤𝑥𝑖) =

1

2

𝑛

𝑖=1

 (15) 

 

1

𝑛
∑𝑐𝑜𝑠2(𝑤𝑥𝑖) =

1

2

𝑛

𝑖=1

 (16) 

 

To demonstrate this, consider the definition of the period 

𝜔 =  2𝜋/𝑇 , the Euler formulas 𝑠𝑖𝑛(𝑥) = (𝑒𝑗𝑥  −  𝑒−𝑗𝑥)/2𝑗 
and 𝑐𝑜𝑠(𝑥) = [𝑒𝑗𝑥 + 𝑒−𝑗𝑥]/2𝑗 and the identities 𝑐𝑜𝑠2(𝑥)  =
 [1 +  𝑐𝑜𝑠(2𝑥)]/2 and 𝑠𝑖𝑛2(𝑥)  =  [1 −  𝑐𝑜𝑠(2𝑥)]/2. Thus, 

 

1

𝑛
∑sin(𝑤𝑥𝑖) =

𝑛

𝑖=1

1

2𝑗
∑[𝑒𝑗𝑤𝑥𝑖  −  𝑒−𝑗𝑤𝑥𝑖]

𝑛

𝑖=1

=
1

2𝑗
∑[𝑒2𝜋[𝑎+(𝑖−1)∆𝑥]𝑗/𝑇
𝑛

𝑖=1

− 𝑒−2𝜋[𝑎+(𝑖−1)∆𝑥]𝑗/𝑇] 

(17) 

 

1

𝑛
∑cos(𝑤𝑥𝑖) =

𝑛

𝑖=1

1

2𝑗
∑[𝑒𝑗𝑤𝑥𝑖 + 𝑒−𝑗𝑤𝑥𝑖]

𝑛

𝑖=1

=
1

2𝑗
∑[𝑒2𝜋[𝑎+(𝑖−1)∆𝑥]𝑗/𝑇
𝑛

𝑖=1

+ 𝑒−2𝜋[𝑎+(𝑖−1)∆𝑥]𝑗/𝑇] 

(18) 

 

∑sin(𝑤𝑥𝑖) cos(𝑤𝑥𝑖)

𝑛

𝑖=1

=
1

(2𝑗)2
∑[𝑒𝑗𝑤𝑥𝑖  

𝑛

𝑖=1

− 𝑒−𝑗𝑤𝑥𝑖] [𝑒𝑗𝑤𝑥𝑖 + 𝑒−𝑗𝑤𝑥𝑖]

= −
1

4
∑[𝑒4𝜋[𝑎+(𝑖−1)∆𝑥]𝑗/𝑇
𝑛

𝑖=1

− 𝑒−4𝜋[𝑎+(𝑖−1)∆𝑥]𝑗/𝑇] 

(19) 

 

∑𝑠𝑖𝑛2(𝑤𝑥𝑖) =

𝑛

𝑖=1

1

2
∑[1 − cos(2𝑤𝑥𝑖)]

𝑛

𝑖=1

=
1

2
[𝑛 −∑(𝑒2𝑗𝑤𝑥𝑖 + 𝑒−2𝑗𝑤𝑥𝑖)]

𝑛

𝑖=1

=
1

2
[𝑛

−
1

2𝑗
∑[𝑒4𝜋[𝑎+(𝑖−1)∆𝑥]𝑗/𝑇
𝑛

𝑖=1

+ 𝑒−4𝜋[𝑎+(𝑖−1)∆𝑥]𝑗/𝑇] 

(20) 

 

∑𝑐𝑜𝑠2(𝑤𝑥𝑖) =

𝑛

𝑖=1

1

2
∑[1 + cos(2𝑤𝑥𝑖)]

𝑛

𝑖=1

=
1

2
[𝑛 +∑(𝑒2𝑗𝑤𝑥𝑖 + 𝑒−2𝑗𝑤𝑥𝑖)]

𝑛

𝑖=1

=
1

2
[𝑛

+
1

2𝑗
∑[𝑒4𝜋[𝑎+(𝑖−1)∆𝑥]𝑗/𝑇
𝑛

𝑖=1

+ 𝑒−4𝜋[𝑎+(𝑖−1)∆𝑥]𝑗/𝑇] 

(21) 

 
Given that ∆𝑥 = 𝑇/𝑛 it follows 

 

∑sin(𝑤𝑥𝑖) =

𝑛

𝑖=1

1

2𝑗
∑[𝑒2𝜋[𝑎+(𝑖−1)∆𝑥]𝑗/(𝑛∆𝑥)
𝑛

𝑖=1

− 𝑒−2𝜋[𝑎+(𝑖−1)∆𝑥]𝑗/(𝑛∆𝑥)]

=
1

2𝑗
[𝑒2𝜋𝑎𝑗/(𝑛∆𝑥)∑𝑒2𝜋𝑗(𝑖−1)/𝑛

𝑛

𝑖=1

− 𝑒−2𝜋𝑎𝑗/(𝑛∆𝑥)∑𝑒−2𝜋𝑗(𝑖−1)/𝑛
𝑛

𝑖=1

] 

