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The present study aims to solve analytically a free surface flow above a trapezoidal 

obstacle with angle 𝛽 =
𝜋

3
. The flow which forms different angles 𝛽 with the horizontal

plane, is assumed to be steady, irrotational and potential. The fluid is considered as 

inviscid and incompressible. In addition, the gravity and surface tension effects are not 

taken into consideration. An approximate analytical solution of the free surface shape 

problem was successfully determined using the Shwartz-Christoffel conformal 

mapping transformation technique and the free streamline theory which was introduced 

by Kirchhoff. The main results were obtained for different values of the 

inclination angle β between the trapezoidal obstacle and the axis of the struts. 
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1. INTRODUCTION

It is commonly acknowledged that jet type free surface 

flows are widely encountered in such diverse industrial and 

urban applications as engine combustion chambers, jet pumps, 

as well as reservoirs and dams. This type of flow has been the 

subject of a large number of theoretical, experimental and 

numerical studies. For the sake of example, one may cite the 

flow of a liquid emerging from an orifice of a tank. This kind 

of problems is generally difficult to solve explicitly due to the 

nonlinear condition that is imposed on the free boundary of an 

unknown shape. It was shown that the difficulty in solving 

such a problem increases with the complexity of the geometry 

of the flow domain. Its solution also depends on the properties 

of the fluid and on the flow conditions by Gasmi [1]. 

During the nineteenth century, the theory of complex 

variables made it possible to theoretically investigate the two-

dimensional free surface flow, provided that the flow domain 

is polygonal and the fluid is irrotational, incompressible and 

non-viscous, and the effects of gravity are neglected. These 

hypotheses indeed allowed using the complex potential theory 

to solve two-dimensional flow problems within polygonal 

domains.  

Over the past forty years, great attention has been devoted 

to studying the effect of the obstacle’s shape on the two-

dimensional free surface flow of fluids. Bernoulli’s equation 

is generally utilized to describe some. Nonlinear problems in 

which the shape of the free surface is unknown 

Furthermore, it was shown that various analytical and 

numerical methods can be used to determine the shape of the 

free surface flow for many problems dealing with the potential 

flow around different obstacle shapes by applying various 

techniques that are based, for example, on the conformal 

mapping transformation, the truncation series, and the 

boundary integral methods. It has indeed been reported that 

these techniques have been adopted by many authors, such as 

Forbes and Schwartz [2] and Birkhoff and Zarantoello [3], in 

order to determine the nonlinear solutions of subcritical and 

supercritical flows around a semi-circular obstacle. In this 

context, Gasmi and Mekias [4], Gasmi and Amara [5], 

Benjamin [6], and Vanden-Broeck [7, 8] considered the 

problems of flow within a channel with cavities. As for Sekhri 

et al. [9], they carried out some numerical studies to find the 

solution of two-dimensional potential flow problems with an 

immersed triangular obstacle. With regard to Merzougui and 

Laiadi [10], they investigated the problem of a fluid flowing 

over a triangular depression. Similarly, Dias and Vanden-

Broeck [11] as well as Vanden-Broeck and Killer [12] 

succeeded in identifying the subcritical and supercritical free-

surface solution of flows past a triangular obstacle. Likewise, 

Hanna et al. [13] adopted a numerical method that is based on 

a series truncation technique for a super-critical case in order 

to successfully solve the problem of a super-critical flow over 

a trapezoidal obstacle. On the other hand, many researchers [7-

18] established a method that is based on the Shwartz-

Christoffel transformation to solve similar problems.

Furthermore, Smith and Lim [19] considered the supercritical

flow around an obstacle that has a polygonal symmetrical

shape and placed on the bottom of a channel. The conformal

mapping and Hilbert’s method of a mixed boundary value

problem were applied in the upper half-plane in order to

determine the nonlinear surface profiles.

