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Soil organic carbon (SOC) or C-organic is a key component of soil quality that affects 

the properties of organic materials and soil mixtures. It also holds practical value and 

importance in agriculture. Traditionally, determining SOC has involved expensive and 

time-consuming procedures that require the use of chemicals and may cause pollution. 

Therefore, there is a need for an alternative method that is fast, environmentally friendly, 

and cost-effective, as they are key important factors in precision agriculture practices the 

near infrared reflectance spectroscopy (NIRS) technique can be considered as a suitable 

option since it is non-destructive, requires simple preparation, and does not cause 

pollution. The main objective of this study is to apply the NIRS technique to predict SOC 

levels and classify soils based on geographical and soil land-use characteristics. Soil 

samples were collected from four different locations, and their spectra data were acquired 

in the wavenumbers range of 4000-10,000 cm-1. A prediction model for SOC was 

developed using the NIR spectra data and the partial least squares regression (PLSR) 

method, followed by k-fold cross-validation. The results demonstrated that the NIRS 

technique successfully predicted SOC levels, with a maximum correlation coefficient (r) 

of 0.96 and a residual predictive deviation (RPD) index of 4.05, indicating excellent 

model performance. In conclusion, the NIRS technique can be applied as a rapid and non-

destructive method for predicting C-organic levels and classifying soil characteristics. 
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1. INTRODUCTION

Soil serves as the primary medium for plant growth, 

including food crops and plantations. Healthy soil, 

characterized by suitable physical and chemical properties, is 

essential for optimal plant growth. Visual indicators of healthy 

soil include texture, structure, and moisture content [1]. The 

chemical properties of soil, particularly nutrient levels, vary 

throughout different stages of plant growth. Imbalances in soil 

nutrients can negatively impact plant growth, leading to slower 

growth rates and increased susceptibility to disease. 

Additionally, excessive nutrient levels can have adverse 

effects on plant growth and the environment [2].  

In precision agriculture, the excessive use of fertilizers can 

result in environmental pollution by creating unnecessary 

nutrient deposits. Soil organic carbon (SOC), also known as 

organic carbon content, plays a vital role in precision 

agriculture [3, 4]. Understanding the levels of SOC and soil 

fraction is crucial in determining appropriate fertilization 

dosages and fertilizer types to ensure adequate nutrient 

availability in the soil. These factors also influence soil 

structure, which affects plant growth and water storage 

capacity.  

SOC is a main component of soil organic matter (SOM) and 

serves as a reservoir of nutrients for plants, including nitrogen, 

phosphorus, and sulfur.  

As microorganisms break down organic matter, these 

nutrients are released in a form that plants can absorb and 

utilize for growth, a process that is essential for the 

productivity of agricultural systems. Organic carbon is vital 

for soil structure. It helps bind together soil particles into 

aggregates, which improves soil structure and stability. This 

aggregation allows for better air and water movement through 

the soil, reduces erosion, and promotes root growth. Good soil 

structure is crucial for agricultural soils to sustain and improve 

crop yields. 

Soils rich in organic carbon typically have improved water 

retention capabilities. SOC can influence the soil’s ability to 

absorb and hold water, which is beneficial for plant growth, 

especially in drier regions or during periods of drought. 

Moreover, soils with higher organic carbon levels have better 

infiltration rates, reducing runoff and the likelihood of 

flooding. SOC is fundamental to maintaining a diverse and 

active soil biota, including bacteria, fungi, and soil fauna. 

These organisms are key for decomposing organic matter, 

cycling nutrients, and they even help suppress soil-borne 

diseases. The biological activity driven by SOC is a critical 

factor for maintaining and enhancing soil fertility. 
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From a global environmental perspective, SOC is an 

important carbon sink. Through the process of photosynthesis, 

plants fix carbon from the atmosphere and ultimately deposit 

some of this carbon in the soil as organic matter. By storing 

carbon in soils, it is sequestered from the atmosphere, which 

helps mitigate climate change by reducing greenhouse gas 

concentrations. 

Soils with higher organic carbon levels often exhibit better 

structure and greater resistance to erosion. Through the 

bolstering of aggregate stability, SOC lessens the 

susceptibility of soil to being washed or blown away, which is 

critical for preserving topsoil and maintaining land 

productivity. Soils with high levels of SOC tend to be more 

resilient, they recover more quickly from disturbances such as 

drought or compaction. This resilience is key in a changing 

climate, where extreme weather events are becoming more 

common. The presence of adequate SOC buffers soils against 

such changes and helps sustain agricultural productivity. SOC 

also influences soil pH by acting as a buffer against changes. 

