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This paper examines the specifics of studying the dynamics of the behavior of the host 

and the parasitoid in two dynamic systems. The host model HPM is an extension to a 

2D system, where an arctan function acts as an activation function. It was chosen 

because it can be used in artificial neural networks of intelligence. Thus, the modeling 

process leads to the following representation of the essence of this model: the 

population dynamics in the main plane occur over discrete time intervals and by several 

formulae. These equations were originally intended to describe the interaction between 

the host and the parasitoid. The model took the derivatives of a sigmoid in arctan 

function to show the slope of a sigmoid in any given pair was done by tangents and 

normalized the output to one during training. Lastly, we have a stability analysis of the 

system: to comma and an R locus for the fixed points by the Jacobian matrix eigenvalues 

of the model have been given, so the type behavior of this model is described. Also, 

domestication is the chaos for this model: a 2D controlled low can stabilize a given 

system. We presented a new concept of applying the HPM system as the activation 

function in AI binary medical image classification: SPECT Heart data. HPM system 

outperforms the traditional sigmoid function extensively which can improve the 

accuracy and quality of image classification within and outside the applicability 

spectrum. 
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1. INTRODUCTION

The dynamical systems are increasingly utilized in 

modeling biological and ecological systems [1-4]. A new 

model called the Host-Parasitoid Model (HPM) combines the 

above two theories and has succeeded in simulating 

populations of phytophagous insects. The HPM differs from 

the above 2D systems in that it includes an activation function 

motivated by how artificial neural networks are used in 

intelligence-based tasks [5, 6]. 

The system Host-Parasitoid Model can be utilized to portray 

changes in the population of both the host and parasitoid 

species across discrete time intervals [7]. 

The basis of this model comprises a set of equations that 

demonstrate the changes in population for both species over 

time. Dye [8] introduced the population system given by the 

following equation: 

𝑃(t + 𝛼) =
𝜎𝑃(𝛼)

(1+𝜑𝑃(𝛼))μ (1) 

where, P(α), P(t+α) refer to the population magnitudes in 

groups. The parameter σ represents the rate of growth which 

takes into account fertility after accounting for the lifetime 

density of autonomous humanities. We also introduce 𝜑  to 

represent water containers and μ to denote the slope of the 
association, between humanity and log population size. This 

model was formulated by May [9] and as follows: 

𝑃(t + 𝛼) = 𝜎(𝑃(𝛼))exp(−𝜑 𝑃(𝛼)) (2) 

Another design has been presented by Bellows [10] as 

follows:  

𝑃(t + 𝛼) = (𝜎𝑃(𝛼))exp(− 𝜑𝑃𝜇(𝛼)) (3) 

The Eqs. (1)-(3) are generalized as a 2D-system, it is called 

the parasitoid-host system (PHS) [11], as follows: 

𝐻(t + 𝛼) = (𝜎1𝐻(𝛼))(𝐹(𝑃(𝛼), 𝐻(𝛼)))
𝑃(t + 𝛼) = (𝜎2𝐻(𝛼))(1 − 𝐹(𝑃(𝛼), 𝐻(𝛼)))

(4) 

• Here H, P represent the population densities of the host

and parasitoid. 

• 𝐹:ℝ+ × ℝ+ → ℝ+  one of the Eqs. (1)-(3) indicates the

fraction of the host population that is not infected. 

It follows that: F(P(α), H(α))=exp(-φPμ) and F(P(α), 

H(α))=(1+φP(α))-μ. 

The logistic map is obtained when μ=1, such that F(P(α), 

H(α))=(1+φP(α))-1. 
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By simple calculation we have F(P(α), H(α))=exp(-φPα) [8].  

In this study, the tangent inverse is proposed to represent the 

shifted and scaled type of the logistic map F(P(α), H(α))=tan-

1(P(α)). It is labelled as an activation and a Sigmoid function 

(utility function). In terms of applications, it can be used in 

artificial neural networks. 

• σ1 refers to the growth of the host size; 

• σ2 refers to the parasitoid population rate; 

• α, t represents the time and iteration respectively. 
Crops and its pests could be described by using the HPM. 

Various factors affecting interactions, such as pesticides or 

changes due to the external environment, are also considered. 

In this model, the “host” is the crop population, and the 

“parasitoid” is a pest acting on the given crops. The HPM is 

an offer to embrace a model of the complex relationship 

between crops and pests in agriculture. The influences are 

harder to predict and model but also allow modeling of the 

various factors influencing a system: pest control and nutrient 

availability, allowing a fuller picture. Several case studies 

seem to investigate the method for system consideration. In 

terms, Din [12] described the global dynamics for the 

proposed model and modified the model PHS, introducing the 

retreat effects as constant. Salih et al. [13] took into 

consideration chaos control and Neimark-Sacker bifurcation 

and the PHS was modified using a growth function for the host 

population. A class of PHS was approved by Hopf bifurcation 

and global stability conducted by Al-Saidi et al. [14]. The 3D-

chaotic discrete system of vector-borne diseases that uses deep 

analysis and the environment component has been proposed 

by Salih and Al-Saidi [15] and Hussain et al. [16]. 

