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This paper introduces two pairs of numerical embedded methods of Runge-Kutta (RK) 

type, known as ERKMF methods, for directly solving a class of quasi-linear ordinary 

differential equations (ODEs) of 5th-order with the form 𝜑(5)(𝜏)  =  𝛹(𝜏, 𝜑(𝜏)). The

first pair, ERKMF6(5), is a 5th-order embedded in 6th-order method that satisfies the 

condition first the same as last (FSAL), and the vector output is represented by the 

coefficient matrix's final row. The second pair, ERKMF7(6), is also an embedded 

method. The paper then applies these methods to solve specific 5th-order problems using 

variable step-size codes and compares the results to those obtained using an existing 

embedded RK method. The ERKMF methods have shown to be advantageous and 

effective compared to existing methods, as demonstrated by the numerical findings. In 

conclusion, these new pairs of ERKMF methods provide a promising approach to 

directly solve quasi-linear ODEs of 5th-order and could have significant implications 

for the field of numerical methods for differential equations. 
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1. INTRODUCTION

Differential equations (DEs) of higher order, whether partial 

or ordinary, are commonly used in the mathematical modelling 

of real-world issues in fields such as economics, physics, and 

engineering [1]. For instance, the fifth-order Korteweg-de 

Vries (KdV) equation has been applied to various physical 

phenomena, including capillary-gravity water waves, linked 

oscillator chains, and magneto acoustic waves in plasma. 

Another variation of the KdV equation, the Gardner-Kawahara 

equation, represents weakly nonlinear long internal waves at 

the interface between two thin layers of different densities [1-

3].  

While numerical methods have been developed for solving 

fifth-order ODEs, they often suffer from limitations. Some 

authors have constructed numerical methods of the Runge-

Kutta (RK) type for solving general or special classes of fifth-

order ODEs [2]. In contrast, others have developed implicit-

block numerical methods for solving general classes of fifth-

order ODEs [3]. However, these methods are not always 

suitable for solving the class of quasi-linear ODEs of the fifth 

order [4, 5]. 

To address this problem, we propose embedded explicit 

ERKMF methods for directly solving quasi-linear ODEs of the 

fifth order. These methods have several advantages, including 

their ability to solve higher-order problems directly without 

reducing them to lower order and their ability to provide an 

estimate of the local error [6]. Our proposed methods are 

designed to be effective and efficient in solving fifth-order 

ODEs, and we compare their performance to existing methods 

in numerical experiments. 

In conclusion, this paper presents a new approach for 

directly solving a class of quasi-linear ODEs of the fifth order 

using embedded explicit ERKMF methods. Our proposed 

methods provide a promising solution to the challenges 

associated with solving fifth-order ODEs and could have 

significant implications for numerical methods for differential 

equations. 

2. PRELIMINARY

In this study, we propose a method for directly solving a 

class of quasi-linear fifth-order ordinary differential equations 

(ODEs) of the form: 

𝜑(5)(𝜏) =  𝛹(𝜏, 𝜑(𝜏)), 𝑎 ≤  𝜏 ≤  𝑏 (1) 

With initial conditions (ICs) 

𝜑(𝑖)(𝜏)  =  𝜁𝑖, (2) 

For i = 0, 1..., 4, where, 𝛹: ℝ × ℝ𝑁  →  ℝ𝑁 ; 𝜑(𝜏) =
[𝜑1(𝜏), 𝜑2(𝜏), … , 𝜑𝑁(𝜏)] 

For i = 0, 1..., 4. 

In the past, academics, engineers, and scientists used to 

solve Eq. (1) by converting a system of first-order ODEs with 

five additional dimensions into a system of fifth-order ODEs. 

However, it has been found that using numerical methods for 

solving the problem quickly and accurately is more efficient 
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[7-12]. 

When employing the multi-step approaches mentioned 

earlier to solve the ODEs in Eq. (1), initial values are necessary 

[13, 14]. This work aims to directly solve specific fifth-order 

ODE problems using a one-step technique. The general 

version of the ERKMF approach with 𝑚 -stage is used to 

address the initial value problems (IVPs) in Eq. (1) as follows: 
 

 𝜑𝑛+1 = 𝜑𝑛 + ℏ𝜑𝑛
′ +

ℏ2

2
𝜑𝑛

′′ +
ℏ3

6
𝜑𝑛

′′′ +
ℏ4

24
𝜑𝑛

′′′′ 

+ℏ5 ∑  𝑏̃𝑖
  𝑘𝑖,

𝑚
𝑖=1   

(3) 

 