(22) 

 

∑cos(𝑤𝑥𝑖) =

𝑛

𝑖=1

1

2𝑗
∑[𝑒2𝜋[𝑎+(𝑖−1)∆𝑥]𝑗/(𝑛∆𝑥)
𝑛

𝑖=1

+ 𝑒−2𝜋[𝑎+(𝑖−1)∆𝑥]𝑗/(𝑛∆𝑥)]

=
1

2𝑗
[𝑒2𝜋𝑎𝑗/(𝑛∆𝑥)∑𝑒2𝜋𝑗(𝑖−1)/𝑛

𝑛

𝑖=1

+ 𝑒−2𝜋𝑎𝑗/(𝑛∆𝑥)∑𝑒−2𝜋𝑗(𝑖−1)/𝑛
𝑛

𝑖=1

] 

(23) 

 

1214



 

∑sin(𝑤𝑥𝑖) cos(𝑤𝑥𝑖) =

𝑛

𝑖=1

−
1

4
∑[𝑒

4𝜋[𝑎+(𝑖−1)∆𝑥]𝑗
𝑛∆𝑥

𝑛

𝑖=1

− 𝑒−
4𝜋[𝑎+(𝑖−1)∆𝑥]𝑗

𝑛∆𝑥 ]

= −
1

4
[𝑒
4𝜋𝑎𝑗
𝑛∆𝑥 ∑𝑒

4𝜋𝑗(𝑖−1)
𝑛

𝑛

𝑖=1

− 𝑒−
4𝜋𝑎𝑗
𝑛∆𝑥 ∑𝑒−

4𝜋𝑗(𝑖−1)
𝑛

𝑛

𝑖=1

] 

(24) 

 

∑𝑠𝑖𝑛2(𝑤𝑥𝑖) =

𝑛

𝑖=1

1

2
[𝑛

−
1

2𝑗
∑[𝑒4𝜋[𝑎+(𝑖−1)∆𝑥]𝑗/(𝑛∆𝑥)
𝑛

𝑖=1

+ 𝑒−4𝜋[𝑎+(𝑖−1)∆𝑥]𝑗/(𝑛∆𝑥)]

=
1

2
[𝑛

−
1

2𝑗
[𝑒
4𝜋𝑎𝑗
𝑛∆𝑥 ∑𝑒

4𝜋𝑗(𝑖−1)
𝑛

𝑛

𝑖=1

+ 𝑒−
4𝜋𝑎𝑗
𝑛∆𝑥 ∑𝑒−

4𝜋𝑗(𝑖−1)
𝑛

𝑛

𝑖=1

] 

(25) 

 

∑𝑐𝑜𝑠2(𝑤𝑥𝑖) =

𝑛

𝑖=1

1

2
[𝑛

+
1

2𝑗
∑[𝑒

4𝜋[𝑎+(𝑖−1)∆𝑥]𝑗
𝑛∆𝑥

𝑛

𝑖=1

+ 𝑒−
4𝜋[𝑎+(𝑖−1)∆𝑥]𝑗

𝑛∆𝑥 ]

=
1

2
[𝑛

+
1

2𝑗
[𝑒
4𝜋𝑎𝑗
𝑛∆𝑥 ∑𝑒

4𝜋𝑗(𝑖−1)
𝑛

𝑛

𝑖=1

+ 𝑒−
4𝜋𝑎𝑗
𝑛∆𝑥 ∑𝑒−

4𝜋𝑗(𝑖−1)
𝑛

𝑛

𝑖=1

] 

(26) 

 

Note that all the summation terms on the right side of the 

equality have the form of a finite geometric progression whose 

partial sum is 

 

∑𝑎𝑟𝑖−1 =
𝑎(1 − 𝑟𝑛)

1 − 𝑟

𝑛

𝑖=1

 (27) 

 

Consequently, the partial sums of each sum correspond to 

 

∑sin(𝑤𝑥𝑖) =

𝑛

𝑖=1

1

2𝑗
[𝑒
2𝜋𝑗𝑎
𝑛∆𝑥

𝑒2𝜋𝑗 − 1

𝑒2𝜋𝑗/𝑛 − 1

− 𝑒2𝜋𝑗[1−
𝑎
∆𝑥
]/𝑛 1 − 𝑒

−2𝜋𝑗

𝑒2𝜋𝑗/𝑛 − 1
] = 0 

(28) 

 

∑cos(𝑤𝑥𝑖) =

𝑛

𝑖=1

1

2𝑗
[𝑒
2𝜋𝑗𝑎
𝑛∆𝑥

𝑒2𝜋𝑗 − 1

𝑒2𝜋𝑗/𝑛 − 1

+ 𝑒2𝜋𝑗[1−
𝑎
∆𝑥
]/𝑛 1 − 𝑒

−2𝜋𝑗

𝑒2𝜋𝑗/𝑛 − 1
] = 0 

(29) 

