
Development and Analysis of Embedded Explicit Runge-Kutta Methods for Directly Solving

Special Fifth-Order Quasi-Linear Ordinary Differential Equations

Firas A. Fawzi1* , Mohammed S. Mechee2 , Shaymaa M. Abd Allah1

1 Department of Mathematics, Faculty of Computer Science and Mathematics, University of Tikrit, Saladin 34001, Iraq
2 Information Technology Research and Development Center (ITRDC), University of Kufa, Najaf 540011, Iraq

Corresponding Author Email: firasadil01@tu.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.110815 ABSTRACT

Received: 8 July 2023

Revised: 30 October 2023

Accepted: 15 November 2023

Available online: 28 August 2024

This paper introduces two pairs of numerical embedded methods of Runge-Kutta (RK)

type, known as ERKMF methods, for directly solving a class of quasi-linear ordinary

differential equations (ODEs) of 5th-order with the form 𝜑(5)(𝜏) = 𝛹(𝜏, 𝜑(𝜏)). The

first pair, ERKMF6(5), is a 5th-order embedded in 6th-order method that satisfies the

condition first the same as last (FSAL), and the vector output is represented by the

coefficient matrix's final row. The second pair, ERKMF7(6), is also an embedded

method. The paper then applies these methods to solve specific 5th-order problems using

variable step-size codes and compares the results to those obtained using an existing

embedded RK method. The ERKMF methods have shown to be advantageous and

effective compared to existing methods, as demonstrated by the numerical findings. In

conclusion, these new pairs of ERKMF methods provide a promising approach to

directly solve quasi-linear ODEs of 5th-order and could have significant implications

for the field of numerical methods for differential equations.

Keywords:

Runge-Kutta, fifth-order ordinary differential

equations, embedded methods, order conditions,

quasi-linear ODEs, variable step-size

1. INTRODUCTION

Differential equations (DEs) of higher order, whether partial

or ordinary, are commonly used in the mathematical modelling

of real-world issues in fields such as economics, physics, and

engineering [1]. For instance, the fifth-order Korteweg-de

Vries (KdV) equation has been applied to various physical

phenomena, including capillary-gravity water waves, linked

oscillator chains, and magneto acoustic waves in plasma.

Another variation of the KdV equation, the Gardner-Kawahara

equation, represents weakly nonlinear long internal waves at

the interface between two thin layers of different densities [1-

3].

While numerical methods have been developed for solving

fifth-order ODEs, they often suffer from limitations. Some

authors have constructed numerical methods of the Runge-

Kutta (RK) type for solving general or special classes of fifth-

order ODEs [2]. In contrast, others have developed implicit-

block numerical methods for solving general classes of fifth-

order ODEs [3]. However, these methods are not always

suitable for solving the class of quasi-linear ODEs of the fifth

order [4, 5].

To address this problem, we propose embedded explicit

ERKMF methods for directly solving quasi-linear ODEs of the

fifth order. These methods have several advantages, including

their ability to solve higher-order problems directly without

reducing them to lower order and their ability to provide an

estimate of the local error [6]. Our proposed methods are

designed to be effective and efficient in solving fifth-order

ODEs, and we compare their performance to existing methods

in numerical experiments.

In conclusion, this paper presents a new approach for

directly solving a class of quasi-linear ODEs of the fifth order

using embedded explicit ERKMF methods. Our proposed

methods provide a promising solution to the challenges

associated with solving fifth-order ODEs and could have

significant implications for numerical methods for differential

equations.

2. PRELIMINARY

In this study, we propose a method for directly solving a

class of quasi-linear fifth-order ordinary differential equations

(ODEs) of the form:

𝜑(5)(𝜏) = 𝛹(𝜏, 𝜑(𝜏)), 𝑎 ≤ 𝜏 ≤ 𝑏 (1)

With initial conditions (ICs)

𝜑(𝑖)(𝜏) = 𝜁𝑖, (2)

For i = 0, 1..., 4, where, 𝛹: ℝ × ℝ𝑁 → ℝ𝑁 ; 𝜑(𝜏) =
[𝜑1(𝜏), 𝜑2(𝜏), … , 𝜑𝑁(𝜏)]

For i = 0, 1..., 4.

In the past, academics, engineers, and scientists used to

solve Eq. (1) by converting a system of first-order ODEs with

five additional dimensions into a system of fifth-order ODEs.

However, it has been found that using numerical methods for

solving the problem quickly and accurately is more efficient

Mathematical Modelling of Engineering Problems
Vol. 11, No. 8, August, 2024, pp. 2136-2142

Journal homepage: http://iieta.org/journals/mmep

2136

https://orcid.org/0000-0003-0939-7940
https://orcid.org/0000-0002-6522-1811
https://orcid.org/0009-0002-2344-3771
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.110815&domain=pdf

[7-12].

