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It is essential to study approximation theoretical foundations of deep convolutional 

neural networks, because of its interesting developments in vital domains. In spite of its 

dependence upon approximation substantially. The aim is to study approximation 

abilities of deep convolution neural network produced by downsampling operators in 

Orlicz spaces to reduce high dimensions that causes overfitting implementation. The 

degree of best approximation of Orlicz functions are estimated in terms of high order 

modulus of smoothness. Moreover, direct and inverse theorems are proved here to get 

finally both bounds of degree of approximation, with upper and lower bounds to restrict 

the degree of approximation with modulus of smoothness. The concluded degree of 

approximation by our CNN vanishes theoretically faster than the classical ones due to 

its dependence on modulus of smoothness. 
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1. INTRODUCTION

Orlicz spaces are one of the essential wide spaces that could 

help in practical usage. It is interesting to study approximation 

of convolutional neural networks (CNNs) in Orlicz spaces, to 

get degree of approximation in terms of modulus of 

smoothness. We define an extended class of Orlicz function, 

called quasi-Orlicz space. 

We introduce the introduction within two sections. The first 

section is about the space of interest, that is Orlicz space. It 

includes preliminaries and development stations about it. Then 

we define Orlicz space and modulus of smoothness with the 

auxiliary results about them. Second, we introduce the 

literature review about CNNs and sampling method. So we 

construct our CNN to get theoretical approximation results in 

terms of Orlicz modulus of smoothness. Then an application 

about approximation of CNNs is introduced to get best 

approximation for function from generalized Orlicz space. 

1.1 Orlicz spaces 

The first who studied this type of spaces was the 

mathematician Orlicz [1]. As a generalization of the Lebesgue 

integrable spaces 𝐿𝑝 . With completeness property, Orlicz

space form an extended Banach space: 

𝐿𝛷(𝜇) = {𝑓: 𝑓 is 𝜇 − meas and ‖𝑓‖𝛷 < ∞} (1) 

where, the norm ‖∙‖𝛷 had been defined in many ways to cover

Orlicz space, beginning with Orlicz him self with his norm. 

‖𝑓‖𝛷
0 = sup {∫|𝑓(𝑡)𝑦(𝑡)|𝑑𝜇 ∶ 𝑦 ∈ 𝐿𝛹,𝐼𝛹(𝑦) ≤ 1

𝑇

} (2) 

where, Orlicz norm was defined depending on Young function 

𝛷  and the complementary function 𝛹 , the generator of the 

modular unit ball. The function 𝛹 is defined by 

𝛹(𝑢) = sup{∣ 𝑢 ∣ 𝑣 − 𝛷(𝑣) ∶ 𝑣 ≥ 0} (3) 

for all 𝑢 ∈ ℝ. 

In simultaneous times in the fifteenth, Nakano [2], Morse 

and Transue [3] and Luxembourg [4] investigated the 

Luxembourg norm, which has been defined, using the concept 

of functional Minikowski over a convex modular unit ball, 

{𝑥: 𝐼(𝑥) ≤ 1}, with 

‖𝑓‖𝛷 = inf
𝜆>0

{𝐼𝛷 (
𝑓

𝜆
) ≤ 1} (4) 

Another main norm was defined by Amemiya at the same 

time, named after his name 𝑝-Amemiya norm [2]. 

‖𝑓‖𝛷
𝐴 = inf

𝜆>0

1

𝜆
(1 + 𝐼𝛷(𝜆𝑓)) (5) 

In separated papers, Krasnoselskii and RutickiI [5], Nakano 

[2] and Luxembourg and Zaneen [6] proved under additional

conditions on 𝛷, that Amemiy norm ‖∙‖𝛷
𝐴  is exactly the Orlicz

norm‖∙‖𝛷
0 . Moreover, Cui et al. [7] gave the basic results about

the so called 𝑝-Amemiya norms  equipped with other spaces.

Also, Wisła [8] showed an overview of the developments of

the spaces defined later. Moreover, Wisła [9] introduced a

more generalized 𝑝-Amemiya type norms by restricting his

conditions about the outer function. Later, he introduced the

concept of outer function 𝑠 and get 𝑠-norms on Orlicz spaces.

‖𝑓‖𝛷,𝑠 = inf
𝜆>0 

1

𝜆
𝑠(𝐼𝛷(𝜆𝑓)) (6) 
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Until today, many papers improved the norms of Orlicz [10-

12]. 

All the above definitions of Orlicz norms depend on the 

values of 𝑝 to be within [1,∞]. For the case 0 < 𝑝 < 1, AL-

Janabi and Almurieb [13] made another contribution to Orlicz 

spaces via outer function 𝑆𝑝: [0,∞) → [0,∞) in the following 

definition. 

 

Definition 1. [13] For 0 < 𝑝 < 1 the family 𝑆𝑝 of functions 

is defined by 

 

𝑆𝑝 (𝒇) = (1 + 𝒇2)
1
𝑝 (7) 

 

where, 𝒇 ∈ 𝐿𝛷,𝑆𝑝
(𝐼𝑑), the quasi-normed space. 

 

𝐿𝛷,𝑆𝑝
(𝐼𝑑) = {𝒇 ∈ 𝐿𝑝(𝐼

𝑑) |‖𝒇‖𝛷,𝑆𝑝
< ∞} (8) 

 

where, 

 

‖𝑓‖𝛷,𝑆𝑝
= inf

𝜆>0

1

𝜆
(𝐼Φ

2  (𝜆𝒇) + 1)
1
𝑝 (9) 

 

As mentioned by AL-Janabi and Almurieb [13], 𝑆𝑝, 𝑝 < 1, 

are convex, strictly increasing and all 𝑆𝑝  match at zero. As 

concluded there, 𝐿𝛷,𝑆𝑝
, 𝑝 ≤ 1  quasi-normed space is a 

generalization of 𝑝 −Amemiy’s normed space on 𝑝 ≥ 1. 