 

∑sin(𝑤𝑥𝑖) cos(𝑤𝑥𝑖)

𝑛

𝑖=1

=
1

4
[𝑒

4𝜋𝑗𝑎
𝑛∆𝑥

𝑒4𝜋𝑗 − 1

𝑒
4𝜋𝑗
𝑛 − 1

+ 𝑒
4𝜋𝑗[1−

𝑎
∆𝑥
]

𝑛
1 − 𝑒−4𝜋𝑗

𝑒4𝜋𝑗/𝑛 − 1
] = 0 

(30) 

 

∑𝑐𝑜𝑠2(𝑤𝑥𝑖) =

𝑛

𝑖=1

𝑛

2

+
1

4𝑗
[𝑒

4𝜋𝑗𝑎
𝑛∆𝑥

𝑒4𝜋𝑗 − 1

𝑒
4𝜋𝑗
𝑛 − 1

+ 𝑒
4𝜋𝑗[1−

𝑎
∆𝑥
]

𝑛
1 − 𝑒−4𝜋𝑗

𝑒
4𝜋𝑗
𝑛 − 1

] =
𝑛

2
 

(31) 

 

∑𝑠𝑖𝑛2(𝑤𝑥𝑖) =

𝑛

𝑖=1

𝑛

2

−
1

4𝑗
[𝑒

4𝜋𝑗𝑎
𝑛∆𝑥

𝑒4𝜋𝑗 − 1

𝑒
4𝜋𝑗
𝑛 − 1

+ 𝑒
4𝜋𝑗[1−

𝑎
∆𝑥
]

𝑛
1 − 𝑒−4𝜋𝑗

𝑒
4𝜋𝑗
𝑛 − 1

] =
𝑛

2
 

(32) 

 

The terms in the numerator that contain the terms 𝑒±
2𝜋𝑗

𝑛 − 1 

and 𝑒±
4𝜋𝑗

𝑛 − 1  cancel out when applying the Euler identity 

𝑒𝑗𝜑 = cos(𝜑) + 𝑗𝑠𝑖𝑛(𝜑). Indeed, the (3 × 3)  system 

transforms into 

 

𝑛𝐴0 + (0)𝐴1 + (0)𝐴2 =∑𝑦𝑖

𝑛

𝑖=1

 (33) 

 

(0)𝐴0 +
𝑛

2
𝐴1 + (0)𝐴2 =∑𝑦𝑖 cos(𝑤𝑥𝑖)

𝑛

𝑖=1

 (34) 

 

(0)𝐴0 + (0)𝐴1 +
𝑛

2
𝐴2 =∑𝑦𝑖 sin(𝑤𝑥𝑖)

𝑛

𝑖=1

 (35) 

 
which, when solved by direct isolation for each of its variables, 

results in 

 

𝐴0 =
1

𝑛
∑𝑦𝑖

𝑛

𝑖=1

 (36) 

 

𝐴1 =
2

𝑛
∑𝑦𝑖 cos(𝑤𝑥𝑖)

𝑛

𝑖=1

 (37) 
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𝐴2 =
2

𝑛
∑𝑦𝑖 sin(𝑤𝑥𝑖)

𝑛

𝑖=1

 (38) 

 
The values of 𝐴0 , 𝐴1  and  𝐴2  are known as Fourier 

coefficients. 

Proceeding in a similar manner, the previous analysis can 

be extended to the general model. 

 
𝑓(𝑡) = 𝐴0 + 𝐴1 cos(𝑤𝑥)

+ 𝐵1 sin(𝑤𝑥)
+ 𝐴2 cos(2𝑤𝑥) + 𝐵2 sin(2𝑤𝑥)
+ ⋯
+ 𝐴𝑚 cos(𝑚𝑤𝑥) + 𝐵𝑚 sin(𝑚𝑤𝑥) 

(39) 

 
where, for equally spaced data, the coefficients are evaluated 

with 

 

𝐴0 =
1

𝑛
∑𝑦𝑖

𝑛

𝑖=1

 (40) 

 

𝐴𝑗 =
2

𝑛
∑𝑦𝑖 cos(𝑗𝑤𝑥𝑖)

𝑛

𝑖=1

 (41) 

 

𝐵𝑗 =
2

𝑛
∑𝑦𝑖 sin(𝑗𝑤𝑥𝑖)

𝑛

𝑖=1

 (42) 

 

Being 𝑗 =  1, 2, 3. . . . 𝑚 . Finally, it is highlighted that a 

simplified and equivalent way to rewrite the equation is 

 

𝑓(𝑥) = 𝐴0 + 𝐶𝑐𝑜𝑠(𝑤𝑥 + 𝜃) (43) 

