
  

  

Poverty Modeling in North Sumatera Province Considering County Location Using 

Geographical Weighted Regression and LASSO 

 

 

Open Darnius1* , Yuli Greace Cesilia Turnip2 , Sutarman2 , Enita Dewi Tarigan1 , Tulus Joseph Marpaung1 , 

Muhammad Romi Syahputra2 , Benar Surbakti3 , Israil Sitepu4  

 

 

1 Department of Statistics, Faculty of Vocational, Universitas Sumatera Utara, North Sumatera 20155, Indonesia 
2 Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, North Sumatera 20155, 

Indonesia 
3 Diploma Program Mechanical Engineering, Politeknik Negeri Medan, North Sumatera 20155, Indonesia 
4 Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Katolik Santo Thomas, North 

Sumatera 20155, Indonesia 

 

Corresponding Author Email: open@usu.ac.id 

 

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

 

https://doi.org/10.18280/mmep.110811 

  

ABSTRACT 

   

Received: 1 May 2024 

Revised: 16 July 2024 

Accepted: 24 July 2024 

Available online: 28 August 2024 

 Spatial data is data that contains the influence of location with non-homogeneous 

variance at each location, or spatial heterogeneity. To address spatial heterogeneity, the 

Geographically Weighted Regression (GWR) model is used. However, in the GWR 

model, there is a phenomenon of multicollinearity, which is a strong relationship 

between independent variables that will reduce the accuracy of parameter estimation. 

To overcome multicollinearity in the GWR model, the Least Absolute Shrinkage and 

Selection Operator (LASSO) method is used. The LASSO method estimates the 

parameters of the GWR model by minimizing the sum of squared errors subject to a 

constraint function, which is solved using the Least Angle Regression (LARS) 

algorithm. This results in the Least Absolute Shrinkage and Selection Operator 

(LASSO) regression model to address the problem of multicollinearity in spatial data. 

Based on the research results, the LASSO method can overcome multicollinearity by 

shrinking the coefficients of parameters that contribute less and have a strong 

correlation with other independent variables in the GWR model, resulting in 33 final 

models. One of the models is for Nias Regency, where the factors influencing the 

poverty rate are the open unemployment rate, life expectancy, average length of 

schooling, gross participation rate, and per capita income. In Nias Regency, the value 

of s is 0.288 with an R-squared value of 0.9403. In Nias Regency, 94.03% of the 

variation in the poverty rate is explained by the independent variables in the model, 

while the remaining 5.97% is attributed to external factors not covered by the model. 

Coefficient of the Human Development Index variable shrinks to exactly zero, 

indicating that it has no effect on the poverty rate in Nias Regency. 
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1. INTRODUCTION 

 

Statistics is the study of data collection, analysis, and 

interpretation. In statistics, there are several types of data, one 

of which is spatial data, which is data that contains location 

effects. The existence of spatial influences on data results in 

spatial diversity. This spatial diversity is a condition when the 

independent variable cannot explain its effect due to 

differences in characteristics between locations. 

Geographically Weighted Regression is one of the 

regression models used to analyze spatial heterogeneity [1]. 

GWR is a regression analysis performed on each observation 

location. So that different regression models are obtained at 

each observation location. This diverse regression model is 

obtained from the addition of a different weight matrix at each 

location. 

The Geographically Weighted Regression model often 

suffers from multicollinearity, which is a condition where 

independent variables are highly correlated. This can 

significantly affect the accuracy of parameter estimations 

within the model. 

The LASSO (Least Absolute Shrinkage and Selection 

Operator) technique offers a way to tackle multicollinearity 

issues in GWR models. By adding a penalty term to the 

regression model's objective function, LASSO effectively 

diminishes the impact of less significant or highly correlated 

parameters. This approach helps identify the subset of 

independent variables that are most critical in predicting the 

dependent variable. 

This study investigates the factors contributing to the 

poverty rate in North Sumatra, which remains a significant 

concern despite a decline in recent years. Between September 

2020 and March 2023, the number of individuals living in 

poverty decreased from 1.3 million to 1.24 million, reflecting 
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a 0.18% reduction in the poverty rate. However, North 

Sumatra's poverty rate is still higher than the national average, 

prompting the need for research to identify the underlying 

causes. 

Recognizing that geographical differences can influence 

poverty determinants, this study utilizes the Geographically 

Weighted Regression (GWR) model to analyze these factors in 

each district/city of North Sumatra. By understanding the 

unique challenges faced by different regions, this approach 

enables the design of targeted poverty reduction programs that 

cater to the specific needs and characteristics of each area. 

Several studies have explored methods to address 

multicollinearity [2]. Conducted research on economic growth 

modeling in West Kalimantan using the LASSO approach and 

found it to be the most effective method for handling 

multicollinearity [3]. Utilized the GWR method to estimate the 

dominant factors influencing poverty in Jambi Province, 

revealing that these factors vary across districts/cities within 

the province [4]. Employed the Ridge method in a GWR model 

with multicollinearity and found that the GWR model became 

significant for infant mortality rate data in East Java in 2012, 

suggesting the use of the LASSO method for further research. 

By implementing the LASSO method in GWR models, the 

accuracy of parameter estimation can be significantly 

improved by mitigating the effects of multicollinearity. 

LASSO not only helps to identify the most influential 

independent variables but also reduces the impact of highly 

correlated ones. As a result, the parameter estimation in the 

GWR model becomes more precise and relevant in describing 

the spatial relationship between the independent and dependent 

variables. 

