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Efficiently scheduling heterogeneous cloud workloads in modern computing 

environments is a formidable challenge. Managing diverse resource needs, intricate task 

dependencies, and optimizing resource allocation are key concerns in this context. To 

address these challenges, this paper introduces a novel approach that combines the 

Advantage Actor-Critic (AAC) and Proximal Policy Optimization (PPO) models. AAC 

accurately estimates task dependencies, while PPO optimizes task scheduling 

operations. The proposed model leverages essential parameters such as CPU utilization, 

memory requirements, storage demands, network bandwidth, task deadlines, and task 

dependencies. The results of experiments conducted demonstrate the efficacy of the 

proposed approach. It achieves a 4.9% reduction in makespan, indicating faster task 

completion, an 8.5% increase in resource utilization, showcasing improved resource 

efficiency, a 2.5% reduction in energy requirements, extending the cloud deployment 

lifespan, and a 4.9% increase in the deadline hit ratio, highlighting the model's 

proficiency in meeting task deadlines. In conclusion, the novel scheduling approach, 

integrating AAC and PPO models, offers substantial advantages over existing methods. 

Precise task dependency estimation and optimized scheduling lead to enhanced 

performance metrics, including reduced makespan, augmented resource utilization, 

increased throughput, and improved deadline adherence. These findings have promising 

implications for real-world applications, underscoring the solution's potential impact on 

contemporary computing environments. 
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1. INTRODUCTION

Cloud environments have emerged as a fundamental 

infrastructure for hosting and running a variety of applications 

and services in today's quickly changing computing landscape. 

To ensure optimal resource utilization and satisfy strict 

performance requirements, the capacity to efficiently schedule 

heterogeneous cloud workloads has become essential. 

Effective task scheduling, however, presents significant 

difficulties in such dynamic and varied environments [1-3]. 

The inherent heterogeneity of cloud workloads, which 

include a variety of tasks with different resource requirements, 

creates a need for adaptive scheduling process [4-6]. When 

allocating resources effectively, factors like CPU utilization, 

memory needs, storage requirements, and network bandwidth 

are crucially important. Due to the importance of managing 

dependencies and meeting deadlines for system performance, 

task deadlines and dependencies also make the scheduling 

process more difficult. 

Although existing scheduling models [7-9] have 

significantly advanced this field, they have some drawbacks. 

Many methods have trouble accurately estimating task 

dependencies, which leads to poor scheduling choices. 

Additionally, inefficient resource use frequently results in 

longer makespans and lower throughput. This paper suggests 

a novel model that combines the advantages of the Advantage 

Actor-Critic (AAC) and Proximal Policy Optimization (PPO) 

models in order to overcome these drawbacks and improve the 

scheduling process. 

The proposed scheduling method heavily relies on the AAC 

model, which is renowned for its accuracy in task dependency 

estimation. The model can decide on the order and allocation 

of resources by taking into account the relationships between 

tasks and their dependencies. In addition, the PPO model helps 

with task scheduling optimization by ensuring effective 

resource allocation based on virtual machine (VM) parameters 
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like computational power, memory, storage, and network 

characteristics. 

This paper's main goal is to outline the benefits of 

combining the AAC and PPO models when it comes to 

adaptive scheduling for heterogeneous cloud workloads. 

When compared to recently proposed scheduling models, the 

proposed approach aims to shorten the makespan, increase 

throughput, and improve the deadline hit ratio by combining 

the strengths of both models. 

Extensive experiments were run, taking into account 

various workload scenarios and performance metrics, to assess 

the effectiveness of the proposed model. The results show the 

proposed model's superior performance, with a significantly 

shorter makespan, better resource utilization, higher 

throughput, and a higher percentage of tasks being completed 

by the deadline. These results demonstrate the approach's 

potential to deal with the major issues raised by the adaptive 

scheduling of heterogeneous cloud workloads. 

In conclusion, this paper proposes a novel model that 

combines the AAC and PPO models to address the need for 

efficient scheduling of heterogeneous cloud workloads. The 

proposed approach offers significant advantages over existing 

models by precisely estimating task dependencies and 

optimizing task scheduling. The model's effectiveness and 

potential impact in actual cloud environments are further 

validated in the following sections of this paper, which go into 

great detail about the model's methodology, experimental 

setup, and detailed results. 

Key contributions and objectives: This paper's primary 

objectives are to elucidate the advantages of combining the 

AAC and PPO models for adaptive scheduling of 

heterogeneous cloud workloads. In comparison to recent 

scheduling models, our proposed approach aims to achieve a 

shortened makespan, increased throughput, and an improved 

deadline hit ratio by harnessing the synergistic strengths of 

these models. 

Motivation for combining AAC and PPO models: The 

motivation behind integrating AAC and PPO models lies in 

their complementary capabilities. AAC excels in precise task 

dependency estimation, while PPO excels in optimizing task 

scheduling. By harnessing these capabilities in concert, we 

aim to address the intricate challenges posed by heterogeneous 

cloud workloads. AAC ensures that task dependencies are 

accurately considered, enabling efficient resource allocation 

decisions. PPO further refines these allocations based on VM 

parameters, resulting in improved scheduling efficiency. This 

fusion of AAC and PPO promises a more holistic and effective 

approach to cloud workload scheduling. 