 

or 

 
𝑓(𝑥) = 𝐴0 + 𝐶𝑠𝑖𝑛(𝑤𝑥 + 𝜑) (44) 

 
where, the parameters 𝐶, 𝜃  and 𝜑  are obtained from the 

values of 𝐴1 and 𝐴2 as 

 

𝐶 = √𝐴1
2 + 𝐴2

2 (45) 

 

𝜃 =

{
 
 

 
 𝑡𝑎𝑛−1 (−

𝐴2
𝐴1
) + 𝜋          𝑠𝑖       𝐴1 < 0

𝜋                                        𝑠𝑖       𝐴1 = 0

𝑡𝑎𝑛−1 (−
𝐴2
𝐴1
) + 𝜋           𝑠𝑖       𝐴1 > 0

 (46) 

 

 

 
 

Figure 4. Sinusoidal fit 

 

Indeed, four parameters describe the sine wave, see Figure 

4. The average 𝐴0 , sets the average height between the 

abscissas. The amplitude 𝐶 indicates the height of oscillation. 

The angular frequency characterizes how frequently the cycles 

occur, and the phase shift 𝜃 parameterizes the extent to which 

the sine wave is horizontally shifted. The latter can be 

measured as the distance in radians from 𝑥 =  0 to the point 

where the sine or cosine function begins a new cycle. 

 

2.5 Weather conditions and periodicity 

 

Weather conditions and periodicity refer to how climatic 

conditions, such as temperature, humidity, and precipitation, 

vary over time in a cyclic pattern. These variations can have 

significant effects on natural systems and human society, such 

as plant growth patterns, animal migration, cycles of rain and 

drought, and extreme weather patterns [14]. 

Atmospheric phenomena also bring a considerable 

influence over mandatory stages related to crop development 

and management, too. Solar energy is relevant for all stages of 

crop development, from seed germination to 

flowering/fruiting, and its effects can be either positive or 

negative [15]. 

The observation of natural conditions, including the weather, 

has always been a concern for humans to learn or extract 

relevant information for describing their current state or for 

making predictions. If atmospheric processes were constant, 

or strictly periodic, it would be easy to describe them 

mathematically. However, the atmosphere exhibits variations 

and fluctuations that are irregular, and to achieve an 

understanding, the collection and analysis of large sets of 

meteorological data is carried out [16]. 

Temperature also experiences variations over time; between 

day and night, due to the planet's rotation; seasonally, due to 

its translation and its tilted position. These relative positions 

of the Earth with respect to the Sun are determinants in the 

periodicity experienced by temperature values throughout the 

day and that causes them to be similar on subsequent days. 

This behavior tends to be modeled through periodic functions 

such as the trigonometric sine and cosine. This approach is 

asserted by Plaza [17], who reports that ambient temperature 

is a physical and cyclic phenomenon, in which its behavior 

obeys with a good approximation to a sinusoidal wave. 

There is a degree of uncertainty in the prior knowledge of 

climatic conditions, given the complexity of the climate 

system and the spatial and temporal resolutions that are 

established. Even so, this state of “unpredictability” or “lack 

of information” can be reduced with a statistical analysis of 

historical climatological precipitation records in its location, 
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which would produce relative frequencies of precipitation 

amounts that would provide substantially more information 

about tomorrow's precipitation [18]. 

 

2.6 Existing relationship between temperature and tomato 

production 

 

Temperature is a critical factor affecting the growth and 

production of tomatoes. In general, the optimal temperature 

for tomato growth is around 21-24℃ during the day and 

around 16-18℃ during the night. Higher or lower 

temperatures can reduce tomato production. 

When temperatures are too high, tomato production can 

decrease, as excess heat can cause the flowers to drop before 

pollination occurs. In addition, high temperatures can also 

reduce the quality of the fruits, making them softer, less tasty, 

and less colorful. On the other hand, when temperatures are 

too low, they can also reduce tomato production, as plants may 

stop their growth and development. Low temperatures can also 

increase the susceptibility of plants to diseases and pests. 

 
2.7 Optimal tomato planting period 

 
The optimal tomato planting period is a specific time of the 

year when the highest yield and productivity of this crop can 

be achieved. This period is influenced by various factors, such 

as climatology, soil characteristics, the type of crop, among 

others. Temperature is a crucial factor in the tomato planting 

period, as this crop requires a warm environment to grow and 

develop properly. Generally, it is recommended to plant 

tomatoes during periods when the minimum temperature is at 

least 15℃ and the maximum does not exceed 30℃. 

Furthermore, solar radiation is another important factor, as 

tomatoes require an adequate amount of light to grow and 

produce fruit. Therefore, the geographical position and the 

time of year must be considered to determine the optimal 

planting period. Precipitation is also a factor that must be 

considered in the tomato planting period, as excessive rain can 

affect germination and plant development, while a lack of rain 

can limit growth and fruit production. 

Crops require the accumulation of certain amounts of 

temperature degrees for their growth and development. There 

are various base temperatures for different crops, and each 

plant has its own base temperature below which it does not 

grow. Based on these observations, the residual method has 

been developed, which consists of subtracting the base 

temperature or vital zero from the average daily temperature 

of each day. This is called the accumulation of degree days of 

growth or accumulated heat per day [19]. 