When employing the multi-step approaches mentioned

earlier to solve the ODEs in Eq. (1), initial values are necessary

[13, 14]. This work aims to directly solve specific fifth-order

ODE problems using a one-step technique. The general

version of the ERKMF approach with 𝑚 -stage is used to

address the initial value problems (IVPs) in Eq. (1) as follows:

 𝜑𝑛+1 = 𝜑𝑛 + ℏ𝜑𝑛
′ +

ℏ2

2
𝜑𝑛

′′ +
ℏ3

6
𝜑𝑛

′′′ +
ℏ4

24
𝜑𝑛

′′′′

+ℏ5 ∑ 𝑏̃𝑖
 𝑘𝑖,

𝑚
𝑖=1

(3)

𝜑′
𝑛+1

= 𝜑
𝑛
′ + ℏ𝜑

𝑛
′′ +

ℏ2

2
𝜑

𝑛
′′′ +

ℏ3

6
𝜑

𝑛
′′′′

 +ℏ4 ∑ 𝑏̃𝑖
′ 𝑘𝑖,

𝑚
𝑖=1

(4)

𝜑′′
𝑛+1 = 𝜑𝑛

′′ + ℏ𝜑𝑛
′′′ +

ℏ2

2
∅𝑛

′′′′ + ℏ3 ∑ 𝑏̃i
′′ 𝑘i,

𝑚

𝑖=1

 (5)

𝜑′′′
𝑛+1 = 𝜑𝑛

′′′ + ℏ𝜑𝑛
′′′′ + ℏ2 ∑ 𝑏̃i

′′′ 𝑘i,
𝑚
𝑖=1 (6)

𝜑′′′′
𝑛+1 = 𝜑𝑛

′′′′ + ℏ ∑ 𝑏̃𝑖
′′′′ 𝑘𝑖,

𝑚
𝑖=1 (7)

where,

k1 = 𝛹(τn, 𝜑𝑛) (8)

𝑘𝑖 = 𝛹 (τn + 𝑐𝑖ℏ, 𝜑𝑛 + 𝑐𝑖ℏ𝜑𝑛
′ +

ℎ2

2
𝑐𝑖

2𝜑𝑛
′′ +

ℎ3

6
𝑐𝑖

3𝜑𝑛
′′′ +

ℎ4

24
𝑐𝑖

4𝜑𝑛
′′′′ + ℏ5 ∑ 𝑎𝑖𝑗𝑘𝑗,

𝑚
𝑗=1)

(9)

For i=2, 3…, m [4].

The ERKMF method is an explicit or implicit numerical

method that involves a large number of numerical or algebraic

computations, most of which were done using Maple software

as conducted by Gande and Gruntz [15]. It uses Taylor’s series

expansion [16-19] to obtain the coefficients of the method

specified in Eqs. (2)-(9). We are particularly interested in the

derivation of embedded pairs of order p(q) of explicit ERKMF

methods, where p is higher than or = q + 1 which offers a low-

cost error estimation.

To develop the embedded pairs of explicit ERKMF

algorithms, we use a Butcher Tableau that specifies the values

of the parameters (𝑐, 𝐴, 𝑏, 𝑏′, 𝑏′′, 𝑏′′′, 𝑏′′′′) . These methods

provide an approximation of the solution and an estimate of

the local error.

In Butcher Tableau, the embedded pair can be stated as

below.

𝐶

𝐴: 𝑏̃ 𝑇; 𝑏̃′ 𝑇; 𝑏̃′′ 𝑇; 𝑏̃′′′ 𝑇; 𝑏̃′′′′ 𝑇

𝑏̃ 𝑇; 𝑏̃′ 𝑇; 𝑏̃′′ 𝑇; 𝑏̃′′′ 𝑇; 𝑏̃′′′′ 𝑇

Overall, our proposed approach offers a promising solution

to the challenges associated with solving quasi-linear fifth-

order ODEs and could have significant implications for

numerical methods for differential equations. The following

part will provide the derivation of the method.

3. CONSTRUCTION OF PROPOSED METHOD

The order conditions (OCs) of ERKMF integrators for

solving fifth-order (ODEs) have been derived by Mechee and

Kadhim [4], we will present the algebraic (OCs) up to seventh

order as follows:

Order conditions for 𝜑:

∑ 𝑏 1̃ =
1

120
, ∑ 𝑏 1̃ 𝑐1 =

1

720
,

∑ 𝑏 1̃ 𝑐1
2 =

1

2520
, ∑ 𝑏 1̃ 𝑐1

3 =
1

840
.

(10)

Order conditions for 𝜑′:

∑ 𝑏̃𝑖
′ =

1

24
, ∑ 𝑏̃𝑖

′ 𝑐𝑖 =
1

120
, ∑ 𝑏̃𝑖

′ 𝑐𝑖
2 =

1

360
,

 ∑ 𝑏̃𝑖
′ 𝑐𝑖

3 =
1

840
, ∑ 𝑏̃𝑖

′ 𝑎𝑖𝑗 =
1

5040
, ∑ 𝑏̃𝑖

′ 𝑐𝑖
4 =

1

120
.

(11)

Order conditions for 𝜑′′:

∑ 𝑏̃𝑖
′′ =

1

6
, ∑ 𝑏̃𝑖

′′ 𝑐𝑖 =
1

24
, ∑ 𝑏̃𝑖

′′ 𝑐𝑖
2 =

1

60
,

∑ 𝑏̃𝑖
′′ 𝑐𝑖

3 =
1

120
, ∑ 𝑏̃𝑖

′′ 𝑎𝑖𝑗 =
1

720
,

∑ 𝑏̃𝑖
′′ 𝑐𝑖

4 =
1

210
, ∑ 𝑏̃𝑖

′′ 𝑎𝑖𝑗𝑐𝑗 =
1

5040
.