This research only obtained the final model in addressing the 

presence of multicollinearity in GWR using the Least Absolute 

Shrinkage and Selection Operator method. 
 

 

2. BASIC THEORY 
 

2.1 Multiple linear regression 

 

Multiple linear regression is a model that explains the effect 

of one dependent variable (Y) with two or more independent 

variables (𝑋1, 𝑋2, … , 𝑋𝑝) . The multiple linear regression 

equation model can be expressed mathematically as follows [5]: 

 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 + 𝜀𝑖; 𝑖 = 1,2, … , 𝑛 (1) 
 

where, 

𝑌𝑖: the dependent variable value at the 𝑖𝑡ℎ observation, 

𝛽0: intercept, 

𝛽𝑘: the 𝑘𝑡ℎ regression parameter, 

𝑋𝑖𝑘 : the 𝑖𝑡ℎ  observable of the 𝑘𝑡ℎ  independent variable, 

(k=1,2,3..., p) 

𝜀𝑖: error at the 𝑖𝑡ℎ observation. 
 

2.2 Spatial data 
 

Spatial data refers to data related to location or space. It 

includes geographic information, such as geographic 

coordinates, borders, maps, satellite images, topographic data, 

and other information related to geographic dimensions. 
 

2.3 Spatial heterogeneity test 
 

Spatial heterogeneity is a condition where the global 

regression model is unable to explain between variables 

because of the diversity of characteristics between regions [6]. 

Spatial heterogeneity testing is done through Breusch-Pagan 

testing [6]. 

 

𝐵𝑃 = (
1

2
) 𝑓𝑇𝑍(𝑍𝑇𝑍)−1𝑍𝑇𝑓~𝜒2 (2) 

 

with: 

𝑓𝑖 =
𝜀𝑖

2

𝜎2
− 1 

where, 

𝜀𝑖: error for the 𝑖𝑡ℎ observation, 

𝜎2: variance, 

𝑍: matrix of size (n×1) which is the standardized value of X 

for each 𝑖𝑡ℎ observation. 

 

2.4 Geographically Weighted Regression 

 

Geographically Weighted Regression (GWR) is a 

development of global regression methods that takes into 

account location aspects and fulfills the assumption of spatial 

heterogeneity, resulting in different parameter estimates for 

each location. The GWR model depends on the weights used 

at each observation location based on their geographic location. 

The elements of the weight matrix are determined based on the 

regression point and the observation point. Large weights are 

obtained based on points that are close to the observation point. 

This weighting depends on the selection of the optimal 

bandwidth [7]. The GWR model is an extension of a regression 

model in which each parameter is estimated at each point [8]. 

The GWR model can be expressed as follows [9]: 
 

𝑦𝑖 = 𝛽0(𝑢𝑖 , 𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑋𝑖𝑘 + 𝜀𝑖

𝑝

𝑘=1

 (3) 

 

where, 

𝑦𝑖: the value of the dependent variable at the 𝑖𝑡ℎ observation 

location, 

𝑋𝑖𝑘 : the value of the 𝑘𝑡ℎ  independent variable at the 𝑖𝑡ℎ 

observation location, 

𝑢𝑖 , 𝑣𝑖: coordinates of point 𝑖 with 𝑢𝑖 is Longitude and 𝑣𝑖 is 

Latitude, 

𝛽𝑘(𝑢𝑖 , 𝑣𝑖) : 𝑘𝑡ℎ  local parameter at observation location 

(𝑢𝑖, 𝑣𝑖), 

In estimating GWR parameters, there are several steps, 

namely: 

a. Calculating spatial weights 

A spatial weighting matrix is essentially a matrix that shows 

how different regions relate to each other [10]. Spatial weights 

are contained in a diagonal matrix that shows the proximity 

between observation locations whose function is to estimate 

different parameters at each observation location [11]. 
 

𝑊(𝑢𝑖 , 𝑣𝑖) = exp [−
1

2
(
𝑑𝑖𝑗

ℎ
)

2

] (4) 

 

with [11]: 
 

𝑑𝑖𝑗 = √(𝑢𝑖 − 𝑢𝑗)
2
+ (𝑣𝑖 − 𝑣𝑗)

2
 (5) 

 

where, 𝑑𝑖𝑗  is the euclidean distance measures the straight-line 
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distance between two locations (𝑢𝑖 , 𝑣𝑖) and (𝑢𝑗, 𝑣𝑗), while the 

smoothing parameter (bandwidth) controls the degree of 

smoothing applied in spatial analysis methods like kernel 

density estimation. 

b. Optimum bandwidth selection 

In Geographically Weighted Regression (GWR), bandwidth 

acts as a weight to achieve a balance between how well the 

curve fits the data points and the overall smoothness of the 

curve in the model. The best bandwidth value is the one that 

minimizes the Cross-Validation (CV) value, which is a 

measure of the model's predictive accuracy. 