 
2.8 Computational tools for model building 

 
Currently, there is a wide range of software programs 

available that allow for data analysis and automatically 

provide a mathematical model, such as the exposed sinusoidal 

model. Among the most notable programs are Matlab, Maple 

20, R for statistical analysis, and the Excel spreadsheet, among 

others. However, the implementation of these programs can 

have disadvantages, one of them being economic since some 

software licenses are not free and have a high cost. 

Additionally, the fact that many of these programs require high 

computer memory resources, whose equipment (in economic 

terms) is not accessible to all users, adds to the disadvantages. 

On the other hand, another drawback is that the software often 

requires very rigorous programming. 

A multitude of optimisation algorithms exists that estimate 

parameters of dynamic models. A recent comparison found 

that LSQNONLIN SE (a local gradient-based search algorithm 

with Latin hypercube restarts) performs best in terms of both 

accuracy and speed (as measured in the number of function 

evaluations required to estimate the parameters) [20]. 

 

2.9 Type of research 

 
A documentary research type is one that is based on the 

collection and analysis of information from documentary 

sources, such as books, journals, theses, reports, among others. 

This type of research focuses on the study and review of 

existing documents with the goal of answering specific 

research questions and delving into the research topic. 

Documentary research is very useful in many areas, 

including social sciences, history, literature, medicine, among 

others, and can be used both in exploratory studies and in more 

detailed and specific studies. Researchers can use 

documentary research to gain a deeper understanding of a 

topic or problem, identify patterns or trends, and obtain 

evidence to support their arguments or conclusions. 

 

2.10 Advanced analytics in tomato cultivation 

 

For this study, the data were meticulously selected from the 

Babahoyo weather station, located in a key region for tomato 

cultivation, covering an extensive ten-year period. This dataset, 

comprising over 3,000 daily temperature measurements, 

captures a broad spectrum of typical and extreme climatic 

variations, including both daily and seasonal fluctuations as 

well as rare weather events and climatic anomalies. These 

characteristics are essential for understanding long-term trends 

and seasonal variability in tomato production. The statistical 

analysis employed advanced linear and multiple regression 

techniques, complemented by cross-validation methods to 

ensure the robustness and reliability of the comparative 

models developed. Such rigorous analytical approaches are 

crucial to verify the consistency and accuracy of predictions, 

enabling the models to withstand climatic variations without 

losing precision. The density and diversity of the data make 

this study particularly valuable for developing agricultural 

management strategies that can adapt effectively to changing 

climatic conditions. 

In this work, an applied methodology was used, aimed at 

finding the probable dates of the temperature peaks, to shorten 

the growth periods of the Tomato crop and reduce its exposure 

to extreme events.  

The inductive-deductive method, supported by abstraction, 

allowed determining the correct ways to solve the problem and 

its generalization in an organized method of work. Abstraction 

was used to understand the scientific problem posed, which 

allowed delving into its different aspects and establishing 

relationships with other obtained results. 

The historical method was essential for the study of the 

historical development of the problems surrounding the theory 

of the sinusoidal model and its current state.  

The logical method, supported by historical study, made it 

possible to investigate the general and essential laws of the 

functioning and development of the phenomenon studied. 

In addition to the least squares method, our study evaluated 

several predictive models for a comprehensive comparison. 

Polynomial regression models were included, which are 
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particularly useful for capturing nonlinear relationships 

between variables. Furthermore, machine learning-based 

models, such as neural networks, were implemented. These are 

capable of modeling complex and nonlinear interactions 

between climatic variables and their impact on agriculture. 

These machine learning models provide a powerful and 

flexible tool for predicting climate variations with 

significantly increased accuracy, which is crucial for efficient 

agricultural planning and adaptation to changing climate 

conditions. 

 

 

3. RESULTS 

 
3.1 Temperature data from the city of Babahoyo 

 
For the development of this research, the annual average 

temperatures taken from the database of the meteorological 

station of Babahoyo, province of Los Ríos - Ecuador, are used 

as the data population. 

 
3.2 Annual temperature behavior models 

 
A sinusoidal model of the form presented in the equation is 

constructed. To facilitate the calculation, Excel spreadsheet is 

used to build the numerical matrix that shows shown in the 

Data (https://cutt.ly/A7UaHF7) the annual average 

temperature in degrees Celsius (℃) for the period from 1986 

to 2021 along with their respective results that were reflected 

to form the sinusoidal equation. 

The time interval for each year corresponds to months 

(interval of every 30 days, with 𝑡 =  1  corresponding to 

January). On the other hand, the table shows the average of the 

annual mean temperature in each month of the year. 