The present work focuses on a two-dimensional steady, 

irrotational and inviscid potential flow within a channel that 

has an obstacle placed on its bottom. The obstacle has a 

trapezoidal shape and makes an angle 𝛽 =
𝜋

3
 with the

horizontal plane. It is important to note that, far upstream, the 

fluid is uniform, with a constant velocity U and uniform depth 
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L. The free streamline theory, which is based on the Shwartz-

Christoffel transformation and Kirchhoff theory, is then 

utilized to calculate the shape of the free surface flow of the 

fluid past a submerged obstacle. The findings indicate that the 

method used for that purpose can be easily implemented, and 

is highly effective in providing analytical solutions for these 

kinds of problems. 

The above mentioned method has been successfully utilized 

by Vanden-Broeck [7, 8], Gasmi [1], Peng and Parker [20], 

and other researchers to determine the analytical solutions of 

free surface flow problems. 

The problem at hand is formulated in Section 2, while 

Section 3 describes the method used to solve that problem. As 

for Section 4, it presents and discusses the results obtained. 

Finally, some concluding remarks about the problem are 

drawn, and future research suggestions are presented in 

Section 5. 

 

 

2. PROBLEM FORMULATION 

 

The problem of a two-dimensional, incompressible and 

inviscid flow emerging from a channel with a symmetric 

trapezoidal-shaped obstacle of width H and infinite length, 

placed on the bottom, is investigated. It is clearly illustrated in 

Figure 1. One can easily see that the superficial tension and 

gravity force are neglected. 

The study of the problem is restricted to the half-axis (X’OX) 

because the flow field considered here is symmetrical with 

respect to the Y axis. In addition, a Cartesian coordinate 

system is defined with the X axis along of the streamline A'B'S', 

as depicted in Figure 2. The far upstream and downstream flow 

is assumed uniform, with a constant velocity U and a fluid 

depth that tends to L so that the bottom may be viewed as a 

horizontal wall AB, with the inclined wall BC. Note that the 

inclination angle with the (X'OX) axis is given as 𝛽 =
𝜋

3
 . 

It is worth highlighting that the flow under study is 

irrotational and the fluid is incompressible, which allows 

defining the complex potential function f=(Z) in terms of the 

potential function ϕ and the stream function ψ as follows: 

 

𝑓(𝑧) = 𝜙(𝑥, 𝑦) + 𝑖𝜓(𝑥, 𝑦) 
 

Since ϕ and ψ are conjugate solutions of Laplace's equation 

f(z) is an analytical function of the complex variable z=x+iy 

within the flow region with a complex conjugate velocity. 

 
𝑑𝑓

𝑑𝑧
= 𝑢(𝑥, 𝑦) − 𝑖𝑣(𝑥, 𝑦) = 𝑞𝑒−𝑖𝜃   

 

here, u and v are, respectively, the horizontal and vertical 

components of the fluid velocity. They are given, in terms of 

ϕ and ψ, by the following relations: 

  

𝑢 =
𝜕𝜙

𝜕𝑥
=
𝜕𝜓

𝜕𝑦
 

 

𝑣 =
𝜕𝜙

𝜕𝑦
= −

𝜕𝜓

𝜕𝑥
 

 

As for q, it is given as 𝑞 = √𝑢2 + 𝑣2. 

Further, the plane Z is transformed by the function f into an 

infinite band that is presented as the plane f, as illustrated in 

Figure 3. 

 
 

Figure 1. Flow diagram (plane Z) 

 

 
 

Figure 2. The flow half-domain 

 

 
 

Figure 3. The plane 

 

Finally, the problem considered here consists of 

determining mathematically the potential velocity ϕ that 

satisfies the following Laplace equation within the flow region: 

 

𝜕𝜙2

𝜕𝑥2
+
𝜕𝜙2

𝜕𝑦2
= 0 (1) 

 

It is worth recalling that the surface tension and gravity 

force on the free surface A'B'C' are neglected, and therefore 

Bernoulli's equation gives the following expression: 
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1

2
((

𝜕𝜙

𝜕𝑥
)
2

+ (
𝜕𝜙

𝜕𝑦
)
2

) +
𝑃

𝜌
= 𝐶𝑠𝑡𝑒, 

1

2
𝑞2 +

𝑃

𝜌
= 𝐶𝑠𝑡𝑒 (2) 

 

here, q, P, and ρ are the flow velocity, the pressure on the free 

surface, and the fluid density, respectively. Also, these 

quantities are constants on the free surface.  

