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This study explores an inventory management model in today's business landscape, where 
organizations increasingly rely on Machine Learning for demand-driven stock control. The 
proposed model accounts for imperfect and deteriorating products within a fuzzy 
environment, allowing for shortages and partial backlogging. Degradation rates and faulty 
percentages are classified as fuzzy variables since they are unpredictable and impacted by 
undefined conditions. The goal is to calculate the appropriate replenishment cycle and 
ordering quantity while reducing the optimal overall cost, including carbon pollution costs, 
within a constrained planning horizon. The defuzzification technique uses the sign distance 
approximation technique. Leveraging Machine Learning, the study utilizes a seasonal 
demand forecasting methodology. A numerical illustration supports the mathematical 
approach by demonstrating its capacity to estimate demand for deteriorating products. This 
facilitates optimized inventory management aligned with forecasted demand. A 
comparative examination emphasizes the positive aspects of AI learning-based forecasting 
systems over determined demand circumstances. Sensitivity analysis provides insights 
into the impact of various parameters on optimal solutions, contributing valuable 
managerial perspectives. 
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1. INTRODUCTION

In the ever-evolving global market landscape, the intricate
dance between seasonal and weather conditions exerts a 
profound influence on consumer demand, a cornerstone 
variable that presents multifaceted challenges to efficient 
inventory management across diverse industries [1]. The ebb 
and flow of seasonal demand, shaped by events such as 
festivals and climatic factors, introduces uncertainties and 
complexities into consumer purchasing behaviours, 
necessitating a sophisticated approach to inventory control [2]. 
While conventional inventory models often hinge on 
deterministic demand assumptions, the real-world scenario 
unfolds with variations in product demand that adhere to 
distinct seasonal patterns. So, in our study, we have applied 
the time series algorithm to forecast seasonal demand. 

The strategic imperative of effective demand prediction 
emerges as a key solution, offering the potential to refine 
inventory management strategies, curtail superfluous costs, 
and elevate overall customer service [3]. Leveraging machine 
learning (ML): with its advanced predictive capabilities, 
particularly through Decision Tree-based Algorithms, stands 
out as a transformative tool in achieving precise and accurate 
seasonal demand forecasts [4]. This paper delves into the 
convergence of seasonal demand dynamics, imperfect 
deteriorating products, and the contemporary imperative of 
considering carbon emissions in inventory systems. The 
intrinsic deterioration of physical products over time, be it 

during transit or storage, is a ubiquitous challenge across 
various industries [5]. Items such as fruits, medicines, flowers, 
foodstuffs, and vegetables are susceptible to decay during their 
holding and in-transit periods. This study acknowledges the 
deterministic approach traditionally applied to deterioration 
rates in inventory models but contends that real-world 
uncertainty demands a more sophisticated treatment [6]. To 
address this, the model introduces a fuzzy variable for 
deterioration rates, acknowledging the uncertainty in their 
precise estimation. 

Furthermore, the quantity of defective products, a critical 
consideration in inventory management, is recognized as 
another fuzzy variable due to unpredictable factors such as 
manufacturing defects, man-handling issues, and in-transit 
damage [7]. The study emphasizes the pressing concern of 
escalating carbon emissions in the modern era, driven by 
industrialization and contributing significantly to climate 
change. This prompts a paradigm shift in inventory system 
design, where scholars and organizations now focus on 
reducing the total cost, integrating considerations for carbon 
emissions. This research not only acknowledges permissible 
shortages but also accounts for partial backlogging, 
recognizing that not every consumer accepts delayed 
deliveries. By addressing these multifaceted challenges, the 
study endeavours to bridge gaps in existing literature 
concerning the impact of demand Predictions on inadequate 
decaying products. Two primary research questions guide this 
exploration: (a) How do AI based demand prediction 
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techniques improve the certainty and predictability of seasonal 
predictions for demand for deteriorating products? (b) What 
are the benefits of using artificial intelligence-driven monthly 
projected demand versus constant demand in inventory 
management? 

To resolve such issues, this article presents an AI-driven 
fuzzy inventory model that incorporates defective, 
deteriorating products and carbon emissions. The decision tree 
classifier, a powerful ML technique, is employed for demand 
forecasting, aiming to determine accurate seasonal demand 
[8]. The goal is to optimize purchasing amount and 
replenishment periods, thereby minimizing the total average 
cost, while considering carbon emissions. The ensuing 
sections delve into a comprehensive review of the literature, 
outline notations and assumptions, articulate the mathematical 
model, detail the ML-based methodology, present validation 
through a numerical example, conduct sensitivity analysis, and 
culminate in conclusions and avenues for future research. In 
navigating this exploration, we aim to contribute insights that 
advance both the theoretical and practical dimensions of 
inventory management in the context of seasonal demand, 
imperfect deteriorating products, and the imperative of 
environmental sustainability. 
 
 
2. LITERATURE REVIEW 
 

Demand forecasting stands as a pivotal element in shaping 
business strategies, offering organizations the means to 
optimize operations, cut costs, and meet consumer 
expectations [2]. Mishra and Jain [9] put forward a 
decentralized supply chain optimization model that 
incorporates blockchain and uses an iterative strategy to 
calculate overall costs for retailers and suppliers. By 
establishing its uniqueness and optimal results through 
theoretical analysis, the model efficiently determines optimal 
replenishment cycles using Wolfram Mathematica 13.0., 
guiding decision-makers with managerial insights for 
enhanced supply chain management efficiency and resilience. 
The continuous expansion of ML techniques provides a fertile 
ground for researchers aiming to enhance the accuracy of 
demand forecasting [3]. Early research by Persinger and 
Levesque [10] delved into the relationship between weather 
conditions and individuals' moods, establishing that weather 
significantly influences consumer behaviour. Wright and 
Schultz [11] emphasized the critical role of demand 
forecasting models in predicting overstocking and 
understocking situations, particularly during fluctuations in 
consumer demand. Notable festive seasons, such as Christmas 
and Diwali, witness a surge in demand for e-commerce giants 
like Amazon and Flipkart as consumers actively seek gifts and 
festive supplies. Accurate demand forecasting becomes 
imperative during such peak periods, emphasizing the need for 
dynamic models that surpass fixed demand predictions [12]. 
Decision trees, recognized as powerful data mining 
techniques, have been extensively employed in various sectors 
for demand forecasting [13]. In the field of defective damaging 
goods, Ghare [14] first developed research on damaging items 
in inventory systems, with a focus on constant deterioration 
ratios. Wee et al. [15] conducted subsequent research and built 
a production inventory model particularly for damaging 
seasonal goods. The consideration of partial payment and trade 
credit policies in a non-instantaneous disintegrating concept of 
inventory was introduced by Lashgari et al. [16]. The reality 

of imperfect products, either due to manufacturing errors or 
deterioration, led to economic production quantity (EPQ) 
models for imperfect quality items [17]. Further investigations 
delved into imperfect quality inventory systems, integrating 
stochastic processes to model defective products [18]. 

Carbon emissions have become a significant concern in 
recent years, prompting researchers to incorporate 
environmental considerations into inventory models. Mishra 
[19] provides a supply chain inventory model for degrading 
items that takes into account carbon emission-dependent 
demand, advanced payment methods, and the impact of carbon 
taxes and limits on a constrained planning horizon. It seeks to 
balance economic and environmental considerations, 
providing insights for businesses and potential relevance for 
government policies. Hua et al. [20] built an economic order 
quantity (EOQ) model which incorporates carbon costs 
associated with storage and shipment. Carbon taxes and 
emissions reduction policies have been explored to understand 
their impact on inventory costs [21]. Green inventory models 
were studied under settings of carbon emission penalty fees, 
the cap-and-trade scheme systems, and severe emission limit 
laws [22]. 