This is important for maintaining a pH range that is conducive 

to crop growth and beneficial soil microbial activity. 

Accurate knowledge of SOC and soil fraction aids in 

decision-making processes for precision agriculture, such as 

plant selection and suitable fertilization and irrigation 

practices [4, 5]. However, predicting organic carbon content 

and soil fractions in real-time poses challenges. Laboratory 

testing is time-consuming and complicated, often requiring the 

use of chemicals that can contribute to environmental 

pollution. Therefore, there is a need for alternative methods 

that are fast, reliable, non-destructive, and environmentally 

friendly to determine soil quality parameters, including 

organic carbon content.  

Near-infrared reflectance spectroscopy (NIRS) is one such 

method that has been successfully applied in various sectors, 

including agriculture and soil science [6]. NIRS works by 

measuring the interaction between electromagnetic radiation 

and biological objects. It offers advantages such as simple 

sample preparation, non-destructiveness, absence of chemical 

waste, and high-speed analysis [7, 8].  

Numerous studies have shown that NIRS is a viable tool for 

predicting quality attributes in agriculture, with strong 

prediction model performance indicated by correlation 

coefficients ranging from 0.93 to 0.99 and residual predictive 

deviation (RPD) indices categorized as coarse, sufficient, or 

excellent [9-11]. Building on these advantages, we aim to 

apply the NIRS method to predict soil quality parameters, 

specifically C-organic or SOC. Prediction models will be 

established using soil spectra from near-infrared data and the 

partial least square regression (PLSR) method. The results will 

be compared to actual SOC measurements obtained through 

standard laboratory procedures. 

One of the primary challenges is the requirement for 

extensive calibration. NIRS must be calibrated against 

reference laboratory data, which can be a time-consuming 

process and requires a diverse set of soil samples to develop 

accurate models. Additionally, due to soil's heterogeneous 

nature comprising various organic and inorganic components, 

obtaining consistent NIRS readings can be difficult. Such 

variability necessitates a broad calibration covering a wide 

range of soil types. 

The moisture content of soil also significantly affects NIR 

measurements, as water has strong NIR absorption bands. 

Calibrations must, therefore, either control for soil moisture or 

directly include it in the measurement process to ensure 

accuracy. Moreover, NIRS has lower sensitivity to 

components present in trace amounts, such as micronutrients 

and certain pollutants, which limits its ability to detect these 

elements related to soil quality. 

Physical characteristics, like the roughness of the soil 

surface and the presence of debris, can interfere with NIR 

reflectance readings. This calls for careful sample preparation 

to ensure that such factors do not compromise the analysis's 

accuracy. There's also the matter of spectral interferences, 

where organic matter and other soil constituents can cause 

overlapping spectral features that make distinguishing 

between different compounds challenging.  

Lastly, the accuracy of NIRS measurements can be 

influenced by environmental factors like ambient light, 

temperature, and humidity, which need to be controlled or 

accounted for during analysis. Despite these challenges, 

advancements in technology are continuously improving 

NIRS applications in soil quality assessment. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Soil samples 

 
Soil samples are collected from Aceh Besar district to 

capture the spatial variability of the research area. These are 

often mixed to create a representative composite sample. The 

collected samples are then air-dried at room temperature; heat 

is avoided as it can alter the soil's organic components. The 

drying process is followed by sieving the soil through a < 2mm 

mesh to remove larger particles such as stones and roots, 

which could interfere with the NIRS results. Subsequently, the 

sieved soil is finely ground to ensure a consistent particle size, 

as NIRS is sensitive to variations in particle size which can 

affect the scattering of NIR light. 

Homogenization of the finely ground soil is then conducted 

to ensure uniformity throughout the sample. This step is 

crucial as heterogeneity within the sample can impact the 

spectral analysis.  

 
2.2 Spectral data of soil samples 

 

Soil samples were analyzed using an infrared instrument to 

collect near-infrared spectral data in the form of diffuse 

reflectance spectrum. For the actual NIRS scanning, the 

homogenized soil is placed into a suitable, non-reflective petri 

dish consistency in container size and shape is maintained to 

negate any spectral variations that might arise from these 

factors. The collected infrared spectra covered a range of 

wavenumbers from 4000 to 10,000 cm-1 with 32 scans 

averaged [12]. The resulting spectra data were stored in three 

different file formats: *.SPA, *.JDX, and *.CSV. respectively. 