𝜑′
𝑛+1

= 𝜑
𝑛
′ + ℏ𝜑

𝑛
′′ +

ℏ2

2
𝜑

𝑛
′′′ +

ℏ3

6
𝜑

𝑛
′′′′ 

                         +ℏ4 ∑  𝑏̃𝑖
′ 𝑘𝑖,

𝑚
𝑖=1   

(4) 

 

𝜑′′
𝑛+1 =  𝜑𝑛

′′ + ℏ𝜑𝑛
′′′ +

ℏ2

2
∅𝑛

′′′′ + ℏ3 ∑  𝑏̃i
′′ 𝑘i,

𝑚

𝑖=1

 (5) 

 

𝜑′′′
𝑛+1 =  𝜑𝑛

′′′ + ℏ𝜑𝑛
′′′′ + ℏ2 ∑  𝑏̃i

′′′ 𝑘i,
𝑚
𝑖=1   (6) 

 

𝜑′′′′
𝑛+1 = 𝜑𝑛

′′′′ + ℏ ∑  𝑏̃𝑖
′′′′ 𝑘𝑖,

𝑚
𝑖=1   (7) 

 

where, 
 

k1 = 𝛹(τn, 𝜑𝑛) (8) 
 

𝑘𝑖 = 𝛹 (τn + 𝑐𝑖ℏ, 𝜑𝑛 + 𝑐𝑖ℏ𝜑𝑛
′ +

ℎ2

2
𝑐𝑖

2𝜑𝑛
′′ +

ℎ3

6
𝑐𝑖

3𝜑𝑛
′′′ +

ℎ4

24
𝑐𝑖

4𝜑𝑛
′′′′ + ℏ5 ∑  𝑎𝑖𝑗𝑘𝑗,

𝑚
𝑗=1 )  

(9) 

 

For i=2, 3…, m [4]. 

The ERKMF method is an explicit or implicit numerical 

method that involves a large number of numerical or algebraic 

computations, most of which were done using Maple software 

as conducted by Gande and Gruntz [15]. It uses Taylor’s series 

expansion [16-19] to obtain the coefficients of the method 

specified in Eqs. (2)-(9). We are particularly interested in the 

derivation of embedded pairs of order p(q) of explicit ERKMF 

methods, where p is higher than or = q + 1 which offers a low-

cost error estimation. 

To develop the embedded pairs of explicit ERKMF 

algorithms, we use a Butcher Tableau that specifies the values 

of the parameters (𝑐, 𝐴, 𝑏, 𝑏′, 𝑏′′, 𝑏′′′, 𝑏′′′′) . These methods 

provide an approximation of the solution and an estimate of 

the local error. 

In Butcher Tableau, the embedded pair can be stated as 

below. 

𝐶 

𝐴: 𝑏̃ 𝑇; 𝑏̃′ 𝑇; 𝑏̃′′ 𝑇; 𝑏̃′′′ 𝑇; 𝑏̃′′′′ 𝑇 

𝑏̃ 𝑇; 𝑏̃′ 𝑇; 𝑏̃′′ 𝑇; 𝑏̃′′′ 𝑇; 𝑏̃′′′′ 𝑇 
 

Overall, our proposed approach offers a promising solution 

to the challenges associated with solving quasi-linear fifth-

order ODEs and could have significant implications for 

numerical methods for differential equations. The following 

part will provide the derivation of the method. 

 

 

3. CONSTRUCTION OF PROPOSED METHOD 

 

The order conditions (OCs) of ERKMF integrators for 

solving fifth-order (ODEs) have been derived by Mechee and 

Kadhim [4], we will present the algebraic (OCs) up to seventh 

order as follows: 

Order conditions for 𝜑: 

 

∑ 𝑏 1̃ =
1

120
, ∑ 𝑏 1̃ 𝑐1 =

1

720
,  

∑ 𝑏 1̃ 𝑐1
2 =

1

2520
, ∑ 𝑏 1̃ 𝑐1

3 =
1

840
.  

(10) 

 

Order conditions for 𝜑′: 
 

∑ 𝑏̃𝑖
′ =

1

24
, ∑ 𝑏̃𝑖

′ 𝑐𝑖 =
1

120
, ∑ 𝑏̃𝑖

′ 𝑐𝑖
2 =

1

360
, 

 ∑ 𝑏̃𝑖
′ 𝑐𝑖

3 =
1

840
, ∑ 𝑏̃𝑖

′ 𝑎𝑖𝑗 =
1

5040
, ∑ 𝑏̃𝑖

′ 𝑐𝑖
4 =

1

120
.  