As the traditional and nonlinear dynamics used to study the 

interaction between host and parasitoid do not accurately 

figure the complex nature of this interaction, the need for high 

nonlinearity emerged as one of the requirements to understand 

many natural phenomena. Besides, some of such system is 

based on discrete time intervals, which resulted in an 

inaccurate prediction of the dynamics of this biological system. 

Moreover, the high sensitivity in some traditional models 

makes them unpreferable to be applied in real-world situations, 

especially when the parameters are not known. All of such 

limitations can be addressed in this work by introducing an 

advanced mathematical model inspired by the artificial neural 

networks that are based on the proposed nonlinear function as 

an activation function. This advanced approach can provide 

more accurate results and broaden the model's applicability in 

real-world applications. 

In this study, we introduced a new Host Parasitoids Model 

(HPM) to show the intricate relationship in dynamical systems 

theory that aims to understand the dynamics between hosts and 

their parasitoids. Unlike the 2D systems, the HPM 

incorporates an activation function that draws inspiration from 

how artificial neural networks are employed in intelligence-

based tasks. The rationale behind choosing the arctan 

activation function is due to several reasons, such as: 

 

1. It is non-linearity and sigmoidal nature, which is an 

important property to model a non-linear dynamic in NN that 

helps in good prediction capability. 

2. Its symmetrical nature of the origin helps in providing the 

balance to positive and negative inputs to be treated uniformly.  

3. The smoothness of its derivative, which does not give 

sharp change or discontinuities makes it important for training 

algorithms like backpropagation to ensure a stable gradient 

descent process. 

2. THE DESCRIPTION OF THE PROPOSED MODEL 

 

In this section, we provide examples of several systems that 

are pertinent to System (4). The following structure is treated 

as follows: 

 

𝐻𝑛+1 = (𝜎1𝐻𝑛)(𝐹(𝑃𝑛, 𝐻𝑛)) 

𝑃𝑛+1 = (𝜎2𝐻𝑛)(1 − 𝐹(𝑃𝑛 , 𝐻𝑛)) 
(5) 

 

If F(Pn, Hn)=tan-1 (Pn) then: 

 

𝐻𝑛+1 = (𝜎1𝐻𝑛)(tan−1(𝑃𝑛)) 

𝑃𝑛+1 = (𝜎2𝐻𝑛)(1 − tan−1(𝑃𝑛)) 
(6) 

 

The tan-1(.) is used as an activation function in artificial 

neural networks. As a result, we can determine the sigmoid 

arc's slope at every two points. The resulting values take a 

range between [0, 1] by normalizing the output of every point. 

Also, tan-1(.) has a symmetric value in [-1, 1]. 

Furthermore, it is possible to extend Model (6) by utilizing 

the operator of differentiation. 

 

δ(𝑋𝑛) = 𝑋𝑛+1 − 𝑋𝑛 

 

To formulate the model: 

 

𝐻𝑛+1 − 𝐻𝑛 = (𝜎1𝐻𝑛)(tan−1(𝑃𝑛)) − 𝐻𝑛  

𝑃𝑛+1 − 𝑃𝑛 = (𝜎2𝐻𝑛)(1 − tan−1(𝑃𝑛)) − 𝑃𝑛 
(7) 

 

This implies the model: 

 

δ(𝐻𝑛) = (σ1𝐻𝑛)(tan−1(𝑃𝑛)) − 𝐻𝑛 

δ(𝑃𝑛) = (𝜎2𝐻𝑛)(1 − tan−1(𝑃𝑛)) − 𝑃𝑛 
(8) 

 

 

3. STABILITY ANALYSIS AROUND THE FIXED 

POINTS 

 

Stability analysis of fixed points is also examined in this 

section. Using a Jacobian matrix analysis. Given is the 

Jacobian matrix of Model (8). 

 

J = (

𝜕𝑓1

𝜕𝐻

𝜕𝑓1

𝜕𝑃
𝜕𝑓2

𝜕𝐻

𝜕𝑓2

𝜕𝑃

) = (
𝜎1 tan

−1(𝑃) − 1  
𝜎1 𝐻

p2+1

𝜎2(1 − tan−1(𝑃))
−σ2 𝐻

p2+1
− 1

)  

 

where, (
𝑓1(𝐻, 𝑃)
𝑓2(𝐻, 𝑃)

) = (
(𝜎1𝐻)(tan−1(𝑃)) − 𝐻

(𝜎2𝐻)(1 − tan−1(𝑃)) − 𝑃
). 

A simple calculation show that Model (8) has two fixed 

points namely these are: 

1. Ε0 (0,0) is always exist; 

2. Ε1 (H*, P*). 

 

3.1 Local stability of Ε0 

 

The J𝛦0
 become J𝛦0

= (
−1 0
σ2 −1

). 

Then the eigenvalues of J𝛦0
 are λ1,2=-1. Hence, Ε0 is 

asymptotically stable. 

 

3.2 Local Stability of Ε1 (H*, P*) 

 

The J𝛦1
 become: 
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𝐽𝐸1
= (

𝜕𝑓1

𝜕𝐻

𝜕𝑓1

𝜕𝑃
𝜕𝑓2

𝜕𝐻

𝜕𝑓2

𝜕𝑃

) = (
𝜎1 tan

−1(𝑃∗) − 1  
𝜎1 𝐻∗

p∗2+1

𝜎2(1 − tan−1(𝑃∗))
−σ2 𝐻∗

p∗2+1
− 1

). 