 
2.3 Actual SOC measurement 

 

After collecting the spectra, the soil samples were 

immediately measured for soil organic carbon (SOC) using an 

elemental analyzer and thermal conductivity detector. These 

measurements were done in triplicate and averaged [4]. The 

soil organic carbon data were expressed as a percentage of 

SOC.
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2.4 Spectral data corrections 

 

To ensure accurate and reliable prediction results, the near-

infrared spectral data of the soil samples were enhanced and 

corrected using de-trending (DT), multiplicative scatter 

correction (MSC), and a combination of both (DT+MSC). 

DT is particularly important in removing linear trends found 

within the spectral data, which often originate from 

instrumental effects or baseline drift that occur over time. 

These trends, if left uncorrected, can mask the true spectral 

features that are indicative of the sample's properties.  

On the other hand, MSC is employed to mitigate scattering 

effects that arise due to variations in particle size, surface 

reflectance properties, and differences in the optical path of the 

NIR light across different samples. These variations can lead 

to multiplicative errors in the recorded spectra. MSC works by 

standardizing the spectral data against a reference spectrum, 

attenuating these scatter-related discrepancies.  

This normalization process helps ensure that differences in 

the spectral readings are due to genuine chemical variations 

among samples rather than physical inhomogeneities, thus 

bolstering the accuracy of multivariate analysis models used 

in the interpretation of NIR spectra. 

When DT and MSC are used in combination (DT+MSC), 

they provide a synergistic benefit. This combination aims to 

harness the strengths of both methods to achieve a high-quality 

representation of the spectral data. MSC is capable of 

addressing multiplicative errors, while DT concurrently 

corrects any additive or linear trends not accounted for by 

MSC exclusively.  

 

2.5 Prediction models 

 

Prediction models were then established to predict the SOC 

of the soil samples using the raw spectrum data and the 

enhanced spectrum data (DT, MSC, and DT+MSC). Partial 

least square regression (PLSR) was used as the regression 

method for developing these prediction models as illustrated 

in Figure 1. 

 

 
 

Figure 1. Building NIRS prediction model using PLSR 

algorithm to determine SOC 

 
The performance of the prediction models was evaluated 

based on statistical indicators including the coefficient of 

determination (R2), correlation coefficient (r), root mean 

square error (RMSE), and the residual predictive deviation 

(RPD). A higher RPD indicates a stronger and more accurate 

model for predicting the soil organic carbon of the samples. 

Ideally, a good model should have high R2 and r coefficients, 

low RMSE, and a low number of latent variables in PLSR. An 

excellent prediction model should have a high R2 and r 

coefficient (at or above 0.8), a high RPD index (above 3), and 

a low RMSE [13-16]. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑𝑖=1
𝑛  (𝑦̂𝑖 − 𝑦𝑖)

2 (1) 

 

RMSE

SD
RPD

ref
=  (2) 

 

where, 𝑦̂𝑖 is the predicted value of the ith observation, yi is the 

measured value of the ith observation from soil organic carbon, 

n is the number of observations in the calibration, validation 

or prediction set, and ym is the mean value of the calibration or 

validation data set. The root mean square error prediction 

(RMSEP) is an estimate of total prediction error for an 

independent validation dataset.  

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Spectra features 

 

Diffuse reflectance spectrum of the soil samples is 

presented in Figure 2, which displays peaks corresponding to 

molecular bond vibrations of C-C, O-H, N-H, C-H-O, and C-

H. Raw spectral data, without any processing, retain all the 

original spectral features, including both the valuable chemical 

information and the undesirable noise or variability. The raw 

spectrum often includes: baseline drift consisted of variations 

in the baseline of the spectrum due to instrumental or 

environmental factors. Random variations that can be due to 

electronic noise and interference in the detector, photon noise, 

or environmental noise.  

 

 
 

Figure 2. Spectra features in near infrared region of soil 

samples before correction 

 

Variability due to the physical properties of the sample, 

such as particle size or surface roughness, which can affect the 

scatter of the light in the sample. However, the original spectra 

data before correction were affected by interference from 

noise caused by light scattering. In spectroscopic analysis, raw 

spectra can be significantly affected by systematic variability 

that is not related to the chemical properties of interest. This 

variability can be caused by factors such as light scattering, 

instrument variation, sample particle size, or surface 

irregularities.  