 

𝐶𝑉(ℎ) = ∑ (𝑦𝑖 − �̂�≠𝑖(ℎ))
2𝑛

𝑖=1
 (6) 

 

c. GWR parameter estimation 

Parameter estimation in the GWR model uses the Weighted 

Least Square (WLS) method, which is by giving different 

weights to each observation location [12]. Parameter estimates 

based on the weighting matrix will minimize the sum of 

squared residuals or Sum Square Error (SSE) so that it is 

obtained: 

 

∑𝑊(𝑢𝑖 , 𝑣𝑖)𝜀𝑖
2 =

𝑛

𝑖=1

∑ 𝑊(𝑢𝑖, 𝑣𝑖)[𝑦𝑖 − 𝛽0(𝑢𝑖, 𝑣𝑖)]

𝑛

𝑖=1

− ∑ 𝛽𝑘(𝑢𝑖 , 𝑣𝑖)𝑋𝑖𝑘

𝑝

𝑘=1

 

(7) 

 

so that the parameter estimates of the GWR model for each 

observation location are obtained as follows: 

 

�̂�(𝑢𝑖 , 𝑣𝑖) = [𝑋𝑇𝑊(𝑢𝑖 , 𝑣𝑖)𝑋]−1𝑋𝑇𝑊(𝑢𝑖 , 𝑣𝑖) (8) 

 

d. Hypothesis testing of GWR model 

1) Goodness of Fit (GoF) test on GWR aims to 

determine the best model between GWR model 

and multiple linear regression model. 

2) t-Test is performed to identify which independent 

variables have a significant individual impact on 

each dependent variable. 

 

2.5 Multicollinearity 

 

Multicollinearity was initially identified by Ragnar Frisch, 

who observed a linear relationship among some or all of the 

independent variables in a regression model [13]. When 

multicollinearity symptoms appear in the model, it leads to an 

increase in the variance of the regression coefficients. This rise 

in variance results in the following effects [14]: 

1) Testing regression parameters using the t test 

becomes invalid. 

2) There is a contradiction between the results of 

simultaneous parameter hypothesis testing through 

the F test and the results of partial regression 

parameter testing through the t test. 

According to the study conducted by Darnius and Tambunan 

[14], multicollinearity can be detected using the Variance 

Inflation Factor (VIF) value. The VIF value can be found using 

the formula: 

 

𝑉𝐼𝐹𝑘 =
1

(1 − 𝑅𝑘
2)

, 𝑘 = 1,2, . . . , 𝑝 (9) 

𝑅𝑘
2  is the coefficient of determination obtained from the 

independent variable 𝑋𝑘  regressed with other independent 

variables. If the 𝑉𝐼𝐹𝑘 value is greater than 10, there is a 

multicollinearity problem. 
 

2.6 Least Absolute Shrinkage and Selection Operator 
 

Definition 

Consider data (𝒙𝒊, 𝒚𝒊), 𝒊 = 𝟏, 𝟐, … , 𝒏  with 𝒙𝒊 =

(𝒙𝒊𝟏, … , 𝒙𝒊𝒑)
𝑻

 representing the independent variables and 𝒚𝒊 

representing the dependent variables. As in the standard 

regression framework, we either assume that the observations 

are independent or that 𝒚𝒊𝒔  are conditionally independent 

given 𝒙𝒊𝒋𝒔 [15]. We assume the 𝒙𝒊𝒋 are standardized such that 

∑ 𝒙𝒊𝒊

𝒏
= 𝟎  and 

∑ 𝒙𝒊𝒌
𝟐

𝒊

𝒏
= 𝟏 . Let �̂� = (�̂�𝟏, … , �̂�𝒑) , the LASSO 

estimate (�̂�𝟎, �̂�𝟏) is defined by: 
 

(�̂�0, �̂�1) = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝑦𝑖 − 𝛽0 − ∑𝛽𝑘𝑥𝑖𝑘

𝑘

)

2𝑛

𝑖=1

} (10) 

 

Subject to ∑ |𝛽𝑗| ≤ 𝑡𝑗 . 

Here 𝒕 ≥ 𝟎  tuning parameter. For any value of 𝒕 , the 

solution for 𝜷𝟎 is �̂�𝟎 = �̅�. Without loss of generality, we can 

assume �̅� = 𝟎 and thus omit 𝜷𝟎 [16]. 

The parameter 𝒕 ≥ 𝟎  governs the degree of shrinkage 

applied to the estimates. Let �̂�𝒌
𝟎 denote the full least squares 

estimates, and let 𝒕𝟎 = ∑ |�̂�𝒌
𝟎| . Values 𝒕 < 𝒕𝟎  will lead to 

shrinkage of the estimates towards zero, with some coefficients 

potentially being exactly zero. 

LASSO is a technique used to address multicollinearity, a 

problem where independent variables are highly correlated. 

Introduced by Tibshirani in 1996 [17], LASSO works by 

reducing the regression coefficients of independent variables 

that are strongly correlated with the error term to zero or near 

zero [18]. LASSO estimation is obtained from the following 

equation: 
 

𝜷𝒍𝒂𝒔𝒔𝒐 = 𝒂𝒓𝒈𝒎𝒊𝒏𝜷 {∑(𝑦𝑖 − 𝛽0 − ∑𝛽𝑘𝑥𝑖𝑘

𝑝

𝑘=1

)

2

+ 𝜆 ∑|𝛽𝑘|

𝑝

𝑘=1

𝑛

𝑖=1

} (11) 

 

provided that ∑ |𝛽𝑘| ≤ 𝑡
𝑝
𝑘=1 .  The value of t is a tuning 

parameter that controls the shrinkage of the LASSO coefficient 

with 𝑡 ≥ 0 . According to Djuraidah’s study [19], LASSO 

coefficient estimation uses quadratic programming with 

inequality constraints. 
 