 

Then the eigenvalues of 𝐽𝐸1
 are 𝜆1 =

2𝜎1tan[
2

𝜎1
]

(−2+𝜎1)𝜎2
 and 𝜆2 =

tan [
2

σ1
]. 

Regarding the unique fixed point E1 we get: 

1. E1 is sink (stable) if σ1=5, σ2=4. 

2. E1 is source (unstable) if σ1=1.1, σ2=1.3. 

3. E1 is saddle point if σ1=σ2=1. 

 

3.3 Global stability 

 

Definition: (Global Stability of Steady-State Equilibriums) 

A steady-state equilibrium, x, of the difference equation 

xn+1=axn is globally (asymptotically) stable, if  lim
𝑛→∞

𝑥𝑛+1 = �̅� 

∀𝑥0 ∈ ℛ. 

 

3.3.1 Global stability of Ε0 

The 𝐽𝛦0
 transform into 𝐽𝛦0

= (
−1 0
σ2 −1

). 

Next, the eigenvalues of 𝐽𝛦0
 are λ1,2=-1, hence Ε0 is global 

asymptotically stable. 

 

3.3.2 Global stability of Ε1(H*, P*) 

The 𝐽𝛦1
become: 

 

𝐽𝐸1
= (

𝜕𝑓1

𝜕𝐻

𝜕𝑓1

𝜕𝑃
𝜕𝑓2

𝜕𝐻

𝜕𝑓2

𝜕𝑃

) = (
𝜎1 tan

−1(𝑃∗) − 1  
𝜎1 𝐻∗

p∗2+1

𝜎2(1 − tan−1(𝑃∗))
−σ2 𝐻∗

p∗2+1
− 1

). 

 

Accordingly, the eigenvalues of 𝐽𝐸1
 are 𝜆1 =

2𝜎1tan[
2

𝜎1
]

(−2+𝜎1)𝜎2
 and 

𝜆2 = 𝑡an [
2

σ1
], then E1 is global asymptotically stable if σ1=1.5, 

σ2=1.5. 

 

3.4 Ecological significance based on stability analysis 

 

To explain the above result in the context of ecological 

dynamics. This method helps clarify the underlying 

mathematics by making connections with ecological 

knowledge, which can be used to understand the behavior of 

the ecosystems. However, based on the Jacobian matrix, the 

behavior of the fixed points can be interpreted as follows: 

• If the fixed point (0,0) is stable (asymptotically). It 

suggests that both populations may eventually go extinct if no 

action is taken. This could happen in situations where there is 

a high death rate or low fertility, indicating that conservation 

efforts might be necessary to keep the species from going 

extinct. 

• Local stability of E1 (Coexistence State): The stability of 

both species at a non-trivial fixed point E1(H*, P*) indicates a 

balanced ecological interaction in which neither species 

significantly outcompetes the other.  

• The analysis demonstrates how the growth rate parameters 

(σ1) and (σ2) affect the stability of the system. To stabilize the 

populations, this sensitivity can direct the adjustment of these 

parameters through ecological practices like controlled 

breeding programs or habitat manipulation. By providing 

ecological interpretations to stability analysis, we can truly 

understand this theoretical model and bridge the gap between 

it and real-world ecological management. It becomes possible 

for the ecologist or conservator to take these understandings 

with him practically, resulting in more well-informed and, 

hence, successful management choices that help to achieve the 

goals of pest control and conservation alike. 

 

3.5 Bifurcations analysis 

 

The parameter whose value affects the behavior of the 

system is called the bifurcation. A diagram that shows how the 

dynamic changes are used to describe this phenomenon. 

Figure 1 displays the bifurcation diagram for Model (8). While 

Figure 2 depicts the behavior of this model for different values 

of σ. 

 

 
 

Figure 1. Bifurcation diagram of the Host-Parasitoid 

 

 
 

Figure 2. Model (8) when σ1=2, σ2=[0.75, 1, 2, 3] 

 

3.6 Lyapunov exponent (LE) 

 

The nonlinear dynamical systems are basically chaotic, as 

evidenced by their great sensitivity to the initial state. Let us 

assume an exponential divergence between two neighbouring 

trajectories of a dynamical system. The Lyapunov exponent, a 

chaotic system, is then described through this arbitrary 

invariant in that scenario. According to Figure 3, the LE looks 

at the chaosity of Mode (8). In some parameters, it 

demonstrates that the suggested system exhibits chaotic 

behavior. When defining the local instability of a system, the 

average of LE is utilized. 
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Figure 3. Lyapunov exponent of the Host-Parasitoid 

 

 

4. CONTROL OF CHAOS IN MODEL (8) 

 

The 2D-controller law can be applied to Model (8) in the 

following manner: 

 

𝑈𝐻 = −(𝜎1𝐻)(tan−1(𝑃𝑛)) 

𝑈𝑃 = −(𝜎2𝐻)(1 − tan−1(𝑃𝑛)) 
(9) 

 

Theorem: The 2D-controller (9) can be used to control the 

Model (8). 