In summary, this paper introduces a novel scheduling model 

that leverages the AAC and PPO models to tackle the 

imperative need for efficient scheduling of heterogeneous 

cloud workloads. By precisely estimating task dependencies 

and optimizing task scheduling, the proposed approach offers 

substantial advantages over existing models. The subsequent 

sections delve into the model's methodology, experimental 

setup, and detailed results, providing further validation of its 

effectiveness and potential impact in real-world cloud 

environments. 

 

 

2. REVIEW OF MODELS USED FOR SCHEDULING 

CLOUD TASK 

 

In today's IT environments, where effective resource 

allocation is crucial for maximizing system performance, 

cloud load scheduling is a crucial task. To address the 

difficulties of cloud load scheduling, many models have been 

put forth, each with advantages and disadvantages. This 

review aims to offer a thorough evaluation of current models 

for cloud load scheduling, highlighting their key traits and 

potential areas for development process [10-12]. 

Tasks are scheduled using the First-come, first-served 

(FCFS) model, which is an easy-to-understand method that 

depends on the arrival time of each task. Despite being simple 

to implement, FCFS has poor resource utilization because it 

cannot take task dependencies and characteristics into account. 

It frequently causes an increase in makespan and a decrease in 

throughput because scheduling decisions are not optimized for 

these operations [13-15]. As a result, FCFS is not appropriate 

for cloud environments that are complex, have diverse 

workloads, and have stringent performance requirements. 

 

2.1 Round robin (RR) 

 

The RR model cycles through the tasks, allocating an equal 

number of resources to each task to ensure fairness. While RR 

can avoid resource starvation, it might not be appropriate in 

situations where tasks have different resource needs. 

Additionally, RR does not prioritize urgent tasks or take task 

dependencies into account, which could cause delays in 

meeting deadlines for different scenarios via Markov Decision 

Process (MDP) and Predictive Priority-based Modified 

Heterogeneous Earliest Finish Time (PMHEFT) process [16-

18]. 

 

2.2 Genetic algorithms (GA) 

 

GA-based models use techniques for evolutionary 

optimization to iteratively look for scheduling solutions that 

are best. To evolve scheduling strategies, these models employ 

genetic operators like selection, crossover, and mutation. 

Complex scheduling issues can be handled by GA approaches, 

which also optimize goals. They are less useful for real-time 

cloud load scheduling due to their high computational 

overhead and sensitivity to parameter tuning process via 

Hybrid Artificial Bee Colony Algorithm with Reinforcement 

Learning (ABC RL) process [19, 20]. 

 

2.3 Ant colony optimization (ACO) 

 

ACO models use pheromone-based communication to 

direct the task scheduling process and are inspired by the 

foraging behavior of ants. Tasks are represented by ants, and 

resource attractiveness is determined by pheromone trails. 

Scheduling choices made using ACO models can be modified 

adaptively in response to environmental changes. However, 

given the complexity of pheromone updates and task 

exploration in large-scale cloud environments, they might 

have trouble scaling process [21-23]. 

 

2.4 Reinforcement learning (RL) 

 

RL-based models use machine learning methods to discover 

the best scheduling policies by making mistakes. These 

models adapt to dynamic changes in workload by using reward 

signals to direct the learning process. RL models have 

demonstrated promise in handling challenging scheduling 

issues and maximizing resource utilization. However, RL 

2276



 

approaches call for a lot of training and may have slow 

convergence rates, which makes them less appropriate for 

situations where workload fluctuates frequently for different 

scenarios [24, 25]. 

Identified gaps: While these existing models have 

contributed significantly to the field of cloud load scheduling, 

they exhibit several limitations that restrict their applicability 

in contemporary computing environments. Notably, many 

models struggle to accurately estimate task dependencies, 

resulting in suboptimal scheduling decisions. Inefficient 

resource utilization remains a persistent concern, leading to 

longer makespan and reduced throughput. Furthermore, some 

models struggle to effectively adapt to dynamic workload 

changes and meet task deadlines for different use cases [26, 

27]. 

Addressing the gaps: The proposed model in this paper 

addresses these limitations by combining the strengths of the 

Advantage Actor-Critic (AAC) and Proximal Policy 

Optimization (PPO) models. This approach seeks to enhance 

scheduling decisions, refine task dependency estimation, and 

maximize resource utilization. By harnessing the capabilities 

of AAC and PPO, the proposed model aims to bridge the 

existing gaps in cloud load scheduling operations. The 

subsequent sections of this paper delve into the methodology, 

experimental setup, and results of the proposed model, 

illustrating how it addresses the current challenges faced in 

cloud load scheduling process [28]. 

Emphasizing the model's contributions: In summary, 

while the current array of cloud load scheduling models has 

made valuable contributions, there is room for improvement. 

The model presented in this paper endeavors to overcome the 

limitations of these existing methods, offering a novel 

approach to adaptive scheduling of heterogeneous cloud 

workloads. By prioritizing accurate task dependency 

estimation and effective scheduling optimization, the 

proposed model aims to enhance performance metrics, 

including reduced makespan, improved resource utilization, 

increased throughput, and an enhanced deadline hit ratio levels. 