(11) 

 

Order conditions for 𝜑′′: 
 

∑ 𝑏̃𝑖
′′ =

1

6
, ∑ 𝑏̃𝑖

′′ 𝑐𝑖 =
1

24
, ∑ 𝑏̃𝑖

′′ 𝑐𝑖
2 =

1

60
,  

∑ 𝑏̃𝑖
′′ 𝑐𝑖

3 =
1

120
, ∑ 𝑏̃𝑖

′′ 𝑎𝑖𝑗 =
1

720
,  

∑ 𝑏̃𝑖
′′ 𝑐𝑖

4 =
1

210
, ∑ 𝑏̃𝑖

′′ 𝑎𝑖𝑗𝑐𝑗 =
1

5040
.  

(12) 

 

Order conditions for 𝜑′′′: 
 

∑ 𝑏̃𝑖
′′′ =

1

2
, ∑ 𝑏̃𝑖

′′′ 𝑐𝑖 =
1

6
, ∑ 𝑏̃𝑖

′′′ 𝑐𝑖
2 =

1

12
,  

∑ 𝑏̃𝑖
′′′ 𝑐𝑖

3 =
1

20
, ∑ 𝑏̃𝑖

′′′ 𝑐𝑖
4 =

1

30
,  

∑ 𝑏̃𝑖
′′′ 𝑎𝑖𝑗𝑐𝑖 =

1

5040
, ∑ 𝑏̃𝑖

′′′ 𝑐𝑖
5 =

1

42
.  

(13) 

 

Order conditions for 𝜑′′′′: 
 

∑ 𝑏̃𝑖
′′′′ = 1, ∑ 𝑏̃𝑖

′′′′ 𝑐𝑖 =
1

2
, ∑ 𝑏̃𝑖

′′′′ 𝑐𝑖
2 =

1

3
,  

∑ 𝑏̃𝑖
′′′ 𝑐𝑖

3 =
1

4
, ∑ 𝑏̃𝑖

′′′ 𝑐𝑖
4 =

1

5
, ∑ 𝑏̃𝑖

′′′ 𝑐𝑖
5 =

1

6
,  

∑ 𝑏̃𝑖
′′′ 𝑐𝑖

5 =
1

42
, ∑ 𝑏̃1

′′′ 𝑎𝑖𝑗 =
1

740
,  

∑ 𝑏̃𝑖
′′′ 𝑎𝑖𝑗𝑐𝑖 =

1

5040
, ∑ 𝑏̃𝑖

′′′ 𝑐𝑖𝑎𝑖𝑗 =
1

840
, ∑ 𝑏̃𝑖

′′′ 𝑐𝑖
6 =

1

7
.  

(14) 

 

In order to create effective pairs, the following techniques 

are used. 

(a) For higher and lower order ERKMF formula, 

respectively, the quantities of ǁ𝒪𝑔
(𝑝+1)

 ǁ2 and ǁ𝒪𝑔
(𝑝+1)

 ǁ2  

should be as minimal as possible. 

 

‖𝒪(𝑝+1)‖
2

= (∑ (𝒪𝑖
(𝑝+1))2 + ∑ (𝒪𝑖

′(𝑝+1)
)2 +

𝑛2
𝑖=1

𝑛1
𝑖=1

 ∑ (𝒪𝑖
′′(𝑝+1)

)2)
1

2
𝑛3
𝑖=1   

 

‖𝒪̂(𝑝+1)‖
2

= (∑ (𝒪̂𝑖
′(𝑝+1)

)2 + ∑ (𝒪̂𝑖
′′(𝑝+1)

)2 +
𝑛2
𝑖=1

𝑛1
𝑖=1

 ∑ (𝒪̂𝑖
′′′(𝑝+1)

)2)
1

2
𝑛3
𝑖=1   

(15) 

 

where, 𝒪(𝑝+1), 𝒪′(𝑝+1),  𝒪′′(𝑝+1), 𝒪′′′(𝑝+1) and 𝒪′′′′(𝑝+1)  are 

called error terms for 𝜑, 𝜑′, 𝜑′′, 𝜑′′′ and 𝜑′′′′ respectively. 