For the sake of simplifying the calculations, it was deemed 

appropriate to take ϕ=0 at the point S, ψ=LU on the streamline 

A'B'S' and ψ=0 on the streamline ABCS. 

It should be mentioned that according to Bounab and 

Bouderah [21] and Batchelor [22], Vanden-Broeck and Dias 

[23], and some other researchers, the Bernoulli Eq. (2) yields: 

 

𝑞2 = 𝐶𝑠𝑡𝑒, on 𝐴′𝐵′𝑆′ (3) 

 

Based on the above, the kinematic conditions of the flow 

region and free surface may be rewritten in the form: 

 

{
 
 

 
 
∆𝜙 = 0, interieur of the field 

(
𝜕𝜙

𝜕𝑥
)
2

+ (
𝜕𝜙

𝜕𝑦
)
2

= 𝐶𝑠𝑡𝑒 on the surface flow

𝜕𝜙

𝜕𝑦
= 0, on the wall 𝐴𝐵𝐶𝑆

  (4) 

 

 

3. RESOLUTION OF THE PROBLEM 

 

The free streamline theory, which was initially introduced 

by Kirchhoff and was based on the hodograph mapping and 

Schwartz-Christoffel transformation, was utilized. It is 

noteworthy that this approach has already been adopted by 

Batchelor [22], Birkhoff and Zarantoello [3], Sekhri et al. [9] 

and other researchers to determine the exact solutions of 

problems in the case where the effects of the superficial 

tension and gravity force are neglected. 

Therefore, the complex transformation may be expressed as:  

 

𝛤 = log (
𝑈𝑑𝑧

𝑑𝑓
) = log (

𝑈

𝑢−𝑖𝑣
) = log (

𝑈

𝑞
) + 𝑖𝜃  (5) 

 

here, z=x+iy, q and θ are the fluid speed and the angle between 

the velocity vector and the horizontal plane, respectively. 

Consequently, the field occupied by the fluid in the plane Z is 

transformed into a semi-band in the plane Γ, as shown in 

Figure 4. 

 

 
 

Figure 4. The plane Γ 

 
 

Figure 5. The plane λ 

 

Moreover, the Schwartz-Christoffel transformation method 

may be used to transform the half-band plane, as shown in 

Figure 3, into a lower half-plane that is illustrated in Figure 5. 

The hodograph method and Schwartz-Christoffel mapping 

are used to write the relation below: 

 
d𝛤

𝑑𝜆
= 𝐴∏ (𝜆 − 𝜆𝑖)

𝛼𝑖
𝜋
−1

𝑖   

 

where, λi is the coordinate of the plane λ- with respect to the 

vertex of the polygon, αi is the corresponding internal angle in 

the plane Γ, and A is a constant. The previous transformation 

allows mapping the fluid region in the plane Γ into the upper 

half λ plane and the fluid region onto the real axis of the λ plane. 

Considering this transformation, and in order to achieve a 

unique mapping, it was decided to take, for example, the points: 

 

A: Γ=0→λ=0 

𝑆: Γ = −
𝑖𝜋

3
= −𝑖𝛽 → 𝜆 = 1 

 

The following expression may also be considered: 

 
dΓ

𝑑𝜆
= 𝜆

−1

2 (𝜆 − 1)
−1

2 ⇒ ∫dΓ = ∫
𝑑𝜆

𝜆
1
2(𝜆−1)

1
2

  

 

In order to calculate the above integral, the new variable 𝑡 =

√1 − 𝜆 in then introduced. Therefore: 

 

𝜆 − 1 = 𝑡2, 𝑑𝜆 = −2𝑡𝑑𝑡 
 

Regarding the transformation Γ, it can be written in the form: 

 

𝛤 =
−2𝑀

𝑖
∫

𝑑𝑡

√1−𝑡2
  

 

Some simple mathematical operations may then be carried 

out to get: 

 

𝛤 =
−2𝑀

𝑖
× 𝑎𝑟𝑐𝑠𝑖𝑛(√𝑡) + 𝑁  

 

Which gives: 

 

Γ =
−2𝑀

𝑖
× 𝑎𝑟𝑐𝑠𝑖𝑛(√1 − 𝜆) + 𝑁  (6) 

 

where, 𝑁 and 𝑀 are two constants to be determined. 