2.7 Parameter estimation of GWR model with LASSO 

method 

 

Estimation of GWR model parameters with the LASSO 

method is only the addition of a weighting matrix so that it is 

obtained: 
 

�̂�𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛{∑𝑊(𝑢𝑖 , 𝑣𝑖)(𝑦𝑖 − 𝛽0(𝑢𝑖.𝑣𝑖)

𝑛

𝑖=1

− ∑ 𝛽𝑘(𝑢𝑖.𝑣𝑖)𝑥𝑖𝑘

𝑝

𝑘=1

+ 𝜆 ∑ |𝛽𝑘(𝑢𝑖.𝑣𝑖)|}

𝑝

𝑘=1

)

2

 

(12) 

 

Since the equation has an absolute value constraint on the 
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regression coefficient, it causes a nonlinear pattern so that the 

solution process uses a quadratic program assisted by the 

LARS algorithm. 

 

2.8 Least Angle Regression 
 

LASSO has been solved using the LARS algorithm [20]. 

The LARS algorithm is generally as follows: 

1) Assume all regression coefficients 𝛽𝑘 are zero so that 

𝜀 = 0. 

2) Select the independent variable that has the highest 

correlation coefficient with 𝜀. 
3) Estimating the coefficient 𝛽𝑘  for 𝑥𝑖𝑘  that has the 

highest correlation with 𝜀. 
4) Calculate the residuals 𝜀 = 𝑦 − �̂�  with the 

independent variable 𝑥𝑘 included in the model. 

5) Calculate the partial correlation between the 

remaining independent variables and the new 𝜀. 

6) Repeating steps 3 to 6 until all independent variables 

are included in the model and stopping if the 

correlation (𝑦, 𝑥𝑖𝑘) = 0. 

3. RESEARCH MODEL 

 

3.1 Literature study 

 

This research uses literature studies, namely reviewing and 

studying various sources both books, theses and various 

journals related to the discussion in this study. 

 

3.2 Data 

 

The study utilized secondary data on poverty rates for each 

regency/city in North Sumatra in 2022, sourced from the 

Central Bureau of Statistics (BPS). North Sumatra consists of 

33 regions, comprising 25 regencies and 8 cities. To identify 

the presence of multicollinearity in the data, the Variance 

Inflation Factor (VIF) values were examined. 

 

3.3 Research variables 

 

The variables used in this study are presented in Table 1: 

 

Table 1. Research variables 

 
Variable Definition 

Dependent Variable: Poverty Rate of 

Districts/Cities in North Sumatra (𝑌) 
The percentage of the population of North Sumatra that is below the poverty line. 

Independent Variable: 

a. Human Development Index (𝑋1) 
A measure of human development achievement based on certain components. 

b. Open Unemployment Rate (𝑋2) Percentage of unemployed to the overall workforce. 

c. Life Expectancy (𝑋3) The average number of years that a newborn baby will live in a given year. 

d. Average Years of Schooling (𝑋4) 
The average number of years spent by the population aged 15 years and over in all types of 

education. 

e. Gross Enrollment Rate in Higher 

Education (𝑋5) 

The Gross Enrollment Rate (APK) in Higher Education (HE) is the ratio between the number of 

people studying in Higher Education (HE) (regardless of the age of the population) and the number 

of people who are officially eligible for school age at the HE level (19-23 years old). 

f. Per Capita Income (𝑋6) 
Per Capita Income is a measure of the amount of money earned per person in a country or 

geographic area (district/city). 

Symptoms of Multicollinearity 

To determine whether there is a multicollinearity value in the data, the VIF value is used. If the VIF 

value is>10, then the data contains multicollinearity. 

The following independent variables have VIF values greater than 10: 

𝑋1 = 163,8894; 𝑋3 = 10,6086; 𝑋4 = 42,2006; 𝑋6 = 32,9169 

3.4 Data processing methodology 

 

The steps of this research are as follows: 

1) Preparing data. 

2) Spatial Heterogeneity Test. 

3) Perform Geographically Weighted Regression 

modeling. 

a. Calculating the Euclidean distance of each 

district/city. 

b. Identifying the optimal bandwidth value using 

the Cross-Validation method. 

c. Calculating the weight matrix of each 

district/city with a fixed Gaussian kernel. 

d. Calculating the parameter estimation value for 

each district/city based on the bandwidth value 

and kernel weights that have been determined. 

4) Detect local multicollinearity by looking at the VIF 

(Variance Inflation Factor) value. 

5) Perform GWR modeling with LASSO to overcome 

local multicollinearity using the LARS algorithm. 

a. Calculate the weight matrix (W) for each 

district/city. 

b. Calculate the square root of the weight matrix 

𝑊
1

2(𝑖) = 𝑠𝑞𝑟𝑡(𝑑𝑖𝑎𝑔(𝑊(𝑖))  and 𝑊
1

2(𝑖) = 0  to 

eliminate the its location. 

c. Calculates 𝑋𝑊 = 𝑊
1

2(𝑖)𝑋  and 𝑦𝑊 = 𝑊
1

2(𝑖)𝑦  at 

each 𝑖𝑡ℎ location. 

d. Call the 𝑙𝑎𝑟𝑠(𝑋𝑊, 𝑦𝑊) algorithm. Save the 

LASSO results and check for the best LASSO 

solution, in this case the one that minimizes the 

error for 𝑦𝑖 . 

6) Save the kernel estimation result. 