To address this issue, various pre-treatment methods, 

including de-trending (DT), multiplicative scatter correction 

(MSC), and a combination of both (DT+MSC), were 

employed. As depicted in Figure 3, the DT correction method 

significantly improved the appearance of the spectra and 

effectively eliminated some of the noise resulting from light 

X Y Model

Actual SOC PLSR modelsNIRS spectral data
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scattering. The application of DT rectifies the baseline, 

thereby elevating the signal-to-noise ratio, which directly 

contributes to the fidelity of the calibration models. This 

rectification allows for a more precise correlation of spectral 

features with the specific properties of interest, such as the soil 

organic carbon content. 

 

 
 

Figure 3. Near infrared spectra after corrections using DT 

algorithm 

 

The spectral data obtained from the near infrared instrument 

often contain background information and noise, which can 

interfere with the desired soil quality information, specifically 

SOC. Various factors such as light scattering, variations in 

path length, and random noise caused by sample properties or 

instrumental effects can introduce interference in the spectra. 

To ensure the accuracy, reliability, and stability of the 

calibration models used for predicting SOC, it is crucial to 

remove or minimize these interfering spectral parameters. 

Therefore, preprocessing of the spectral data before the 

development of prediction models for SOC is necessary. 

The principle of de-trending spectra correction involves 

removing systematic trends or baseline variations present in 

the spectra. These trends can arise from various factors such 

as instrumental variations, sample handling, or environmental 

conditions. 

To perform de-trending, a polynomial function is fitted to 

the baseline of the spectrum. This baseline represents the 

overall trend of the spectrum without the presence of 

absorption peaks. By subtracting this polynomial fit from the 

original spectrum, the systematic trends are removed, leaving 

behind the desired spectral features related to the composition 

of the sample. 

De-trending is a process used to remove trends in the 

spectral data that can obscure the true signal, reduced baseline 

drift. DT helps in minimizing fluctuations in the baseline, 

which may not be related to the analyte of interest. By reducing 

the trend, the variability of the spectrum due to the actual 

chemical composition becomes more obvious, clear and 

prominent, improving the interpretability of the data. Hence, 

calibration models become more robust and less sensitive to 

the variability in the data that is not associated with 

concentration levels of the analyte.  

By applying these corrections, spectral data become more 

reliable for quantitative analysis, allowing chemometric 

models to better predict properties of interest, such as soil 

organic carbon content. These preprocessing steps are 

essential in many analytical applications to ensure that the 

resultant spectra reflect the true chemical information with 

minimal interference from other sources of variation. 

The de-trending process helps to eliminate unwanted 

variations and enhance the specific spectral information 

related to the targeted analyte. It improves the accuracy and 

reliability of the subsequent analysis by reducing the influence 

of non-analyte-related factors on the spectra. 

Besides using DT algorithm, spectral data were also 

corrected and enhanced using multiplicative scatter correction 

(MSC) approach as shown in Figure 4. The principle of 

multiplicative scatter correction (MSC) aims to correct for 

unwanted scattering effects in spectral data. When light 

interacts with a sample, it can undergo scattering, leading to 

distortions in the recorded spectrum. 

 

 
 

Figure 4. Near infrared spectra after corrections using MSC 

algorithm 

 

MSC addresses this issue by dividing the original spectrum 

by a reference spectrum, which is typically a smooth or noise-

free spectrum [17]. This division operation normalizes the 

spectral intensities and reduces the influence of scattering. The 

reference spectrum represents the average scattering effects 

present in the sample set and is used as a scaling factor. 

By dividing the original spectrum by the reference spectrum, 

the spectral intensities are adjusted to compensate for the 

scattering variations. This correction allows for clearer and 

more accurate spectral analysis, as it separates the true spectral 

features from the scattering effects. 

Moreover, MSC is a technique used to correct for 

multiplicative interferences in the spectral data, like scatter 

effects. The MSC adjusts the spectra to correct for light 

scattering caused by particles of different sizes, shapes, or 

densities. This makes the spectra more comparable and 

reduces the variability caused by physical characteristics of the 

sample.  

The spectral data are normalized, making the comparison 

between different spectra more straightforward, as they are on 

a similar scale. Important spectral features that are related to 

the composition of the sample can be more easily discerned 

after MSC application, which can enhance the quality of 

predictive models based on the spectra. 

MSC is particularly useful when dealing with samples that 

exhibit significant scattering, as it minimizes the impact of 

scattering variations across different samples. It helps to 

improve the comparability and interpretability of spectral data, 

enabling more reliable analysis and prediction of targeted 

sample properties. 