For: 𝜆 = 1 → Γ = −
𝑖𝜋

3
, 𝑁 = −

𝑖𝜋

3
 

For: 𝜆 = 0 → Γ = 0, 𝑀 =
1

3
 

Eq. (6) may therefore be written as: 
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Γ =
2𝑖

3
× 𝑎𝑟𝑐𝑠𝑖𝑛(√1 − 𝜆) −

𝑖𝜋

3
  (7) 

 

Eq. (7) can be expressed as: 

 

Γ =
2

3
ln(√𝜆 + 𝑖√1 − 𝜆) −

𝑖𝜋

3
  (8) 

 

For the purpose of identifying the transformation that can 

be used to transform the interior of infinite bands in the plane 

λ, as shown in Figure 5, into the lower half of the λ plane, the 

Schwartz-Christoffel transformation is used again, while 

selecting the same points A and S.  

The following equation is then obtained: 

 
𝑑𝑓

𝑑𝜆
= 𝛼𝜆−1(𝜆 − 1)−1 ⇒ 𝑓 = 𝛼 ∫

𝑑𝜆

 𝜆 ( 𝜆−1)
   

 

Then, after some mathematical operations, the relation 

between λ and f is then found as:  

 

𝑓 = α ln (
𝜆−1

𝜆
) + 𝑏  

 

where, α and b are two constants which can be calculated as 

follow: 

·lim
𝜆→+∞

𝑓 = 0. Then: 𝑏 = 0 

·lim
𝜆→0

𝜆 (𝛼
𝑑𝑓

𝑑𝜆
)  =

1

3
. Then: 𝛼 = −

𝐿𝑈

𝜋
. 

 

𝑓 = −
𝐿𝑈

𝜋
ln (

𝜆−1

𝜆
)  (9) 

 

Afterwards, the relations given below are used: 

 

𝑈
𝑑𝑧

𝑑𝜆
= 𝑈

𝑑𝑧

𝑑𝑓

𝑑𝑓

𝑑𝜆
  (10) 

 
𝑑𝑓

𝑑𝜆
=

−𝐿𝑈

𝜋𝜆(𝜆−1)
  (11) 

 

On the other hand, transformation Γ may be expressed as:  

 

𝛤 = log (
𝑈𝑑𝑧

𝑑𝑓
)  (12) 

 

Therefore: 

 

𝑈
𝑑𝑧

𝑑𝜆
= 𝑒𝑥𝑝(Γ) = 𝑒𝑥𝑝 (

2

3
ln(√𝜆 + 𝑖√1 − 𝜆) −

𝑖𝜋

3
) =

𝑒𝑥𝑝 (−
𝑖𝜋

3
) × (√𝜆 + 𝑖√1 − 𝜆)

2

3  

 

Next, using relations (10), (11) and (12) allows writing:  
 

𝑑𝑧

𝑑𝜆
=

𝐿𝑈𝑒𝑥𝑝(
−𝑖𝜋

3
)

𝜋

(√𝜆+𝑖√1−𝜆)
2
3

𝜆(𝜆−1)
  (13) 

 

Then, the relation (13) is employed to write the following 

integral: 
 

∫𝑑𝑧 =
𝐿𝑈𝑒𝑥𝑝(

−𝑖𝜋

3
)

𝜋
∫

1

𝜆(𝜆−1)
(√𝜆 + 𝑖√1 − 𝜆)

2

3𝑑𝜆  (14) 

 