(12)

Order conditions for 𝜑′′′:

∑ 𝑏̃𝑖
′′′ =

1

2
, ∑ 𝑏̃𝑖

′′′ 𝑐𝑖 =
1

6
, ∑ 𝑏̃𝑖

′′′ 𝑐𝑖
2 =

1

12
,

∑ 𝑏̃𝑖
′′′ 𝑐𝑖

3 =
1

20
, ∑ 𝑏̃𝑖

′′′ 𝑐𝑖
4 =

1

30
,

∑ 𝑏̃𝑖
′′′ 𝑎𝑖𝑗𝑐𝑖 =

1

5040
, ∑ 𝑏̃𝑖

′′′ 𝑐𝑖
5 =

1

42
.

(13)

Order conditions for 𝜑′′′′:

∑ 𝑏̃𝑖
′′′′ = 1, ∑ 𝑏̃𝑖

′′′′ 𝑐𝑖 =
1

2
, ∑ 𝑏̃𝑖

′′′′ 𝑐𝑖
2 =

1

3
,

∑ 𝑏̃𝑖
′′′ 𝑐𝑖

3 =
1

4
, ∑ 𝑏̃𝑖

′′′ 𝑐𝑖
4 =

1

5
, ∑ 𝑏̃𝑖

′′′ 𝑐𝑖
5 =

1

6
,

∑ 𝑏̃𝑖
′′′ 𝑐𝑖

5 =
1

42
, ∑ 𝑏̃1

′′′ 𝑎𝑖𝑗 =
1

740
,

∑ 𝑏̃𝑖
′′′ 𝑎𝑖𝑗𝑐𝑖 =

1

5040
, ∑ 𝑏̃𝑖

′′′ 𝑐𝑖𝑎𝑖𝑗 =
1

840
, ∑ 𝑏̃𝑖

′′′ 𝑐𝑖
6 =

1

7
.

(14)

In order to create effective pairs, the following techniques

are used.

(a) For higher and lower order ERKMF formula,

respectively, the quantities of ǁ𝒪𝑔
(𝑝+1)

 ǁ2 and ǁ𝒪𝑔
(𝑝+1)

 ǁ2

should be as minimal as possible.

‖𝒪(𝑝+1)‖
2

= (∑ (𝒪𝑖
(𝑝+1))2 + ∑ (𝒪𝑖

′(𝑝+1)
)2 +

𝑛2
𝑖=1

𝑛1
𝑖=1

 ∑ (𝒪𝑖
′′(𝑝+1)

)2)
1

2
𝑛3
𝑖=1

‖𝒪̂(𝑝+1)‖
2

= (∑ (𝒪̂𝑖
′(𝑝+1)

)2 + ∑ (𝒪̂𝑖
′′(𝑝+1)

)2 +
𝑛2
𝑖=1

𝑛1
𝑖=1

 ∑ (𝒪̂𝑖
′′′(𝑝+1)

)2)
1

2
𝑛3
𝑖=1

(15)

where, 𝒪(𝑝+1), 𝒪′(𝑝+1), 𝒪′′(𝑝+1), 𝒪′′′(𝑝+1) and 𝒪′′′′(𝑝+1) are

called error terms for 𝜑, 𝜑′, 𝜑′′, 𝜑′′′ and 𝜑′′′′ respectively.

(b) The following formula yields an estimate of the local

error at the position 𝜏𝑛+1 : (𝐿𝑇𝐸) =

 𝑚𝑎𝑥{ǁ 𝜂𝑛+1 ǁ∞,ǁ 𝜂𝑛+1
′ ǁ∞, ǁ𝜂𝑛+1

′′ ǁ∞, ǁ𝜂𝑛+1
′′′ ǁ∞, ǁ𝜂𝑛+1

′′′′ ǁ∞}, where,

𝜂𝑛+1 = 𝒪̂𝑛+1 − 𝒪𝑛+1, 𝜂𝑛+1
′ = 𝒪̂𝑛+1

′ − 𝒪𝑛+1
′ , 𝜂𝑛+1

′′ =

𝒪̂𝑛+1
′′ − 𝒪𝑛+1

′′ , 𝜂𝑛+1
′′′ = 𝒪̂𝑛+1

′′′ − 𝒪𝑛+1
′′′ , 𝜂𝑛+1

′′′′ = 𝒪̂𝑛+1
′′′′ −

 𝒪𝑛+1
′′′′ , where, 𝒪𝑛+1

 , 𝒪𝑛+1
′ 𝒪𝑛+1

′′ 𝒪𝑛+1
′′′ and 𝒪̂𝑛+1 , 𝒪̂𝑛+1

′ , 𝒪̂𝑛+1
′′ ,

𝒪̂𝑛+1
′′′ and 𝒪̂𝑛+1

′′′′ using the higher order and lower order

formulas respectively. This local error estimation, LTE can be

2137

used to control the step size 𝓀 by the standard formula as

given in the study [10],

𝒽𝑛+1 = 0.9𝓀𝑛(
𝑇𝑜𝑙

𝐿𝑇𝐸
)

1

𝑞+1 (16)

where, 0.9 is a safety factor indicating the local error

estimation at each step, Tol is the necessary accuracy, which

is the maximum allowed local error, and Tol is the necessary

accuracy. If LTE≤Tol, the step is accepted, and we accept the

higher order mode (or local extrapolation) technique, which

calls for applying the more accurate approximation to advance

the integration and updating 𝓀 using Eq. (16). If LTE≤Tol, the

step is rejected, and the 𝓀 step size is reduced by half.