Moreover, the degree of best approximation for functions 

from 𝐿𝛷,𝑆𝑝
 in terms of CNNs were studied [13], so that 

 
‖𝑓 − 𝑁‖𝛷,𝑆𝑝

< 𝜖 (10) 

 

More precisely, the following theorem is given by AL-

Janabi and Almurieb [13]. 

Theorem A. Let 𝒇 ∈ 𝐿Φ,𝑆𝑝
(𝐼𝑑), 0 < 𝑝 < 1, then by (10) 

there exists 𝒇𝑗
𝓌,𝑏

 s.t ‖𝒇 − 𝒇𝐽
𝓌,𝑏‖

Φ,𝑆𝑝
≤ 𝐶(𝑝,𝑘)‖𝒇‖Φ,𝑆𝑝

. 

Our target here is to improve the degree of approximation 

by studying modulus of smoothness in our Orlicz quasi-

normed space in the following section. 

 

1.2 Orlicz moduli of smoothness 

 

Moduli of smoothness had been studied widely in Orlicz 

space. The importance of this comes from the need to improve 

the degree of function approximation via direct approaches. 

Direct approaches approximation implies a faster convergence 

to zero than general previous estimates. On the other hand, 

converse theorems give a characterization of smoothness of 

functions depending on its degree of approximation in direct 

approach. First results were given by Jackson [14], and 

Bernstein [15], for direct and inverse theorems, respectively, 

for the space of continuous functions in terms of modulus of 

continuous [16]. Later, second and third orders moduli of 

smoothness were involved in many papers concerning many 

wide generalizations of function’s spaces [17-22]. 

However, the birth of modulus of smoothness is much 

deeper in history [23-26], we concern here with moduli of 

smoothness as for as relates to Orlicz spaces. It’s very hard to 

investigate the early works of this topic, since they were 

written in Russian. However, the oldest paper we have 

obtained is attributed to Tsyganok [27] in 1966. He proved 

direct theorem as a modulus of continuity for Orlicz spaces. 

Later, in the eighteens of the last century, Ramazanov 

generalized direct theorem in Orlicz spaces for modulus of 

smoothness with higher orders [28]. In 1985, Musielak [24], 

generalized τ-modulus of smoothness, resulted by Popov [25], 

for Orlicz spaces. In 1991, Garidi generalized those results of 

Ramazanov [28], Garidi [29]. Many other results were studied 

by Israfilov and Akgün [30], Akgün [31], Chaichenko et al. 

[32], for weighted Orlicz spaces. More extensions were 

resulted to Orlicz spaces by Shidlich and Chaichenko [33, 34], 

which were combined by Chaichenko Shidlich et al. [32]. 
 

1.3 Modulus of Smoothness in 𝑳𝜱,𝑺𝒑
(𝑰𝒅) 

 

Let’s now present the main definitions of our modulus of 

smoothness. 

First, from Ditzian and Totik [23], define the following N-

th symmetric difference 

 

∆ℎ
𝑁(𝑓(𝑥)) = ∑(−1)𝑖

𝑁

𝑖=1

(
𝑁
𝑖
)  𝑓(𝑥 − 𝑖ℎ) (11) 

 

The Orlicz Modulus of smoothness in terms of (11) is given 

by 

 

𝜔𝑁(𝑓, 𝛿)𝛷,𝑆𝑝
= sup

|ℎ|≤𝛿
‖∆ℎ

𝑁(𝑓)‖𝛷,𝑆𝑝
  (12) 

 

We study the main properties of the N-th symmetric 

difference (11) and the Orlicz modulus of smoothness (12) in 

the following section. 
 

1.3.1 Modulus of smoothness properties (Auxiliary results) 

In the following lemma, we prove that the 𝑁 −th symmetric 

difference (11) satisfies the following properties under our 

Orlicz norm (9): 

 

Lemma 1 
 

Let 𝒇 be any function from (8), then 

1. ‖∆ℎ
𝑁(𝒇)‖𝛷,𝑆𝑝

≤ 𝑘(𝑁)‖𝒇‖𝛷,𝑆𝑝
, where 

𝑘(𝑁) = ∑ |(
𝑁
𝑖
)| ≤ 2𝑁∞

𝑖=0 , 𝑁 = inf{𝑘 ∈ ℕ: 𝑘 > 𝑁}. 

2. (∆ℎ
𝑁(∆ℎ

𝑀(𝒇))) (𝑥) = 𝛥ℎ
𝑁+𝑀(𝒇(𝑥))(𝑎. 𝑒. ). 

3. ‖∆ℎ
𝑁+𝑀(𝒇)‖𝛷,𝑆𝑝

≤ 2{𝑀}‖∆ℎ
𝑁(𝒇)‖𝛷,𝑆𝑝

. 

4. lim
ℎ→0

‖∆ℎ
𝑁(𝒇)‖𝛷,𝑆𝑝

= 0. 