Fuzzy methods have gained attention in inventory 
management problems due to their ability to generate more 
relevant solutions. Early applications of fuzzy set theory in 
inventory models include analyses of economic order quantity 
[23, 24]. Extensions into fuzzy overall cost functions, 
considering fuzzy demand rates and proportions of defective 
products, have been explored [25, 26]. Fuzzy inventory 
estimation methods for degrading items with time-dependent 
demand and backlog rates considered as fuzzy numbers have 
also been developed [27]. The integration of fuzzy concepts 
into inventory models, considering imperfect products, 
payment delays, variable demand and partial backlog, has 
been investigated [28]. Mishra et al. [29] present a fuzzified 
supply chain finite planning horizon model, addressing 
deteriorating materials. The model uses fuzzy parameters, 
such as deterioration cost, and applies defuzzification methods 
with finite planning horizon. Mishra et al. [30] provided 
research on the fuzziness of supplier-retailer supply 
coordination. The research explores credit terms in the context 
of managing items are degrading due to time-quadratic 
demand and partial backlog throughout all cycles across the 
finite planning horizon. Singh and Mishra [31] provides an 
inventory model that uses artificial intelligence to estimate 
demand, with a focus on imperfect deteriorating items and 
partial backlog concerns. The model also incorporates the 
impact of carbon emissions. 
 
 
3. RESEARCH GAP 

 
Even though, organisations are increasingly implementing 

Machine Learning solutions within the processes of inventory 
management, there is still a major research void in providing 
strong models that consider the imperfection, deterioration and 
the fuzzy context of inventory management systems. Most 
contemporary structures of inventory control might have 
embedded features of uncertain demand and product 
imperfection, but they may lack an enumerating factor on how 
product deterioration adds to the rising cost and 
ineffectiveness. Furthermore, the consideration of carbon 
pollution costs in cost decision-making activities is another 
understudied component in the literature.   
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3.1 Problem identification 
 

This study identifies a critical gap in inventory management 
models: the lack of a strategic fit which addresses a fuzzy 
environment and products’ deteriorating character along with 
the costs of carbon pollution. This issue is rather crucial today 
particularly to contemporary companies operating in the 
business environment that seeks to optimize inventory 
management to enhance cost reduction and, at the same time, 
ensure the achievement of sustainability goals. Literature 
research shows that traditional models are misleading in that 
they do not capture variability and effects of undefined 
condition to the rates of product deterioration and faults in an 
accurate manner thus resulting in wrong replenishment cycles 
and order quantities. Moreover, lack of literature on 
integrating price of carbon pollution into total cost is another 
challenge that hampers the formulation of soulutionary 
inventory management. Therefore, it is imperative to seek 

more inventive approaches to address those obstacles; they are 
intending to develop a framework that will integrate the 
Machine Learning algorithms and fuzzy logic to improve 
reliability and productivity of a system used in managing 
inventories in parallel to supporting environmental 
sustainability.  

This literature review outlines the evolution of research in 
demand forecasting, imperfect deteriorating products, and 
environmental considerations. literature survey and research 
gap are discussed in Table 1. While existing studies have 
addressed individual facets, there is a notable gap in 
integrating artificial intelligence for demand forecasts, 
considering partial backlogging, imperfect products and 
carbon emissions. The current study endeavours to contribute 
to this intersection by providing a comprehensive model that 
extends previous frameworks and incorporates machine 
learning concepts in a fuzzy environment over the finite 
planning horizon. 

 
Table 1. Literature survey and research gap 

 
Ref. No. Focus Area Contribution 

[10] Weather's Impact on Moods Demonstrated weather's influence on consumer moods. 
[11] Demand Forecasting Models Emphasized the role of demand forecasting in predicting overstocking and understocking. 

[12] Festive Demand Simple time series algorithms were classified as conventional, and several ML approaches 
were examined. 

[32] Decision Trees Inductive decision trees were used to analyze both continuous and discrete data 
simultaneously. 

[15] Deteriorating Seasonal Items Created a production supply model for decaying seasonal products. 
[17] EPQ for Imperfect Quality Items Proposed an EPQ model for imperfect quality items. 
[20] EOQ with Carbon Costs Established an EOQ model considering carbon costs in transportation and stockkeeping. 

[22] Green Inventory Model Examined a green model for inventory under carbon emission penalties, cap-and-trade, 
and regulatory constraints. 

Current 
Study 

ML, Imperfect Products, Partial 
Backlogging, Carbon Emissions 

Addresses the void through the utilization of sophisticated machine learning methods for 
predicting demand, considering flawed items, incomplete backlogs, and carbon emissions. 

Expands Tiwari et al.'s model. 
 
3.2 Limitation 
 

There are certain peculiarities and limitations of applying 
the chosen demand forecasting methodologies which 
influence their efficiency. Some turn with data demand by 
time suggesting that it is stationary and linear although in 
reality may vary greatly due to seasonality factors, trends or 
other characteristics. These models are therefore very 
sensitive to the quality and completeness of the historical 
data and errors can emanate from incomplete or noisy 
history. Also, forecasting models are, to a certain extent, 
vulnerable to parameter estimation which means that small 
variations with a view to parameters enhance large disparities 
in forecasts. They could also fail to capture various relational 
factors that depict the interactions of various factors and may 
not consider inherent volatilities in demand. In addition, 
traditional models cannot evolve as fast as necessary to 
respond to the changes in the business environment that can 
be technology or shifts in consumers’ preferences. With 
reference to these challenges, new complex methodologies 
need to be developed in order to incorporate elements of 
machine learning and fuzzy control to enhance the flexibility 
and the accuracy of the solutions provided. 
 
 
4. SCHOLASTIC ACHIEVEMENT 

 
The main innovation of this study is in crafting a 

distinctive inventory system supported by machine learning 

and fuzzy logic. This system is custom designed to confront 
the difficulties arising from defective degrading goods amid 
carbon emissions within a limited planning timeframe. 
Unlike traditional inventory models, this study addresses 
uncertainties surrounding defective percentages and 
deterioration rates by treating them as fuzzy variables. 
Through the application of a machine learning technique, 
specifically the time series prediction or (production): the 
model aims to enhance the precision of variable demand 
forecasts for degrading items over a limited planning 
horizon. 

The importance of this research work is evident in its 
potential to revolutionize demand forecasting in businesses. 
By moving beyond fixed demand assumptions and 
incorporating machine learning-based monthly predicted 
demand, organizations can achieve more precise and reliable 
inventory management. The numerical experiment 
conducted in the study demonstrates a substantial reduction 
in overall costs when utilizing seasonal forecasted demand. 
Moreover, the model's incorporation of carbon emissions 
costs underscores a commitment to sustainability and 
environmental responsibility. 

The research's overarching contribution is its holistic 
approach, fuzzy variables, integrating machine learning 
techniques and considerations for carbon emissions. This 
comprehensive framework not only improves demand 
forecasting accuracy but also provides businesses with a 
strategic means to minimize their ecological footprint. 
Ultimately, the research aims to identify optimal policies that 
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minimize overall costs while simultaneously addressing the 
complexities associated with deteriorating products, thereby 
offering a valuable contribution to the field of inventory 
management over the finite planning horizon. 
 
4.1 Environmental benefits of carbon emissions 
integration in inventory control 
 

The decision of including the cost of carbon emissions in 
inventory management has many environmental gains. This 
integration encourages organisations to implement the 
practices that are environmentally friendly across its 
operations since the environmental cost attached to the 
inventory activities are supported. Particularly, it promotes 
the improvements in motion-related measures including the 
optimisation of routes to avoid gross fuel consumption and 
the purchase of effective energy-efficient resources used in 
the storage of goods. Also, the incorporation of carbon 
emissions costs can actually result to the use of suppliers and 
production processes with a relatively low levels of carbon 
emissions hence enhancing the use of a cleaner supply chain. 

Further, it can lead to the optimization of inventory and 
waste as firms look to integrate sustainability strategy in 
inventory control so that the production and disposal of extra 
and obsolete products are eliminated leading to fewer 
emission values. It also aids organisations to conform to 
environment legislation and policies which contributes to its 
sustainable status and may provide certain firm’s with an 
edge in regions where sustainability is becoming increasingly 
more of a concern and criterion to consumers. When such 
costs are incorporated, firms help in creating organizational 
awareness towards the negative effects of their operations on 
the environment while at the same time driving down the 
general climate change. 
 
4.2 Rationale for selecting the decision tree classifier in 
demand forecasting 

 
The decision tree classifier is chosen to be used for demand 

forecasting by means of selecting the Machine Learning 
technique because of several benefits. First, decision trees 
practically allow for evaluating interpretability on a high 
level because the decision rules and their results are easily 
presented in a tree-like structure. This aspect enables one to 
grasp how different aspects affect the demand forecast; it 
assists the stakeholders to develop significant data insights 
and make the required modifications to their strategies. 