Which gives: 

 

𝑧 =
𝐿𝑈𝑒𝑥𝑝(

−𝑖𝜋

3
)

𝜋
∫

1

𝜆(𝜆−1)
(√𝜆 + 𝑖√1 − 𝜆)

2

3𝑑𝜆  (15) 

The free surface may therefore be presented parametrically 

as: 
 

{
 
 

 
 𝑥 = 𝑟𝑒𝑎𝑙 (

𝐿𝑈𝑒𝑥𝑝(
−𝑖𝜋

3
)

𝜋
∫

1

𝜆(𝜆−1)
(√𝜆 + 𝑖√1 − 𝜆)

2

3𝑑𝜆)

𝑦 = 𝑖𝑚𝑎𝑔(
𝐿𝑈𝑒𝑥𝑝(

−𝑖𝜋

3
)

𝜋
∫

1

𝜆(𝜆−1)
(√𝜆 + 𝑖√1 − 𝜆)

2

3𝑑𝜆)

  

 

Performing the same calculations, for any angle β such that 

0<β≤π, the shape of the free surface can generally be expressed 

in the following form: 
 

𝑧 =
𝐿𝑈𝑒𝑥𝑝(−𝑖𝛽)

𝜋
∫

1

𝜆(𝜆−1)
(√𝜆 + 𝑖√1 − 𝜆)

2𝛽

𝜋 𝑑𝜆  (16) 

 

which can be expressed parametrically as: 

 

{
 
 

 
 𝑥 = 𝑟𝑒𝑎𝑙 (

𝐿𝑈𝑒𝑥𝑝(−𝑖𝛽)

𝜋
∫

1

𝜆(𝜆−1)
(√𝜆 + 𝑖√1 − 𝜆)

2𝛽

𝜋 𝑑𝜆)

𝑦 = 𝑖𝑚𝑎𝑔 (
𝐿𝑈𝑒𝑥𝑝(−𝑖𝛽)

𝜋
∫

1

𝜆(𝜆−1)
(√𝜆 + 𝑖√1 − 𝜆)

2𝛽

𝜋 𝑑𝜆)

  

 

 
 

Figure 6. Shape of the free surface for beta=pi/2 (𝛽 =
𝜋

2
) 

 

 
 

Figure 7. Shape of the free surface for beta=pi/4 (𝛽 =
𝜋

4
) 
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Figure 8. Shape of the free surface for beta=pi/6 (𝛽 =
𝜋

6
) 

 

For the sake of example, the graphical representations of the 

shape of the free surface flow, for some values of the 

inclination angle β, are given as Figures 6-8. 

 

 

4. RESULTS AND DISCUSSION 

 

The Schwartz-Christoffel transformation and the theory of 

aerodynamic lines introduced by Kirchhoff were used to find 

the shape of the free surface of a two-dimensional flow of an 

ideal fluid in a channel with a symmetrical trapezoidal obstacle 

at the bottom that forms an angle 𝛽 =
𝜋

3
 with the horizontal 

axis (X'OX). In the present case, the effects of the gravity force 

and surface tension are neglected. 

Furthermore, an approximate analytical solution was 

successfully determined and is explicitly expressed by the 

relation (15). Figure 9 clearly depicts the shape of the free 

surface flow. 

 

 
 

Figure 9. Shape of the free surface flow (exact solution) 

 

 
 

Figure 10. Shapes of the free surface for different beta angles 

 

In addition, it was deemed appropriate to find a solution for 

each inclination angle β, such that 0<β≤π, in order to confirm 

the effect of this inclination angle on the free surface profile, 

as expressed in relation (16). Moreover, the free surface depths, 

when angle β takes various values within the above interval, 

are illustrated in Figure 6 for 𝛽 =
𝜋

2
, Figure 7 for 𝛽 =

𝜋

4
, and 

Figure 8 for 𝛽 =
𝜋

6
. 

Likewise, Figure 10 presents the minimum free surface 

profile that corresponds to 𝛽 =
𝜋

6
. This minimum is equal to 

0.0131. Figure 11 shows that the free surface depth increases 

as the angle β grows, as is presented in Table 1. 