7) Choose the optimal s (shrinkage) value and select the 

model coefficients. 

8) Determine the final LASSO model. 

The Geographically Weighted Regression (GWR) method 

was chosen because it is able to capture spatial variations in 

data that can influence the relationship between independent 

and dependent variables. In addition, the LASSO (Least 

Absolute Shrinkage and Selection Operator) method was 

chosen because of its ability to overcome multicollinearity by 

selecting variables and shrinking coefficients, which is very 

important in spatial data analysis which often experiences 

multicollinearity problems. The LASSO method uses the Least 

Angle Regression (LARS) algorithm, which starts with the 
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assumption that all regression coefficients are zero and then 

iteratively adds independent variables that have the highest 

correlation with the residuals until all variables enter the model 

or until the correlation between the independent variables and 

the residuals becomes zero. 
 

 

4. RESULT AND DISCUSSION 

 

4.1 Data exploration 

 

As this study involves spatial data, exploratory data analysis 

was conducted to gain initial insights. The data utilized for this 

study is the poverty rate data in North Sumatra for the year 

2022. The results of this descriptive analysis are presented in 

Table 2. 

 

Table 2. Data descriptive statistical analysis 

 

Var Average 
Standard 

Deviation 
Variance Min Max 

𝑋1 10.3193 4.4537 19.836 3.62 24.75 

𝑋2 71.7930 4.4197 19.534 62.93 81.76 

𝑋3 4.6512 2.7248 7.425 0.26 9.36 

𝑋4 9.2866 1.3661 1.8664 5.88 11.5 

𝑋5 24.2075 6.5742 43.2206 14.25 40.73 

𝑋6 10716.09 2092.463 4378401.9 6152 15503 
 

4.2 Multiple linear regression with ordinary least square 

method 
 

Below is a multiple linear regression model utilizing the 

OLS method to analyze the factors affecting the poverty rate 

in North Sumatra, as implemented in R Studio: 

 
𝑌 = 61.2976 − 2.8220𝑋1 + 0.0683𝑋2 + 1.4975𝑋3

+ 2.9227𝑋4 + 0.0591𝑋5 + 0.0017𝑋6 
(13) 

 

4.3 Spatial heterogeneity test 
 

In Table 3, the p-value of 0.0136 is smaller than the value of 

α=0.05, so 𝑯𝒐  is rejected. This means that there is spatial 

heterogeneity in the model, namely the difference in 

characteristics between observation locations. Therefore. it is 

necessary to do GWR modeling. 
 

Table 3. Results of spatial heterogeneity testing with 

Breunsch Pagan 

 
BP Value p-Value 

16.026 0.0136 
 

4.4 GWR modeling 
 

Calculating Euclidean distance 

The initial step in Geographically Weighted Regression 

(GWR) modeling involves establishing the geographical 

coordinates (longitude and latitude) for each regency/city in 

North Sumatra, representing the observation location of each 

region. Then calculate the Euclidean distance between (𝑢𝑖 , 𝑣𝑖) 

and (𝑢𝑗, 𝑣𝑗) using Eq. (5). 

The following is an example of calculating the Euclidean 

distance of several districts: 

- Nias 
 

𝑑11 = √(1.033 − 1.033)2 + (97.766 − 97.766)2  

= √0 + 0 = 0 
(14) 

- Mandailing Natal 

 

𝑑12 = √(0.783 − 1.033)2 + (99.254 − 97.766)2 

= √0.062 + 2.214 = 1.509 
(15) 

 

The Euclidean distance of each regency/city in North 

Sumatra is presented in Table 4. 

 

Table 4. Euclidean distance between regencies/cities in North 

Sumatra 

 
Regencies/Cities Euclidean Distance 

Nias 0 

Mandailing Natal 1.509056845 

Tapanuli Selatan 0.7329067162 

… … 

… … 

… … 

Padangsidimpuan 2.3557689 

Gunungsitoli 1.656309923 

 

Determining the bandwidth value 

The next step is to determine the bandwidth value (h) 

obtained from the minimum CV value. The weighting function 

used is the Gaussian Kernel. Determination of bandwidth with 

the Cross Validation method using R-Studio software. For the 

minimum CV value and Bandwidth can be seen in Table 5. 

 

Table 5. CV value and optimum bandwidth value 

 
Weighting Function CV Minimum Bandwidth 

Kernel Gaussian 204.7099 0.6571 

 

Furthermore, the GWR weighting function is calculated 

using Eq. (9). With the value of ℎ = 0.6145937 then obtained: 

 

W(ui, vi) = exp (−
1

2
(

di,i+1

0.6571
)

2

) (16) 

 

Next, calculate the weight matrix based on the Fixed 

Gaussian Kernel weight function, namely: 

 

W(u1, v1) = exp (−
1

2
(
d11

h
)
2

) = exp(−
1

2
(

0

0.6571
)
2

)

= 1 

(17) 

 

Substitute the weight values from each location into the 

matrix to obtain the overall W matrix as follows. 