3.1 Derivation of proposed pair ERKMF6(5) method

Based on the RKM6 coefficients, which stand for the four-

stage sixth-order approach [4]. Then, we’ll concentrate on the

ERKMF6(5) method’s derivation, which has the first

identified as the last (FSAL) feature. Then, a singular solution

is obtained and is given as follows after solving the algebraic

equations of the set of (OCs) up to sixth order with FSAL-

conditions, which involved 15 equations and 20 variables:

𝑏̃′
1

=
1

40
+

𝑏̃′
3

√15

5
,

𝑏̃′
2

=
𝑏̃′

3

√15

5
+

𝑏̃′
4

√15

5
+

1

60
− 𝑏̃′

3

− 𝑏̃′
4

,

𝑏̃′
3

= 𝑏̃′
3

, 𝑏̃′

4

= 𝑏̃′
4

,

𝑏
1
 =

1

120
− 𝑏̃2

 − 𝑏̃3
 − 𝑏̃4

 , 𝑏̃2
 = 𝑏̃2

 ,

𝑏̃3
 =𝑏̃3

 , 𝑏̃4
 =𝑏̃4

 , 𝑏̃1
′′′ = 0, 𝑏̃1

′′′ =
2

9
,

𝑏̃3
′′′ =

−√15

36
+

5

36
, 𝑏̃3

′′′ =
5

36
+

√15

36
,

𝑏̃1
′′ =

1

24
+

√15

120
+

3 𝑏̃4
′′′ √15

5
 - 3𝑏̃4

′′,

𝑏̃2
′′ =

√15

180
+

2 𝑏̃4
′′ √15

5
− 2𝑏̃4

′′ +
1

12
,

𝑏̃3
′′ =

1

24
+ 4 𝑏̃4

′′ − 𝑏̃4
′′√15 −

√15

72
, 𝑏̃4

′′ = 𝑏̃4
′′,

𝑏̃1
′′′ = 0, 𝑏̃2

′′′ =
4

9
, 𝑏̃3

′′′ =
5

18
, 𝑏̃4

′′′ =
5

18
.

(17)

‖𝜑𝑔
(6)

‖
2

= [(
1

2
 𝑏̃2

 + 𝑏̃3
 (

1

2
+

√15

10
) + 𝑏̃4

 (
1

2
−

√15

10
) −

1

720
)

2

+ (−
√15

20
 𝑏̃4

′ +
13

5040
−

1

4
 𝑏̃3

′ −
1

4
 𝑏̃4

′ +

𝑏̃3
′ (

1

2
+

√15

10
)

2

+ 𝑏̃4
′ (

1

2
−

√15

10
)

2

)
2

+ (
√15

1440
+

√15

20
 𝑏̃4

′′ −
1

4
 𝑏̃4

′′ +
1

480
+ (

1

24
+ 4 𝑏̃4

′′ − 𝑏̃4
′′ √15 −

√15

72
)

(
1

2
+

√15

10
)

3

+ 𝑏̃4
′′ (

1

2
−

√15

10
)

3

)
2

+ (−
7

360
+

(−
√15

36
+

5

36
) (

1

2
+

√15

10
)

4

+ (
5

36
+

√15

36
) (

1

2
+

√15

10
)

4

)
2

+ (−
11

72
+

5(
1

2
−

√15

10
)

5

18
+

5(
1

2
−

√15

10
)

5

18
)

2

]

1

2

(18)

Using minimizing commands in the software of Maple,

yields the following results:

𝑏̃3
′ = 0.135040979817489, 𝑏̃4

′ = 1.12226849616564,

𝑏̃2
 = 0.281203473883770, 𝑏̃3

 = −0.264980891010455,

𝑏̃4
 = 0.850956859431792 and 𝑏̃4

′′ = 0.109346990692354

and the minimum-value ‖𝜑𝑔
(6)

‖
2
 is 0.01651670981.

Moreover, for the optimized these values, we choose:

𝑏̃3
′ =

1

10
, 𝑏̃4

′ =
561

500
, −𝑏̃2

 = 𝑏̃3
 = −0.5𝑏̃4

 = −
1

5
, 𝑏̃2

′′ =
1

10
.

The four-stage embedded ERKMF technique coefficients

can be stated as follows in Table 1 for all coefficients.