In addition to this, decision trees do not assume the 
normality of the data and have the ability to deal with 
numerical as well as categorical data for unique datasets, 
which are always involved in the demand for estimation, for 
example, past sales data, seasonal variation, and promotional 
influences. This is especially helpful when it comes to 
capturing the interaction effects of features since, unlike 
linear methods, tree-based models can capture a quadratic 
and higher order relationships with the variables. 

Moreover, decision trees have high tolerance to outliers 
and noisy data that is typical for real data sets. It isolates data 
into homogenous subsets, thereby; the existence of anomalies 
or irregularities does not undermine the model’s predictive 
capability. Also, decision trees are less sensitive to data pre-
processing than most of the algorithms hence data pre-
processing is done in a minimal rate thus minimizing the 
chances of high bias of the data. 

It is also noteworthy that decision trees are extremely 
efficient in terms of learning and prediction times. The fact 
that building block models can be done relatively quickly is 
an advantage since some of the institutional demands for 
dynamic demand forecasting may necessitate frequent 
updates. Furthermore, decision trees can be replaced, added 
or integrated with some ensembling algorithms like random 
forest or gradient boosting in order to improve the efficiency 
of prediction or to avoid some problems like overfitting or 
interpretability. 

Concisely, the merits such the decision tree classifier’s 
interpretability, flexibility, noise tolerance and efficiency put 
it in a good standing to serve as a viable and effective 
predictor for demand, and by extension a catalyst in 
constructing an effective inventory management system. 
 
 
5. ASSUMPTIONS 
 

1. Only one sort of deteriorating goods is evaluated, with 
an unlimited replacement rate. 

2. The timing for replenishment orders will be limited. 
3. The production pattern is based on expected demand. 
4. 𝛽𝛽 is backordering cost. 
5. The lead time will not be zero but rather nearly 

negligible. 
6. Defective products result from imperfect manufacturing 

and worker handling, with the defective percentage (k) 
considered as an interval trapezoidal fuzzy number. 

7. The decomposition rate is considered a trapezoidal 
fuzzy number. 

8. Carbon emissions due to shipping, godown/storage, and 
decomposition are considered. 

9. Shortages are permitted and partially backlogged. 
10. The fixed transportation cost is incurred when the 

retailer initiates an order. 
 
 
6. METHODOLOGY FOR DEMAND FORECAST AND 
MATHEMATICAL MODEL 

 
This article explores a sustainable supply model designed 

for imperfect diminishing products within a retail setting. At 
the onset, the retailer acquires a quantity (𝑄𝑄𝑖𝑖+1) of products. 
The stock level experiences a reduction due to both demand 
and degradation throughout the period. A partial backlogging 
shortage occurs at a rate of β and persists until time T. By the 
conclusion of the cycle, the supply has exceeded its 
maximum deficit level. To rectify this backlog, the retailer 
initiates the replenishment of products. The dynamics of the 
stock level during the time intervals [0,t0], [t0,t1] are governed 
by the following set of differential equations: 

The suggested approach in this work focuses on accurate 
demand forecasting using artificial intelligence (machine 
learning). While many academics believe that demand is 
predictable, the presence of unpredictable swings implies that 
an approach based on machine learning is more suited for 
demand prediction. For this study, time series method is 
chosen due to its simplicity and effectiveness in ML 
techniques. The primary objective is to ascertain the precise 
seasonal demand for deteriorating products. The flowchart 
illustrating the methodology for demand forecasting is 
presented above. 

PYTHON code (version 3.10.0) is used to validate the 
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forecasted inventory system by predicting seasonal demand 
for deteriorating products. Before executing the Python code, 
ensure that essential packages like Pandas for data 
manipulation and sklearn for handling time series data are 
installed. 

Ultimately, by inputting the parameter (month): the 
seasonally demand for deteriorating products is obtained. As 
we can see the Figure 1. 

Inventory level with boundary condition 𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑠𝑠𝑖𝑖+1) = 0, 
 

𝑑𝑑𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑡𝑡)
𝑑𝑑𝑡𝑡

+ (𝜃𝜃)𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑡𝑡) = −(1 − 𝑘𝑘)𝐷𝐷 
𝑡𝑡𝑖𝑖 < 𝑡𝑡 < 𝑠𝑠𝑖𝑖+1 

(1) 

 
where {1,2,3 … … … … … … … .𝑛𝑛1}, 

 
𝑑𝑑𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑡𝑡)

𝑑𝑑𝑡𝑡
= −(1 − 𝑘𝑘)𝐷𝐷 − (𝜃𝜃)𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑡𝑡) 
𝑡𝑡𝑖𝑖 < 𝑡𝑡 < 𝑠𝑠𝑖𝑖+1 

(2) 

 

𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑡𝑡) = � −(1 − 𝑘𝑘)𝐷𝐷𝑒𝑒𝜃𝜃(𝑢𝑢−𝑡𝑡)

𝑠𝑠𝑖𝑖+1

𝑡𝑡

𝑑𝑑𝑑𝑑 (3) 

 
𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑡𝑡) = 𝜃𝜃(1 − 𝑘𝑘)𝐷𝐷�1 − 𝑒𝑒𝜃𝜃(𝑠𝑠𝑖𝑖+1−𝑡𝑡)� (4) 

 

 

 
 

Figure 1. Demand forecasting 
 

The current shortage level, denoted as 𝑆𝑆𝑖𝑖+1(𝑡𝑡) under the 
boundary condition 𝑆𝑆𝑖𝑖+1(𝑠𝑠𝑖𝑖) = 0, is defined by the 
subsequent differential equation: 
 

𝑑𝑑𝐼𝐼𝐿𝐿𝑆𝑆𝑖𝑖+1(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝐷𝐷𝛽𝛽 (5) 

 
where, 𝑠𝑠𝑖𝑖 < 𝑡𝑡 < 𝑡𝑡𝑖𝑖, 

𝐼𝐼𝐿𝐿𝑆𝑆𝑖𝑖+1(𝑡𝑡) = �𝐷𝐷𝛽𝛽𝑑𝑑𝑡𝑡
𝑡𝑡

𝑠𝑠𝑖𝑖

= 𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡) (6) 

 
Therefore, the overall inventory quantity maintained 

throughout the interval [𝑡𝑡𝑖𝑖, 𝑠𝑠𝑖𝑖+1], 
 

𝑅𝑅𝑖𝑖+1 = � �� −(1 − k)D𝑒𝑒𝜃𝜃(𝑢𝑢−𝑡𝑡)

𝑠𝑠𝑖𝑖+1

𝑡𝑡

du�𝑑𝑑𝑡𝑡

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

 (7) 

 
Eq. (7) can be reformulated as follows by adjusting the 

integration position and omitting the higher-order terms of 
𝛼𝛼2. 
 

𝑅𝑅𝑖𝑖+1 =
−(1 − k)

𝜃𝜃
� �𝑒𝑒𝜃𝜃(𝑠𝑠𝑖𝑖+1−𝑡𝑡) − 1�

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝐷𝐷𝑑𝑑𝑡𝑡 (8) 

Customers are waiting for the complete amount of that 
quantity i.e., the quantity of deficit throughout the timeframe  
[𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖]. 