Indeed, for this data set, a sinusoidal fit model of the form 

presented in the equation for 𝑗 =  1, 2, 3 is constructed with 

the purpose of comparing and choosing the most appropriate 

model. Due to the large amount of data, an Excel spreadsheet 

is used to determine the sums that allow obtaining the Fourier 

coefficients, as well as the determination coefficient to 

quantify the goodness of fit. From these results, the sinusoidal 

temperature model for the city of Babahoyo is constructed. 

Note that the number of data 𝑛 = 348 , 𝛥𝑥 = 1  and the 

frequency values are are 𝜔 =  2𝜋/12 =  𝜋/6 , 𝜔 =  4𝜋/
12 =  𝜋/3 and 𝜔 =  6𝜋/12 =  𝜋/2, thus, the values of the 

Fourier coefficients given for the data are 

 

𝐴0 =
1

348
∑𝑦𝑖 = 24.624

348

𝑖=1

 (47) 

 

𝐴1 =
1

174
∑𝑦𝑖 cos(𝜋𝑥𝑖/6) = 0.214

348

𝑖=1

 (48) 

 

𝐵1 =
1

174
∑𝑦𝑖 sin(𝜋𝑥𝑖/6) = 1.401

348

𝑖=1

 (49) 

 

𝐴2 =
1

174
∑𝑦𝑖 cos(𝜋𝑥𝑖/3) = −0.155

348

𝑖=1

 (50) 

 

𝐵2 =
1

174
∑𝑦𝑖 sin(𝜋𝑥𝑖/6) = 1.401

348

𝑖=1

 (51) 

 

𝐴3 =
1

174
∑𝑦𝑖 cos(𝜋𝑥𝑖/2) = −0.047

348

𝑖=1

 (52) 

 

𝐵3 =
1

174
∑𝑦𝑖 sin(𝜋𝑥𝑖/2) = 0.291

348

𝑖=1

 (53) 

 

The summation terms to determine these coefficients are 

shown in the last row of the numerical matrix given in the Data 

(https://cutt.ly/A7UaHF7). When substituting 

𝐴0, 𝐴1, 𝐵1, 𝐴2, 𝐵2 , 𝐴3 and 𝐵3 into the equation, it is found that 

the models for the temperature in the Babahoyo region are 

given by: 

MODEL 1 (j = 1) 
 

𝑓(𝑥) = 24.624 + 0.214𝑐𝑜𝑠 (
𝜋𝑥𝑖
6
)

+ 1.401𝑠𝑖𝑛 (
𝜋𝑥𝑖
6
) 

(54) 

 

with 𝑅2 = 0.874 

MODEL 2 (j = 2) 
 

𝑓(𝑥) = 24.624 + 0.214𝑐𝑜𝑠((𝜋𝑥𝑖)/6)
+ 1.401𝑠𝑖𝑛((𝜋𝑥𝑖)/6)
− 0.155𝑐𝑜𝑠((𝜋𝑥𝑖)/3)
− 0.293𝑠𝑖𝑛((𝜋𝑥𝑖)/3) 

(55) 

 

with 𝑅2 = 0.950 

MODEL 3 (j = 3) 
 

𝑓(𝑥) = 24.624 + 0.214𝑐𝑜𝑠 (
𝜋𝑥𝑖
6
)

+ 1.401𝑠𝑖𝑛 (
𝜋𝑥𝑖
6
)

− 0.155𝑐𝑜𝑠 (
𝜋𝑥𝑖
3
)

− 0.293𝑠𝑖𝑛 (
𝜋𝑥𝑖
3
)

− 0.047𝑐𝑜𝑠 (
𝜋𝑥𝑖
2
)

+ 0.291𝑠𝑖𝑛 (
𝜋𝑥𝑖
2
) 

(56) 

 

with 𝑅2 = 0.985 

The sample data and each model are shown in Figure 5. It 

is observed that model 3 explains 95.9% of the data variability, 

being the one that provides a better fit. 
 

 
 

Figure 5. Sinusoidal model 3 of the city of Babahoyo 
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Figure 6. Oscillatory pattern of the sinusoidal function 
 

According to the graphical representation of the model, the 

oscillatory pattern of the sinusoidal function is similar in the 

time Interval 𝛥𝑡 =  12, see Figure 6. 

The temperature reaches a global maximum and a global 

minimum throughout the year. To determine when the 

temperature is optimized, the points at which 𝑓´(𝑥) =  0 are 

calculated. Given that 
 

𝑓(𝑥) = 24.624 + 0.214𝑐𝑜𝑠 (
𝜋𝑥𝑖
6
)

+ 1.401𝑠𝑖𝑛 (
𝜋𝑥𝑖
6
)

− 0.155𝑐𝑜𝑠 (
𝜋𝑥𝑖
3
)

− 0.293𝑠𝑖𝑛 (
𝜋𝑥𝑖
3
)

− 0.047𝑐𝑜𝑠 (
𝜋𝑥𝑖
2
)

+ 0.291𝑠𝑖𝑛 (
𝜋𝑥𝑖
2
) 

(57) 

 