Table 1. Embedded pair ERKMF6(5) method

0 0

1

2

1

2
 0

1

2
+

√15

10
 0

1

2
 0

1

2
−

√15

10
 0

1

2
 −

350

200
 0

1

180
 −

359

360

1

2

1

2

 −

67

4
−

109√15

360

 −
59

60
−

109√450

360

1

2

145

72
+

109√15

216

 0
1

18

1

18
−

√15

72

1

18
+

√15

72

 0
2

9

5

36
−

√15

36

5

36
+

√15

36

 0
4

9

5

18

5

18

 -
19

24

1

5
 -

1

25

4

5

 1

40
−

7√15

50
 -

53

60
+

7√15

50

1

10

4

5

-

31

120
+

41√15

600

-
7

60
+

41√15

900

53

120
−

41√15

360

1

10

 0
2

9

5

36
−

√15

36

5

36
−

√15

36

 0
4

9

5

18

5

18

3.2 Derivation of proposed pair ERKMF7(6) method

Based on the RKM7 coefficients, which stand for the five-

stage seventh-order approach [4]. Then, we’ll concentrate on

the ERKMF method’s ERKMF7(6) derivation, which has the

first identical as the last (FSAL) condition. Then, a singular

solution is obtained and is given as follows after solving the

equations of order conditions up to order seven with FSAL

conditions, which involved 20 equations and 25 variables:

𝑏̃1
′ =

89

2520
−

220 𝑏̃4
′ √10434

14161
+

220 𝑏̃5
′ √10434

14161
+

8373 𝑏̃4
′

14161
+

8373 𝑏̃5
′

14161
,

𝑏̃2
′ =

339 𝑏̃4
′ √10434

28322
−

339 𝑏̃5
′ √10434

28322
+

29

2520
−

17812 𝑏̃4
′

14161
,

𝑏̃3
′ =

4722 𝑏̃4
′

14161
−

4722 𝑏̃5
′

14161
+

101 𝑏̃4
′ √10434

28322
−

101 𝑏̃5
′ √10434

28322
−

13

2520
 ,

𝑏̃4
′ = 𝑏̃4

′ , 𝑏̃5
′ , 𝑏̃1

′ =
1

180
−

 𝑏̃4

√10434

119
+

𝑏̃5

√10434

119
− 2𝑏̃3

−

9𝑏̃4

119
−

9𝑏̃5

119
,

𝑏̃2
 =

𝑏̃4
 √10434

119
−

𝑏̃5
 √10434

119
+

1

360
+ 𝑏̃3

 −
110𝑏̃4

119
−

110𝑏̃5

119
,

𝑏̃3
 = 𝑏̃3

 , 𝑏̃4
 = 𝑏̃4

 , 𝑏̃5
 = 𝑏̃5

 ,

𝑏̃1
′′′ =

17

35
 , 𝑏̃2

′′′ =
307

1305
, 𝑏̃3

′′′
=

3

1765
 ,

𝑏̃4
′′′ =

18942137√10434

5607675045
+

4829021

12898620
 ,

𝑏̃5
′′′ =

18942137√10434

5607675045
+

4829021

12898620
,

𝑏̃1
′′ = −

13

420
−

3216510 𝑏̃5
′′√10434

11796113
−

339866682 𝑏̃5
′′

11796113
−

√10434

840
 ,

𝑏̃2
′′ = −

1072170 𝑏̃5
′′√10434

48869611
−

113288894 𝑏̃5
′′√10434

48869611
−

√10434

10440
,

2138

𝑏̃3
′′ =

√10434

42360
+

339866682 𝑏̃5
′′

594861127
+

3216510 𝑏̃5
′′√10434

594861127
−

31

10590
,

𝑏̃4
′′ =

32573√10434

25797240
+

3569402335481 𝑏̃5
′′

120756808781

+
34923793410 𝑏̃5

′′√10434

120756808781
−

35739

286636

𝒃̃𝟓
′′ = 𝒃̃𝟓

′′, 𝒃̃𝟏
′′′′ = −

𝟏𝟕

𝟑𝟓
, 𝒃̃𝟐

′′′′ =
𝟔𝟏𝟒

𝟏𝟑𝟎𝟓
, 𝒃̃𝟑

′′′′ =
𝟐

𝟏𝟕𝟔𝟓
,

𝒃̃𝟒
′′′′ =

𝟏𝟔𝟑𝟓𝟎𝟑𝟒

𝟑𝟐𝟐𝟒𝟔𝟓𝟓
+

𝟑𝟒𝟔𝟖𝟓𝟓𝟏 √𝟏𝟎𝟒𝟑𝟒

𝟏𝟒𝟗𝟓𝟑𝟖𝟎𝟎𝟏𝟐
,

𝑏̃5
′′′′ =

1635034

3224655
−

3468551 √10434

1495380012
.

Embedded pair ERKMF7(6) method is shown as below:

a21 =
1

2
, a31 = −

1

2
, a41 =

1

2
, a42 = −

1

2
,

a43 =
1

2
, a51 =

1

2
, a52 = −

1

2
, a53 =

1

2
,

a54 =
7167

14336
, c2 =

1

2
, c3 = −

1

2
, c4 =

55

119
−

√10434

238
,

c5 =
55

119
+

√10434

238
, 𝑏̃1 =

17

840
, 𝑏̃2 =

307

250560
,

𝑏̃3 =
27

112960
, 𝑏̃4 =

2097869

154783440
+

285688201√10434

2153347217280
,

𝑏̃5 =
2097869

154783440
−

285688201√10434

2153347217280
,

𝑏̃1
′ = −

17

210
, 𝑏̃2

′ =
307

31320
, 𝑏̃3

′ =
9

14120
,

𝑏̃4
′ =

8681773

154783440
−

4101409√10434

7476900060
,

𝑏̃5
′ = −

381488

5055477
−

9931√10434

13481272
,

𝑏̃1
′′′ = −

17

35
, 𝑏̃2

′′′ =
307

1305
, 𝑏̃3

′′′ =
3

1765
,

𝑏̃4
′′′ =

4829021

12898620
+

18942137√10434

5607675045
,

𝑏̃5
′′′ =

4829021

12898620
−

18942137√10434

5607675045
,

𝑏̃1
′′′′ = −

17

35
, 𝑏̃2

′′′′ =
614

1305
 , 𝑏̃3

′′′′ =
2

1765
,

𝑏̃4
′′′′ =

1635034

3224655
+

3468551√10434

1495380012
,

𝑏̃5
′′′′ =

1635034

3224655
−

3468551√10434

1495380012
,

𝑏̃1
 =

359

3825
−

103√10434

11900
, 𝑏̃2

 = −
29309

30600
+

103√10434

11900
,

𝑏̃3
 =

1

100
, 𝑏̃4

 =
26

25
,

𝑏̃5
 =

1

100
, 𝑏̃1

′ =
16423777

25489800
−

111√10434

70805
,

𝑏̃2
′ = −

32730113

25489800
+

34239√10434

2832200
,

𝑏̃3
′ =

8886083

25489800
−

34239√10434

2832200
,

𝑏̃4
′ =

51

50
, 𝑏̃5

′ =
1

100
,

𝑏̃1
′′ =

528738349

8847084750
−

10355701√10434

7077667800
,

𝑏̃2
′′ =

1797030453

24434805500
 −

10355701√10434

7077667800
,

𝑏̃3
′′ = −

2102196427

892291690500
+

10355701√10434

356916676200
,

𝑏̃4
′′ =

18625876710731

120756808781000
+

337316248673√10434

217362255805800
 ,

𝑏̃5
′′ =

1

1000
, 𝑏̃1

′′′ = −
17

35
, 𝑏̃2

′′′ =
307

1305
, 𝑏̃3

′′′ =
3

1765
,

𝑏̃4
′′′ =

4829021

12898620
+

18942137√10434

5607675045
,

𝑏̃5
′′′ =

4829021

12898620
−

18942137√10434

5607675045
, 𝑏̃1

′′′′ = −
17

35
,

𝑏̃2
′′′′ =

614

1305
, 𝑏̃3

′′′′ =
2

1765
, 𝑏̃4

′′′′ =
1635034

3224655
+

3468551√10434

1495380012
,

𝑏̃5
′′′′ =

1635034

3224655
−

3468551√10434

1495380012
.

4. NUMERICAL EXPERIMENTS

This section presents testing of problems that include the

form 𝜑(5)(𝜏) = 𝛹(𝜏, 𝜑(𝜏)) . The numerical results obtained

from solving these problems are compared to the results

obtained when the same set of problems is converted into a

system of first-order equations and solved using existing

Runge-Kutta pairs of the same order. The purpose of the

numerical experiments is to compare the performance of

different numerical methods for solving ordinary differential

equations (ODEs) of the form 𝜑(5)(𝜏) = 𝛹(𝜏, 𝜑(𝜏)). The goal

is to determine which method is more accurate and efficient

for solving different types of ODEs.

• Tol: Tolerance.

• F. N: Number of the function call.

• MAXERR: max (|𝜑(𝜏𝑛) − 𝜑𝑛|) which is the maximum

between absolute errors of the exact solutions and the

computed solutions.

• ERKMF6(5): 6(5) pair of Runge-Kutta type in which

derived in this paper.

• ERKMF7(6): 7(6) pair of Runge-Kutta type in which

derived in this paper.

• RK6(5): 6(5) pair of Runge-Kutta type given by Verner

[20].

• RK7(6): 7(6) pair of Runge-Kutta type derived by Verner

[21].

• RKM6: Direct Runge-Kutta-Mohammed method of

sixth-order derived by Mechee and Kadhim [4].

Problem 1: (Non-Linear Problem)

𝜑 (5)(τ) = cos(τ), t ∈ [0, 10]

(ICs):

𝜑′(0) = −𝜑′′′(0) = 1, 𝜑2𝑖(0) = 0

for i = 0, 1, 2.

Exact-solution:

𝜑(𝜏) = 𝑠𝑖𝑛(𝜏).

Problem 2: (Linear Problem)

𝜑 (5)(τ) = − 𝜑 (τ), τ ∈ [0, 2]

(ICs):

𝜑 (0) = 𝜑′′ (0) = 𝜑 (4)(0) = 1,𝜑′ (0) = 𝜑′′′ (0) = −1.

Exact-solution:

𝜑(𝜏) = 𝑒−𝜏.

Problem 3: (Non-Linear Problem)

𝜑 (5)(τ) = −120 𝜑 6(τ), τ ∈ [0, 3]

(ICs):

𝜑 (0) = −𝜑′ (0) = 1, 12𝜑′′ (0) = −4 𝜑′′′ (0) = 𝜑 (4)(0) = 24.

Exact-solution:

𝜑(𝜏) =
1

1 + 𝜏
.

2139

5. RESULTS AND DISCUSSION

In order to compare the performance of different methods,

we conducted calculations to determine the maximum global

error and the number of function evaluations required for

integration. It is important to note that the methods being

compared are of the same order. Specifically, we focused on

analyzing the performance of the RK6(5), RK7(6), and RKM6

methods.

The results of our comparison are presented in Tables 2 to

4 and Figures 1 to 3, specifically for the new methods

ERKMF6(5) and ERKMF7(6).