Moreover, we attempted to combines the method of de-

trending and multiplicative scatter correction (DT+MSC) as 

presented in Figure 5, to enhance spectral data and minimize 

unwanted variations. First, the de-trending method is applied 

to remove systematic trends or baseline variations in the 

spectra. A polynomial function is fitted to the baseline, and 

subtracting this polynomial fit from the original spectrum 

eliminates the systematic variations.  
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Figure 5. Near infrared spectra after corrections using 

combination of DT and MSC algorithms 

 

Next, the multiplicative scatter correction is performed by 

dividing the de-trended spectrum by a reference spectrum. 

This division operation normalizes the intensity values and 

corrects for scattering effects caused by variations in sample 

composition or instrumental conditions. 

By combining these two techniques, the DT+MSC method 

leverages their individual strengths to effectively reduce noise, 

correct for scattering, and remove baseline drifts. This 

combined approach enhances the spectral appearance by 

preserving the relevant spectral features associated with the 

analyte of interest while minimizing interferences or variations 

caused by scattering or other factors.  

The DT+MSC method is particularly useful in scenarios 

where both baseline drift and scattering effects are present in 

the spectral data. By applying these complementary correction 

techniques, the resulting spectra are optimized for subsequent 

analysis and prediction models, ensuring accurate and robust 

estimations of the targeted sample properties. 

Employing both techniques together allows for a more 

thorough correction of the spectral data. The resulting 

improvements in data quality can significantly enhance the 

predictive accuracy of NIRS analyses since both potential 

sources of error scatter and baseline shifts are duly corrected. 

This preprocessing makes the data more conducive to the 

development of precise and reliable quantitative prediction 

models, crucial for various applications in spectroscopic 

analysis. 

 

3.2 SOC prediction models 

 

Once the pre-processing of the spectra was concluded, we 

proceeded to develop prediction models for estimating C-

organic levels in soil samples. These models were based on 

partial least squares regression (PLSR) and utilized both 

untreated and treated spectra from the soil sample dataset 

encompassing wavenumbers ranging from 4,000 to 10,000 cm-

1. In evaluating the models, we compared the correlation 

coefficient (r), standard error of prediction (RMSE), and 

residual predictive deviation (RPD) index. 
 

Table 1. PLSR prediction model’s performance of different 

NIR spectral data, before and after corrections 
 

Spectrum 
Statistical Indicator 

R2 r RMSE RPD 

Raw 0.75 0.87 0.26 1.73 

DT 0.80 0.90 0.21 2.70 

MSC 0.86 0.93 0.18 3.15 

DT+MSC 0.93 0.96 0.14 4.05 

The SOC prediction model captures the relationship 

between the observed response variable, represented by the 

SOC content (Y-variables), and the independent variable, 

which comprises the diffuse near infrared reflectance spectrum 

(X-variables). Through the interaction of near-infrared 

radiation with the biological object, significant information 

pertaining to its physical, optical, and chemical properties can 

be extracted. The prediction results for SOC are presented in 

Table 1. 

Initially, a prediction model for SOC was developed using 

the raw, untreated spectra data. This model achieved a 

correlation coefficient of 0.87, with an RMSE value of 0.28 

and an RPD index of 1.73. The raw spectrum data yields an R² 

of 0.75, which demonstrates that 75% of the variability in the 

dependent variable can be explained by the model based on the 

raw spectral data. This is a reasonably good fit, indicating the 

raw data does have a significant predictive power. The 

correlation coefficient (r) of 0.87 is quite strong, illustrating a 

robust positive linear relationship between observed and 

predicted values. However, with an RMSE of 0.26, there's 

room for improvement as this number indicates that the 

predictions deviate from the actual observations by some 

margin. The RPD of 1.73 solidifies the conclusion that while 

useful, the predictive accuracy of the raw data model could be 

enhanced with further data processing. 

Subsequently, by employing de-trending (DT) on the 

spectra data, the correlation coefficient improved to 0.90, the 

RMSE for prediction errors decreased to 0.21, and the RPD 

index showed noticeable improvement compared to the 

previous model. Furthermore, the accuracy and robustness of 

the C-organic prediction model were significantly enhanced 

when the spectra data underwent multiplicative scatter 

correction (MSC). This model yielded an r value of 0.93, an 

RPD of 3.15, and a reduced prediction error of 0.18.  