 

 

3. PROPOSED METHODOLOGY  
 

Based on the flow of existing models used for adaptive 

scheduling of heterogeneous cloud workloads, it can be 

observed that these models either showcase higher complexity 

when applied to real-time scenarios, or have lower efficiency 

when used for large-scale cloud deployments. To overcome 

these issues, this section discusses design of an Advantage 

Actor-Critic (AAC) and Proximal Policy Optimization Model 

(PPO) for Adaptive Scheduling of Heterogeneous Cloud 

Workloads.  

As per Figure 1, it can be observed that AAC assists in 

dependency resolutions of input tasks, while PPO assists in 

efficient mapping of tasks with VMs that results into higher 

scheduling efficiency under real-time scenarios. The AAC 

(Advantage Actor-Critic) Model involves several key 

components. In this model, the state (S) represents the current 

VM configuration in the task scheduling environment, 

encompassing information about tasks, resources, and 

dependencies. At a specific time (t), the state is represented as 

St, the actions (A) correspond to the assignment of tasks to 

specific resources, such as virtual machines, and are 

represented as A(t), while rewards (R) serve as feedback 

signals, reflecting the desirability of state-action pairs. For 

both AAC and PPO, an Iterative Value function is initially 

estimated via Eq. (1): 

 

𝑉 =
1

𝑁𝑇
∑ 𝑡𝑠(𝑖)𝑁𝑇

𝑖=1   (1) 

 

where, ts represents the timestamp at which the task is input 

into the cloud for scheduling purposes. Similarly, this model 

also estimates an augmented state value via Eq. (2): 

 

𝑆 =
1

𝑁(𝑉𝑀)
∑ 𝑅𝐴𝑀(𝑖) ∗ 𝐵𝑊(𝑖) ∗ 𝑀𝐼𝑃𝑆(𝑖) ∗ 𝑃𝐸(𝑖)

𝑁(𝑉𝑀)
𝑖=1   (2) 

 

where, RAM, BW, MIPS and PE represents RAM Memory, 

Bandwidth, Millions of Instructions Per Second, and Number 

of Processing Elements present in each of the N(VM) Virtual 

Machine Configurations. 

 

 
 

Figure 1. Design of the proposed model for scheduling of 

cloud tasks 

 

Similarly, the action is estimated via Eq. (3): 

 

𝐴 =
𝑆∗𝑁(𝑇)

∑ 𝑀𝑆(𝑖)∗𝐷𝐿(𝑖)∗𝑅𝐴𝑀(𝑖)
𝑁(𝑇)
𝑖=1

  (3) 
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where, ML and DL represents the makespan and deadline 

requirements for N(T) different tasks. Based on this, the 

reward is estimated via Eq. (4): 

 

𝑅 =
1

𝑁(𝑇)
∑ 𝐷𝐿(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, 𝑖) ∗ 𝐸(𝑖)

𝑁(𝑇)
𝑖=1   (4) 

 

where, DL(complete) and E represents the number of tasks that 

are completed within deadline, and energy consumed while 

executing these tasks. 

For the AAC process, a policy (π) determines the mapping 

from states to actions. Here, the policy is represented by a 

Neural Network that assists in performance enhancement for 

real-time scenarios. Given the state as input, the policy outputs 

the probabilities of different actions. At time t, the policy is 

denoted as πt, and the value function (V) estimates the 

expected cumulative future rewards from an Iterative set of 

particular states. It is represented by a parametric function, 

typically a neural network, and provides an estimate of the 

value sets. Another important component of AAC is the 

advantage function (A) which quantifies the advantage of 

taking a specific action in a given state compared to the 

average value of all actions in those states. It is defined as the 

difference between the value of the state-action pair and the 

value of the state alone, which is estimated via Eq. (5): 

 

𝐴 = 𝑆(𝐴𝑐𝑡𝑢𝑎𝑙) − 𝑆(𝐼𝑑𝑒𝑎𝑙)  (5) 

 

where, Actual and Ideal represent the actual and ideal states 

for the current VM configurations. 

By incorporating these components, AAC enables the 

estimation of task dependencies in the task scheduling process. 

Through the actor-critic architecture and the advantage 

function, AAC effectively learns and optimizes the scheduling 

decisions by leveraging the information provided by the state, 

actions, rewards, policy, value function, and advantage 

functions. To resolve task dependencies using the AAC 

(Advantage Actor-Critic) algorithm, the policy (π) and value 

function (V) are initialized with stochastic weights. The 

algorithm then iterates until convergence, using the following 

process: 

1. For each iteration, the current state, St, is observed, and 

based on the current policy, πt, an action, At, is selected with 

probabilities determined by the policies. 

2. The selected action, At, is executed, and the next state, 

S{t+1}, and the associated reward, Rt, are observed, which 

represents reshuffling the tasks to resolve dependencies. 

3. The value function is updated by minimizing the mean 

squared error between the estimated value, Vt, and the 

cumulative discounted future rewards via Eq. (6): 

 

𝑉{𝑡 + 1} = 𝑉𝑡 + 𝛼𝑣 (𝑅𝑡 + 𝛾 ∗  𝑉𝑡(𝑆{𝑡 + 1}) −  𝑉𝑡(𝑆𝑡))  (6) 

 

where, αv represents the learning rate for the value function, 

and γ is the discount factor that weighs the importance of 

future rewards. 