(b) The following formula yields an estimate of the local 

error at the position 𝜏𝑛+1 : (𝐿𝑇𝐸)  =

 𝑚𝑎𝑥{ǁ 𝜂𝑛+1 ǁ∞,ǁ 𝜂𝑛+1
′ ǁ∞, ǁ𝜂𝑛+1

′′ ǁ∞,  ǁ𝜂𝑛+1
′′′  ǁ∞, ǁ𝜂𝑛+1

′′′′  ǁ∞},  where, 

𝜂𝑛+1  =  𝒪̂𝑛+1  −  𝒪𝑛+1,  𝜂𝑛+1
′  = 𝒪̂𝑛+1

′ − 𝒪𝑛+1
′ ,  𝜂𝑛+1

′′  =

𝒪̂𝑛+1
′′ −  𝒪𝑛+1

′′ ,  𝜂𝑛+1
′′′  = 𝒪̂𝑛+1

′′′ − 𝒪𝑛+1
′′′ ,  𝜂𝑛+1

′′′′  = 𝒪̂𝑛+1
′′′′ −

 𝒪𝑛+1
′′′′ ,  where, 𝒪𝑛+1

 , 𝒪𝑛+1
′  𝒪𝑛+1

′′  𝒪𝑛+1
′′′  and 𝒪̂𝑛+1 , 𝒪̂𝑛+1

′ , 𝒪̂𝑛+1
′′ , 

𝒪̂𝑛+1
′′′  and 𝒪̂𝑛+1

′′′′  using the higher order and lower order 

formulas respectively. This local error estimation, LTE can be 
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used to control the step size 𝓀  by the standard formula as 

given in the study [10], 

 

𝒽𝑛+1 = 0.9𝓀𝑛(
𝑇𝑜𝑙

𝐿𝑇𝐸
)

1

𝑞+1  (16) 

 

where, 0.9 is a safety factor indicating the local error 

estimation at each step, Tol is the necessary accuracy, which 

is the maximum allowed local error, and Tol is the necessary 

accuracy. If LTE≤Tol, the step is accepted, and we accept the 

higher order mode (or local extrapolation) technique, which 

calls for applying the more accurate approximation to advance 

the integration and updating 𝓀 using Eq. (16). If LTE≤Tol, the 

step is rejected, and the 𝓀 step size is reduced by half. 

 

3.1 Derivation of proposed pair ERKMF6(5) method 

 

Based on the RKM6 coefficients, which stand for the four-

stage sixth-order approach [4]. Then, we’ll concentrate on the 

ERKMF6(5) method’s derivation, which has the first 

identified as the last (FSAL) feature. Then, a singular solution 

is obtained and is given as follows after solving the algebraic 

equations of the set of (OCs) up to sixth order with FSAL-

conditions, which involved 15 equations and 20 variables: 

 

𝑏̃′
1
 

=
1

40
+

𝑏̃′
3
 

√15

5
, 

𝑏̃′
2
 

=
𝑏̃′

3
 

√15

5
+

𝑏̃′
4
 

√15

5
+

1

60
− 𝑏̃′

3
 

− 𝑏̃′
4
 

, 

𝑏̃′
3
 

= 𝑏̃′
3
 
, 𝑏̃′

4
 

= 𝑏̃′
4
 
, 

𝑏 
1
 =

1

120
− 𝑏̃2

 − 𝑏̃3
 − 𝑏̃4

 , 𝑏̃2
 = 𝑏̃2

 , 

𝑏̃3
 =𝑏̃3

 , 𝑏̃4
 =𝑏̃4

 , 𝑏̃1
′′′ = 0, 𝑏̃1

′′′ =
2

9
, 

𝑏̃3
′′′ =

−√15

36
+

5

36
, 𝑏̃3

′′′ =
5

36
+

√15

36
, 

𝑏̃1
′′ =

1

24
+

√15

120
+

3 𝑏̃4
′′′ √15

5
 - 3𝑏̃4

′′, 

𝑏̃2
′′ =  

√15

180
+

2 𝑏̃4
′′ √15

5
−  2𝑏̃4

′′ +
1

12
, 

𝑏̃3
′′ =

1

24
+ 4 𝑏̃4

′′ − 𝑏̃4
′′√15 −

√15

72
, 𝑏̃4

′′ = 𝑏̃4
′′, 

𝑏̃1
′′′ = 0, 𝑏̃2

′′′ =
4

9
, 𝑏̃3

′′′ =
5

18
, 𝑏̃4

′′′ =
5

18
.  

(17) 

 

‖𝜑𝑔
(6)

‖
2

= [(
1

2
 𝑏̃2

 +  𝑏̃3
 (

1

2
+

√15

10
) + 𝑏̃4

 (
1

2
−

√15

10
) −

1

720
)

2

+ (−
√15

20
 𝑏̃4

′ +
13

5040
−

1

4
 𝑏̃3

′ −
1

4
 𝑏̃4

′ +

𝑏̃3
′ (

1

2
+

√15

10
)

2

+ 𝑏̃4
′ (

1

2
−

√15

10
)

2

)
2

+ (
√15

1440
+

√15

20
 𝑏̃4

′′ −
1

4
 𝑏̃4

′′ +
1

480
+ (

1

24
+ 4 𝑏̃4

′′ −  𝑏̃4
′′ √15 −

√15

72
)

 

(
1

2
+

√15

10
)

3

+  𝑏̃4
′′ (

1

2
−

√15

10
)