Table 2. The numerical results for solving Problem 1

MAXERR F.C Method 𝑻𝑶𝑳(𝓴)

5.82149*10-2 342 ERKFM6(5)

10-2

4.68324*10-1 455 RK6(5)

6.34362*10-4 59 ERKFM7(6)

3.89747*10-3 400 RK7(6)

1.361459*100 354 RKM6

1.5407*10-3 1077 ERKFM6(5)

10-4

9.9535*10-2 2835 RK6(5)

1.0298*10-4 100 ERKFM7(6)

1.1602*10-4 700 RK7(6)

1.0286*10-4 3375 RKM6

 5.0539*10-5 3381 ERKFM6(5)

10-6

 7.1453*10-3 28780 RK6(5)

8.7073*10-6 215 ERKFM7(6)

2.8672*10-6 1300 RK7(6)

1.0369*10-6 33814 RKM6

Table 3. The numerical results for solving Problem 2

MAXERR F.C Method 𝑻𝑶𝑳(𝓴)

4.38138*10-2 70 ERKFM6(5)

10-2

7.89853*10-3 175 RK6(5)

5.20234*10-3 20 ERKFM7(6)

1.31482*10-3 150 RK7(6)

5.50927*10-2 70 RKM6

1.2146*10-3 209 ERKFM6(5)

10-4

3.9681*10-4 450 RK6(5)

4.9524*10-5 30 ERKFM7(6)

7.6116*10-6 200 RK7(6)

1.1836*10-3 575 RKM6

 3.9042*10-5 625 ERKFM6(5)

10-6

 3.3854*10-5 4075 RK6(5)

8.1794*10-6 55 ERKFM7(6)

2.7631*10-7 300 RK7(6)

1.0950*10-4 5542 RKM6

Table 4. The numerical results for solving Problem 3

MAXERR F.C Method 𝑻𝑶𝑳(𝓴)

9.89597*10-1 163 ERKFM6(5)

10-2

1.33978*10-1 440 RK6(5)

6.61457*10-1 84 ERKFM7(6)

3.42242*10-1 395 RK7(6)

1.43638*10-1 291 RKM6

2.5885*10-2 433 ERKFM6(5)

10-4

9.9982*10-3 3885 RK6(5)

4.0104*10-3 84 ERKFM7(6)

4.5198*10-4 645 RK7(6)

1.7565*10-2 2329 RKM6

 8.0144*10-4 1317 ERKFM6(5)

10-6

 1.0692*10-3 32320 RK6(5)

2.4848*10-4 134 ERKFM7(6)

7.5931*10-5 1045 RK7(6)

1.775*10-3 22505 RKM6

Figure 1. The efficiency curves when solving Problem 1

Figure 2. The efficiency curves when solving Problem 2

Figure 3. The efficiency curves when solving Problem 3

Table 2 reveals that the newly proposed methods,

ERKMF6(5) and ERKMF7(6), demonstrate superior accuracy

for various tolerances such as 𝑇𝑂𝐿 = 10−2, 𝑇𝑂𝐿 = 10−4, and

𝑇𝑂𝐿 = 10−6.

2140

Moving on to Table 3, it is observed that ERKMF6(5),

ERKMF7(6), RK6(5), RK7(6), and RKM6 exhibit similar

maximum error values. However, when it comes to accuracy

in terms of function evaluations, the aforementioned methods

perform differently. Specifically, ERKMF6(5) and

ERKMF7(6) achieve the best accuracy.

Table 4 indicates that all methods produce the same

maximum error at 𝑇𝑂𝐿 = 10−2 . Nevertheless, the newly

proposed methods outperform the others in terms of both

maximum error and function evaluations for other tolerances.

6. CONCLUSION

This paper introduces two pairs of embedded ERKMF

algorithms, namely ERKMF6(5) and ERKMF7(6), designed

to directly solve a specific subclass of quasi-linear fifth-order

ordinary differential equations (ODEs) using variable step size

codes. To assess their performance, these algorithms are

compared to existing Runge-Kutta (RK) methods of the same

algebraic order. The comparison criterion used is the

maximum error in the solution, which is determined as the

maximum absolute difference between the actual and

computed solutions.

The numerical results presented in Tables 2 to 4 and Figures

1 to 3 clearly demonstrate that the new ERKMF methods

exhibit smaller global errors compared to the existing methods

when applied to the direct solution of fifth-order ODEs by

transforming them into equivalent first-order systems.

Furthermore, the new methods demonstrate lower

computational costs and consistently outperform other

existing methods in terms of accuracy and efficiency across all

considered problems and step sizes for solving fifth-order

differential equations.

Based on these findings, it can be concluded that the

proposed ERKMF6(5) and ERKMF7(6) algorithms offer

significant improvements in solving fifth-order ODEs directly.

These methods showcase enhanced accuracy, reduced

computational burden, and increased efficiency when

compared to alternative techniques.

ACKNOWLEDGMENT

The authors are thankful to the referees for carefully reading

the paper and for their valuable comments and Tikrit

University for supporting this research project.