Proof: The following is how to identify the controlled model: 

 

δ(𝐻) = (𝜎1𝐻)(tan−1(𝑃)) − 𝐻 − 𝑈𝐻 

δ(𝑃) = (σ2𝐻)(1 − tan−1(𝑃)) − 𝑃 − 𝑈𝑃  
(10) 

 

By changing (9) with (10), we get: 

 

δ(𝐻) = −𝐻 

δ(𝑃) = −𝑃 
(11) 

 

As a matrix form, we have: 

 

(
δ(𝐻)
δ(𝑃)

) = (
−1 0
0 −1

) (
𝐻
𝑃
) (12) 

 

The goal is to show that Eq. (11)'s equilibrium is 

asymptotically stable, meaning that as time goes on, the model 

states converge to zero. Since the model's eigenvalues λ1,2=-1 

are all negative, the system is stabilized since the zero outcome 

is asymptotically stable according to the stability theorem. 

Theorem 1: Let Λ={τ1, τ2, …, τn} be an arbitrary set of n 

complex numbers such that Λ={𝜏1, 𝜏2, … , 𝜏𝑛}=Λ. Then the 

pair {A, B} is completely controllable if and only if there exists 

a matrix K such that the eigenvalues of A-BK are the set Λ. 

We can write the system (10) in the following form: 

 

[
𝑥(𝑛+1)

𝑦(𝑛+1)
] = 𝛢 [

𝑥𝑛

𝑦𝑛
] + 𝐵 [

𝑈𝑥

𝑈𝑦
]. 

 

It can be linearized as follows: 

 

𝐴 =

[
 
 
 
𝜕𝑓1

𝜕𝑥1
⋯

𝜕𝑓1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑥1
⋯

𝜕𝑓𝑛

𝜕𝑥𝑛]
 
 
 

, 𝐵 =

[
 
 
 
𝜕𝑓1

𝜕𝑢1
⋯

𝜕𝑓1

𝜕𝑢𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑢1
⋯

𝜕𝑓𝑛

𝜕𝑢𝑛]
 
 
 

. 

Let, A∈ 𝑅𝑛×𝑛, B∈ 𝑅𝑛×𝑚 choose u∈ 𝑅𝑚×𝑛. 

Lemma 1: if the pair {A, B} is completely controllable and 

the column of B (b1, b 2, …, bn) are assumed to be nonzero, 

then there exist matrices Ui, 1≤i≤n, such that the pair {A-BUi, 

bi} are completely controllable, where, 

 

       𝐴 = [
(𝜎1𝐻)(tan−1(𝑃)) −𝐻

(σ2𝐻)(1 − tan−1(𝑃)) −𝑃
], 

𝐵 = [
−(𝜎1𝐻)(tan−1(𝑃))

−(σ2𝐻)(1 − tan−1(𝑃))
]. 

 

Then Rank (B AB)=n, and Rank(A-BUi bi)=n. 

Note that {b1, b2} represents the desired eigenvalues for the 

completely controllable pair {A, B}. 

Because the control method uses terms (like tan-1) that are 

directly derived from the model's equations, it preserves the 

system's non-linear characteristics and natural dynamics. This 

procedure ensures that the control inputs are both 

mathematically and ecologically compatible. This obviously is 

shown in Figure 4. 
 

 
 

Figure 4. Model (8) after control, for σ1=1, σ2=[1, 2] 
 

Eqs. (9)-(10) explain how the stabilization is achieved. 

The control strategy seeks to achieve an asymptotically 

stable equilibrium in which, independent of initial conditions, 

the populations of parasitoids and hosts eventually converge 

to the fixed points. The method avoids extreme scenarios that 

could have disastrous ecological effects, like the host going 

extinct or the parasitoid spreading unchecked. Instead, it 

controls chaos within the system. Therefore, the Host-

Parasitoid Model's 2D control law for chaos control was 

selected because it is straightforward, efficient, and consistent 

with the dynamics of the system. In doing so, this approach 
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improves the predictability and manageability of host-parasite 

interactions by directly integrating with the model's equations 

to achieve stabilization and provide a strong mechanism to 

guide the system towards desired ecological states. 

 

 

5. DISCUSSION 

 

The Host-Parasitoid Model is described in this manuscript. 

First, a few qualitative aspects of the host-parasite model are 

talked about. The stability of the fixed points and their 

existence are examples of these characteristics. Furthermore, 

it is demonstrated that Model (8) experiences a Neimark-

Sacker bifurcation around a fixed point and computation the 

maximal Lyapunov exponents. Furthermore, the proposed 

models' chaotic behavior is managed through the application 

of chaos control methodology. It is observed that the host and 

parasite model presented in Figure 3 exhibits chaos as the 

value of σ2 increases, indicating that the parasite outpaces the 

host in terms of growth rate and eventually restores stability to 

the system through the use of the control mechanism and as 

seen in the ensuing Figures 5 and 6. 

Although the model might work well in controlled or 

particular environments, there may be limitations to its 

scalability to larger, more complex ecosystems or its 

applicability to other ecological contexts. A two-species 

model may not adequately capture the complexity of 

interactions found in diverse ecosystems. Overfitting to the 

training data is a constant risk associated with complex models. 

This may reduce the model's general utility by making it less 

predictive when used with fresh data or under different 

circumstances. 