When comparing DT and MSC corrected spectra to the raw 

spectrum, the main differences are: the corrected spectra have 

a reduced influence of instrument and sample-related noise 

and variability. They exhibit a more uniform baseline, and 

their features are more attributable to the chemical 

composition of the sample. The spectra have undergone 

transformations to mitigate effects that overshadow the signal 

of interest, thus they are typically smoother and offer clearer 

information for the development of calibration models. Both 

DT and MSC, either used separately or combined, aid in 

enhancing the accuracy of subsequent quantitative and 

qualitative spectral analyses. 

Ultimately, a combination of DT and MSC was employed 

to establish the C-organic prediction model, resulting in the 

most accurate and robust prediction outcome. This model 

achieved a maximum correlation coefficient of 0.96, an RPD 

index of 4.05, and the lowest RMSE error of 0.14. Figure 6 

presents a scatter plot depicting the actual C-organic values 

versus the predicted C-organic values.  
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Figure 6. Scatter plot between SOC predicted and SOC 

measured using four different NIR spectrum coupled with 

PLSR algorithm 

 

Prediction models involves establishing a relationship 

between the spectral data (X-variable) and the corresponding 

property or analyte of interest (Y-variable). To build a 

prediction model, a representative dataset comprising both 

spectral data and reference values for the property of interest 

is required. This dataset is typically split into two subsets: a 

calibration set and a validation set. The calibration set is used 

to develop the model, while the validation set is used to assess 

the model's performance. 

The calibration process involves applying a regression 

algorithm, such as partial least squares regression (PLSR), to 

the calibration set. PLSR identifies the underlying 

relationships between the spectral data and the reference 

values to establish a predictive model. Partial least squares 

regression is a widely used method for developing calibrations 

based on near-infrared (NIR) spectral data to determine Soil 

Organic Carbon (SOC) content. PLS is a powerful multivariate 

modeling technique that is particularly well-suited to handle 

the high-dimensional nature of spectral data and to establish 

robust relationships between the spectral information and the 

target property, such as SOC.  

The PLS algorithm constructs a linear regression model 

describing the relationship between the predictor variables 

(NIR spectra) and the response variable (SOC content). The 

main steps involved in PLS modeling are includes latent 

variable selection, model training and optimization. PLS 

regression reduces the dimensionality of the spectral data by 

creating a set of new latent variables (also known as PLS 

components) that are linear combinations of the original NIR 

variables. The number of latent variables is chosen to 

maximize the explained variance in the SOC content while 

avoiding overfitting. 

The PLS algorithm uses the calibration set to find the 

optimum linear relationship between the latent variables and 

the reference SOC values, taking into account the covariance 

between the two sets of variables. PLS models are optimized 

using techniques to prevent overfitting, such as cross-

validation or other regularization methods, to ensure good 

predictive performance on new samples. 

During the calibration process, the model is developed by 

finding the optimal number of latent variables (factors) that 

explain the maximum variance in the spectral data while 

minimizing the prediction error. This optimization process 

ensures that the model extracts the most relevant information 

from the spectral dataset.  

Determining the optimal number of latent variables is a 

critical aspect of model optimization in the realm of 

spectroscopy and multivariate statistics. Latent variables are 

created features from observed data, crucial for capturing the 

underlying structure while reducing its dimensionality. 

Selecting the right number of latent variables is essential, as 

too few may lead to under fitting, while too many could result 

in overfitting, capturing noise instead of relevant signal. 

Here’s a general overview of how the optimal number of latent 

variables is determined. 

One common approach is through cross-validation, where 

the dataset is split into training and validation sets. The model 

is then built on the training set using an increasing number of 

latent variables, and its performance is evaluated on the 

validation set. Key performance metrics such as root-mean-

square error of cross-validation (RMSECV), root-mean-

square error of prediction (RMSEP), or the coefficient of 

determination (R2) are observed as the number of latent 

variables increases. The optimal number is typically 

determined by identifying the point where the error metrics 

reach a minimum before starting to increase again or stabilize, 

finding the balance between bias and variance. 

With detrending, we see noticeable improvements. The R² 

value increases to 0.80, suggesting that after removing trends 

from the data, the model can explain 80% of the variance. This 

is a good leap forward towards predictive accuracy. The 

improvement in the correlation coefficient to 0.90 underscores 

a stronger linear relationship post-detrending. A lower RMSE 

of 0.21 is a direct indicator of more accurate predictions 

compared to the raw data model. The average error has 

decreased. An RPD of 2.70 is significant, as it suggests that 

the detrending process has substantially enhanced the model's 

ability to use the spectral data for making predictions. 