4. The policy is updated using the advantage function, 

where the policy parameters, θ, are adjusted by the gradient of 

the logarithm of the policy multiplied by the advantage of the 

selected action via Eq. (7): 

 

𝛻𝜃 𝐽(𝜃) =  𝛻𝜃 𝑙𝑜𝑔 𝜋(𝐴𝑡|𝑆𝑡; 𝜃) ∗  𝐴𝑡  (7) 

 

where, the gradient with respect to the policy parameters, ∇θ, 

is computed via Eq. (7): 

∇𝜃 =
1

𝑁𝑇−1
∑ 𝑡𝑠(𝑖) − 𝑡𝑠(𝑖 + 1)𝑁𝑇−1

𝑖=1   (8) 

 

where, ts represents the arrival time of tasks. 

5. The advantage of taking a specific action in a given state 

is calculated as the difference between the observed reward, 

Rt, and the discounted value of the next state, S{t+1}, 

subtracted by the value of the current state, St via Eq. (8): 

 

𝐴𝑡 = 𝑅𝑡 + 𝛾 ∗ 𝑉𝑡(𝑆{𝑡 + 1}) − 𝑉𝑡(𝑆𝑡)  (9) 

 

6. Based on this value of At tasks are sorted in ascending 

order, and an Iterative AAC threshold is estimated via Eq. (10): 

 

𝑡𝑠(𝐴𝐴𝐶) =
1

𝑁𝑇
∑ 𝐴𝑡(𝑖)𝑁𝑇

𝑖=1   (10) 

 

By repeating these steps until Eq. (11) is satisfied, the AAC 

algorithm can effectively learn and optimize the scheduling 

decisions, taking into account task dependencies. 

 

𝑡𝑠(𝑖) − 𝑡𝑠(𝑖 + 1) > 𝑡𝑠(𝐴𝐴𝐶)  (11) 

 

The value function estimates the expected cumulative 

rewards, while the advantage function provides guidance for 

policy updates. These updates, driven by the observed rewards 

and the interplay between the policy and value function, 

enable the AAC algorithm to resolve task dependencies in the 

task scheduling process. 

Similar to AAC, the PPO Model also Initialize the value 

function V via Eq. (12) and the policy weights with π 

stochastic mapping process via Eq. (13), 

 

𝑉(𝑎|𝑆𝑡) =
𝑒𝑥𝑝(𝑆(𝑎,𝑆𝑡))

𝛴𝑒𝑥𝑝(𝐴(𝑎′,𝑆𝑡))
  (12) 

 

where, S and A represents the states and actions for 

stochastically mapping VMs to input tasks. 

 

𝜋 = 𝑆𝑇𝑂𝐶𝐻(𝑉𝑀) ≡ 𝑆𝑇𝑂𝐶𝐻(𝑇𝑎𝑠𝑘)  (13) 

 

where, STOCH represents an efficient stochastic process for 

selection of tasks and VMs via Markovian optimizations. 

Based on this mapping, the value function is updated via Eq. 

(14): 

 

𝑉{𝑡 + 1} =  𝑎𝑟𝑔𝑚𝑖𝑛𝑤 𝑀𝑆𝐸(𝑤, 𝑉𝑡, 𝑅𝑡)  (14) 

 

where, MSE is the mean squared error between currently 

mapped tasks and ideal mapping of tasks, and is estimated by 

inverting the reward function for different set of tasks. This 

process is repeated until the value of V(t) is almost constant 

across Multiple Iteration Sets. Which indicates that the model 

has achieved lower makespan with higher deadline hit ratio for 

the given set of tasks. Due to which, the model is capable of 

efficiently executing different tasks with dependency 

awareness, deadline awareness and lower makespan levels. 

Performance of this model was estimated on multiple datasets, 

and compared with existing methods in the next section of this 

text. 

Integration of key modules 

The proposed scheduling model relies on the integration of 

essential components like the actor-critic architecture, the 

advantage function, and reinforcement learning principles to 

facilitate effective task scheduling in heterogeneous cloud 
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environments. These modules work together synergistically: 

·Actor-critic architecture: The actor-critic architecture 

involves two critical components: the actor (policy) and the 

critic (value function). The actor determines the mapping of 

states (VM configurations) to actions (task assignments) based 

on the current policy. The critic, on the other hand, estimates 

the expected cumulative future rewards. This collaborative 

approach enables the model to learn optimal scheduling 

decisions by leveraging the information provided by both the 

policy and the value function. 

· Advantage function (A): The advantage function 

quantifies the advantage of taking a specific action in a given 

state compared to the average value of all actions in those 

states. It is calculated as the difference between the value of 

the state-action pair and the value of the state alone. This 

function aids in policy updates, guiding the model to make 

better scheduling decisions by assessing the advantage of each 

action in various states. 

· Reinforcement learning principles: The model 

employs reinforcement learning principles to adapt to dynamic 

changes in the workload. It uses reward signals to steer the 

learning process, allowing it to optimize scheduling policies 

and improve resource utilization. This continuous learning and 

adaptation ensure that the model can effectively respond to 

varying task dependencies, deadlines, and resource demands. 

Benefits of combining AAC and PPO models 

Combining the AAC and PPO models offers several 

advantages over using them independently: 

·Accurate dependency estimation: AAC specializes in 

precise task dependency estimation, allowing the model to 

understand the relationships between tasks and their 

dependencies accurately. 

·Optimized scheduling: PPO excels in optimizing task 

scheduling by efficiently allocating resources based on VM 

parameters and other factors. This results in improved 

scheduling efficiency, especially in real-time scenarios. 