3

)
2

+ (−
7

360
+

(−
√15

36
+

5

36
) (

1

2
+

√15

10
)

4

+ (
5

36
+

√15

36
) (

1

2
+

√15

10
)

4

)
2

+ (−
11

72
+

5(
1

2
−

√15

10
)

5

18
+

5(
1

2
−

√15

10
)

5

18
)

2

]

1

2

  

(18) 

 

Using minimizing commands in the software of Maple, 

yields the following results: 

𝑏̃3
′  = 0.135040979817489, 𝑏̃4

′  = 1.12226849616564,  

𝑏̃2
  = 0.281203473883770, 𝑏̃3

   = −0.264980891010455, 

𝑏̃4
  = 0.850956859431792 and 𝑏̃4

′′   = 0.109346990692354 

and the minimum-value ‖𝜑𝑔
(6)

‖
2
 is 0.01651670981.  

Moreover, for the optimized these values, we choose: 

𝑏̃3
′ =

1

10
, 𝑏̃4

′ =
561

500
, −𝑏̃2

  = 𝑏̃3
  = −0.5𝑏̃4

  = −
1

5
, 𝑏̃2

′′ =
1

10
.  

The four-stage embedded ERKMF technique coefficients 

can be stated as follows in Table 1 for all coefficients. 

 

Table 1. Embedded pair ERKMF6(5) method 

 
0 0    

 
1

2
  

1

2
 0   

 
1

2
+

√15

10
 0  

1

2
 0  

 
1

2
−

√15

10
 0  

1

2
   −

350

200
 0 

  
1

180
  −

359

360
  

1

2
  

1

2
 

 
 −

67

4
−

109√15

360
 

 −
59

60
−

109√450

360
 

 
1

2
  

145

72
+

109√15

216
 

 0  
1

18
  

1

18
−

√15

72
  

1

18
+

√15

72
 

 0  
2

9
  

5

36
−

√15

36
 

5

36
+

√15

36
  

 0  
4

9
  

5

18
  

5

18
 

 -
19

24
  

1

5
 -

1

25
  

4

5
  

 1

40
−

7√15

50
   -

53

60
+

7√15

50
  

1

10
  

4

5
 

 
- 

31

120
+

41√15

600
 

-
7

60
+

41√15

900
 

 
53

120
−

41√15

360
  

 
1

10
 

 0  
2

9
  

5

36
−

√15

36
  

5

36
−

√15

36
 

 0  
4

9
  

5

18
  

5

18
 

 

3.2 Derivation of proposed pair ERKMF7(6) method 

 

Based on the RKM7 coefficients, which stand for the five-

stage seventh-order approach [4]. Then, we’ll concentrate on 

the ERKMF method’s ERKMF7(6) derivation, which has the 

first identical as the last (FSAL) condition. Then, a singular 

solution is obtained and is given as follows after solving the 

equations of order conditions up to order seven with FSAL 

conditions, which involved 20 equations and 25 variables: 

 

𝑏̃1
′ =

89

2520
−

220 𝑏̃4
′ √10434

14161
+

220 𝑏̃5
′ √10434

14161
+

8373 𝑏̃4
′

14161
+

8373 𝑏̃5
′

14161
, 

𝑏̃2
′ =

339 𝑏̃4
′ √10434

28322
−

339 𝑏̃5
′ √10434

28322
+

29

2520
−

17812 𝑏̃4
′

14161
, 

𝑏̃3
′ =

4722 𝑏̃4
′

14161
−  

4722 𝑏̃5
′

14161
+

101 𝑏̃4
′ √10434

28322
− 

101 𝑏̃5
′ √10434

28322
−  

13

2520
 , 

𝑏̃4
′ = 𝑏̃4

′  , 𝑏̃5
′ , 𝑏̃1

′ =
1

180
−  

 𝑏̃4

 
√10434

119
+  

𝑏̃5

 
√10434

119
− 2𝑏̃3

 
−

9𝑏̃4

 

119
−

9𝑏̃5

 

119
, 

𝑏̃2
 =  

𝑏̃4
 √10434

119
−

𝑏̃5
 √10434

119
+

1

360
+ 𝑏̃3

 −
110𝑏̃4

 

119
−

110𝑏̃5
 

119
, 

𝑏̃3
 = 𝑏̃3

 , 𝑏̃4
 = 𝑏̃4

 , 𝑏̃5
 = 𝑏̃5

  , 

𝑏̃1
′′′ =

17

35
 , 𝑏̃2

′′′ =
307

1305
, 𝑏̃3

′′′
=

3

1765
 , 

𝑏̃4
′′′ =

18942137√10434

5607675045
+

4829021

12898620
 , 

𝑏̃5
′′′ =

18942137√10434

5607675045
+

4829021

12898620
, 

𝑏̃1
′′ = −

13

420
−  

3216510 𝑏̃5
′′√10434

11796113
−

339866682 𝑏̃5
′′

11796113
−

√10434

840
 , 

𝑏̃2
′′ = −

1072170 𝑏̃5
′′√10434

48869611
− 

113288894 𝑏̃5
′′√10434

48869611
− 

√10434

10440
, 

2138



 