MSC applies another layer of refinement. With an R² of 0.86, 

we see an additional increment in the variance explained by 

the model. The correlation coefficient is now at a very high 

0.93, indicating an even stronger relationship between 

observed and predicted values, the linear association is 

becoming tighter with each data processing step. The RMSE 

drops further to 0.18, which implies that the MSC technique is 

successful in reducing the prediction errors. The model is 

becoming reliably precise. The RPD sees a more notable 

increase to 3.15, reinforcing that MSC is effectively 

standardizing the data, leading to improved calibration models. 

Once the model is developed, it is evaluated using the 

validation set. The model's performance is assessed using 
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statistical indicators such as the coefficient of determination 

(R2), correlation coefficient (r), root mean square error 

(RMSE), and residual predictive deviation (RPD). These 

indicators determine how well the model predicts the property 

of interest based on the spectral data. 

According to the literatures [3, 18, 19], the RPD index 

ranging from 1.0 to 1.5 suggests that the prediction 

performance is coarse and requires improvement, particularly 

in terms of spectral data correction. An RPD value between 

1.5 and 2.5 indicates that the prediction performance can be 

categorized as sufficient. Furthermore, an RPD value between 

2.5 and 3 suggests a good prediction performance, while an 

RPD above 3 indicates an excellent level of accuracy in 

predictions. 

Significant improvements in prediction performance were 

observed when SOC prediction models were developed using 

treated and enhanced spectral data. All spectral correction 

approaches demonstrated higher accuracy and robustness 

indices compared to the raw, uncorrected spectra. Notably, the 

combination of enhanced spectra data using DT and MSC 

correction methods proved to be the most effective, yielding a 

maximum correlation coefficient between reference SOC and 

predicted SOC. Therefore, it is evident that enhancing the 

spectra data leads to improved prediction accuracy and 

robustness. 

Combining the two preprocessing techniques results in the 

best outcomes across the board. The R² shoots up to 0.93, 

meaning the model can now explain 93% of the variance, 

which is indicative of high predictive accuracy. The 

correlation coefficient reaches a near perfect 0.96, showcasing 

an extremely strong positive linear relationship in the data. 

The RMSE at its lowest, 0.14, confirms that the combination 

approach lowers the prediction error significantly. Lastly, the 

RPD at 4.05 is the highest among all models, implying that 

this combined model has excellent predictive performance and 

can reliably be used to estimate the values of the dependent 

variable. 

Based on the prediction performance obtained from all 

spectra data, it can be concluded that infrared technology has 

the potential to predict SOC content in soil samples with a 

maximum correlation coefficient of 0.96 and an RPD index of 

4.05. Moreover, this technology can deliver more accurate and 

reliable prediction results when the spectra data are properly 

corrected and enhanced. 

The trend from raw data to combined DT+MSC 

preprocessing demonstrates a consistent improvement across 

all statistical metrics, indicating that the proper preprocessing 

of spectral data is crucial for enhancing model accuracy. Each 

successive technique, detrending and MSC, contributes to 

refining the model's predictive capabilities, and their 

combined usage seems to offer synergistic benefits. Such 

insights could be invaluable for those working in fields where 

spectral analysis is pivotal, like analytical chemistry, remote 

sensing, or agriculture, guiding them toward the best practices 

for preprocessing their data. 

General remarks of NIRS application for predicting SOC of 

agricultural soil samples: NIRS allows for the non-destructive 

analysis of soil samples, enabling researchers and practitioners 

to gather spectral data without altering or compromising the 

integrity of the soil, which is crucial for follow-up physical and 

chemical analyses. NIRS analysis is rapid and high-throughput, 

enabling swift data collection and large-scale assessment of 

SOC levels in soils. This can significantly expedite the pace of 

soil monitoring efforts. 

Compared to traditional wet-chemistry methods, the NIRS 

approach typically offers cost efficiencies in terms of time, 

labor, and equipment, while still providing reliable predictions 

of SOC content. NIRS can provide simultaneous analysis of 

multiple soil properties beyond SOC, such as nutrient levels, 

texture, pH, and soil structure, offering holistic insights into 

soil health and fertility. 

The analysis clearly indicates a significant enhancement of 

model accuracy with each step of data preprocessing applied 

to spectral data. The raw data shows initial trends, but the 

execution DT and MSC preprocessing techniques refines these 

trends substantially. This sequential improvement across all 

statistical metrics highlights a key takeaway: the choice and 

execution of appropriate preprocessing techniques are critical. 