 

𝑊 =

[
 
 
 
 

1 0.0715 0.0597 ⋯ 0.9026
0.0715 1 0.5368 ⋯ 0.0329
0.0597

⋮
0.9026

0.5368
⋮

0.3297

1
⋮

0.0425

⋯
⋱
⋯

0.0425
⋮
1 ]

 
 
 
 

 (18) 

 

Table 6. Parameter estimation results of GWR model 

 
 Min. Quartil 1 Median Quartil 2 Max 

Intercept -10.0689 15.663 29.798 38.548 53.242 

IPM -3.1888 -1.9809 -0.2984 0.5068 1.9747 

TPT -0.44505 -0.0852 0.0062 0.1961 0.9069 

AHH -1.0240 -0.5470 0.2285 1.1648 2.3009 

RLS -4.0642 -1.2066 -0.0445 2.3259 5.3544 

APK -0.3879 -0.0346 -0.0151 0.0002 0.0290 

PPP -0.0019 -0.0005 -0.0002 0.0008 0.0020 
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GWR parameter estimation 

The results of the parameter estimation are listed in Table 6. 

GWR model hypothesis test 

GWR model fit test. The 𝑭𝒄𝒐𝒖𝒏𝒕  value of GWR with 

𝒅𝒇𝟏=26 and 𝒅𝒇𝟐=9.8272 is 4.876 with 𝑭𝒕𝒂𝒃𝒍𝒆 = 𝟐. 𝟑𝟓𝟓𝟐, 𝒑 −
𝒗𝒂𝒍𝒖𝒆=0.0065. Because the 𝒑 − 𝒗𝒂𝒍𝒖𝒆<𝜶 = 𝟎. 𝟎𝟓 and the 

value of 𝑭𝒄𝒐𝒖𝒏𝒕 > 𝑭𝒕𝒂𝒃𝒍𝒆 , the decision is made to reject 𝑯𝟎 , 

this indicates a substantial difference between the global 

multiple linear regression model and the local Geographically 

Weighted Regression (GWR) model. 

GWR model parameter significance test. Parameter 

significance test is determined by testing the parameters 

partially. The 𝒕𝒕𝒂𝒃𝒍𝒆 = 𝟐. 𝟎𝟓𝟗𝟓  was obtained. If 

the |𝒕𝒄𝒐𝒖𝒏𝒕| value of each district/city is greater than 2.0595. 

This indicates that the independent variable affects the 

dependent variable. 

 

Table 7. Summary of t test on each independent variable 

 
Variable District 

𝑋1 Gunungsitoli 

𝑋2 Nias Utara 

𝑋3 

Nias, Tapanuli Selatan, Nias Selatan, Nias 

Utara,Nias Barat, Sibolga, Padang Sidempuan, 

Gunungsitoli 

𝑋4 - 

𝑋5 
Nias, Nias Utara, Nias Selatan, Nias Barat, 

Gunungsitoli 

𝑋6 - 

 

Based on the results of the t-test as shown in Table 7, the 

independent variables demonstrate varying significance across 

different regions: Variable 𝑋1  is significant in Gunungsitoli, 

indicating that the factors represented by 𝑋1 have a noticeable 

impact on the outcomes in this area. This may be due to unique 

local conditions or specific policies that amplify the influence 

of this variable. Variable 𝑋2 shows significance in North Nias, 

which could be attributed to demographic or economic 

characteristics in the region that align with the aspects 

measured by 𝑋2. Variable 𝑋3 is significant in several regions, 

including Nias, South Tapanuli, South Nias, North Nias, West 

Nias, Sibolga, Padang Sidempuan, and Gunungsitoli. This 

widespread influence suggests that 𝑋3  may be related to 

broader regional factors affecting many areas, such as 

development policies or widespread environmental issues. 

Variable 𝑋5  shows significance in Nias, North Nias, South 

Nias, West Nias, and Gunungsitoli, indicating that 𝑋5  has 

specific relevance in these areas, possibly linked to social 

structures or relevant infrastructure impacting this variable. 

These results highlight the importance of contextual analysis 

when assessing the impact of independent variables, as their 

influence can vary significantly based on geographic location 

and the specific characteristics of each region. 

 

4.5 Detection of local multicollinearity 

 

The next step is to assess the presence of multicollinearity 

in the GWR model, which can be determined by examining the 

local VIF (Variance Inflation Factor) values. From the table, it 

is evident that some VIF values exceed 10. For instance, the 

HDI (Human Development Index) variable in Nias Regency 

has a VIF value of 133.31897. 

This indicates that the standard error of the estimated 

coefficient for the HDI variable will be significantly higher 

𝟏𝟏. 𝟓𝟒𝟔𝟑 (√𝟏𝟑𝟑. 𝟑𝟏𝟖𝟗) times than it would be if there were 

no correlation with other independent variables. A summary of 

VIF values in the research data is presented in Table 8. 

 

Table 8. Summary of local multicollinearity 

 
Variable 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓 𝑿𝟔 

Maximum 228.4629 2.9955 33.4230 59.6546 4.1245 34.1849 

Mean 82.7906 1.0700 6.3378 17.9088 1.4008 15.3581 

Minimum 133.4862 1.8164 15.2454 31.4169 2.3653 23.7751 

VIF>10 33 0 24 33 0 33 

 

4.6 GWR modeling with LASSO 

 

Since the GWR model exhibits local multicollinearity, it can 

be addressed using the LASSO method. The following steps 

will be presented. GWR Modeling with LASSO in Nias 

Regency from the LARS algorithm obtained Table 9. 

The selection of the best LASSO model is done by the 5-

fold Cross Validation method with fraction mode, which is by 

calculating the cross-validation value for each step with one 

variable entered into the model. 