 

 
 

Figure 5. Model (8) before control, for σ1=1, σ2=[1, 2] 

 
 

Figure 6. Model (8) after control, for σ1=1, σ2=[1, 2] 

 

 

6. THE IMPACT OF HPM IN AI 

 

The hyperbolic tangent function in the HPM model is well 

suited for use as an activation function in neural networks. It 

helps normalize neuron outputs, facilitating training and 

improving convergence rates. In learning, such functions 

introduce non-linearity to the model, enabling the network to 

learn intricate patterns and make more accurate predictions. 

For example, the hyperbolic tangent function in Eq. (6): 

 

𝐻𝑛+1 = (𝜎1𝐻𝑛)(tan−1(𝑃𝑛)) 

         𝑃𝑛+1 = (𝜎2𝐻𝑛)(1 − tan−1(𝑃𝑛)) 

 

is a sigmoidal (S-shaped) curve spanning from -1 to 1. When 

used as an activation function, the tan-1(x) normalization 

device centres data at zero which is a great advantage for 

networks of this type. It helps to reduce variance between 

layers and stave off collapse during backpropagation. This 

specific feature was utilized as early as 1986 by Rumelhart and 

McClelland [17]. As a result, many important network training 

algorithms have been widely adopted today. 

 

6.1 Application of the proposed model in artificial 

intelligence 

 

By using mathematical techniques, we not only enhance our 

understanding of natural phenomena but also establish a strong 

framework for addressing complex challenges in the ever-

changing and evolving world of artificial intelligence. As we 

continue to explore the connections between these fields, the 

potential for solutions and transformative impacts becomes 
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increasingly clear. As for the Host-Parasitoid Model, its 

hyperbolic tangent function has been used in different AI 

applications for the same ability to effectively model complex 

dynamics. Some of these applications include: 

• Environmental management and protection (conservation). 

Using the HPM, one Autonomous Artificial Animal (A3) can 

fare well across vast regions. To forecast ecosystem changes a 

year from now based on environmental policy choices or other 

macro-run decisions; and so on with ever more timely 

accuracy! For example, neural networks can be trained to 

anticipate the consequences of introducing a new species or an 

approach to conservation.  

• Ecological Conservation and Management: The HPM can 

be used in AI systems to predict what will happen when 

different conservation strategies are tried out. 

• Image Classification in Ecology: The HPM updated 

Convolutional Neural Networks (CNNs) and can now 

smoothly handle image classification tasks such as species 

recognition and the judgement of ecological changes based on 

satellite images. 

• Public Health and Vector Control: The HPM can be 

adjusted to model vector-borne diseases. It is this 

characteristic of it that lets us forecast and then go after 

outbreaks through host-vector dynamics. 

In this work we will focus on the medical image 

classification and the effect of using HPM as an activation 

function. 

 

6.1.1 The implementation of HPM in medical image 

classification 

The specific requirements of the implementation are: 

choosing one of the AI algorithms, the type of dataset, and a 

specific ecological conservation. For example, in this 

implementation, we choose the Convolution Neural Network 

(CNN) algorithm for the image classification task [18], and as 

a type of dataset, we choose medical images, with the HPM 

model used as an activation function for binary output 

prediction [19]. 

To incorporate the Host Parasitoid Model (HPM) into a 

Convolutional Neural Network (CNN), we apply the equations 

of the HPM to the results generated by the layers of CNN. This 

process can be seen as a processing stage, where we fine-tune 

the predictions of the CNN using the principles and concepts 

of the HPM. 

If we suppose that the CNN generates a set of probabilities 

for each class (in this work 'host' and 'parasitoid') for every 

image. These probabilities can be denoted as Phost and Pparasitoid. 

Therefore, the HPM is applied to these probabilities as follows: 

The basic form of the HPM is: 

 

𝐻𝑛𝑒𝑤 = (𝜎1𝐻)(tan−1(𝑃)) 

       𝑃𝑛𝑒𝑤 = (𝜎2𝐻)(1 − tan−1(𝑃)) 

 

where, H and P refer to the population densities of the host and 

parasitoid respectively, which can be comprehended in CNN 

as the probabilities Phost and Pparasitoid. 
After the CNN completes its predictions, we apply the HPM 

equations to adjust them such that: 

 

     𝑃ℎ𝑜𝑠𝑡,𝑛𝑒𝑤=(𝜎1𝑃ℎ𝑜𝑠𝑡)(tan−1(𝑃𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑜𝑖𝑑)) 

  𝑃𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑜𝑖𝑑,𝑛𝑒𝑤=(𝜎2𝑃ℎ𝑜𝑠𝑡)(1 − 𝑡𝑎𝑛ℎ(𝑃𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑜𝑖𝑑)) 

 

The values of the parameters 𝜎1 and 𝜎2 can be adjusted 

based on requirements or obtained through the training process.  

In the CNN, the input is the images, and the output is the initial 

predictions (Phost and Pparasitoid), which are then fed into the 

HPM equations. 

The output of the HPM equations is (Phost,new and 

Pparasitoid,new), which represent the final adjusted predictions. 

This method enables the CNN to analyze the images and 

generate predictions, which are later improved by 

incorporating the dynamics represented in the HPM. It is a 

strategy that combines learning's ability to recognize patterns, 

with the knowledge embedded in the HPM. The values of the 

parameters ρ1, and ρ2 should be carefully chosen to ensure that 

the HPM model reflects the ecological relationship, which we 

aspired to obtain through the proposed model.  