They play a synergistic role in enhancing the predictive 

prowess of models [20-22]. In fields heavily reliant on spectral 

analysis, such as analytical chemistry, remote sensing, or 

agriculture, understanding and utilizing these preprocessing 

strategies can dramatically improve data reliability and model 

outcomes. This sets the stage for more accurate, efficient, and 

meaningful data interpretation and application. 

Each preprocessing step contributes uniquely: detrending 

removes systematic trends that could bias the baseline, while 

MSC adjusts for multiplicative scatter effects due to particle 

size variations or other inconsistencies. Their combined effect 

results in a data set that is much cleaner and more 

representative of true underlying chemical or physical 

properties [23-25]. Researchers and practitioners should, 

therefore, consider an iterative approach to preprocessing, 

adjusting techniques as needed to optimize their models for the 

specific characteristics of their spectral data. 

Moreover, NIRS enables data-driven decision making in 

agriculture, land management, and environmental assessments 

by providing accurate and timely information on soil 

properties, thereby facilitating informed choices for 

sustainable and efficient agricultural practices.  

Accurate and efficient prediction of SOC through NIRS 

allows farmers and land managers to implement precision 

agriculture and tailored soil management practices, which can 

optimize crop productivity, conserve resources, and minimize 

environmental impact. NIRS-based soil analysis supports 

informed land use planning and conservation efforts by 

providing insights into soil carbon dynamics, helping to 

identify areas for reforestation, habitat restoration, or 

sustainable land use that promote carbon sequestration and 

biodiversity conservation. 

An accurate SOC prediction through NIRS aids in assessing 

the potential role of soils as carbon sinks and sources, 

informing climate change mitigation strategies, and 

contributing to accounting for carbon credits or offsets. By 

facilitating efficient soil monitoring and management, NIRS 

contributes to global food security efforts by promoting 

sustainable agricultural practices that maintain soil 

productivity, preserve natural ecosystems, and safeguard 

agricultural yields for a growing global population. NIRS 

applications in predicting SOC content offer an avenue for 

advancing scientific research and capacity building in soil 

science, fostering collaborations among researchers, and 

equipping soil scientists and agricultural practitioners with 

valuable tools for sustainable development. 

Effective monitoring of soil carbon content through NIRS 

aids in the efficient use of agricultural inputs, such as 

fertilizers and irrigation, thereby conserving resources and 

minimizing environmental impacts associated with 
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agricultural activities. In summary, the application of NIRS for 

predicting SOC content in soil samples has wide-ranging 

benefits for environmental sustainability, agriculture, and 

global development. It enables informed decision making, 

promotes sustainable land management, and contributes to 

global efforts related to climate change mitigation and food 

security, ultimately fostering a more resilient and sustainable 

global ecosystem. 

 

 

4. CONCLUSIONS 

 

The obtained results suggest that near infrared spectroscopy 

(NIRS) coupled with partial least square regression (PLSR) 

has the potential to be utilized as a quick and eco-friendly 

approach for predicting soil organic carbon (C-organic). The 

application of De-trending (DT) and multiplicative scatter 

correction (MSC) for spectral correction significantly 

enhanced the accuracy and reliability of C-organic prediction. 

This was evident in the increased correlation coefficient 

between actual and predicted SOC values, higher RPD index, 

and reduced RMSE error prediction. Among the different 

correction methods, DT+MSC exhibited the best performance 

in accurately and robustly predicting SOC, with a correlation 

coefficient of 0.96 and RPD of 4.05. 

The developed method can be integrated into current soil 

testing practices in a manner that offers profound implications 

for precision agriculture. NIRS potentially coupled with the 

described optimization techniques, harbors several practical 

applications and benefits that could revolutionize soil 

management.  

The rapid and nondestructive nature of NIRS analysis 

allows for real time assessment of soil properties, potentially 

leading to the development of on site testing devices. This 

advancement would enable farmers to make quick, informed 

decisions about their soil management practices without 

having to wait for lengthy laboratory results. 

The cost-effectiveness and sustainability of this method are 

also noteworthy. By providing instant, accurate feedback, 

NIRS could notably reduce the reliance on traditional, often 

expensive, and time-consuming laboratory analysis, 

benefiting both large-scale agricultural operations and smaller, 

resource-constrained farms. 
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