 

Proof 
 

1. Let 𝜆 > 0, then by (7), (9) and (11), we have  

 

‖∆ℎ
𝑁(𝒇)‖𝛷,𝑆𝑝

 = inf
𝜆>0

1

𝜆
 𝑆𝑝(∆ℎ

𝑁(𝒇)) 

 

= inf
𝜆>0

1

𝜆
 𝑆𝑝 (∑(−1)𝑖

𝑁

𝑖=1

(
𝑁
𝑖
)𝒇(𝑥 − 𝑖ℎ)) 

 

≤ 𝐶 inf
𝜆>0

1

𝜆
 𝑆𝑝 (∑(−1)𝑖

∞

𝑖=1

(
𝑁
𝑖
)𝒇(𝑥 − 𝑖ℎ)) 

 
≤ 𝐶 inf

𝜆>0

1

𝜆
 ∑(

𝑁
𝑖
)

∞

𝑖=0

𝑆𝑝 ((−1)𝑖𝒇(𝑥 − 𝑖ℎ)) 

 
≤ 𝐶 ∑(

𝑁
𝑖
)

∞

𝑖=0

inf
𝜆>0

1

𝜆
 𝑆𝑝(𝒇(𝑥 − 𝑖ℎ)) 

 ≤ 𝐶𝑘(𝑁)‖𝒇‖𝛷,𝑆𝑝
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2. By (7), (9) and (11), we have 
 

(∆ℎ
𝑁(∆ℎ

𝑀(𝒇))) (𝑥) = ∑(−1)𝑖 (
𝑁
𝑖
)(∆ℎ

𝑀(𝒇(𝑥 − 𝑖ℎ)))

𝑁

𝑖=1

 

 = ∑(−1)𝑖 (
𝑁
𝑖
)(∑ (−1)𝑖 (

𝑀
𝑖
)

𝑀

𝑖=1
(𝒇(𝑥 − 𝑖ℎ)))

𝑁

𝑖=1

 

 = ∑∑(−1)𝑖

𝑀

𝑖−1

(
𝑁
𝑖
)(

𝑀
𝑖
)𝒇(𝑥 − ℎ𝑖)

𝑁

𝑖=1

 

 = ∑(−1)𝑖 (
𝑁 + 𝑀

𝑖
)𝒇(𝑥 − ℎ𝑖)

𝑁+𝑀

𝑖=1

 

 = ∆ℎ
𝑁+𝑀(𝒇(𝑥)). 

 

3. By the above Lemma 1, we get 

 

‖∆ℎ
𝑁+𝑀(𝒇)‖

𝛷,𝑆𝑝
 = ‖∆ℎ

𝑀 (∆ℎ
𝑁(𝒇))‖

𝛷,𝑆𝑝

 

 ≤ 𝑘(𝑀)‖∆ℎ
𝑁(𝒇)‖

𝛷,𝑆𝑝
 

 ≤ 2(𝑀)‖∆ℎ
𝑁(𝒇)‖

𝛷,𝑆𝑝
. 

 

4. Let 𝜖 > 0 , choose 𝛿 = 𝛿(𝜖, 𝑁) , by  (11), we have 

‖∆ℎ
𝑁(𝒇𝐽

𝓌,𝑏)‖
𝛷,𝑆𝑝

<
𝜖

2
, and 

 
‖∆ℎ

𝑁(𝒇)‖𝛷,𝑆𝑝
 ≤ 𝐶 [‖∆ℎ

𝑁(𝒇 − 𝒇𝐽
𝓌,𝑏)‖

𝛷,𝑆𝑝
+ ‖∆ℎ

𝑁(𝒇𝐽
𝓌,𝑏)‖

𝛷,𝑆𝑝
] 

 ≤ 𝐶 [2𝑁‖𝒇 − 𝒇𝐽
𝓌,𝑏‖

𝛷,𝑆𝑝
+ ‖∆ℎ

𝑁(𝒇𝐽
𝓌,𝑏)‖

𝛷,𝑆𝑝
] 

 ≤ 𝐶 [2𝑁 .
𝜖

2𝑁+1
+

𝜖

2
] = 𝜖 

 

In the following lemma, we give more generalized 

properties for our Orlicz modulus of smoothness. 
 

Lemma 2 
 

1. 𝜔𝑁(𝒇, 𝛿)𝛷,𝑆𝑝
 is a positive nondecreasing continuous 

function of 𝛿 on (0,∞) and 𝑙𝑖𝑚
𝛿→0

𝜔𝑁(𝒇, 𝛿)𝛷,𝑠𝑝 = 0. 

2. 𝜔𝑁(𝒇 + 𝒈, 𝛿)𝛷,𝑆𝑝
≤ 𝑐 (𝜔𝑁(𝒇, 𝛿)𝛷,𝑆𝑝

+ 𝜔𝑁(𝒈, 𝛿)𝛷,𝑆𝑝
) 

3. 𝜔𝑁(𝒇, 𝛿)𝛷,𝑆𝑝
≤ 2𝑁−𝑀𝜔𝑀(𝒇, 𝛿)𝛷,𝑆𝑝

 

4. 𝜔𝑁(𝒇, 𝛿)𝛷,𝑆𝑝
 ≤ 2{𝑁} ‖𝒇‖

𝛷,𝑆𝑝
 

5. 𝜔𝑁(𝒇, 𝛿)𝛷,𝑆𝑝
≤ 𝜔𝑁(𝒇, �́�)

𝛷,𝑆𝑝
, for 𝛿 ≤ �́� 

6. 𝜔𝑁(𝒇, 𝛾𝛿)𝛷,𝑆𝑝
≤ (1 + 𝛾)𝑘𝜔𝑁(𝒇, 𝛿)𝛷,𝑆𝑝

, for 0 < 𝛾 ≤ 1. 

 

Proof 

 

1. It is clear from Lemma 1 

2. From (13), (12) and Lemma 1, we have 

 
𝜔𝑁(𝒇 + 𝒈, 𝛿)𝛷,𝑆𝑝

 = sup
|ℎ|≤𝛿

‖∆ℎ
𝑁(𝒇 + 𝒈)‖

𝛷,𝑆𝑝
 

 = sup
|ℎ|≤𝛿

‖∆ℎ
𝑁(𝒇) + ∆ℎ

𝑁(𝒈)‖
𝛷,𝑆𝑝

 

 
≤ 𝑐 (sup

|ℎ|≤𝛿
‖∆ℎ

𝑁(𝒇)‖𝛷,𝑆𝑝
+ sup

|ℎ|≤𝛿
‖∆ℎ

𝑁(𝒈)‖𝛷,𝑆𝑝
) 