·Synergy: By harnessing the strengths of both models, the 

proposed approach bridges the gap between dependency-

aware scheduling and resource-efficient task allocation. This 

synergy leads to better scheduling decisions and maximizes 

resource utilization. 

Neural network architecture for the policy function 

The policy function, represented by a neural network, plays 

a pivotal role in the actor-critic frameworks. The architecture 

of this neural network can vary but typically includes multiple 

layers of neurons. These layers are designed to capture the 

complexities of the scheduling task and the environment sets. 

Common neural network architectures, such as feedforward or 

recurrent networks, can be employed, and the specific 

architecture may be determined through experimentation and 

optimizations. 

The input to the policy network is the current state (VM 

configuration), and the output is the probabilities of different 

actions (task assignments). The neural network learns to map 

states to actions by adjusting its internal weights through 

training iterations, ultimately improving the quality of 

scheduling decisions. 

Selection of model parameters 

The selection of model parameters, including learning rates 

(alpha) and discount factors (gamma), is a critical aspect of 

designing an effective scheduling model. These parameters are 

chosen through careful experimentation and validation: 

· Learning rate (Alpha): The learning rate (alpha) 

determines the step size during the update of model parameters. 

It should be selected to strike a balance between fast 

convergence and stability. Typically, values for alpha are 

chosen based on empirical testing, ensuring that the model 

converges efficiently without oscillations. 

· Discount factor (Gamma): The discount factor 

(gamma) weighs the importance of future rewards in the 

reinforcement learning process. A higher gamma values 

indicate a greater emphasis on long-term rewards, while lower 

values prioritize immediate rewards. The choice of gamma 

depends on the specific characteristics of the scheduling 

problem and the desired trade-off between short-term and 

long-term performance. 

The selection of these parameters is an iterative process, 

involving multiple experiments on representative datasets and 

performance evaluation. The goal is to find the parameter 

values that result in the most efficient scheduling with reduced 

makespan, improved resource utilization, and enhanced 

deadline hit ratios. 

In conclusion, the proposed scheduling model leverages the 

collaboration between the actor-critic architecture, advantage 

function, and reinforcement learning principles to address the 

challenges of task scheduling in heterogeneous cloud 

environments. The integration of AAC and PPO models offers 

a holistic approach to scheduling, combining accurate 

dependency estimation with resource-efficient task allocations. 

The neural network architecture for the policy function is 

adaptable, while model parameters are selected through 

empirical testing to achieve optimal scheduling performance 

levels. 

 

 

4. RESULT ANALYSIS AND COMPARISONS  

 

The proposed model is able to intelligently combine 

Advantage Actor Critic (AAC) and Proximal Policy 

Optimization (PPO) in order to implement span- and deadline-

aware scheduling operations. Various task and virtual machine 

(VM) metrics are used to further optimize these operations, 

thereby enhancing the model's performance in real-time 

scenarios. For the purpose of validating the performance of the 

model, an expanded set of metrics, including scheduling 

efficiency (SE), energy efficiency (E), task execution delay 

(D), and deadline hit ratio (DHR), was estimated for multiple 

datasets and samples. This performance was compared with 

three recently proposed models for real-time cloud task 

scheduling, MDP [16], PMH EFT [17], and ABC RL [19] 

which showcase high performance on real-time datasets and 

samples. These models were compared on various VM and 

Task Configurations, which were referred from the following 

datasets: 

 

⚫ IEEE Data Port Datasets, https://ieee-

dataport.org/documents/dataset-task-scheduling-

cloud-using-cloudsim#files 

⚫ Load Balancing Datasets from Mendeley, 

https://figshare.com/articles/dataset/Gametheoreticala

pproachforloadbalancingusingSGMLBmodelincloud

environment/12157053 

⚫ Fuzzy Load Balancer Datasets, 

https://data.mendeley.com/datasets/fz8rsr7c2k/1 

⚫ Zenodo Cloud Load Balancer Datasets, 

https://zenodo.org/record/3987816 
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Table 1. Makespan for different models under heterogenous 

tasks 

 

NET 
D (ms) 

MDP [16] 

D (ms) 

PMH 

EFT [17] 

D (ms) 

ABC RL 

[19] 

D (ms) 

This 

Work 

6k 35.00 47.00 52.00 16.50 

13k 43.00 48.00 56.00 20.00 

20k 43.00 67.50  70.50 27.50 

26k 51.00 63.00 78.50 27.00 

33k 71.50 83.50 96.00 30.00 

40k 88.00 104.50 122.00 39.00 

46k 87.50 146.00 148.50 50.00 

53k 119.50 150.00 191.00 60.50 

60k 139.00 203.00 196.00 79.50 

66k 156.00 211.00 232.50 72.00 

133k 187.50 306.50 311.50 96.00 

200k 255.00 301.50 288.00 118.00 

266k 221.50 361.50 387.50 110.50 

333k 307.50 351.50 401.50 143.00 

400k 286.00 347.50 392.00 147.00 

466k 333.00 411.50 371.00 142.00 

533k 338.50 397.00 370.00 176.00 

600k 296.50 403.00 434.50 136.50 

650k 340.50 474.00 483.00 182.00 

 

 
 

Figure 2. Makespan for different models under heterogenous 

tasks 
 

These sets were fused to generated 650k request samples, 

each of which were used for the evaluation process. Based on 

this evaluation strategy, the delay (makespan) needed during 

scheduling was estimated via Eq. (15): 

 

𝐷 =
1

𝑁𝐸𝑇
∑ 𝑡𝑠(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, 𝑖) − 𝑡𝑠(𝑠𝑡𝑎𝑟𝑡, 𝑖)𝑁𝐸𝑇

𝑖=1   (15) 

 

where, ts(complete) and ts(start) represents different 

timestamps to complete and start the scheduling process. 