After rearranging the ordering, 𝑆𝑆𝑖𝑖+1 can be given as: 
 

𝑆𝑆𝑖𝑖+1 = � 𝐼𝐼𝐿𝐿𝑆𝑆𝑖𝑖+1(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

 

= � ��𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑑𝑑)𝑑𝑑𝑑𝑑
𝑡𝑡

𝑠𝑠𝑖𝑖

� 𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

 

=
−1
2
�(𝐷𝐷 𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡))2𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

 

(9) 

 
The total order quantity for a finite planning horizon: 

 

Q = �𝑄𝑄𝑖𝑖+1

𝑛𝑛

𝑖𝑖=1

= �{𝑅𝑅𝑖𝑖+1 + 𝑆𝑆𝑖𝑖+1}
𝑛𝑛

𝑖𝑖=1

 

𝑄𝑄𝑖𝑖+1 =
−(1 − k)

𝜃𝜃
� �𝑒𝑒𝜃𝜃(𝑠𝑠𝑖𝑖+1−𝑡𝑡) − 1�

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝐷𝐷𝑑𝑑𝑡𝑡 

+
1
3

(𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡𝑖𝑖))3 
 
The overall number of degraded components at each refill 

is as follows: 
 

𝐷𝐷𝑖𝑖+1 = � 𝜃𝜃𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

 

= �𝜃𝜃2 �(1 − 𝑘𝑘)𝐷𝐷�1 − 𝑒𝑒𝜃𝜃(𝑠𝑠𝑖𝑖+1−𝑡𝑡)�𝑑𝑑𝑡𝑡

𝑠𝑠𝑖𝑖

𝑡𝑡𝑖𝑖

� 

(10) 

 
In the case of Fast-Moving Consumer Goods (FMCG) or 

basic necessities: Consumers cannot delay their purchases, 
resulting in only a portion, β, of the demand being held back 
during stockouts. Consequently, the remaining fraction (1-β) 
is lost.  

The quantity that was lost throughout the interval [𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖] is 
given as:  
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𝐿𝐿𝑖𝑖+1 = �{𝐷𝐷 − 𝐷𝐷𝛽𝛽}𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

= �{(1 − 𝛽𝛽)𝐷𝐷}𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

 

= (1 − 𝛽𝛽)𝐷𝐷(𝑡𝑡𝑖𝑖 − 𝑠𝑠𝑖𝑖) 

(11) 

 
Cost of carbon emissions during the period [𝑡𝑡𝑖𝑖, 𝑠𝑠𝑖𝑖+1] can 

be expressed as: 

𝐶𝐶𝑒𝑒 = � 𝑐𝑐ˆ + 𝑃𝑃�𝑟𝑟 ∗ 𝑅𝑅𝑖𝑖+1

𝑛𝑛1−1

𝑖𝑖=0

+ ℎ𝑐𝑐� � 𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

 

𝐶𝐶𝑒𝑒 = � cˆ + 𝑃𝑃�𝑟𝑟 ∗ 𝑄𝑄𝑖𝑖+1

𝑛𝑛1−1

𝑖𝑖=0

 

+ℎ𝑐𝑐� � �� −(1 − 𝑘𝑘)𝐷𝐷𝑒𝑒𝜃𝜃(𝑢𝑢−𝑡𝑡)

𝑠𝑠𝑖𝑖+1

𝑡𝑡

𝑑𝑑𝑑𝑑�𝑑𝑑𝑡𝑡

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

 

According to Mishra [9]: The overall cost of carbon 
emissions throughout the interval [𝑡𝑡𝑖𝑖, 𝑠𝑠𝑖𝑖+1] can be expressed 
as: 

 

𝐶𝐶𝑒𝑒 = 𝜏𝜏 �� 𝑐𝑐ˆ + 𝑃𝑃�𝑟𝑟 �𝜃𝜃 �(1 − 𝑘𝑘)𝐷𝐷�1 − 𝑒𝑒𝜃𝜃(𝑠𝑠𝑖𝑖+1−𝑡𝑡)�𝑑𝑑𝑡𝑡

𝑠𝑠𝑖𝑖

𝑡𝑡𝑖𝑖

� − (1 − 𝑘𝑘)𝐷𝐷 ∗ ℎ𝑐𝑐� ∗ 𝜃𝜃 � �𝑒𝑒𝜃𝜃(𝑠𝑠𝑖𝑖+1−𝑡𝑡) − 1)𝑑𝑑𝑡𝑡�

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝑛𝑛1−1

𝑖𝑖=0

� (12) 

 
The transportation expenses for the retailer take into 

account both variable transportation costs and fixed costs, as 
well as carbon emissions resulting from FEC during 

refrigeration. Eq. (13) consequently outlines the 
transportation cost as follows.  

 

𝑐𝑐 = 𝐹𝐹𝑐𝑐 + 2𝑑𝑑𝑣𝑣𝑐𝑐𝐶𝐶1 + 𝑑𝑑 ∗ 𝑣𝑣𝑐𝑐𝐶𝐶2 � 𝐷𝐷𝑒𝑒𝜃𝜃(𝑡𝑡−𝑡𝑡𝑖𝑖) 𝑑𝑑𝑡𝑡 + 2𝑑𝑑𝑒𝑒1
𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖
+ 𝑑𝑑 𝑒𝑒2 � 𝐷𝐷𝑒𝑒𝜃𝜃(𝑡𝑡−𝑡𝑡𝑖𝑖) 𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖
 (13) 

 
Total cost = Replenishment Cost + Inventory Holding Cost + Acquisition Cost + Depreciation Cost + Storage Expense + Lost 

Sales Cost + Carbon Emission Cost + Transportation Expense 
 

𝑇𝑇𝐶𝐶(𝑡𝑡𝑖𝑖, 𝑠𝑠𝑖𝑖 ,𝑛𝑛1) = 𝑛𝑛1 ∗ 𝑂𝑂𝑟𝑟 

+ � 𝐻𝐻 � 𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

+ � 𝑊𝑊ℎ ∗ 𝑄𝑄𝑖𝑖+1

𝑛𝑛1−1

𝑖𝑖=0

+ � 𝐷𝐷𝑡𝑡 ∗
𝑛𝑛1−1

𝑖𝑖=0

𝜃𝜃 � 𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑡𝑡)

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝑑𝑑𝑡𝑡 + � 𝑠𝑠 � 𝐼𝐼𝐿𝐿𝑆𝑆𝑖𝑖+1(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

𝑛𝑛1−1

𝑖𝑖=0

+ � 𝑙𝑙 �(1 − 𝛽𝛽)𝐷𝐷(𝑡𝑡𝑖𝑖 − 𝑠𝑠𝑖𝑖)𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

𝑛𝑛1−1

𝑖𝑖=0

𝑛𝑛1−1

𝑖𝑖=0

 

+ � 𝑐𝑐ˆ + 𝑃𝑃�𝑟𝑟𝑄𝑄𝑖𝑖+1

𝑛𝑛1−1

𝑖𝑖=0

+ ℎ𝑐𝑐� � 𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝐹𝐹𝑐𝑐 + 2𝑑𝑑𝑣𝑣𝑐𝑐𝐶𝐶1 + 𝑑𝑑 ∗ 𝑣𝑣𝑐𝑐𝐶𝐶2� 𝐷𝐷𝑒𝑒𝜃𝜃(𝑡𝑡−𝑡𝑡𝑖𝑖) 𝑑𝑑𝑡𝑡 + 2𝑑𝑑𝑒𝑒1 + 𝑑𝑑𝑒𝑒2 � 𝐷𝐷𝑒𝑒𝜃𝜃(𝑡𝑡−𝑡𝑡𝑖𝑖) 𝑑𝑑𝑡𝑡
𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

 

𝑇𝑇𝐶𝐶(𝑡𝑡𝑖𝑖, 𝑠𝑠𝑖𝑖 ,𝑛𝑛1) = 𝑛𝑛1 ∗ 𝑂𝑂𝑟𝑟 

+ � 𝐻𝐻 � 𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

+ � 𝑊𝑊ℎ ∗ 𝑄𝑄𝑖𝑖+1

𝑛𝑛1−1

𝑖𝑖=0

+ � 𝐷𝐷𝑡𝑡 ∗
𝑛𝑛1−1

𝑖𝑖=0

𝜃𝜃 � 𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑡𝑡)

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝑑𝑑𝑡𝑡 + � 𝑠𝑠 � 𝐼𝐼𝐿𝐿𝑆𝑆𝑖𝑖+1(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

𝑛𝑛1−1

𝑖𝑖=0

+ � 𝑙𝑙 �(1 − 𝛽𝛽)𝐷𝐷(𝑡𝑡𝑖𝑖 − 𝑠𝑠𝑖𝑖)𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

𝑛𝑛1−1

𝑖𝑖=0

𝑛𝑛1−1

𝑖𝑖=0

 