 ≤  𝑐 (𝜔𝑁(𝒇, 𝛿)𝛷,𝑆𝑝
+ 𝜔𝑁(𝒈, 𝛿)𝛷,𝑆𝑝

) 

 

3. Again by (11), (12) and Lemma 1 

 
𝜔𝑁(𝒇, 𝛿)𝛷,𝑆𝑝

 = sup
|ℎ|≤𝛿

‖∆ℎ
𝑁(𝒇)‖

𝛷,𝑆𝑝
 

 = sup
|ℎ|≤𝛿

‖∆ℎ
𝑁−𝑀 (∆ℎ

𝑀(𝒇))‖
𝛷,𝑆𝑝

 

 ≤ 𝑘(𝑁 − 𝑀)sup
|ℎ|≤𝛿

‖∆ℎ
𝑀(𝒇)‖

𝛷,𝑆𝑝
 

 ≤ 2𝑁−𝑀𝜔𝑀(𝒇, 𝛿)𝛷,𝑆𝑝
. 

4. By Lemma 1 

 

𝜔𝑁(𝒇, 𝛿) = sup
|ℎ|≤𝛿

‖∆ℎ
𝑁(𝒇)‖𝛷,𝑆𝑝

≤ 2𝑁 sup
|ℎ|≤𝛿

‖𝒇‖𝛷,𝑆𝑝
 

 ≤ 2𝑁 ‖𝒇‖
𝛷,𝑆𝑝

. 

 

5. Let 𝛿 < �́�, then by (12), it is clear that  

 

𝜔𝑁(𝒇, 𝛿)𝛷,𝑆𝑝
 =  sup

|ℎ|≤𝛿
‖∆ℎ

𝑁(𝒇)‖𝛷,𝑆𝑝
 

 ≤  sup
|ℎ|≤�́�

‖∆ℎ
𝑁(𝒇)‖𝛷,𝑆𝑝

= 𝜔𝑁(𝒇, �́�)
𝛷,𝑆𝑝

 

 

6. Noting that 𝛾𝛿 ≤ 𝛿, then  

 

𝜔𝑁(𝒇, 𝛾𝛿)𝛷,𝑆𝑝
 ≤𝜔𝑁(𝒇, 𝛿)𝛷,𝑆𝑝

 

 ≤ (1 + 𝛾)𝑘𝜔𝑁(𝒇, 𝛿)𝛷,𝑆𝑝
. 

 

 

2. CONVOLUTIONAL NEURAL NETWORKS 

 

Deep learning is very important because of its ability to 

cope with large data in many quantities. One of the most 

common deep neural networks in deep learning is CNNs. 

Since the 1950th, researchers have begun to work on a 

discovery through which visual data can be understood and 

developed called computer vision. 

CNNs were developed in the 1980s, they were used only to 

identify handwritten numbers, read zip and pin codes ets. In 

2012, there was a qualitative leap in the development of 

synaptic neural networks where Alex Krizhevsky neural 

networks was used to provide a wide range of data. Artificial 

neural networks have become deep neural networks, deep 

convolutional neural networks [35-42]. 

They are especially designed for processing pixel data and 

are used in image recognition and processing, applications of 

CNN recognition of pictures and videos, image classification, 

medical image analysis, language processing [43]. Zhou [44] 

provided, in 2018, a family of new deep structured neural 

networks: convolutional neural networks distributed in depth, 

show that these networks of deep neurons have the same order 

of computational complexity as the networks of deep 

convolutive neurons, and demonstrated their universality of 

approximation. Fang et al. [39] considered an applied family 

of deep convolutional neural networks functions of the unit 

sphere Sd−1  of ℝd  estimating its degree of approximation 

compared with the classical ones. 

Now, we introduce general preliminaries about CNNs, 

beginning with the most prominent characteristic of any CNN, 

that is the convolution that imposes the network. In 

mathematics, convolution is a linear operation on two 

functions as follow 
 

(𝑓1 ∘ 𝑓2)(𝑥) = ∑ 𝑓1(𝑡) 𝑓2(𝑥 + 𝑡) (13) 

 

The following description shows the convolution procedure 

among matrices that construct CNNs. For any 𝐽 ∈ ℕ, the depth 

of the network, a sequence 𝓌(𝑗), 𝑗 = 1… , 𝐽 is a filter mask 

that is within {0, 1… , 𝑠(𝑗)}, where 𝑠(𝑗) ∈ ℕ is the filter length 

with 𝑠(𝑗) + 1 free parameters. So that the convolutional filter 

masks are 

 

{𝓌(𝑗): ℤ → ℝ}
𝑗=1

𝐽
 (14) 
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Let 𝑠 ∈ ℕ , any filter mask 𝓌 = (𝓌)𝑘=−∞
∞ lies within 

{0, 1,⋯ , 𝑠}, satisfies 𝓌𝑘 = 0 if 𝑘 ∉ {0,1,⋯ , 𝑠}. This implies 

a convolutional matrix ℑ𝓌 = (𝓌𝑖−𝑘) ∈ ℝ(𝐷+𝑠)×𝐷, for 𝑖 = 1, 

⋯, 𝐷 + 𝑠, 𝑘 = 1,⋯, D, and 𝐷 ∈ ℕ, that is given by 

 

 

ℑ𝓌 =

[
 
 
 
 
 
 
 
 
 
 
𝓌0 0 0 0 … 0
𝓌1 𝓌0 0 0 … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮

𝓌s 𝓌s−1 … 𝓌0 0 0
0 𝓌s … 𝓌1 𝓌0 0
⋮ ⋱ … ⋱ ⋱ ⋮
… … ⋱ … … 𝓌0

… … … ⋱ … 𝓌1

⋮ ⋱ ⋱ … … ⋮
0 … … 0 𝓌s 𝓌s−1

0 … … … 0 𝓌s ]
 
 
 
 
 
 
 
 
 
 

 

 

In their papers [39, 44, 45], Zhou and his team proposed the 

convolutional matrix as follow ℑ(j) = ℑ𝓌(j)
, with 𝐷 = 𝑑𝑗−1 

and 𝑠 = 𝑠(𝑗). 