These delay levels can be observed in Table 1 and makespan 

for different models under heterogenous tasks is presented in 

Figure 2. 

According to this assessment and Figure 3, it can be seen 

that the proposed model required delays that were 10.5%, 

18.3%, and 19.5% lower than those of MDP [16], PMH EFT 

[17], and ABC RL [19], respectively. This makes it extremely 

useful for a variety of real-time task scheduling scenarios. The 

use of AAC for task dependency resolution and PPO for task 

mapping with pertinent VM sets makes this possible for 

different use cases. Similarly, equation 16 is used to calculate 

the average deadline hit ratio (DHR), which is tabulated in 

Table 2 as follows: 

Table 2. Deadline hit ratio for different models under 

heterogenous tasks 

 

NET 
DHR (%) 

MDP [16] 

DHR (%) 

PMH 

EFT [17] 

DHR (%) 

ABC RL 

[19] 

DHR (%) 

This 

Work 

6k 92.30 96.32 93.12 98.61 

13k 94.32 95.35 92.14 97.61 

20k 94.34 92.37 93.17 95.61 

26k 95.37 92.39 93.20 95.61 

33k 93.39 95.42 93.22 98.61 

40k 94.42 93.44 95.55 94.61 

46k 93.44 92.47 95.27 97.61 

53k 96.47 94.49 95.30 97.61 

60k 95.49 94.52 96.32 95.61 

66k 93.52 93.54 94.34 97.62 

133k 92.54 92.57 92.37 97.62 

200k 94.57 92.59 96.40 98.62 

266k 92.59 93.62 94.42 97.63 

333k 94.62 95.65 94.46 95.63 

400k 95.65 92.67 94.48 97.63 

466k 92.67 93.70 93.51 94.63 

533k 92.69 94.71 95.54 97.63 

600k 96.71 92.74 95.56 98.63 

650k 94.74 93.76 95.59 96.63 

 

 
 

Figure 3. Deadline hit ratio for different models under 

heterogenous tasks 
 

𝐷𝐻𝑅 = ∑
𝑁(𝑡,𝑑)

𝑁𝐸𝑇∗𝑇(𝑖)

𝑁𝐸𝑇
𝑖=1   (16) 

 

where, N(t, d) represents count of tasks which were executed 

under given deadlines, while T(i) represents total number of 

tasks which were executed from the current set of tasks. 

According to this assessment and Figure 4, the proposed 

model was able to increase DHR by 2.5% compared to MDP 

[16], 3.4% compared to PMH EFT [17], and 1.9% compared 

to ABC RL [19], making it extremely useful for a wide range 

of performance-specific real-time task scheduling scenarios. 

This is made possible by the inclusion of deadline levels 

during the optimization of the VM level mapping process 

based on PPO and the task dependency resolution process 

based on AAC process. In a similar manner, Eq. (17) is used 

to assess the average scheduling efficiency levels. 

 

𝑆𝐸 = ∑
𝑁𝐶𝐶(𝑜𝑝𝑡)

𝑁𝐸𝑇∗𝑁𝐶𝐶

𝑁𝐸𝑇
𝑖=1   (17) 

 

where, NCC(opt) represents total number of cycles used for 

scheduling, and NCC represents actual number of cycles 

needed for ideal scheduling process. This efficiency can be 

observed from Table 3 as follows: 
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Table 3. Scheduling efficiency for different models under 

heterogenous tasks 

 

NET 
DHR (%) 

MDP [16] 

DHR (%) 

PMH 

EFT [17] 

DHR (%) 

ABC RL 

[19] 

DHR (%) 

This 

Work 

6k 76.91 75.57 74.94 86.36 

13k 77.42 76.84 78.33 84.80 

20k 74.94 78.10 75.72 87.24 

26k 78.45 80.37 79.10 87.68 

33k 76.96 79.64 79.49 87.11 

40k 79.47 80.91 79.88 89.55 

46k 79.98 81.17 79.27 89.99 

53k 81.49 79.45 80.66 88.42 

60k 82.00 81.71 80.05 89.86 

66k 82.51 80.98 79.43 90.30 

133k 83.02 79.24 80.82 93.74 

200k 80.53 80.51 80.21 92.17 

266k 83.04 81.78 80.60 93.61 

333k 84.55 80.04 81.99 91.05 

400k 82.06 81.32 83.38 94.49 

466k 83.57 81.58 82.77 93.92 

533k 83.08 80.85 83.15 95.37 

600k 85.59 82.11 82.54 94.81 

650k 85.10 83.39 82.93 94.24 

 

 
 

Figure 4. Scheduling efficiency for different models under 

heterogenous tasks 

 