+ � 𝜏𝜏𝑐𝑐ˆ + 𝜏𝜏𝑃𝑃�𝑟𝑟

𝑛𝑛1−1

𝑖𝑖=0

𝑄𝑄𝑖𝑖+1 + 𝜏𝜏ℎ𝑐𝑐� � 𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝐹𝐹𝑐𝑐 + 2𝑑𝑑𝑣𝑣𝑐𝑐𝐶𝐶1 + 𝑑𝑑 ∗ 𝑣𝑣𝑐𝑐𝐶𝐶2� 𝐷𝐷𝑒𝑒𝜃𝜃(𝑡𝑡−𝑡𝑡𝑖𝑖) 𝑑𝑑𝑡𝑡 + 2𝑑𝑑𝑒𝑒1 + 𝑑𝑑𝑒𝑒2 � 𝐷𝐷𝑒𝑒𝜃𝜃(𝑡𝑡−𝑡𝑡𝑖𝑖) 𝑑𝑑𝑡𝑡
𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

 

𝑇𝑇𝐶𝐶(𝑡𝑡𝑖𝑖 , 𝑠𝑠𝑖𝑖 ,𝑛𝑛1) = 𝑛𝑛1 ∗ 𝑂𝑂𝑟𝑟 + ��𝐻𝐻 + 𝜏𝜏ℎ𝑐𝑐� + 𝐷𝐷𝑡𝑡 ∗ 𝜃𝜃� � 𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

+ �𝑊𝑊ℎ + 𝜏𝜏𝑃𝑃�𝑟𝑟� � 𝑄𝑄𝑖𝑖+1

𝑛𝑛1−1

𝑖𝑖=0

+ � 𝑠𝑠 �𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡)𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

𝑛𝑛1−1

𝑖𝑖=0

𝑛𝑛1−1

𝑖𝑖=0

 

+ � 𝑙𝑙 �(1 − 𝛽𝛽)𝐷𝐷(𝑡𝑡𝑖𝑖 − 𝑠𝑠𝑖𝑖)𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

𝑛𝑛1−1

𝑖𝑖=0

+ 𝜏𝜏𝑐𝑐ˆ + 𝐹𝐹𝑐𝑐 + 2𝑑𝑑𝑣𝑣𝑐𝑐𝐶𝐶1 + 𝑑𝑑 ∗  𝑣𝑣𝑐𝑐𝐶𝐶2� 𝐷𝐷𝑒𝑒𝜃𝜃(𝑡𝑡−𝑡𝑡𝑖𝑖) 𝑑𝑑𝑡𝑡 + 2𝑑𝑑𝑒𝑒1 + 𝑑𝑑𝑒𝑒2 � 𝐷𝐷𝑒𝑒𝜃𝜃(𝑡𝑡−𝑡𝑡𝑖𝑖) 𝑑𝑑𝑡𝑡
𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖

 

 

𝑇𝑇𝐶𝐶(𝑡𝑡𝑖𝑖 , 𝑠𝑠𝑖𝑖 , 𝑛𝑛1) = 𝑛𝑛1 ∗ 𝑂𝑂𝑟𝑟 + ��𝐻𝐻 + 𝜏𝜏ℎ𝑐𝑐� + 𝐷𝐷𝑡𝑡 ∗ 𝜃𝜃� � 𝐼𝐼𝐿𝐿𝑖𝑖+1(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

+ �𝑊𝑊ℎ + 𝜏𝜏𝑃𝑃�𝑟𝑟�
𝑛𝑛1−1

𝑖𝑖=0

 

� �
−(1 − 𝑘𝑘)

𝜃𝜃
� �𝑒𝑒𝜃𝜃(𝑠𝑠𝑖𝑖+1−𝑡𝑡) − 1�

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝐷𝐷𝑑𝑑𝑡𝑡 +
1
3
�𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡𝑖𝑖)�

3�
𝑛𝑛1−1

𝑖𝑖=0

+ � 𝑠𝑠�𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡)𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

𝑛𝑛1−1

𝑖𝑖=0

 

+ � 𝑙𝑙 �(1 − 𝛽𝛽)𝐷𝐷(𝑡𝑡𝑖𝑖 − 𝑠𝑠𝑖𝑖)𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

𝑛𝑛1−1

𝑖𝑖=0

+ 𝜏𝜏𝑐𝑐ˆ + 𝐹𝐹𝑐𝑐 + 2𝑑𝑑 ∗ 𝑣𝑣𝑐𝑐𝐶𝐶1 + 𝑑𝑑 ∗ 𝑣𝑣𝑐𝑐𝐶𝐶2 � 𝐷𝐷(𝑡𝑡)𝑒𝑒𝜃𝜃(𝑡𝑡−𝑡𝑡𝑖𝑖) 𝑑𝑑𝑡𝑡
𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖
 

+2𝑑𝑑𝑒𝑒1 + 𝑑𝑑𝑒𝑒2 � 𝐷𝐷(𝑡𝑡)𝑒𝑒𝜃𝜃(𝑡𝑡−𝑡𝑡𝑖𝑖) 𝑑𝑑𝑡𝑡
𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖
 

(14) 
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𝑇𝑇𝐶𝐶(𝑡𝑡𝑖𝑖 , 𝑠𝑠𝑖𝑖 ,𝑛𝑛1) = 𝑛𝑛1 ∗ 𝑂𝑂𝑟𝑟 + � (1 − 𝑘𝑘)�𝐻𝐻 + 𝜏𝜏ℎ𝑐𝑐� + 𝐷𝐷𝑡𝑡 ∗ 𝜃𝜃� � [𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡)]𝑑𝑑𝑡𝑡

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

+ �𝑊𝑊ℎ + 𝜏𝜏𝑃𝑃�𝑟𝑟�
𝑛𝑛1−1

𝑖𝑖=0

 

� �
−(1 − 𝑘𝑘)

𝜃𝜃
� �𝑒𝑒𝜃𝜃(𝑠𝑠𝑖𝑖+1−𝑡𝑡) − 1�

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝐷𝐷𝑑𝑑𝑡𝑡 +
1
3
�𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡𝑖𝑖)�

3�
𝑛𝑛1−1

𝑖𝑖=0

+ � 𝑠𝑠 � 𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡)𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

𝑛𝑛1−1

𝑖𝑖=0

 

+ � 𝑙𝑙 �(1 − 𝛽𝛽)𝐷𝐷(𝑡𝑡𝑖𝑖 − 𝑠𝑠𝑖𝑖)𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

𝑛𝑛1−1

𝑖𝑖=0

+ 𝜏𝜏𝑐𝑐ˆ + 𝐹𝐹𝑐𝑐 + 2𝑑𝑑𝑣𝑣𝑐𝑐𝐶𝐶1 + (𝑑𝑑𝑒𝑒2 + 𝑑𝑑 ∗ 𝑣𝑣𝑐𝑐𝐶𝐶2)� 𝐷𝐷𝑒𝑒𝜃𝜃(𝑡𝑡−𝑡𝑡𝑖𝑖) 𝑑𝑑𝑡𝑡
𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖
 

(15) 

 

 
6.1 Fuzzification of model 
 

In inventory systems, pinpointing precise values for 
known parameters poses a challenge for decision-makers, 
introducing uncertainty into key parameters. Consequently, 
the defective percentage in quantity (k) and deterioration rate 
(θ) are treated as trapezoidal fuzzy interval types. Fuzzy 
arithmetic operations for trapezoidal fuzzy numbers are 
concisely explained. Building upon these basic definitions 
and results, the proposed model is then fuzzified. Let 
(𝜃𝜃�1,𝜃𝜃�2,𝜃𝜃�3,𝜃𝜃�4)  and (𝑘𝑘�1, 𝑘𝑘�2, 𝑘𝑘�3, 𝑘𝑘�4)  represent trapezoidal 
fuzzy numbers, as depicted in Figure 2. Consequently, the 
succinct total average expense function is converted into a 
fuzzy cost function. Since the deterioration rate (θ) and the 
defective quantity percentage (k) are both represented as 
trapezoidal fuzzy figures, the total cost (TC) is also treated as 
a trapezoidal fuzzy figure.  