Deep CNN (DCNN) is given by convolutions of the 

activation functions 𝜎ℑ,𝑏: ℝ
𝑑𝑗−1 → ℝ𝑑𝑗−1+𝑠(𝑗)

 of matrix ℑ and 

bias 𝑏 ∈ ℝ𝑑𝑗−1+𝑠(𝑗)
.  

To get DCNN ℎ𝑗 ∶  ℝ𝑑 → ℝ𝑑𝑗 , 𝑗 = 1,⋯ , 𝐽 . 𝑑𝑗 = 𝑑 +

𝑗𝑠, 𝑠(𝑗) ≡ 𝑠, 𝑗 = 1,⋯ , 𝐽, the form 

 

ℎ(𝑗) = 𝜎ℑ(𝑗),𝑏(𝑗)  ∘ ⋯ ∘ 𝜎ℑ(1),𝑏(1)(𝑥) (15) 

 

where, 𝜎ℑ,𝑏(𝑢) = 𝜎(ℑ𝑢 − 𝑏), 𝑢 ∈ ℝ 𝑑𝑗−1 , 𝑏 ∈ ℝ𝑑𝑗−1+𝑠(𝑗)
. 

The real valued activation function 𝜎 is given by 

 

𝜎(𝑢) = max{𝑢, 0}, 𝑢 ∈ ℝ (16) 

 

 

3. CONSTRUCTION OF CNNS 

 

For any input 𝒙 = (𝑥𝑖)𝑖=1
𝑑 , define the oprater 

ℒ𝑥: 𝐿𝛷,𝑆𝑝
(𝐼𝑑) ⟶ ℝ+ as follow 

 

ℒ𝑡(𝑔(𝑢)) = ∑𝑔(𝑥𝑖)𝛿𝑖(𝑢)

𝑑

𝑖=1

 (17) 

 

where, 𝑔 ∈ 𝐿𝛷,𝑆𝑝
, 𝑢 ∈ 𝐼 and 𝛿𝑖 is given by 

 

𝛿𝑖,𝑔(𝑢) = ∑(−1)𝑁−𝑖 (
𝑁
𝑖
) 𝑔(𝑡𝑖)𝜎(𝑡𝑖 − 𝑢)

𝑑

𝑖=2

 (18) 

 

where, 𝜎: 𝐼 → 𝐼 is the ReLU activation function defined by 

(16). 

In fact, Eq. (17) is a convolutional operator between the 

function g and the activation function 𝜎 . Moreover, 𝒙 =
(𝑥𝑖)𝑖=1

𝑑  maybe not only the input, but also any neuron acts as 

input in the network. This amount of convolutions implies 

high dimensions of the hidden layer when the outputs of 

neuron clusters are combined. The purpose of the pooling 

layers is to reduce the big widths that may cause overfitting. 

Another procedure that can reduce the dimensions, called 

downsampling, is discussed in the following section. 
 

4. DOWNSAMPLING DEEP CONVOLUTIONAL 

NEURAL NETWORK 

 

Zhou [38] provided the definition of downsampling 

operator for purposes of reducing widths, he introduced a 

downsampled operation. The ℓ downsampled are presented at 

layers 𝒥 = {𝐽𝑘}𝑘=1
ℓ  with 1 < 𝐽1 ≤ ⋯ ≤ 𝐽ℓ = 𝐽. His concept of 

downsampling operators is induced from wavelets [46, 47]. In 

this section, we introduce the effect of downsampling 

operation into 4. Downsampling Deep Convolutional Neural 

Network (DDCNN) to avoid big widths in (15) that happens 

with pooling layers. The downsampling operation is defined 

below, 

 

Definition 2. Let 𝑚 be a scaling parameter, the function 

𝔒𝑚: ℝ𝐷 ⟶ ℝ[𝐷/𝑚] is called downsampling operator, and it is 

given by 

 

𝔒𝑚(𝑢) = (𝑢𝑖𝑚)𝑖=1
[𝐷/𝑚]

, 𝑢 ∈ ℝ𝐷  (19) 

 

a scaling parameter 𝑚 ≤ 𝐷. where [𝑢] is the integer part of 

𝑢 ∈ ℝ+. 
 

Definition 3. Downsampling DCNN is defined iteratively 

for 𝑘 = 1,⋯ , ℓ , beginning with 𝑑0 = 𝑑  and filter lengths 

[𝑠(𝑗)]
𝑗=1

𝐽
 has widths [𝑑𝑗]𝑗=0

𝐽
where ℓ downsamplings at layers 

𝒥 
 

𝑑𝑗 = {
𝑑𝑗−1 + 𝑠(𝑗),                  if 𝐽𝑘−1 < 𝑗 < 𝐽𝑘

[(𝑑𝑗−1 + 𝑠(𝑗)) 𝑑𝐽𝑘−1
⁄ ],           if 𝑗 = 𝐽𝑘  

 (20) 

 

Define function vector sequence iteratively {ℎ(𝑗) (𝑥): ℝ𝑑 →

ℝ𝑑𝑗}
𝑗=1

𝐽
 by ℎ0(𝑥) = 𝑥 and for 𝑘 = 1,⋯ , ℓ. 