It is found that 
 

𝑓´(𝑥) = −0.112𝑠𝑖𝑛 (
𝜋𝑥𝑖
6
) + 0.734𝑐𝑜𝑠 (

𝜋𝑥𝑖
6
)

+ 0.162𝑠𝑖𝑛 (
𝜋𝑥𝑖
3
)

− 0.307𝑐𝑜𝑠 (
𝜋𝑥𝑖
3
)

+ 0.074𝑠𝑖𝑛 (
𝜋𝑥𝑖
2
)

+ 0.457𝑐𝑜𝑠 (
𝜋𝑥𝑖
2
) = 0 

(58) 

Because the equation presented is nonlinear, solving for 𝑥 

is not trivial when using algebraic methods. That is why 

numerical methods are resorted to, one to consider is the 

Newton's method, whose formulation is given by 

 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓´(𝑥)

𝑓´´(𝑥)
     𝑖 = 0,1,2,3, …       𝑓´´(𝑥) ≠ 0 (59) 

 
The method requires an initial value  𝑥0 (taken arbitrarily), 

as well as the first and second derivatives of 𝑓(𝑥). Indeed, 

given that the second derivative is given by 

 

𝑓´´(𝑥) = −0.056𝑐𝑜𝑠 (
𝜋𝑥𝑖
6
) − 0.384𝑠𝑖𝑛 (

𝜋𝑥𝑖
6
)

+ 0.170𝑐𝑜𝑠 (
𝜋𝑥𝑖
3
)

+ 0.321𝑠𝑖𝑛 (
𝜋𝑥𝑖
3
)

+ 0.117𝑐𝑜𝑠 (
𝜋𝑥𝑖
2
)

− 0.718𝑠𝑖𝑛 (
𝜋𝑥𝑖
2
) 

(60) 

 
According to the graph of model 3 (Figure 5), initial values 

are taken for the maximum point 𝑥0 =  4 and for the minimum 

point 𝑥0 = 7, when carrying out the iteration process starting 

from 𝑖 =  0 it follows 

 

𝑥1 = 4 −
𝑓´(4)

𝑓´´(4)
= 4.015                 𝐸𝑎% = 0.367 (61) 

 

𝑥1 = 7 −
𝑓´(7)

𝑓´´(7)
= 7.563                 𝐸𝑎% = 7.441 (62) 

 
The approximate errors are calculated by subtracting the 

absolute value of the current approximation from the previous 

approximation, then the result is divided by the current 

approximation and multiplied by 100%. Now, for 𝑖 =  1 it is 

found that 𝑥1 = 4.015 for the maximum and 𝑥1 = 7.563 for 

the minimum, so 

 

𝑥1 = 4.015 −
𝑓´(4.015)

𝑓´´(4.015)
= 4.010       𝐸𝑎% = 0.127 (63) 

 

𝑥1 = 7.563 −
𝑓´(7.563)

𝑓´´(7.563)
= 7.495       𝐸𝑎% = 0.900 (64) 

 
continuing for 𝑖 =  2, we have 𝑥1 = 4.010 for the maximum 

and 𝑥1 = 7.495 for the minimum, so 

 

𝑥2 = 4.010 −
𝑓´(4.010)

𝑓´´(4.010)
= 4.011       𝐸𝑎% = 0.042 (65) 

 

𝑥2 = 7.495 −
𝑓´(7.495)

𝑓´´(7.495)
= 7.507       𝐸𝑎% = 0.158 (66) 

 
Indeed, it is found that for this approximation the absolute 

percentage errors are less than 1% and thus the calculation can 

end. Figure 7 shows how the Excel spreadsheet can be used to 

perform Newton's numerical method to determine optimal 

values. The numerical calculation shows that the approximate 

values of x correspond to 𝑥𝑚𝑎𝑥 = 4.011  and 𝑥𝑚𝑖𝑛 = 7.507 
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substituting into the model, the estimated maximum and 

minimum temperatures of the city are obtained, which are 

𝑇𝑚𝑎𝑥 = 26.01℃ and 𝑇𝑚𝑖𝑛 = 22.95℃. 

 

 
 

Figure 7. Newton's method in excel 

 
The results of the model given in the equation show that the 

average temperature value is 24.624℃ throughout the year. 

The maximum value it can reach is 26.01℃, which 

corresponds approximately to the first week of April. The 

minimum value it can reach is 22.95℃, which corresponds 

approximately to the second week of July. The model explains 

95.9% of the data variability. The temperature difference 

between its extremes is 3.07℃. Between the months of 

October and April, the temperature tends to increase, and 

between the months of May and July, the temperature tends to 

decrease. 

 

 
 

Figure 8. Comparison of the model with temperature data 

from 2015 to 2021 

 
On the other hand, it is important to highlight, see Figure 8, 

that when extrapolating the model for the months 

corresponding to the years 2015 to 2021, it is found that when 

comparing the values, they differ on average by 1.84%. 