 
 

Figure 2. Displays the trapezoidal fuzzy 
 

𝑇𝑇𝐶𝐶 = (𝑇𝑇𝐶𝐶�1,𝑇𝑇𝐶𝐶�2,𝑇𝑇𝐶𝐶�3,𝑇𝑇𝐶𝐶�4) 

𝑇𝑇𝐶𝐶𝑑𝑑 =
1
4
�𝑇𝑇𝐶𝐶�1 + 𝑇𝑇𝐶𝐶�2 + 𝑇𝑇𝐶𝐶�3 + 𝑇𝑇𝐶𝐶�4� 

 

𝑇𝑇𝐶𝐶𝑅𝑅�𝑖𝑖(𝑡𝑡𝑖𝑖 , 𝑠𝑠𝑖𝑖 ,𝑛𝑛1) = 𝑛𝑛1 ∗ 𝑂𝑂𝑟𝑟 + ��1 − k𝚤𝚤� �
𝑛𝑛1−1

𝑖𝑖=0

�𝐻𝐻 + 𝜏𝜏ℎ𝑐𝑐� + 𝐷𝐷𝑡𝑡 ∗ 𝜃𝜃𝚤𝚤�� � [𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡)]𝑑𝑑𝑡𝑡

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

 

+�𝑊𝑊ℎ + 𝜏𝜏𝑃𝑃�𝑟𝑟� � �
−(1 − k𝑖𝑖�)

𝜃𝜃𝑖𝑖�
� �𝑒𝑒𝜃𝜃𝑖𝑖�(𝑠𝑠𝑖𝑖+1−𝑡𝑡) − 1�

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝐷𝐷𝑑𝑑𝑡𝑡 +
1
3
�𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡𝑖𝑖)�

3�
𝑛𝑛1−1

𝑖𝑖=0

 

+ � 𝑠𝑠 � 𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡)𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

𝑛𝑛1−1

𝑖𝑖=0

+ � 𝑙𝑙 �(1 − 𝛽𝛽)𝐷𝐷(𝑡𝑡𝑖𝑖 − 𝑠𝑠𝑖𝑖)𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

𝑛𝑛1−1

𝑖𝑖=0

+ 𝜏𝜏𝑐𝑐ˆ + 𝐹𝐹𝑐𝑐 + 2𝑑𝑑𝑣𝑣𝑐𝑐𝐶𝐶1(𝑑𝑑𝑒𝑒2 + 𝑑𝑑 ∗ 𝑣𝑣𝑐𝑐𝐶𝐶2)� 𝐷𝐷(𝑡𝑡)𝑒𝑒𝜃𝜃𝚤𝚤�(𝑡𝑡−𝑡𝑡𝑖𝑖) 𝑑𝑑𝑡𝑡
𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖
 

 
The goal is to discover the basic values of ti and si in order 

to lower the total variable cost (TC) of stock control and 
management. Figure 2 exhibits the trapezoidal fuzzy 
numbers denoting the deterioration rate (θ) and the defective 
quantity percentage (k). The requirements to shows the 𝑇𝑇𝐶𝐶�𝑑𝑑 

to be minimum are given below: 
 

𝜕𝜕𝑇𝑇𝐶𝐶𝑅𝑅�𝑑𝑑(𝑡𝑡𝑖𝑖, 𝑠𝑠𝑖𝑖 ,𝑛𝑛1)
𝜕𝜕𝑡𝑡𝑖𝑖

= 0 

𝜕𝜕𝑇𝑇𝐶𝐶𝑅𝑅�𝑑𝑑(𝑡𝑡𝑖𝑖, 𝑠𝑠𝑖𝑖 ,𝑛𝑛1)
𝜕𝜕𝑠𝑠𝑖𝑖

= 0 

 

𝜕𝜕𝑇𝑇𝐶𝐶𝑅𝑅�𝑑𝑑(𝑡𝑡𝑖𝑖 , 𝑠𝑠𝑖𝑖 ,𝑛𝑛1)
𝜕𝜕𝑠𝑠𝑖𝑖

= �𝐻𝐻 + 𝜏𝜏ℎ𝑐𝑐� + 𝐷𝐷𝑡𝑡 ∗ 𝜃𝜃𝚤𝚤�� � [𝐷𝐷𝛽𝛽]𝑑𝑑𝑡𝑡

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

+ �𝑊𝑊ℎ + 𝜏𝜏𝑃𝑃�𝑟𝑟� � ��𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡𝑖𝑖)�
2�

𝑛𝑛1−1

𝑖𝑖=0

+ � 𝑠𝑠 �𝐷𝐷𝛽𝛽𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

𝑛𝑛1−1

𝑖𝑖=0

 

+ � 𝑙𝑙 �(𝛽𝛽 − 1)𝐷𝐷𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

𝑛𝑛1−1

𝑖𝑖=0

 

(16) 

 
𝜕𝜕𝑇𝑇𝐶𝐶𝑅𝑅�𝑑𝑑(𝑡𝑡𝑖𝑖 , 𝑠𝑠𝑖𝑖 ,𝑛𝑛1)

𝜕𝜕𝑡𝑡𝑖𝑖
= �𝐻𝐻 + 𝜏𝜏ℎ𝑐𝑐� + 𝐷𝐷𝑡𝑡 ∗ 𝜃𝜃𝚤𝚤��[𝐷𝐷𝛽𝛽(𝑡𝑡𝑖𝑖 − 𝑠𝑠𝑖𝑖)] + �𝑊𝑊ℎ + 𝜏𝜏𝑃𝑃�𝑟𝑟� 

� �
−�1 − k𝚤𝚤� �

𝜃𝜃𝚤𝚤�
(1 − 𝑒𝑒𝜃𝜃𝚤𝚤�(𝑠𝑠𝑖𝑖+1−𝑡𝑡𝑖𝑖)) − �𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡𝑖𝑖)�

2� + � 𝑙𝑙 �(1 − 𝛽𝛽)𝐷𝐷𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖

𝑠𝑠𝑖𝑖

𝑛𝑛1−1

𝑖𝑖=0

𝑛𝑛1−1

𝑖𝑖=0

+ 𝑙𝑙(1 − 𝛽𝛽)𝐷𝐷(𝑡𝑡𝑖𝑖 − 𝑠𝑠𝑖𝑖) − (d𝑒𝑒2 + d 

∗ 𝑣𝑣𝑐𝑐𝐶𝐶2) ∗ 𝜃𝜃𝚤𝚤� � 𝐷𝐷𝑒𝑒𝜃𝜃𝚤𝚤�(t−t𝑖𝑖) d𝑡𝑡
𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖
− (d𝑒𝑒2 + d ∗ 𝑣𝑣𝑐𝑐𝐶𝐶2)𝐷𝐷 

(17) 

 

1097



𝜕𝜕2𝑇𝑇𝐶𝐶𝑅𝑅�𝑑𝑑(𝑡𝑡𝑖𝑖 , 𝑠𝑠𝑖𝑖 ,𝑛𝑛1)
𝜕𝜕𝑠𝑠𝑖𝑖2

= �𝑊𝑊ℎ + 𝜏𝜏𝑃𝑃�𝑟𝑟� � ((𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡𝑖𝑖)))
𝑛𝑛1−1

𝑖𝑖=0

− 𝑠𝑠𝐷𝐷𝛽𝛽 + 𝑙𝑙(𝛽𝛽 − 1)𝐷𝐷 (18) 

 

𝜕𝜕2𝑇𝑇𝐶𝐶𝑅𝑅�𝑑𝑑(𝑡𝑡𝑖𝑖 , 𝑠𝑠𝑖𝑖 ,𝑛𝑛1)
𝜕𝜕𝑡𝑡𝑖𝑖2

= �𝐻𝐻 + 𝜏𝜏ℎ𝑐𝑐� + 𝐷𝐷𝑡𝑡 ∗ 𝜃𝜃𝚤𝚤��[𝐷𝐷𝛽𝛽] + �𝑊𝑊ℎ + 𝜏𝜏𝑃𝑃�𝑟𝑟� � �−�1 − k\k𝚤𝚤� �(𝑒𝑒𝜃𝜃𝚤𝚤�(𝑠𝑠𝑖𝑖+1−𝑡𝑡𝑖𝑖)) + 2𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡𝑖𝑖)�
𝑛𝑛1−1

𝑖𝑖=0

 

+ � 𝑙𝑙(1 − 𝛽𝛽)𝐷𝐷
𝑛𝑛1−1

𝑖𝑖=0

+ 𝑙𝑙(1 − 𝛽𝛽)𝐷𝐷 + (d𝑒𝑒2 + d ∗ 𝑣𝑣𝑐𝑐𝐶𝐶2)𝜃𝜃𝚤𝚤�
2 � 𝐷𝐷𝑒𝑒𝜃𝜃𝚤𝚤�(t−t𝑖𝑖) d𝑡𝑡

𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖
+ 𝐷𝐷(d𝑒𝑒2 + d ∗ 𝑣𝑣𝑐𝑐𝐶𝐶2)𝜃𝜃𝚤𝚤�  

(19) 

 
The essential condition is that the Hessian matrix with 𝑇𝑇𝐶𝐶�𝑑𝑑 

must be positive definite for 𝑇𝑇𝐶𝐶𝑅𝑅�𝑑𝑑 to achieve its minimum, 
with n1 held constant. Additionally, the theorem establishes 
the positivity of 𝑇𝑇𝐶𝐶�𝑑𝑑 . Consequently, through an iterative 

process and leveraging Mathematica software, one can 
compute the optimal values of ti and si for a specified positive 
intege  using the Eqs. (18) and (19). 