 

ℎ(𝑗)(𝑥) = {
𝜎ℑ(𝑗),𝑏(𝑗) (ℎ(𝑗−1)(𝑥)) ,        if 𝐽𝑘−1 < 𝑗 < 𝐽𝑘

𝔒𝑑𝐽𝑘−1
 ∘ 𝜎ℑ(𝑗),𝑏(𝑗)  (ℎ(𝑗−1)(𝑥)) , if 𝑗 = 𝐽𝑘

  (21) 

 

We restrict the ℑ 𝑏(𝑗) ∈ ℝ𝑑𝑗−1+𝑠(𝑗)
 to satisfy 

 

𝑏
𝑠(𝑗)+1

(𝑗)
= 𝑏

𝑠(𝑗) +2

(𝑗)
= ⋯ = 𝑏𝑑𝑗−1

(𝑗)
 (22) 

 

Definition 4. Uniform DDCNN is defined with uniform 

filter lengths for 𝑘 ∈ {1,⋯ , ℓ}, as follow 

 

𝑆 = {𝑠[𝑘] ∈ ℕ} 𝑘=1
ℓ  if 𝑠(𝐽𝑘−1+1) = ⋯ = 𝑠(𝐽𝑘) = 𝑠[𝑘] (23) 

 

Define the degree of best approximation of functions 𝒈 ∈
𝐿𝛷,𝑆𝑝

(𝐼𝑑) by DCNN of the form  

 

𝐸𝑚(𝒈)𝛷,𝑆𝑝
= inf‖𝒈 − 𝐿𝑡(𝒈)‖𝛷,𝑆𝑝

  (24) 
 

 

5. AUXILIARY LEMMAS 
 

The following lemma arises the role of convolutions [44] 

concluded that 𝑊(𝑘) equals ℑ(𝐽𝑘)  ⋯ ℑ(𝐽𝑘−1+1).  
 

Lemma 3 
 

ℑ(Jk,Jk−1+1) = ℑ(Jk)  ⋯ ℑ (Jk−1+2)ℑ (Jk−1+1)  where 𝑘 =
1,⋯ , ℓ. 
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Construction of filter masks is studied by Zhou [48] in his 

following lemma, given convolution  𝓌(J) ∗ ⋯ ∗ 𝓌 (1) 

resulted from factorizing 𝑊 as follows 

 

Lemma 4  

 

For 𝑠 ≥ 2 , 𝑀 ≥ 0 , any sequence 𝑊 = (𝓌𝑘)−∞
∞  in 

{0,⋯ ,𝑀}, there is a finite sequence {𝓌(𝑗)}
𝑗=1

𝐽
 with nonzero 

elements in {0,⋯ , 𝑠}, where 𝐽 <
𝑀

𝑠−1
+ 1 that satisfies 

 

𝑊 = 𝓌(𝑗) ∗  ⋯ ∗ 𝓌2 ∗ 𝓌1 (25) 

 

To fit the data with the space under study, bias vectors are 

selected in appropriate format in accordance to the 

convolutional matrices ℑ𝓌 , let ℎ: Ω ⟶ 𝑅𝐷, set 

 

‖ℎ‖𝛷,𝑆𝑝
= inf

𝜆>0
 
1

𝜆
(𝐼𝛷

2(𝜆ℎ) + 1)
1
𝑝 (26) 

 

Also, we need to denote ‖𝓌‖𝛷,𝑆𝑝
= inf

𝜆>0
 
1

𝜆
(𝐼𝛷

2(𝜆𝓌𝑘) + 1)
1

𝑝. 

Then we immediately see how convolutional matrices are 

defined ℑ(𝑗) = ℑ𝓌(𝑗)
 that for any ℎ ∶ Ω ⟶ ℝ𝑑𝑗−1, we denoted 

 

‖ℑ(𝑗)ℎ‖
𝛷,𝑆𝑝

≤ ‖𝓌‖𝛷,𝑆𝑝
‖ℎ‖𝛷,𝑆𝑝

 (27) 

 

From our previous study AL-Janabi and Almurieb [13], we 

use some thoughts from DCNNs without downsampling and 

select biases small enough for the vectors ℑ(𝑗)ℎ(𝑗−1)(𝑥) − 𝑏(𝑗) 

to get non-negative entries. 

 

Lemma 5 

 

For any 𝑘 ∈ {1,⋯ , ℓ}, there exists 𝐵 ∈ 𝑅+ , �̂� ∈ [−𝐵, 𝐵] , 

then ‖ℎ𝑗𝑘−1 − �̂�𝟏𝑑𝑗𝑘−1
‖

𝛷,𝑆𝑝

≤ 𝐵. 

 

Proof 

 

Set No space 

𝑏 (𝐽𝑘−1+1) = �̂�ℑ (𝐽𝑘−1+1)1𝑑𝐽𝑘−1
 

                                          −𝐵‖𝑤((𝐽𝑘−1+1)‖
𝛷,𝑠𝑝

𝟏𝑑𝐽𝑘−1 
+1. 

 

To prove 𝑏
𝑠(𝑗)+1

(𝑗)
= 𝑏

𝑠(𝑗) +2

(𝑗)
= ⋯ = 𝑏𝑑𝑗−1

(𝑗)
 

From 

𝑏(𝑗) = 𝐵 (𝛱𝑝=𝐽𝑘−1+1
𝑗−1

‖𝑤(𝑝)‖
𝛷,𝑆𝑝

)ℑ(𝑗)𝟏𝑑𝑗−1
 

                           −𝐵 (𝛱𝑝=𝐽𝑘−1+1
𝑗−1

‖𝑤(𝑝)‖
𝛷,𝑆𝑝

)𝟏𝑑
𝑗−1+𝑠(𝑗)

. 

 

For 𝑗 = 𝐽𝑘−1 + 2,⋯ , 𝐽𝑘−1 , then for 𝐽𝑘−1 < 𝑗 < 𝐽𝑘  and 𝑖 =

𝑠(𝑗) + 1,⋯ , 𝑑𝑗−1 , we have (ℑ(𝑗)𝟏𝑑𝑗−1
)

𝑖
= ∑ (ℑ(𝑗))

𝑖,𝑝
=

𝑑𝑗−1

𝑝=1

∑ (𝑤(𝑗))
𝑖−𝑝

𝑑𝑗−1

𝑝=1 . 