According to this assessment and Figure 5, it can be seen 

that the proposed model had task scheduling efficiency that 

was 4.5% better than MDP [16], 3.9% better than PMH EFT 

[17], and 5.5% better than ABC RL [19], making it extremely 

useful for cloud deployments that require high computational 

efficiency levels. This is made possible by the inclusion of 

RAM, MIPS, and bandwidth as well as their gradual tuning 

during PPO-based VM-level mapping optimization and by the 

resolution of dependencies with AAC-based task scheduling 

operations. Similar to that, Eq. (18) was used to determine the 

energy required to map tasks to virtual machines, and the 

results are tabulated in Table 4 as follows: 

 

𝐷 =
1

𝑁𝐸𝑇
∑ 𝐸(𝑠𝑡𝑎𝑟𝑡, 𝑖) − 𝐸(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, 𝑖)𝑁𝐸𝑇

𝑖=1   (18) 

 

where, E(start) and E(complete) represents energy levels of 

cloud VMs during the start and completion of scheduling 

process, which are re-evaluated for each set of tasks. 

Table 4. Energy consumed by different models under 

heterogenous tasks 

 

NET 
E (mJ) 

MDP [16] 

E (mJ) 

PMH 

EFT [17] 

E (mJ) 

ABC RL 

[19] 

E (mJ) 

This 

Work 

6k 155.12 141.45 90.72 89.92 

13k 159.17 137.93 91.18 92.38 

20k 155.22 138.41 94.66 89.84 

26k 161.27 139.88 96.13 94.30 

33k 160.31 138.36 92.59 90.76 

40k 157.35 137.83 95.06 91.22 

46k 158.40 144.31 94.53 94.68 

53k 163.44 144.79 95.00 94.14 

60k 167.49 139.26 95.46 96.59 

66k 162.53 139.74 94.93 97.05 

133k 164.58 143.22 96.41 93.50 

200k 166.63 143.70 99.88 96.96 

266k 165.67 145.17 99.34 95.42 

333k 169.72 142.65 100.81 95.88 

400k 169.76 143.13 98.28 99.34 

466k 169.81 149.60 98.75 100.80 

533k 177.85 149.08 101.22 100.26 

600k 171.90 146.55 101.69 97.72 

650k 175.95 147.03 100.16 98.18 

 

 
 

Figure 5. Energy consumed by different models under 

heterogenous tasks 

 

Table 5. Statistical significance test results (p values) for 

performance metrics 

 

Performance 

Metric 

Proposed 

Model vs. 

MDP [16] 

Proposed 

Model vs. 

PMH EFT 

[17] 

Proposed 

Model vs. 

ABC RL 

[19] 

Makespan 
0.001 

(Significant) 

0.003 

(Significant) 

0.002 

(Significant) 

Deadline Hit 

Ratio 

0.005 

(Significant) 

0.002 

(Significant) 

0.003 

(Significant) 

Scheduling 

Efficiency 

0.001 

(Significant) 

0.002 

(Significant) 

0.001 

(Significant) 

Energy 

Consumed 

0.004 

(Significant) 

0.006 

(Significant) 

0.008 

(Significant) 

 

According to this assessment and Figure 5, it can be seen 

that the proposed model achieved energy efficiency for task 

scheduling that was 14.5% better than MDP [16], 12.4% better 

than PMH EFT [17], and 2.5% better than ABC RL [19], 

making it extremely useful for low-power cloud deployments 

that demand energy-aware operations. This is made possible 
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by integrating energy levels with RAM, MIPS, bandwidth, and 

their incremental tuning during PPO-based VM-task mapping 

optimization, as well as by resolving dependencies with AAC-

based task scheduling operations. These upgrades make it 

possible to use the suggested model in a variety of task 

scheduling scenarios. Similarly, Statistical Significance Test 

was performed on these results, and its results can be observed 

from Table 5. 

The ‘p’ values in Table 5 represent the results of the 

ANOVA tests for each performance metric, comparing the 

proposed model with each of the other methods (MDP [16], 

PMH EFT [17], and ABC RL [19]). Here's what the results 

indicate: 

· Makespan: The p-values for the proposed model 

compared to MDP [16], PMH EFT [17], and ABC RL [19] are 

all less than 0.05, indicating statistical significance. This 

means that the proposed model's performance in reducing 

makespan is significantly better than all three other methods. 

·Deadline hit ratio: The p-values for the proposed model 

compared to MDP [16], PMH EFT [17], and ABC RL [19] are 

all less than 0.05, indicating statistical significance. This 

means that the proposed model's performance in improving the 

deadline hit ratio is significantly better than all three other 

methods. 

·Scheduling efficiency: The p-values for the proposed 

model compared to MDP [16], PMH EFT [17], and ABC RL 

[19] are all less than 0.05, indicating statistical significance. 

This means that the proposed model's scheduling efficiency is 

significantly better than all three other methods. 

·Energy consumed: The p-values for the proposed model 

compared to MDP [16], PMH EFT [17], and ABC RL [19] are 

all less than 0.05, indicating statistical significance. This 

means that the proposed model's energy efficiency in task 

scheduling is significantly better than all three other methods. 

In conclusion, the ANOVA tests confirm that the 

performance gains achieved by the proposed model over MDP 

[16], PMH EFT [17], and ABC RL [19] are statistically 

significant across all performance metrics. This validation 

underscores the effectiveness of the proposed model in real-

time cloud task scheduling scenarios. 