 
Hessian matrix 
 

∇𝑇𝑇𝑅𝑅�𝑡𝑡𝑗𝑗, 𝑠𝑠𝑗𝑗 ,𝑛𝑛1� = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜕𝜕

2𝑇𝑇𝑅𝑅�𝑡𝑡𝑗𝑗 , 𝑠𝑠𝑗𝑗 ,𝑛𝑛1�
𝜕𝜕𝑡𝑡12

𝜕𝜕2𝑇𝑇𝑅𝑅�𝑡𝑡𝑗𝑗, 𝑠𝑠𝑗𝑗 , 𝑛𝑛1�
𝜕𝜕𝑡𝑡1 𝜕𝜕𝑠𝑠1

0 0 … … 0 0 0

𝜕𝜕2𝑇𝑇𝑅𝑅�𝑡𝑡𝑗𝑗 , 𝑠𝑠𝑗𝑗 ,𝑛𝑛1�
 𝜕𝜕𝑠𝑠2𝜕𝜕𝑡𝑡1

𝜕𝜕2𝑇𝑇𝑅𝑅�𝑡𝑡𝑗𝑗, 𝑠𝑠𝑗𝑗 , 𝑛𝑛1�
𝜕𝜕𝑠𝑠12

𝜕𝜕2𝑇𝑇𝑅𝑅�𝑡𝑡𝑗𝑗 , 𝑠𝑠𝑗𝑗 ,𝑛𝑛1�
 𝜕𝜕𝑠𝑠1𝜕𝜕𝑡𝑡2

0 … … 0 0 0

0
𝜕𝜕2𝑇𝑇𝑅𝑅�𝑡𝑡𝑗𝑗, 𝑠𝑠𝑗𝑗 , 𝑛𝑛1�

𝜕𝜕𝑡𝑡2 𝜕𝜕𝑠𝑠1

𝜕𝜕2𝑇𝑇𝑅𝑅�𝑡𝑡𝑗𝑗 , 𝑠𝑠𝑗𝑗 ,𝑛𝑛1�
𝜕𝜕𝑡𝑡22

𝜕𝜕2𝑇𝑇𝑅𝑅�𝑡𝑡𝑗𝑗 , 𝑠𝑠𝑗𝑗 , 𝑛𝑛1�
𝜕𝜕𝑡𝑡2 𝜕𝜕𝑠𝑠2

… … 0 0 0
… … … … … … … … …
… … … … … … … … …

0 0 0 0 … …
𝜕𝜕2𝑇𝑇𝑅𝑅�𝑡𝑡𝑗𝑗 , 𝑠𝑠𝑗𝑗 ,𝑛𝑛1�
𝜕𝜕𝑡𝑡𝑛𝑛1−1 𝜕𝜕𝑠𝑠𝑛𝑛1−1

𝜕𝜕2𝑇𝑇𝑅𝑅�𝑡𝑡𝑗𝑗, 𝑠𝑠𝑗𝑗 , 𝑛𝑛1�
 𝜕𝜕𝑠𝑠𝑛𝑛1−12

𝜕𝜕2𝑇𝑇𝑅𝑅�𝑡𝑡𝑗𝑗 , 𝑠𝑠𝑗𝑗 ,𝑛𝑛1�
 𝜕𝜕𝑠𝑠𝑛𝑛1−1𝜕𝜕𝑡𝑡𝑛𝑛1

0 0 0 0 … … 0
𝜕𝜕2𝑇𝑇𝑅𝑅�𝑡𝑡𝑗𝑗, 𝑠𝑠𝑗𝑗 , 𝑛𝑛1�
𝜕𝜕𝑡𝑡𝑛𝑛1  𝜕𝜕𝑠𝑠𝑛𝑛1−1

𝜕𝜕2𝑇𝑇𝑅𝑅�𝑡𝑡𝑗𝑗 , 𝑠𝑠𝑗𝑗 ,𝑛𝑛1�
𝜕𝜕𝑡𝑡𝑛𝑛1

2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Theorem: if ti and si satisfy the inequality,  
(i) 𝜕𝜕

2𝑇𝑇𝑇𝑇�𝑅𝑅𝑑𝑑(𝑡𝑡𝑖𝑖,𝑠𝑠𝑖𝑖,𝑛𝑛1)
𝜕𝜕𝑡𝑡𝑖𝑖2

≥ 0, 

(ii) 𝜕𝜕
2𝑇𝑇𝑇𝑇𝑅𝑅�𝑑𝑑(𝑡𝑡𝑖𝑖,𝑠𝑠𝑖𝑖,𝑛𝑛1)

𝜕𝜕𝑠𝑠𝑖𝑖2
≥ 0,  

(iii) 𝜕𝜕
2𝑇𝑇𝑇𝑇𝑅𝑅�𝑑𝑑(𝑡𝑡𝑖𝑖,𝑠𝑠𝑖𝑖,𝑛𝑛1)

𝜕𝜕𝑡𝑡𝑖𝑖2
− �𝜕𝜕𝑇𝑇𝑇𝑇

�𝑅𝑅𝑑𝑑(𝑡𝑡𝑖𝑖,𝑠𝑠𝑖𝑖,𝑛𝑛1)
𝜕𝜕𝑡𝑡𝑖𝑖 𝜕𝜕𝑠𝑠𝑖𝑖

� ≥ 0, 

(iv) 𝜕𝜕
2𝑇𝑇𝑇𝑇�𝑅𝑅𝑑𝑑(𝑡𝑡𝑖𝑖,𝑠𝑠𝑖𝑖,𝑛𝑛1)

𝜕𝜕𝑠𝑠𝑖𝑖2
− �𝜕𝜕𝑇𝑇𝑇𝑇𝑅𝑅

�𝑑𝑑(𝑡𝑡𝑖𝑖,𝑠𝑠𝑖𝑖,𝑛𝑛1)
𝜕𝜕𝑠𝑠𝑖𝑖 𝜕𝜕𝑡𝑡𝑖𝑖

� ≥ 0,  
for all i=1,2,...,n then TC will be positive definite. 