Now, we explore the applicability of the (HPM) serving as 

an activation function in the framework of a Convolutional 

Neural Network (CNN) for binary medical image 

classification. This is just posed with the typical usage of a 

sigmoid activation function. The motivation for the 

exploration is to investigate the potential impact of HPM in the 

predictive accuracy and efficiency of the system. The dataset 

utilized in this study is the SPECT Heart data, comprising 267 

patient records, each categorized as either normal or abnormal. 

These SPECT image sets were sourced from the Kaggle 

SPECT MPI dataset, which provides medical scan images 

similar to CT scans [20]. To facilitate the analysis, we initially 

extracted key features from the original SPECT images, 

effectively summarizing the complex data into a more 

manageable form. To illustrate, we selected a representative 

image from the original dataset for both normal and abnormal 

cases, as depicted in Figure 7 [20]. The subsequent feature 

extraction process, as detailed in reference [21], yielded 44 

continuous features per patient. These features were then 

further refined into 22 binary feature patterns, allowing for a 

more streamlined analysis. Importantly, our analysis focused 

on these extracted features, not the raw images, enabling a 

more efficient and targeted investigation into the 

distinguishing characteristics of normal versus abnormal cases. 

The CNN model used consists of: 

·Input Layer: The input shape is carefully chosen to best 

match the problem and the size of the images expected as input. 

In this case, the images are square and have a size 64×64 pixels 

with 1 color channel for greyscale. This is not explicitly an 

input layer; it can be considered an input layer in this model. 

·Conv2D Layer: This is the first hidden layer and is a 

convolutional layer. It has 32 filters each with a size of 3×3. 

This layer will take the input image and create 32 new images, 

each based on the local (3×3) region of the image. The 

activation function is the rectified linear unit or ReLU. This 

function has the general form f(x) = max(0,x), and in this case, 

it will output the input directly if it is positive. Otherwise, it 

will output zero. The result is a very simple non-linearity. 

·Flatten Layer: As its name suggests, this layer flattens the 

output of the Conv2D layer so that you can make use of fully 

connected layers. The 2D output from the previous layer 

becomes a 1D array. 

·Dense Layer (Output Layer): A dense (also known as fully 

connected) layer with a single output unit and an HPM 

activation function is a standard output layer setup for a binary 

classification problem. The output value is in the range [0, 1] 

and can be rounded to get the predicted class value of 0 or 1. 

The results are illustrated in Figures 7 and 8. In Figure 9, we 

first set the size of the epoch to ten as a preliminary test of 

what would happen. Then, at a later stage, to avoid the system 

being overfitting, the early stopping technique was applied, as 
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shown in Figure 8. Using this strategy permitted us to make 

adjustments for the future course of training and to check our 

model's ability to generalize. 

 

Sample of normal case 

 
Sample of abnormal 

 
 

Figure 7. Original CT images, SPECT images dataset for normal and abnormal cases 
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Figure 8. Training vs. validation accuracy and training vs. validation loss without early stopping 

 

 
 

Figure 9. Training vs. validation accuracy and training vs. validation loss with early stopping 

 

In Figure 8, the left graph shows the model's accuracy on 

the training and validation sets. The training accuracy starts 

high, and over time it remains at a similar level, which 

indicates that the model is fitting to the training data 

effectively over the epochs. The validation accuracy, however, 

increases substantially really up to about the sixth epoch and 

then ceases to improve. This might indicate that the model has 

learned the relevant patterns in the validation data by the sixth 

epoch, and training beyond that point does not yield 

improvements in accuracy. Additionally, the right graph 

shows the loss over the epochs, for both the training and 

validation sets. The training loss is decreasing throughout, and 

as the bottom graph shows, this demonstrates that the model is 

learning and getting better at making predictions based on the 

training data. The validation loss is decreasing in conjunction 

with the training loss up until the sixth epoch when the loss 

starts to show some volatility. It increases then decreases, 

across the sixth epoch. This increase in validation loss might 

suggest that we are starting to over-fit the model. In summary, 

these graphs show us the model is learning well but there is 

certainly a risk of over-fitting after the sixth epoch, suggested 

by the plateau in validation accuracy and the slight uptick in 

validation loss. With early stopping, the original message we 

saw suggests stopping training when the validation loss starts 

to increase and guarantees that the model will not lose its 

ability to generalize to unseen data, as shown in Figure 8. 

In Figure 9, the left chart, which shows accuracy, 

demonstrates that training vision is fast and then stabilizes at a 

high level of accuracy- which is an indication that our model 

has learned well. Meanwhile, accuracy in validation receives 

a big boost, at some points above training accuracy. This may 

be because there is not a large enough data set for validation, 

difficulties and some techniques for regularization which are 

actually more effective on validation data. After about the 10th 

epoch, the two accuracies come into approximate alignment 

and are pretty flat. This illustrates clearly that early stopping 

has saved us from any further overfitting by halting training 

when validation accuracy no longer improves. The right graph, 

which shows a loss, teaches that training loss declines steadily 

- a typical trajectory during a network's learning period. 

Validation loss mirrors this pattern exactly until about the 10th 

epoch. Thereafter, it begins to plateau and even inch upward 

slightly in some places. This stage is evidence that the model 

has arrived at its best performance on the validation set in 

generalization terms and that any further training above and 

beyond this point may not produce significant improvement. 