𝑏̃3
′′ =

√10434

42360
+

339866682 𝑏̃5
′′

594861127
+

3216510 𝑏̃5
′′√10434

594861127
−

31

10590
, 

𝑏̃4
′′ =

32573√10434

25797240
+

3569402335481 𝑏̃5
′′

120756808781
 

+ 
34923793410 𝑏̃5

′′√10434

120756808781
−

35739

286636
 

𝒃̃𝟓
′′ = 𝒃̃𝟓

′′, 𝒃̃𝟏
′′′′ = −

𝟏𝟕

𝟑𝟓
, 𝒃̃𝟐

′′′′ =
𝟔𝟏𝟒

𝟏𝟑𝟎𝟓
, 𝒃̃𝟑

′′′′ =
𝟐

𝟏𝟕𝟔𝟓
,   

𝒃̃𝟒
′′′′ =

𝟏𝟔𝟑𝟓𝟎𝟑𝟒

𝟑𝟐𝟐𝟒𝟔𝟓𝟓
+ 

𝟑𝟒𝟔𝟖𝟓𝟓𝟏 √𝟏𝟎𝟒𝟑𝟒

𝟏𝟒𝟗𝟓𝟑𝟖𝟎𝟎𝟏𝟐
, 

𝑏̃5
′′′′ =

1635034

3224655
−

3468551 √10434

1495380012
.  

 

Embedded pair ERKMF7(6) method is shown as below: 
 