REFERENCES

[1] Wazwaz, A.M. (2006). Solitons and periodic solutions

for the fifth-order KdV equation. Applied Mathematics

Letters, 19(11): 1162-1167.

https://doi.org/10.1016/j.aml.2005.07.014

[2] Isaza, P., Linares, F., Ponce, G. (2015). Decay properties

for solutions of fifth order nonlinear dispersive equations.

Journal of Differential Equations, 258(3): 764-795.

https://doi.org/10.1016/j.jde.2014.10.004

[3] Lee, C.T. (2015). Some remarks on the fifth-order KdV

equations. Journal of Mathematical Analysis and

Applications, 425(1): 281-294.

https://doi.org/10.1016/j.jmaa.2014.10.021

[4] Mechee, M.S., Kadhim, M.A. (2016). Explicit direct

integrators of RK type for solving special fifth-order

ordinary differential equations. American Journal of

Applied Sciences, 13(12): 1452-1460.

https://doi.org/10.3844/ajassp.2016.1452.1460

[5] Mechee, M.S., Fawzi, F.A. (2021). Generalized Runge-

Kutta integrators for solving fifth-order ordinary

differential equations. Italian Journal of Pure and

Applied Mathematics, 45: 600-610.

[6] Turki, M.Y., Alku, S.Y., Mechee, M.S. (2022). The

general implicit-block method with two-points and extra

derivatives for solving fifth-order ordinary differential

equations. International Journal of Nonlinear Analysis

and Applications, 13(1): 1081-1097.

https://doi.org/10.22075/IJNAA.2022.5650

[7] Fawzi, F.A., Senu, N., Ismail, F., Majid, Z.A. (2018). A

new integrator of Runge-Kutta type for directly solving

general third-order odes with application to thin film

flow problem. Applied Mathematics & Information

Sciences, 12(4): 775-784.

https://doi.org/10.18576/amis/120412

[8] Fawzi, F.A., Abdullah, Z.M., Hussein, N.K. (2021). Two

embedded pairs for solve directly third-order ordinary

differential equation by using Runge-Kutta Type Method

(RKTGD). Journal of Physics: Conference Series,

1879(2): 022123. https://doi.org/10.1088/1742-

6596/1879/2/022123

[9] Hussain, K., Ismail, F., Senu, N. (2015). Two embedded

pairs of Runge-Kutta type methods for direct solution of

special fourth-order ordinary differential equations.

Mathematical Problems in Engineering, 2015: 893763.

https://doi.org/10.1155/2015/893763

[10] Senu, N., Mechee, M., Ismail, F., Siri, Z. (2014).

Embedded explicit Runge–Kutta type methods for

directly solving special third order differential equations

y‴ = f (x, y). Applied Mathematics and Computation,

240: 281-293. https://doi.org/10.1016/j.amc.2014.04.094

[11] Awoyemi, D.O., Idowu, O.M. (2005). A class of hybrid

collocation methods for third-order ordinary differential

equations. International Journal of Computer

Mathematics, 82(10): 1287-1293.

https://doi.org/10.1080/00207160500112902

[12] Waeleh, N., Majid, Z.A., Ismail, F. (2011). A new

algorithm for solving higher order IVPs of ODEs.

Applied Mathematical Sciences, 5(56): 2795-2805.

[13] Demba, M.A., Senu, N., Ismail, F. (2016). A four-stage

third-order symplectic explicit trigonometrically-fitted

Runge–Kutta–Nyström method for the numerical

integration of oscillatory initial-value problems.

International Journal of Pure and Applied Mathematics,

111(2): 165-178.

https://doi.org/10.12732/ijpam.v111i2.3

[14] Fawzi, F.A., Globe, H.M., Ghawadri, N.G. (2024).

Efficient embedded diagonal implicit Runge-Kutta

method for directly solving third order ODEs. Ibn AL-

Haitham Journal for Pure and Applied Sciences, 37(2):

388-408. https://doi.org/10.30526/37.2.3409

[15] Gander, W., Gruntz, D. (1999). Derivation of numerical

methods using computer algebra. SIAM Review, 41(3):

577-593. https://doi.org/10.1137/S003614459935093X

[16] Dormand, J.R. (2018). Numerical Methods for

Differential Equations: A Computational Approach.

CRC Press. https://doi.org/10.1201/9781351075107

[17] Dormand, J.R., Prince, P.J. (1980). A family of

embedded Runge-Kutta formulae. Journal of

2141

Computational and Applied Mathematics, 6(1): 19-26.

https://doi.org/10.1016/0771-050X(80)90013-3

[18] Prince, P.J., Dormand, J.R. (1981). High order embedded

Runge-Kutta formulae. Journal of Computational and

Applied Mathematics, 7(1): 67-75.

https://doi.org/10.1016/0771-050X(81)90010-3

[19] El-Mikkawy, M., Rahmo, E.D. (2003). A new optimized

non-FSAL embedded Runge–Kutta–Nystrom algorithm

of orders 6 and 4 in six stages. Applied Mathematics and

Computation, 145(1): 33-43.

https://doi.org/10.1016/S0096-3003(02)00436-8

[20] Verner, J.H. (2014). Explicit Runge–Kutta pairs with

lower stage-order. Numerical Algorithms, 65: 555-577.

https://doi.org/10.1007/s11075-013-9783-y

[21] Verner, J.H. (1994). Strategies for deriving new explicit

Runge-Kutta pairs. Annals of Numerical Mathematics, 1:

225-244.

2142