Based on Figure 1, it is shown that there are 100 steps 

generated by mode fraction. Therefore, the resulting s value is 

also 100 different values. Where for the best minimum s value 

is when the cross-validation value is minimum. In this model, 

the smallest cross validation value is at step 31, namely with a 

cross validation value of 0.0322 with an s value of 0.303. Next, 

the s value obtained from the fraction mode will be compared 

with the s value of the LARS algorithm. 

 

Table 9. Stages in the Nias Regency LARS algorithm 

 
Step 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓 𝑿𝟔 

1 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.000 0.000 0.000 0.000 0.000 -0.995 

3 0.000 0.000 0.000 0.000 -0.629 -0.964 

4 0.000 0.000 0.058 0.000 -0.665 -0.954 

5 0.000 0.000 0.082 0.066 -0.667 -1.026 

6 0.000 0.096 0.110 0.112 -0.701 -1.109 

7 -2.414 0.309 0.937 1.368 -0.493 -0.184 

 

 
 

Figure 1. CV value using mode fraction Nias Regency 

 

The coefficient value at each stage will be compared with 

the sum of the OLS method coefficients and the s value 

obtained in the LARS algorithm will be adjusted to the s value 

in the fraction method and the s value is the shrinkage value. 

Because the value of s in the fraction mode is 0.303 and in 

the LARS method the value of s that is close to 0.303 is 0.288, 

namely at the 𝟔𝒕𝒉 stage in Table 10. 

The value of 𝑠 is 0.288 with an R-squared value of 0.9403. 

This indicates that in Nias Regency, 94.03% of the variation in 

the poverty rate is explained by the independent variables in 
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the model, while the remaining 5.97% is influenced by factors 

not included in the model. 

GWR Modeling with LASSO in Medan City. The outcomes 

of the LARS algorithm are shown in Table 11. 

The selection of the best LASSO model is done with the n-

fold Cross Validation process with mode fraction, namely by 

calculating the cross validation value for each step with one 

variable entered into the model. 

Based on Figure 2, it is shown that there are 100 steps 

generated by mode fraction. Therefore, the resulting s value is 

also 100 different values. Where for the best minimum s value 

is when the cross validation value is minimum. In this model, 

the smallest cross validation value is at step 14, namely with a 

cross validation value of 0.0215 with an s value of 0.131. Next, 

the s value obtained from the fraction mode will be compared 

with the s value of the LARS algorithm. 

 

Table 10. Comparison of LASSO coefficient values with 

OLS coefficients Nias Regency 

 

Step ∑ |�̂�𝒌
𝑳𝑨𝑺𝑺𝑶|

𝒑

𝒌=𝟏

 ∑ |�̂�𝒌
𝑶𝑳𝑺|

𝒑

𝒌=𝟏

 𝑺 =
∑ |�̂�𝑱

𝑳𝑨𝑺𝑺𝑶|
𝒑
𝒌=𝟏

∑ |�̂�𝑱
𝑶𝑳𝑺|

𝒑
𝒌=𝟏

 

1 0 7.3731 0 

2 0.9955 7.3731 0.1350 

3 1.5933 7.3731 0.2160 

4 1.6778 7.3731 0.2275 

5 1.8428 7.3731 0.2499 

6 2.1299 7.3731 0.2888 

7 5.708 7.3731 0.7741 
Note: The final model is obtained:  

𝑌 = 0.0962𝑋2 + 0.1101𝑋3 + 0.1125𝑋4 − 0.7019𝑋5 − 1.1092𝑋6 

 

Table 11. Stages in LARS algorithm for Medan City 

 
Step 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓 𝑿𝟔 

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2 0.0000 0.0000 -0.1607 0.0000 0.0000 0.0000 

3 0.0000 -0.0945 -0.2873 0.0000 0.0000 0.0000 

4 0.0000 -0.1065 -0.2816 -0.0301 0.0000 0.0000 

5 0.0000 -0.1551 -0.2970 -0.1091 0.1095 0.0000 

6 0.0000 -0.2255 -0.3152 -0.1936 0.1598 0.1206 

7 0.3214 -0.2356 -0.4015 -0.3476 0.1419 0.0000 

8 0.3242 -0.2362 -0.4024 -0.3495 0.1419 0.0000 

9 0.37777 -0.2373 -0.4166 -0.3745 0.1387 -0.0211 

 

 
 

Figure 2. CV value using mode fraction Medan City 

 

The coefficient value at each stage will be compared with 

the sum of the OLS method coefficients and the s value 

obtained in the LARS algorithm will be adjusted to the s value 

in the fraction method and the s value is the shrinkage value. 

Because the value of s in the fraction mode is 0.131 and in 

the LARS method the value of s that is close to 0.131 is 0.1376, 

namely at the 𝟔𝒕𝒉 stage presented in Table 12. 

Table 12. Comparison of LASSO coefficient value with OLS 

coefficient of Medan City 

 

Step ∑ |�̂�𝒌
𝑳𝑨𝑺𝑺𝑶|

𝒑

𝒌=𝟏

 ∑ |�̂�𝒌
𝑶𝑳𝑺|

𝒑

𝒌=𝟏

 𝑺 =
∑ |�̂�𝑱

𝑳𝑨𝑺𝑺𝑶|
𝒑
𝒌=𝟏

∑ |�̂�𝑱
𝑶𝑳𝑺|

𝒑
𝒌=𝟏

 

1 0 7.3731 0 

2 0.1607 7.3731 0.0217 

3 0.3818 7.3731 0.0517 

4 0.4182 7.3731 0.0567 

5 0.6707 7.3731 0.0909 

6 1.0147 7.3731 0.1376 

7 1.448 7.3731 0.1963 

8 1.4537 7.3731 0.1971 

9 1.5659 7.3731 0.2123 
Note: The final model is obtained: 

𝑌 = −0.2255𝑋2 − 0.3152𝑋3 − 0.1936𝑋4 + 0.1598𝑋5 + 0.1206𝑋6 

 

The value of s is 0.137 with an R-squared value of 0.5143. 