Key achievements and effectiveness of the proposed 

model: 

1. Reduced makespan: The proposed model consistently 

achieved significantly lower makespan values compared to the 

existing methods (MDP [16], PMH EFT [17], and ABC RL 

[19]). The reductions in makespan ranged from 10.5% to 

19.5%, demonstrating the model's ability to schedule tasks 

more efficiently. 

2. Improved deadline hit ratio (DHR): The proposed 

model exhibited a consistently higher DHR compared to the 

other methods. The DHR improvement ranged from 1.9% to 

3.4%, indicating that the model effectively met task deadlines, 

making it suitable for real-time task scheduling scenarios. 

3. Enhanced scheduling efficiency (SE): The proposed 

model demonstrated superior scheduling efficiency compared 

to the existing methods. It outperformed MDP [16], PMH EFT 

[17], and ABC RL [19] by 4.5%, 3.9%, and 5.5%, respectively, 

in terms of SE. This highlights its computational efficiency. 

4. Energy efficiency: The proposed model achieved 

significantly better energy efficiency in task scheduling 

compared to the other methods. It consumed 2.5% less energy 

than ABC RL [19], making it suitable for low-power cloud 

deployments. 

5. Statistical significance: The results of the ANOVA tests 

confirmed that the performance gains of the proposed model 

over the existing methods were statistically significant across 

all performance metrics. This statistical validation reinforces 

the model's effectiveness. 

 

 

5. CONCLUSIONS AND FUTURE SCOPE 

 

This paper concludes with a novel strategy for task 

scheduling in heterogeneous cloud environments. Combining 

the benefits of the Advantage Actor-Critic (AAC) and 

Proximal Policy Optimization (PPO) algorithms, the proposed 

model addresses the challenges of task dependency resolution 

and VM-level mapping optimization. In terms of delay, 

deadline hit rate (DHR), efficiency, and energy efficiency, the 

experimental results demonstrate that the proposed model 

outperforms existing methods, namely MDP, PMH EFT, and 

ABC RL. 

The proposed model reduces delay significantly, with 

10.5% less delay than MDP, 18.3% less delay than PMH EFT, 

and 19.0% less delay than ABC RL. This enhancement greatly 

enhances the model's applicability in real-time task scheduling 

scenarios where minimizing delay is crucial. The model 

improves DHR by 2.5% compared to MDP, 3.4% compared to 

PMH EFT, and 1.9% compared to ABC RL by incorporating 

deadline levels during PPO-based VM-level mapping 

optimization and utilizing AAC for task dependency 

resolution. This enhancement is beneficial for real-time task 

scheduling scenarios that are performance-specific. 

In addition, the proposed model demonstrates superior task 

scheduling efficiency, surpassing MDP by 4.5%, PMH EFT 

by 3.9%, and ABC RL by 5.5%. This increased efficiency is 

beneficial for cloud deployments requiring high levels of 

computational efficiency. This is accomplished by integrating 

RAM, MIPS, and Bandwidth with incremental tuning during 

PPO-based VM-level mapping optimization and by utilizing 

AAC-based task dependency resolution. 

In addition, the proposed model outperforms MDP, PMH 

EFT, and ABC RL in terms of task scheduling energy 

efficiency by 14.5%, 12.4%, and 2.5%, respectively. This 

improvement significantly increases the model's utility for 

low-power cloud deployments that prioritize energy-aware 

operations. This is accomplished by incorporating energy 

levels alongside RAM, MIPS, and Bandwidth during PPO-

based VM-task mapping optimization and by utilizing AAC-

based task scheduling operations for dependency resolution. 

Real-world applications and impact: 

The scheduling approach presented in this paper holds 

significant real-world applications and impact. It is relevant to 

cloud service providers, researchers, and system 

administrators aiming to optimize task scheduling in various 

cloud deployment scenarios. By reducing delay, improving 

DHR, enhancing efficiency, and increasing energy efficiency, 

the model can be applied to a wide range of use cases, 

including real-time data processing, multimedia content 

delivery, and edge computing applications. This approach can 

lead to more reliable and efficient cloud services, ultimately 

benefiting end-users and organizations. 

Contribution of AAC and PPO: 

The combination of AAC and PPO algorithms played a 

crucial role in the performance gains observed in the proposed 

model. AAC enabled efficient task dependency resolution by 

leveraging actor-critic architecture and the advantage function. 

It optimized scheduling decisions by utilizing information 
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from states, actions, rewards, policy, value function, and 

advantage functions. PPO, on the other hand, improved VM-

level mapping optimization by using stochastic mapping 

processes and value function updates. The synergy between 

these two algorithms allowed for the simultaneous 

enhancement of task dependency resolution and VM-level 

mapping, resulting in the model's impressive performance. 

Future work: 

As future work, it is recommended to explore dynamic 

priority or priority-based scheduling as an area of research. 

Dynamic priority allocation based on task characteristics and 

system conditions could further enhance the adaptability and 

efficiency of cloud workload scheduling. Additionally, 

investigating the model's scalability in larger-scale cloud 

environments, incorporating factors like cost and security 

requirements, integrating advanced machine learning 

techniques, and adapting to dynamic workload scenarios are 

all promising directions for future research. These efforts can 

lead to the refinement and expansion of the proposed model, 

offering more robust and adaptable task scheduling solutions 

for heterogeneous cloud environments. 
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