It is worth mentioning that when the Froude number is taken 

into account, a numerical solution can be determined using the 

series truncation method. In this regard, Hanna et al. [13] 

found out that the Froude number, the height of the trapezoidal 

obstacle, the width of the upper part of the obstacle and the 

inclination angle do have an impact on the free surface profile. 

Similarly, Sekhri et al. [4] investigated the problem of a 

two-dimensional potential flow past a submerged triangular 

obstacle. They first found an analytical solution to the problem 

by using the method proposed in our paper. Then, they 

determined a numerical solution by adopting the series 

truncation method while taking into account the effect of 
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surface tension.  

On the other hand, Smith and Lim [19], Hanna et al. [13], 

Bounif and Gasmi [24], Alwatban and Othman [25], Toison 

and Hureau [26], as well as other researchers, employed the 

Hilbert transform method and the perturbation technique in the 

case of large Froude numbers, for flows over triangular and 

trapezoidal obstacles. The results obtained were used to 

determine the shape of the free surface flow. 

In the end, it can be asserted that the results of the present 

study on conformal mapping are in good agreement with those 

obtained by means of numerical approaches such as the series 

truncation method and the perturbation technique. 

 

Table 1. The free surface depth versus angle β 

 
The Beta Inclination The Free Surface Depth  

Pi/6 

Pi/4 

Pi/3 

Pi/2 

0.013 

0.0195 

0.025 

0.038 

 

 
 

Figure 11. Free surface depth versus inclination angle beta 

 

 

5. CONCLUSIONS 

 

Until now, researchers have made a lot of effort to prove the 

existence and unity of the exact solution. Note that the 

simultaneous presence of a nonlinear term (a non-local term) 

and a diffusion term makes the Navier and Stokes equations 

more complicated. They therefore resorted to solving 

nonlinear equations. Once the solution was found, they then 

neglected the nonlinear term in order to find the exact solution. 

The streamline method was applied in the present work in 

view of identifying the exact solution to the problem of finding 

the shape of the free surface flow. The adopted method is 

based on the hodograph method and the Schwartz-Christoffel 

transformation technique. The transformations utilized here 

are considered as fundamental approaches in fluid mechanics, 

as they make studies of difficult problems in the field of fluids 

mechanic simpler and easier to solve. They can be used to 

successfully transform complex flow domains into simpler 

ones. They can also help to simplify all calculations in order 

to obtain the exact solution to the problem of finding the shape 

of a free surface flow. It should be highlighted that the gravity 

and superficial tension are neglected in this work. These two 

conditions first made the calculations simpler as all non-linear 

terms disappeared from the equations used, and second, they 

contributed to finding the exact solution easily. 

This study adopted the free streamline theory, which is 

based on the Kirchhoff and Hodograph transformations, for 

the purpose of finding an approximate analytical solution for 

different values of inclination angle β when a symmetric 

trapezoidal obstacle is used.  

In our opinion, and according to the results obtained in this 

work, it can be concluded that the calculation approach used 

in this paper is highly efficient as it provides adequate 

solutions to this type of free surface flow problems. Moreover, 

this method may also be utilized to compare the exact 

solutions to the approximate solutions found in the case where 

gravity is taken into account, when the Froude number tends 

towards ∞, and/or in the case where the superficial tension is 

taken into consideration, when the Weber number tends 

towards ∞. 

In a forthcoming work on this topic, we intend to present 

and study related problems dealing with the field of potential 

flows over different forms of obstacles, while considering new 

boundary conditions and adopting other numerical methods, 

such as the finite-volume method, in order to find approximate 

solutions and shapes of free surface flows. 
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NOMENCLATURE 

 

 

Greek symbols 

 

ϕ Potential function 

ψ Stream function 

Γ Complex transformation 

ρ Density 

ϕ Potential function 

 

Subscripts 

 

p Pressure 

H Width of field  

L Depth of the fluid 
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