Although the values do not match exactly, the model provides 

a good approximation. 

It is worth noting that one aspect to consider is that, given 

the duration of the tomato growth period is 180 days and a 

biological minimum temperature of 13 Degrees Celsius, then 

the total duration is divided by 2 and extended from the Date 

of Maximum Absolute Value (DMVA) to the left and to the 

right 
𝐹𝑀𝑉𝐴

2
. 

 

3.3 Analysis of predictive models 

 

The detailed comparison of our least squares method with 

other predictive models in the study revealed that, while our 

method provides reliable and robust estimates under stable 

climatic conditions, models based on machine learning 

exhibited superior performance in contexts of high climatic 

variability.  

This superiority is particularly evident in their ability to 

adapt and accurately predict extreme weather events and 

abrupt changes in conditions, which is crucial for agricultural 

planning in regions susceptible to significant meteorological 

variations. 

 

3.4 Practical implications 

 

The findings of this study offer significant implications for 

farmers and agronomists involved in tomato cultivation, 

providing valuable tools for enhancing agricultural efficiency. 

The implementation of accurate predictive models, which 

include variables such as temperature, allows professionals to 

adjust and optimize the planting and harvesting schedules. 

This not only improves yields but also contributes to better 

water resource management and reduces post-harvest losses 

due to adverse weather conditions. Additionally, these models 

can assist in selecting tomato varieties that are more suited to 

the predicted climatic conditions, thus maximizing the quality 

of the final product. 

 

 

4. CONCLUSIONS 

 

The study conducted demonstrated that the sinusoidal 

model was the best fit for the annual temperatures due to their 

cyclical and periodic nature. The high correlation between the 

coefficients confirms this assertion. Furthermore, the use of 

differential calculus to determine the dates of maximum 

temperatures proved to be of great help in achieving the 

objective of this work, providing a model that can be applied 

to predict periods with higher thermal supply in the Babahoyo 

canton. 

When analyzing the results obtained by extrapolating the 

model to the corresponding months between the years 2015 

and 2021, it is observed that, although the values differ on 

average by 1.84%, the model provides a good approximation. 

It is important to highlight that this difference is not significant, 

and therefore, the model can be considered valid for making 

future predictions. However, it is necessary to be aware that 

predictions are always subject to a certain margin of error and 

should be interpreted with caution. 

This is because the optimal periods for production can be 

maximally leveraged, resulting in greater efficiency and 

sustainability in the long term. In summary, the study's results 

demonstrate that it is possible to accurately predict periods of 

maximum thermal supply in the canton of Babahoyo and that, 

through smart agriculture based on agroclimatic knowledge, 

more efficient and sustainable productions can be achieved. 

This model bases production on climatic variables, so, when 

using it, it should be considered that to achieve the 

productivity indicated by the model, the controllable 

parameters of crop management, that is, nutrition, 

1220



 

phytosanitary management, cultural activities, among others, 

must be covered. 

The model used for the prediction of climatic variables was 

the sinusoidal model; however, there are others that can be 

used which might improve the results in prediction. 

Future research could extend the scope of study by 

incorporating additional environmental variables such as 

humidity, precipitation, and solar radiation. Understanding the 

interplay of these factors with temperature is crucial, as they 

collectively impact agricultural outputs significantly. Detailed 

analysis of humidity levels could reveal its direct effects on 

plant transpiration rates and stress levels, while inclusion of 

precipitation data might offer insights into soil moisture 

content, affecting plant growth and nutrient uptake. 

Furthermore, examining the role of solar radiation could 

uncover its influence on photosynthesis and overall plant 

health. Integrating these variables into predictive models 

would provide a more comprehensive tool for farmers, 

enabling them to optimize planting schedules and crop 

management practices in response to complex environmental 

stimuli. 
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NOMENCLATURE 

 

𝐴0, 𝐴1, 𝐴2, 𝐴3, 
𝐵1, 𝐵2 , 𝐵3 

Coefficients in the sinusoidal models and 

their expansions, dimensionless units. 

𝐶 Amplitude in the sinusoidal fitting model, 

dimensionless units. 

𝑓(𝑥) Fitting function, mathematical model, units 

depend on the context, for example, degrees 

Celsius (℃) for temperature. 

𝑛 Number of data or measured points, 

dimensionless units. 

𝑅2 Coefficient of determination, dimensionless 

unit. 

𝑆𝑟  Sum of the squares of the errors, unit 

depends on the context. 

𝑆𝑡 Measure of data dispersion, unit depends on 

the context. 

𝑇 Period, time unit, seconds (s). 

𝑥, 𝑦 Independent and dependent variables in the 

context of mathematical models, units 

depend on the context. 

𝑦̅ Mean of the dependent variables, units 

depend on the context, for example, degrees 

Celsius (℃). 

 

Greek symbols 
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𝜔 Angular frequency, units radians per second 

(rad/s). 

𝜃,  Phase shifts in the sinusoidal model, units 

radians (rad). 
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