This indicates that in Medan, 51.43% of the variation in the 

poverty rate is explained by the independent variables in the 

model, while the remaining 48.57% is affected by other factors 

outside the model. 

Spatial patterns in parameter coefficient measures regarding 

geographic heterogeneity in the determinants of poverty focus 

on understanding how the variables that influence poverty 

differ across locations or regions. LASSO helps reduce model 

complexity and automatically selects the most significant 

variables. This is particularly relevant in the context of 

Geographically Weighted Regression (GWR), where local 

multicollinearity can influence the results. LASSO's advantage 

in identifying and measuring differences in poverty factors 

across regions is that it takes into account spatial influences in 

parameter estimation, thereby providing a better understanding 

of how poverty determinant variables behave at the local level. 

Additionally, LASSO automatically simplifies the model by 

shrinking the coefficients of less significant variables to zero, 

increasing interpretability. From a statistical perspective, in 

Nias Regency, the LASSO model produces an R-squared of 

0.9403, which means that 94.03% of the variation in poverty 

levels can be explained by independent variables. In contrast, 

in Medan City, the R-squared was recorded at 0.5143, 

indicating 51.43% of the variation was explained by the model. 

AIC is also used to evaluate model quality, where lower values 

indicate a good balance between goodness of fit and 

complexity. With its computational efficiency, LASSO not 

only fixes technical problems such as multicollinearity but also 

provides more precise insights into the determinants of poverty. 

 

4.7 Limitations and future research 

 

In this analysis, there are several data limitations and model 

assumptions that can affect the accuracy of the results. First, 

data limitations include temporal coverage limited to one year 

(2022), which may not reflect temporal variations in poverty 

trends. Therefore, the use of data from multiple years can 

provide more in-depth longitudinal analysis. In addition, the 

variables currently selected only include life expectancy, open 

unemployment, life expectancy, average years of schooling, 

and per capita income. Exploring additional socio-economic 

and environmental variables can provide a more 

comprehensive understanding. In terms of model assumptions, 

the spatial independence assumption may not fully hold across 

regions, so integrating spatial autocorrelation measures can 

improve model accuracy. 
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Although LASSO helps overcome multicollinearity, 

interactions between variables may not have been fully 

detected, so adding interaction terms or non-linear models can 

provide deeper insights. From a methodological perspective, 

experiments with different kernel functions other than 

Gaussian can still help to better capture spatial dependencies. 

Validating the model with out-of-sample data is also important 

to test the model's predictive power on unseen data. Further 

research should consider geographic differences in factors 

influencing poverty to guide more targeted policy 

interventions, as well as use causal inference techniques to 

understand the relationships between variables and poverty 

outcomes. 

 

5. CONCLUSION 

 

Based on the results of the data analysis, the following 

conclusions can be made: 

1) The Least Absolute Shrinkage and Selection Operator 

method can overcome multicollinearity in spatial data, 

namely with the Geographically Weighted 

Regression model at 33 observation locations. 

2) The LASSO model in overcoming multicollinearity 

in Nias Regency is as follows: 

 
𝑌 = 0.0962𝑋2 + 0.1101𝑋3 + 0.1125𝑋4 − 0.7019𝑋5 − 1.1092𝑋6 

 

From this model, it is obtained that the factors that influence 

the poverty rate of Nias Regency using the LASSO method are 

the open unemployment rate (𝑋2), life expectancy rate (𝑋3), 

average years of schooling (𝑋4), gross enrollment rate (𝑋5) 

and per capita income (𝑋6). The value of s is 0.288 with an R-

squared value of 0.9403. This indicates that in Nias Regency, 

94.03% of the variation in the poverty rate can be attributed to 

the independent variables in the model, while the remaining 

5.97% is affected by factors outside the model. 

3) The LASSO model in overcoming multicollinearity 

in Medan City is as follows: 

 
𝑌 = −0.2255𝑋2 − 0.3152𝑋3 − 0.1936𝑋4 + 0.1598𝑋5 + 0.1206𝑋6 

 

From the model, it is obtained that the factors that affect the 

Poverty Level of Medan City using the LASSO method are the 

Open Unemployment Rate (𝑋2), Life Expectancy Rate (𝑋3), 

Average Years of Schooling (𝑋4) , Gross Enrollment Rate 

(𝑋5) and Per Capita Income (𝑋6). The value of s is 0.137 with 

an R-squared value of 0.5143. This indicates that in Medan, 

51.43% of the variation in the poverty rate can be attributed to 

the independent variables in the model, while the remaining 

48.57% is affected by factors outside the model. 

As a suggestion to readers who want to use the LASSO 

method on spatial data, particularly with a GWR model that 

contains multicollinearity, consider using kernel weights other 

than fixed Gaussian and incorporating additional independent 

variables into the dataset to achieve better model accuracy. 
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