In order to fully evaluate the performance of the HPM that 

is used as an activation function in our medical application, a 

detailed experimental study was conducted. This 

comprehensive approach followed K-Fold cross-validation, 

using k=5 as a fold, to suppress the variability of our results 

and raise their precision significantly. Also, an early stopping 

method to avoid overfitting with Adam regularization 

Function. In this framework, the time-honoured sigmoid 

activation function often employed in binary classification 

models was pitted against the HPM activation function we 

propose here (likewise tailored for binary classification). 

Table 1 gives a nuanced comparison of these performances, 

providing fresh insights into our work. 

 

Table 1. The accuracy results of heart SPECT dataset after 

applying sigmoid and HPM activation function with 5-fold 
 

Fold Sigmoid Results HPM Results 

Fold 1 96.66666388511658 96.66666388511658 

Fold 2 89.99999761581421 89.99999761581421 

Fold 3 93.33333373069763 93.33333373069763 

Fold 4 86.66666746139526 86.66666746139526 

Fold 5 89.65517282485962 89.65517282485962 

Average 91.26436710357666 92.26436710357666 
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The inquiry is substantiated on the hypothesis that the use 

of HPM in the image of a CNN may result in significant 

improvements in the classification performance especially in 

the better-nuanced domain of medical imaging. 

 

6.2 The chaotic behavior of HPM in AI 

 

By utilizing the proposed HPM with its hyperbolic tangent 

function, AI can further explore the intersection between chaos 

theory and intelligent systems. The concept of chaos in the 

proposed model can be utilized in AI systems that operate in 

environments characterized by unpredictability and disorder. 

This is considered crucial in systems and environments where 

conditions change quickly and unexpectedly. The AI system is 

used to show how conservation efforts will affect a given 

ecological region. It will focus on the relationships between 

hosts and their parasites as well as interactions between 

different species. In this work we deal with the Host-Parasitoid 

Model (HPM), which is represented by the following sets of 

equations: 

1. Basic Host-Parasitoid Model (Eq. (4)): 

 

  𝐻(t + 𝛼) = (𝜎1𝐻(𝛼))(𝐹(𝑃(𝛼), 𝐻(𝛼))) 

         𝑃(t + 𝛼) = (𝜎2𝐻(𝛼))(1 − 𝐹(𝑃(𝛼), 𝐻(𝛼))) 

 

The aforementioned mathematical formulas can be used in 

the field of artificial intelligence to predict changes that may 

happen in the population contributing to management 

decision-making by considering circumstances. For instance, 

one could modify a neural network to forecast the results of a 

conservation strategy or the introduction of a species to a new 

habitat. 

2. Chaos control and Neimark-sacker bifurcation (Eq. (6)): 

 

𝐻𝑛+1 = (𝜎1𝐻𝑛)(tan−1(𝑃𝑛)) 

        𝑃𝑛+1 = (𝜎2𝐻𝑛)(1 − tan−1(𝑃𝑛)) 

 

The concept of chaos control is proposed in this model and 

is critical for instances where behavior becomes unstable. To 

this end artificial intelligence (AI) can be used in computer 

systems to adjust themselves for operation in changing 

environments as necessary. 

3. Chaos control (Eq. (8)): 

 

δ(𝐻𝑛) = (𝜎1𝐻𝑛)(tan−1(𝑃𝑛)) − 𝐻𝑛 

       δ(𝑃𝑛) = (𝜎2𝐻𝑛)(1 − tan−1(𝑃𝑛)) − 𝑃𝑛 

These equations can be used by AI systems to predict the 

long-term stability of ecosystems with different strategies in 

place. This is especially advantageous when it comes to 

conservation work. 

4. 2D-controller law (Eqs. (9)-(12)): 

 

𝑈𝐻 = −(𝜎1𝐻)(tan−1(𝑃𝑛)) 

        𝑈𝑃 = −(𝜎2𝐻)(1 − tan−1(𝑃𝑛)) 

           δ(𝐻) = (𝜎1𝐻)(tan−1(𝑃)) − 𝐻 − 𝑈𝐻 

                   δ(𝑃) = (𝜎2𝐻)(1 − tan−1(𝑃)) − 𝑃 − 𝑈𝑃 

                        (
δ(𝐻)
δ(𝑃)

) = (
−1 0
0 −1

) (
𝐻
𝑃

) 

 

By this set of equations is used to control the chaos in the 

system to ensure stability. In the implementation of AI, these 

equations are usually incorporated into machine learning 

algorithms. The AI system utilizes both real-time data to train 

these models enabling it to make forecasts regarding 

ecological outcomes. Table 2 shows the comparison between 

the proposed system with one of the literature works in terms 

of the dynamic properties and the stabilisation. 