a21 =
1

2
,   a31 = −

1

2
,    a41 =

1

2
,    a42 = −

1

2
,    

a43 =
1

2
,   a51 =

1

2
,   a52 = −

1

2
,   a53 =

1

2
, 

a54 =
7167

14336
,  c2 =

1

2
,  c3 = −

1

2
,  c4 =

55

119
−

√10434

238
, 

c5 =
55

119
+

√10434

238
, 𝑏̃1 =

17

840
, 𝑏̃2 =

307

250560
, 

𝑏̃3 =
27

112960
, 𝑏̃4 =

2097869

154783440
+

285688201√10434

2153347217280
, 

𝑏̃5 =
2097869

154783440
−

285688201√10434

2153347217280
,   

𝑏̃1
′ = −

17

210
, 𝑏̃2

′ =
307

31320
, 𝑏̃3

′ =
9

14120
, 

𝑏̃4
′ =

8681773

154783440
− 

4101409√10434

7476900060
,   

𝑏̃5
′  = −

381488

5055477
−

9931√10434

13481272
, 

𝑏̃1
′′′ = −

17

35
, 𝑏̃2

′′′ =
307

1305
, 𝑏̃3

′′′  =
3

1765
,   

𝑏̃4
′′′ =

4829021

12898620
+

18942137√10434

5607675045
, 

𝑏̃5
′′′ =

4829021

12898620
− 

18942137√10434

5607675045
,   

𝑏̃1
′′′′ = −

17

35
, 𝑏̃2

′′′′ =
614

1305
 , 𝑏̃3

′′′′ =
2

1765
, 

𝑏̃4
′′′′ =

1635034

3224655
+

3468551√10434

1495380012
, 

𝑏̃5
′′′′  =  

1635034

3224655
−

3468551√10434

1495380012
, 

𝑏̃1
 =

359

3825
−

103√10434

11900
, 𝑏̃2

  =  −
29309

30600
+

103√10434

11900
, 

𝑏̃3
  =  

1

100
, 𝑏̃4

  =  
26

25
, 

𝑏̃5
 =  

1

100
, 𝑏̃1

′ =
16423777

25489800
−

111√10434

70805
, 

𝑏̃2
′ =  −

32730113

25489800
+

34239√10434

2832200
, 

𝑏̃3
′  =  

8886083

25489800
−

34239√10434

2832200
,   

𝑏̃4
′ =

51

50
, 𝑏̃5

′  =  
1

100
, 

𝑏̃1
′′  =  

528738349

8847084750
−

10355701√10434

7077667800
, 

𝑏̃2
′′ =

1797030453

24434805500
 −

10355701√10434

7077667800
, 

𝑏̃3
′′  =  −

2102196427

892291690500
+

10355701√10434

356916676200
, 

𝑏̃4
′′ =

18625876710731

120756808781000
+

337316248673√10434

217362255805800
 , 

𝑏̃5
′′  =  

1

1000
, 𝑏̃1

′′′ = −
17

35
, 𝑏̃2

′′′ =
307

1305
, 𝑏̃3

′′′ =
3

1765
, 

𝑏̃4
′′′ =

4829021

12898620
+

18942137√10434

5607675045
, 

𝑏̃5
′′′  =  

4829021

12898620
−

18942137√10434

5607675045
, 𝑏̃1

′′′′ = −
17

35
, 

𝑏̃2
′′′′ =

614

1305
, 𝑏̃3

′′′′ =
2

1765
, 𝑏̃4

′′′′ =  
1635034

3224655
+

3468551√10434

1495380012
, 

𝑏̃5
′′′′ =  

1635034

3224655
−

3468551√10434

1495380012
. 

4. NUMERICAL EXPERIMENTS 

 

This section presents testing of problems that include the 

form 𝜑(5)(𝜏) = 𝛹(𝜏, 𝜑(𝜏)) . The numerical results obtained 

from solving these problems are compared to the results 

obtained when the same set of problems is converted into a 

system of first-order equations and solved using existing 

Runge-Kutta pairs of the same order. The purpose of the 

numerical experiments is to compare the performance of 

different numerical methods for solving ordinary differential 

equations (ODEs) of the form 𝜑(5)(𝜏) = 𝛹(𝜏, 𝜑(𝜏)). The goal 

is to determine which method is more accurate and efficient 

for solving different types of ODEs.  

 

• Tol: Tolerance. 

• F. N: Number of the function call. 

• MAXERR: max (|𝜑(𝜏𝑛) − 𝜑𝑛|) which is the maximum 

between absolute errors of the exact solutions and the 

computed solutions. 

• ERKMF6(5): 6(5) pair of Runge-Kutta type in which 

derived in this paper. 

• ERKMF7(6): 7(6) pair of Runge-Kutta type in which 

derived in this paper. 

• RK6(5): 6(5) pair of Runge-Kutta type given by Verner 

[20]. 

• RK7(6): 7(6) pair of Runge-Kutta type derived by Verner 

[21]. 

• RKM6: Direct Runge-Kutta-Mohammed method of 

sixth-order derived by Mechee and Kadhim [4]. 
 

Problem 1: (Non-Linear Problem) 
 

𝜑 (5)(τ) = cos(τ), t ∈ [0, 10] 

 

(ICs): 
 

𝜑′(0) =  −𝜑′′′(0) = 1, 𝜑2𝑖(0) = 0  
 

for i = 0, 1, 2. 

Exact-solution:  

 
𝜑(𝜏)  =  𝑠𝑖𝑛(𝜏). 

 

Problem 2: (Linear Problem) 

 

𝜑 (5)(τ) = − 𝜑 (τ), τ ∈ [0, 2] 
 

(ICs): 
 

𝜑 (0) = 𝜑′′ (0) = 𝜑 (4)(0) = 1,𝜑′ (0) = 𝜑′′′ (0) = −1. 

 

Exact-solution: 
 

𝜑(𝜏)  =  𝑒−𝜏. 
 

Problem 3: (Non-Linear Problem) 
 

𝜑 (5)(τ) = −120 𝜑 6(τ), τ ∈ [0, 3] 

(ICs): 

 

𝜑 (0) = −𝜑′ (0) = 1, 12𝜑′′ (0) = −4 𝜑′′′ (0) = 𝜑 (4)(0) = 24. 
 

Exact-solution:  
 

𝜑(𝜏)  =  
1

1 + 𝜏
. 
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5. RESULTS AND DISCUSSION  
 

In order to compare the performance of different methods, 

we conducted calculations to determine the maximum global 

error and the number of function evaluations required for 

integration. It is important to note that the methods being 

compared are of the same order. Specifically, we focused on 

analyzing the performance of the RK6(5), RK7(6), and RKM6 

methods. 

The results of our comparison are presented in Tables 2 to 

4 and Figures 1 to 3, specifically for the new methods 

ERKMF6(5) and ERKMF7(6). 
 