Notice that w(j) in {0,⋯ , 𝑠(𝑗)} . 𝑝 ∈ (−∞, 0] ∪ [𝑑𝑗−1 +

1,∞)  we have 𝑖 − 𝑝 ∈ [𝑠(𝑗) + 1,∞)  which implies that 

𝑤(𝑗)
𝑖−𝑝 = 0. So 

 

(ℑ(𝑗)𝟏𝑑𝑗−1
)

𝑖
= ∑ 𝑤(𝑗)

𝑖−𝑝

∞

𝑝=−∞

= ∑ 𝑤𝑝
(𝑗)

∞

𝑝=−∞

 

∀𝑖 = 𝑠(𝑗) + 1,⋯ , 𝑑𝑗−1 

 

Now we prove 

 

  ℎ(𝑗)(𝑥) = ℑ(𝑗) … ℑ(𝐽𝑘−1+1) (ℎ𝐽𝑘−1(𝑥) − �̂�𝟏𝑑𝐽𝑘−1
) 

+𝐵 (∏ ‖𝑤(𝑝)‖
𝛷,𝑠𝑝

𝑗
𝑝=𝐽𝑘−1+1 ) 1𝑑𝑗

  

 

By induction, for 𝑗 = 𝐽𝑘−1 + 1, we have 

 

ℑ(𝐽𝑘−1+1)ℎ(𝐽𝑘−1)(𝑥) − 𝑏(𝐽𝑘−1+1)

= ℑ(𝐽𝑘−1+1) (ℎ𝐽𝑘−1(𝑥) − �̂�𝟏𝑑𝐽𝑘−1
) 

                                         +𝐵‖𝑤(𝐽𝑘−1+1)‖
𝛷,𝑠𝑝

𝟏𝑑𝐽𝑘−1 
+1 

 

the use Sigmoid 𝜎  is identical to the identity function on 

[0,∞), hence 

 

ℎ(𝐽𝑘−1+1)(𝑥) = ℑ(𝐽𝑘−1+1) (ℎ𝐽𝑘−1(𝑥) − �̂�𝟏𝑑𝐽𝑘−1
) 

          +𝐵‖𝑤(𝐽𝑘−1+1)‖
𝛷,𝑠𝑝

𝟏𝑑𝐽𝑘−1 
+1  

 

for 𝑗 = 1 verifies. 

Suppose that it is holds for 𝐽𝑘−1 + 1 ≤ 𝑗 ≤ 𝐽𝑘−1 , then 

𝑑𝑗−1 + 𝑠(𝑗) = 𝑑𝑗. 

Through the induction hypothesis and selection (*) of the 

bias vector, we have 

 

ℎ(𝑗)(𝑥) = 𝜎 (ℑ(𝑗)ℑ(𝑗−1) ⋯ ℑ( 𝐽𝑘+1) (ℎ( 𝐽𝑘−1)(𝑥) −

�̂�𝟏𝑑𝐽𝑘−1
) + 𝐵 (∏ ‖𝑤(𝑝)‖

𝛷,𝑠𝑝

𝑗
𝑝=𝐽𝑘−1+1 ) 𝟏𝑑𝑗

)  

 

Now to prove  

 

ℎ(𝐽𝑘)(𝑥) = 𝑀(𝑘)ℑ(𝐽𝑘,𝐽𝑘−1+1) (ℎ(𝐽𝑘−1)(𝑥) − �̂�𝟏𝑑𝐽𝑘−1
) 

+𝐵 (∏ ‖𝑤(𝑝)‖
𝛷,𝑠𝑝

𝐽𝑘
𝑝=𝐽𝑘−1+1 ) 𝟏𝑑𝐽𝑘

. 

When 

 

𝑏(𝑗) = 𝐵 (𝛱𝑝=𝐽𝑘−1+1
𝑗−1

‖𝑤(𝑝)‖
𝛷,𝑠𝑝

)ℑ(𝑗)𝟏𝑑𝑗−1
− 𝐵, 

Then 

 

ℑ(𝐽𝑘)ℎ( 𝐽𝑘−1)(𝑥) − 𝑏(𝐽𝑘) = ℑ(𝐽𝑘) ⋯ℑ( 𝐽𝑘−1) (ℎ( 𝐽𝑘−1)(𝑥) − �̂�𝟏𝑑𝐽𝑘−1
) 

 

+𝐵 (∏ ‖𝑤(𝑝)‖
𝛷,𝑠𝑝

𝐽𝑘
𝑝=𝐽𝑘−1+1 ) 𝟏𝑑𝐽𝑘

 

 

 

6. APPROXIMATION ABILITIES OF CNNS IN 

ORLICZ SPACES 

 

The main purpose of this paper is to study degree of 

approximation of functions from Orlicz spaces by 

convolutional neural networks in terms of Orlicz modulus of 

smoothness. The following theorem study direct theorem: 

 

Theorem 1 (Direct theorem) 

 

For any 𝒈 ∈ 𝐿𝛷,𝑆𝑝
(𝐼𝑑), there exists a CNN of the form, 

𝐿𝑡(𝒈)(𝑢) = ∑ 𝒈(𝑡𝑖)
2𝑁+2
𝑖=2 𝛿𝑖(𝑢) , 𝑢 ∈ [𝑡𝑖−1, 𝑡𝑖] , where |𝑡𝑖 −
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𝑡𝑖−1|~
1

𝑛
 and 𝛿𝑖(𝑢) = ∑ (

𝑁
𝑖
) (−1)𝑁−𝑖𝜎(𝑡𝑖 − 𝑢)𝑁

𝑖=1 , such that 

‖𝐿𝑡(𝒈) − 𝒈‖𝛷,𝑆𝑝

𝑝
≤

𝑐

𝑛
𝜔𝑁(𝒈, ℎ)𝛷,𝑆𝑝

. 