The possible applications of artificial intelligence in the 

proposed model mainly fall under three categories: First, time 

series forecasting is one of the areas in which the typical 

system behind the model can be stated. This system is a 

dynamic, recurring system, which is comparable to the 

recurrent systems that the machine learning algorithm is used 

for time-series forecasting. Deep learning, LSTM, and GRU 

can accept and train on historical datasets to predict future 

values of Hn and Pn. The prediction is essential for economic, 

meteorological, or energy forecasting and planning. Artificial 

intelligence, further, can optimize models by running an 

algorithm that identifies the parameters that lead to the most 

likely result of the real-life data. For instance, gradient descent, 

genetic algorithms, and Bayesian optimization, which 

statistically minimize the errors made from these assumptions, 

can be used to fine-tune the model. Second, the model is used 

for system identification, in which the machine learning 

algorithm is fed input-output data and finds the system behind 

differential equations. In this setting, it is of importance in 

fields in which systems may be highly complex or unknown to 

the developers, such as engineering and physics. Third, in the 

field of control systems, this model is used to design the 

controls, if the system’s parameters need to be turned in real-

time or during an experiment. 

 

Table 2. Comparison of HPM with reference [12] using different aspects 

 
Aspect/Feature The Proposed Host-Parasitoid Model (HPM) Reference [12] 

Basic Premise Function activation F(Pn, Hn)=tan-1. Function activation F(Pn, Hn)=tanh. 

Stability Analysis 

1. The set of fixed points 𝛦0(0,0), 𝛦1 (
σ1ℓ

𝜎2(𝜎1−1)
, ℓ), 

where ℓ:= tan [
2

σ1
]. 

2. The set eigenvalues Α𝛦0
= {𝜆1 = −1, 𝜆2 = 1}, 

Α𝐸1
= {𝜆1,2 = ∓

2

3
tan(2)} has a saddle points. 

1. The set of fixed points {𝜑0(0,0,0), 

𝜑1 (
𝜌1ℓ

𝜌2(𝜌1−1)
, ℓ,

[𝜌2(𝜌1−1)(𝛼−1)−𝛼𝜌1]ℓ

𝜌2(𝜌1−1)(𝛼0−1)
)}, 

where ℓ:= log (√
𝜌1+1

𝜌1−1
). 

2. The set eigenvalues Λ𝜑0
= {𝜆1 = 1, 𝜆2,3 = −1}, Λ𝜑1

=

{𝜆1 = 1, 𝜆2,3 = 0.01} has a saddle points. 

Bifurcation 

Analysis 
The range bifurcation, when σ1, σ2=[4.90, 5]. The range bifurcation, when ρ1=2, ρ2=[1, 2]. 

Lyapunov-

exponent 
The range Lyapunov-exponent, when σ1, σ2=[2, 5]. The range Lyapunov-exponent, when ρ1=4, ρ2=5. 

Chaos Control 

Methods 

Controlled by 2D-controller law 

𝑈𝐻 = −(𝜎1𝐻)(tan−1(𝑃𝑛)) 

       𝑈𝑃 = −(𝜎2𝐻)(1 − tan−1(𝑃𝑛)) 

The conduct of the chaos, when σ1=σ2=[2, 5]. 

Controlled by 2D-controller law 

𝑈𝐻 = −(𝜌1𝐻)(tanh(𝑃𝑛)) 

        𝑈𝑃 = −(𝜌2𝐻)(1 − tanh(𝑃𝑛)) 

The conduct of the chaos, when ρ1=4, ρ2=5. 
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7. CONCLUSIONS 

 

In this study, we introduced the host model that 

accommodated a hyperbolic tangent function. This 

development pushes the envelope in modelling, drawing the 

connection between the novel and improved tool that will help 

us identify and apply complex dynamics in the discrete 

dynamical system framework while studying Host-Parasitoid 

interactions. These insights benefit the field of artificial 

intelligence on which we used Jacobian matrix methods to 

examine its stability. The host model revealed capability 

strengths by capturing both unstable states in any ecosystem. 

Without challenges nonlinear relationships seen in ecological 

interactions, all fluctuations varied, demonstrating the 

potential to understand and control difficult dynamical 

systems. Moreover, our chaos control mechanism addressed 

the unpredictability and nonlinearity related to AI systems. 

This feature holds value in AI applications where 

comprehending and controlling behaviors can greatly enhance 

the performance and reliability of AI driven solutions. The 

application of our model in AI has opened up avenues for 

research and development in areas such, as neural network 

training and predictive analytics. The model’s ability to work 

well with AI approaches, like learning, makes it an important 

tool for simulating situations and making informed predictions 

as seen in the field of ecological conservation. To conclude our 

Host-Parasitoid Model represents advancement in modeling. 

It offers perspectives and tools for researchers and 

practitioners in both ecology and AI. Finally, as this research, 

the HPM system is an effective activation function for the 

implementation of artificial intelligence of binary medical 

image classification using CNN, which should especially be 

used in regard to SPECT Heart. The HPM has helped us to 

reach a high classification accuracy of 92.6% compared to the 

traditional method of binary medical image classification 

using the sigmoid function, which reached 91.2%. Thus, 

establishing the great ability of HPM to improve the accuracy 

and credibility of medical image analysis opens significant 

prospects for further development of artificial intelligence–

oriented diagnostic tools. 

In the field of ecological modelling, the Host-Parasitoid 

Model with chaos control is a promising tool that provides 

fresh perspectives and more dependable control techniques for 

handling intricate biological interactions. These systems 

would be very helpful in dynamic environments where 

decisions must be made quickly and conditions change quickly. 

As the new direction, understanding these effects will be 

essential for future ecological management, as climate change 

has the potential to drastically change these relationships. As 

well as creating systems that can use the HPM to make quick 

predictions based on real-time data. 
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