Table 2. The numerical results for solving Problem 1 
 

MAXERR F.C Method 𝑻𝑶𝑳(𝓴) 

5.82149*10-2 342 ERKFM6(5) 

10-2 

4.68324*10-1 455 RK6(5) 

6.34362*10-4 59 ERKFM7(6) 

3.89747*10-3 400 RK7(6) 

1.361459*100 354 RKM6 

1.5407*10-3 1077 ERKFM6(5) 

10-4 

9.9535*10-2 2835 RK6(5) 

1.0298*10-4 100 ERKFM7(6) 

1.1602*10-4 700 RK7(6) 

1.0286*10-4 3375 RKM6 

 5.0539*10-5 3381 ERKFM6(5) 

10-6 

 7.1453*10-3 28780 RK6(5) 

8.7073*10-6 215 ERKFM7(6) 

2.8672*10-6 1300 RK7(6) 

1.0369*10-6 33814 RKM6 
 

Table 3. The numerical results for solving Problem 2 
 

MAXERR F.C Method 𝑻𝑶𝑳(𝓴) 

4.38138*10-2 70 ERKFM6(5) 

10-2 

7.89853*10-3 175 RK6(5) 

5.20234*10-3 20 ERKFM7(6) 

1.31482*10-3 150 RK7(6) 

5.50927*10-2 70 RKM6 

1.2146*10-3 209 ERKFM6(5) 

10-4 

3.9681*10-4 450 RK6(5) 

4.9524*10-5 30 ERKFM7(6) 

7.6116*10-6 200  RK7(6) 

1.1836*10-3 575 RKM6 

 3.9042*10-5 625 ERKFM6(5) 

10-6 

 3.3854*10-5 4075 RK6(5) 

8.1794*10-6 55 ERKFM7(6) 

2.7631*10-7 300  RK7(6) 

1.0950*10-4 5542 RKM6 
 

Table 4. The numerical results for solving Problem 3 
 

MAXERR F.C Method 𝑻𝑶𝑳(𝓴) 

9.89597*10-1 163 ERKFM6(5) 

10-2 

1.33978*10-1 440 RK6(5) 

6.61457*10-1 84 ERKFM7(6) 

3.42242*10-1 395 RK7(6) 

1.43638*10-1 291 RKM6 

2.5885*10-2 433 ERKFM6(5) 

10-4 

9.9982*10-3 3885 RK6(5) 

4.0104*10-3 84 ERKFM7(6) 

4.5198*10-4 645  RK7(6) 

1.7565*10-2 2329 RKM6 

 8.0144*10-4 1317 ERKFM6(5) 

10-6 

 1.0692*10-3 32320 RK6(5) 

2.4848*10-4 134 ERKFM7(6) 

7.5931*10-5 1045 RK7(6) 

1.775*10-3 22505 RKM6 

 
 

Figure 1. The efficiency curves when solving Problem 1 

 

 
 

Figure 2. The efficiency curves when solving Problem 2 

 

 
 

Figure 3. The efficiency curves when solving Problem 3 

 

Table 2 reveals that the newly proposed methods, 

ERKMF6(5) and ERKMF7(6), demonstrate superior accuracy 

for various tolerances such as 𝑇𝑂𝐿 = 10−2, 𝑇𝑂𝐿 = 10−4, and 

𝑇𝑂𝐿 = 10−6. 
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Moving on to Table 3, it is observed that ERKMF6(5), 

ERKMF7(6), RK6(5), RK7(6), and RKM6 exhibit similar 

maximum error values. However, when it comes to accuracy 

in terms of function evaluations, the aforementioned methods 

perform differently. Specifically, ERKMF6(5) and 

ERKMF7(6) achieve the best accuracy. 

Table 4 indicates that all methods produce the same 

maximum error at 𝑇𝑂𝐿 = 10−2 . Nevertheless, the newly 

proposed methods outperform the others in terms of both 

maximum error and function evaluations for other tolerances. 

 

 

6. CONCLUSION 

 

This paper introduces two pairs of embedded ERKMF 

algorithms, namely ERKMF6(5) and ERKMF7(6), designed 

to directly solve a specific subclass of quasi-linear fifth-order 

ordinary differential equations (ODEs) using variable step size 

codes. To assess their performance, these algorithms are 

compared to existing Runge-Kutta (RK) methods of the same 

algebraic order. The comparison criterion used is the 

maximum error in the solution, which is determined as the 

maximum absolute difference between the actual and 

computed solutions. 

The numerical results presented in Tables 2 to 4 and Figures 

1 to 3 clearly demonstrate that the new ERKMF methods 

exhibit smaller global errors compared to the existing methods 

when applied to the direct solution of fifth-order ODEs by 

transforming them into equivalent first-order systems. 

Furthermore, the new methods demonstrate lower 

computational costs and consistently outperform other 

existing methods in terms of accuracy and efficiency across all 

considered problems and step sizes for solving fifth-order 

differential equations. 

Based on these findings, it can be concluded that the 

proposed ERKMF6(5) and ERKMF7(6) algorithms offer 

significant improvements in solving fifth-order ODEs directly. 

These methods showcase enhanced accuracy, reduced 

computational burden, and increased efficiency when 

compared to alternative techniques. 
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