 

Proof 

 

By (17), (12) and Lemma 2, we get 
 

‖𝐿𝑡(𝒈) − 𝒈‖𝛷,𝑆𝑝

𝑝
≤ ‖∑ [(−1)𝑁−𝑖 (

𝑁

𝑖
) 𝒈(𝑡𝑖)𝜎(𝑡𝑖 − 𝑢)

2𝑁+2

𝑖=2

− (−1)𝑁−𝑖 (
𝑁

𝑖
)𝒈 (𝑢 −

𝑖

𝑛
)

+ (−1)𝑁−𝑖 (
𝑁

𝑖
)𝒈 (𝑢 −

𝑖

𝑛
) − 𝒈(𝑢)]‖

𝛷,𝑆𝑝

𝑝

≤ 𝑐 (‖ ∑ (−1)𝑁−𝑖 (
𝑁
𝑖
)𝒈(𝑡𝑖)𝜎(𝑡𝑖 − 𝑢)

2𝑁+2

𝑖=2

− (−1)𝑁−𝑖 (
𝑁
𝑖
)𝒈 (𝑢 −

𝑖

𝑛
)‖

𝛷,𝑆𝑝

𝑝

+ ‖(−1)𝑁−𝑖 (
𝑁
𝑖
)𝒈 (𝑢 −

𝑖

𝑛
) − 𝒈(𝑢)‖

𝛷,𝑆𝑝

𝑝

)

≤ 𝑐 ∑ ‖(−1)𝑁−𝑖 (
𝑁
𝑖
) (

1

𝑛
𝒈(𝑡𝑖)

2𝑁+2

𝑖=2

− 𝒈(𝑢 −
𝑖

𝑛
))‖

𝛷,𝑆𝑝

𝑝

+ 𝜔𝑁 (𝒈,
1

𝑛
)

𝛷,𝑆𝑝

≤
𝑐

𝑛
𝜔𝑁 (𝒈,

1

𝑛
)

𝛷,𝑆𝑝

 

 

In the next last theorem, we study inverse theorem that gives 

lower bound for the degree of approximation, it restricts, with 

direct theorem, the degree of approximation with lower and 

upper bounds, respectively. 
 

Theorem 2 (Inverse Theorem) 
 

For any 𝒈 ∈ 𝐿𝛷,𝑆𝑝
(𝐼𝑑), there exists 𝐿𝑡(𝒈) of the form (17), 

such that 𝜔𝑁(𝒈, 𝛿)𝛷,𝑆𝑝
≤ 𝑐(𝑝, 𝑁) (‖𝒈‖𝛷,𝑆𝑝

+ 𝐸𝑁(𝒈)𝛷,𝑆𝑝
). 

 

Proof 
 

Let 𝑏 = max
1≤𝑖≤2𝑁+3

𝑖; 2𝑖  <  𝑛,  and 𝒈(𝑡2𝑁+3) − 𝒈(𝑡1) =

(𝒈(𝑡2𝑁+3) − 𝒈(𝑡2𝑏)) + (𝒈(𝑡2𝑏) − 𝒈(𝑡2𝑏−1)) + ⋯(𝒈(𝑡2) −

𝒈(𝑡1)), for any 𝑚 < 2𝑁 + 3, and 𝛿~
1

𝑛
. 

Suppose that ‖𝒈(𝑡2𝑁+3) − 𝒈(𝑡𝑚)‖𝛷,𝑆𝑝
≤ 𝑐𝐸𝑚(𝒈)𝛷,𝑆𝑝, 

then by (24), Theorem 1 we get by Lemma 2. 

 

𝜔𝑁(𝒈, 𝛿)𝛷,𝑆𝑝
 ≤ 𝑐(𝑝) [𝜔𝑁(𝒈 − 𝐿𝑡(𝒈), 𝛿)𝛷,𝑆𝑝

+ 𝜔𝑁(𝐿𝑡(𝒈), 𝛿)𝛷,𝑆𝑝
] 

 ≤ 𝑐(𝑝) [𝑐(𝑁)‖𝒈 − 𝐿𝑡(𝒈)‖𝛷,𝑆𝑝

+ 𝜔𝑁 (𝐿𝑡(𝒈, 𝛿)𝛷,𝑆𝑝
)] 

 ≤ 𝑐(𝑝) [𝑐(𝑁)𝜔𝑁(𝒈, 𝛿)𝛷,𝑆𝑝

+ 𝑐(𝑁)𝐸𝑚(𝒈)𝛷,𝑆𝑝
] 

 ≤ 𝑐(𝑝, 𝑁) [‖𝒈‖𝛷,𝑆𝑝
+ 𝐸𝑚(𝒈)𝛷,𝑆𝑝

]. 

7. CONCLUSIONS 

 

Quasi-Orlicz space is a very large space of measurable 

convex functions that generalize Orlicz space. In quasi-Orlicz 

spaces, we define a special class of CNNs with downsampling 

operator to reduce dimensions and approximate any quasi-

Orlicz function with a good degree of approximation. Some 

previous work focused on approximating continuous functions 

by CNNs. CNNs were constructed in a way that guarantee 

universality with ordinary degree of approximation that 

depends on parameters of CNNs’ features. This paper results 

universality of CNNs with more extended space. On the other 

hand, we define modulus of smoothness in quasi-Orlicz space 

with many properties that are useful for approximation 

purposes that improve the estimated degree of approximation. 

The degree of approximation then is given by modulus of 

smoothness with its upper and lower bounds. Hence, we prove 

universality of CNNs in quasi- Orlicz spaces with dependence 

on smoothness of functions for their degree of approximation. 

In future work, it is interesting to implement such CNNs with 

downsampling operator practically in fields with complicated 

data. 
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