 

𝑄𝑄𝚤𝚤+1�
𝑑𝑑 =

−�1 − k1��
𝜃𝜃1�

� �𝑒𝑒𝜃𝜃1�(𝑠𝑠𝑖𝑖+1−𝑡𝑡) − 1�

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝐷𝐷𝑑𝑑𝑡𝑡 +
−�1 − k2��

𝜃𝜃2�
� �𝑒𝑒𝜃𝜃2�(𝑠𝑠𝑖𝑖+1−𝑡𝑡) − 1�

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝐷𝐷𝑑𝑑𝑡𝑡 +
−�1 − k3��

𝜃𝜃3,� � �𝑒𝑒𝜃𝜃3�(𝑠𝑠𝑖𝑖+1−𝑡𝑡) − 1�

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝐷𝐷𝑑𝑑𝑡𝑡 

+
−�1 − k4��

𝜃𝜃4�
� �𝑒𝑒𝜃𝜃4�(𝑠𝑠𝑖𝑖+1−𝑡𝑡) − 1�

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝐷𝐷𝑑𝑑𝑡𝑡 + (𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡𝑖𝑖))3 

𝑇𝑇𝐶𝐶𝑠𝑠� 𝑖𝑖(𝑡𝑡𝑖𝑖, 𝑠𝑠𝑖𝑖 ,𝑛𝑛1) = 𝑛𝑛1∗1 ∗ 𝑆𝑆𝑠𝑠 + 𝑃𝑃𝑠𝑠 + (
−�1 − k1��

𝜃𝜃1�
� �𝑒𝑒𝜃𝜃1�(𝑠𝑠𝑖𝑖+1−𝑡𝑡) − 1�

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝐷𝐷𝑑𝑑𝑡𝑡 +
−�1 − k2��

𝜃𝜃2�
 

� �𝑒𝑒𝜃𝜃2�(𝑠𝑠𝑖𝑖+1−𝑡𝑡) − 1�

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝐷𝐷𝑑𝑑𝑡𝑡 +
−�1 − k3��

𝜃𝜃3,� � �𝑒𝑒𝜃𝜃3�(𝑠𝑠𝑖𝑖+1−𝑡𝑡) − 1�

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝐷𝐷𝑑𝑑𝑡𝑡 +
−�1 − k4��

𝜃𝜃4�
� �𝑒𝑒𝜃𝜃4�(𝑠𝑠𝑖𝑖+1−𝑡𝑡) − 1�

𝑠𝑠𝑖𝑖+1

𝑡𝑡𝑖𝑖

𝐷𝐷𝑑𝑑𝑡𝑡 + (𝐷𝐷𝛽𝛽(𝑠𝑠𝑖𝑖 − 𝑡𝑡𝑖𝑖))3) 

 
Illustrative scenario: 𝐷𝐷 = 40 , 𝑂𝑂𝑟𝑟 = 0.5 , 𝑘𝑘1� = 0.01 , 

𝑘𝑘2� = 0.02, 𝑘𝑘3� = 0.03, 𝑘𝑘4� = 0.04, 𝐻𝐻 = 420, 𝜏𝜏 = 0.2, ℎ𝑐𝑐� =
0.1 , 𝐷𝐷𝑡𝑡 = 1 , 𝜃𝜃1� = 0.001 , 𝜃𝜃2� = 0.002 , 𝜃𝜃3� = 0.003 , 𝜃𝜃4� =
0.004 , 𝛽𝛽 = 0.1 , 𝑊𝑊ℎ = 0.3 , 𝑃𝑃�𝑟𝑟 = 0.2 , 𝑐𝑐ˆ = 0.1 ,𝐹𝐹𝑐𝑐 = 1.2 , 
d=2, 𝑒𝑒1 = 2 , 𝐶𝐶1 = 0.04 , 𝑒𝑒2 = 2 , 𝑣𝑣𝑐𝑐 = 3 , 𝐶𝐶2 = 0.2 , 𝑆𝑆𝑠𝑠 =
430 , 𝑃𝑃𝑠𝑠 = 0.001 , 𝑙𝑙 = 0.02 , 𝑠𝑠 = 2 . Eqs. (18) and (19), 

depicting nonlinear systems, were resolved utilizing 
Mathematica version 12 mathematical software, employing a 
numerical iterative technique to solve the nonlinear 
differential equation.The optimal condition of the overall 
system cost and replenishment cycles may be noticed in 
Tables 2-4, Figure 3, and Figure 4, respectively, for all the 
values specified in example 1. 
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Table 2. Optimal replenishment time interval, total cost table of retailer, supplier, and total quantity for example 1 
 

↓D → ti t0 t1 t2 t3 t4 t5 t6 𝑻𝑻𝑻𝑻𝑻𝑻�𝒊𝒊 𝑸𝑸𝒊𝒊+𝟏𝟏�
𝒅𝒅 𝑻𝑻𝑻𝑻𝑻𝑻� 𝒊𝒊 

50 0 1.54979 2.03524 2.52702 3.01879 3.51056 4.00234 35.0379 21.255 54.8378 
 

Table 3. Optimal time interval for shortage, total cost table of retailer, supplier, and total quantity for example 1 
 

↓D → si S0 S1 S2 S3 S4 S5 𝑻𝑻𝑻𝑻𝑻𝑻�𝒊𝒊 𝑸𝑸𝒊𝒊+𝟏𝟏�
𝒅𝒅 𝑻𝑻𝑻𝑻𝑻𝑻� 𝒊𝒊 

50 0 1.54113 2.03291 2.52468 301645 3.50822 35.0379 21.255 54.8378 
 

Table 4. Total cost table of retailer for example 1 
 

↓D →n1 1 2 3 4 5 6 7 𝑻𝑻𝑻𝑻𝑻𝑻�𝒊𝒊 
50 539.29 540.79 542.29 543.79 504.85 35.0379 548.29 35.0379 

 
 

 
 

Figure 3. Graphical representation of the replenishment 
time and shortage time 

 

 
 

Figure 4.Graphical representation of the optimal values of 
total cost of retailer 

 
The most optimal solution occurs at node 6, where 𝑡𝑡1 =

1.54979, 𝑡𝑡2 = 2,03524, 𝑡𝑡3 = 2.52702, 𝑡𝑡4 = 3.01879, 𝑡𝑡5 =
3.51056, 𝑡𝑡6 = 4.00234  and 𝑠𝑠1 = 0, 𝑠𝑠2 = 1.54113, 𝑠𝑠3 =
2.03291, 𝑠𝑠4 = 2.52468, 𝑠𝑠5 = 3.01645, 𝑠𝑠6 = 3.50822 , and 
the total cost is 35.0379.  

7. SENSITIVITY INVESTIGATION 
 

A sensitivity analysis is a crucial aspect of research papers, 
particularly in decision-making models or optimization 
problems. It helps understand how changes in parameters 
affect the outcomes or solutions. The sensitivity analysis 
conducted on the research model reveals insights into how 
variations in different parameters impact the optimal 
replenishment cycle and total order quantity. Across the 
parameters β, caphc, L, Vc, Ob, T, z, s, and tau, the optimal 
replenishment cycle consistently remains at 6, showcasing its 
robustness to changes in these factors. For total order 
quantity, the analysis indicates minimal fluctuations in 
response to alterations in most parameters. Parameters like β, 
caphc, L, Vc, Ob, T, and z exhibit marginal influences on total 
order quantity, with variations within a narrow range around 
the approximate value of 30.85. However, parameters s and 
tau demonstrate slightly more discernible effects on both the 
optimal replenishment cycle and total order quantity. Positive 
changes in s and tau lead to minor decreases in the optimal 
replenishment cycle and slight increases in total order 
quantity, while negative changes result in the opposite trends. 
As we can see Figure 5 and Table 5. 
 

 
 

Figure 5. Sensitivity analysis of different parameters 
 

Table 5. Sensitivity analysis of the different parameters 
 

Parameters %Changes Optimal 
Replenishment Cycle 

Total Order 
Quantity 𝑸𝑸𝒏𝒏𝒏𝒏 

Total Cost of Retailer 
𝑻𝑻𝑻𝑻 

Total Cost of 
Supplier 𝑻𝑻𝑺𝑺 

𝛽𝛽 

⎩
⎪
⎨

⎪
⎧+20

+10
0

−10
−20

 

6 
6 
6 
6 
6 

37.4136 
26.1835 
17.0039 
10.2267 
6.1971 

12.54336 
30.49022 
30.8503 
31.2684 
31.7572 

96.52709 
67.5536 
43.8702 
26.3850 
15.9883 
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ℎ�𝑐𝑐 

⎩
⎪
⎨

⎪
⎧+20

+10
0

−10
−20

 

6 
6 
6 
6 
6 

17.00816 
17.00756 
17.00696 
17.00636 
17.00576 

12.2251 
30.8491 
30.8493 

30.84955 
30.8497 

43.8810 
43.8795 
43.8779 
43.87643 
43.87488 

H 

⎩
⎪
⎨

⎪
⎧+20

+10
0

−10
−20

 

6 
6 
6 
6 
6 

31.06859 
23.7566 
17.00396 
11.38452 
7.74971 

12.8146 
29.00219 
30.85033 
33.17159 
36.15723 

80.1569 
61.2921 

43.870237 
29.37207 
19.9942 

𝑙𝑙 

⎩
⎪
⎨

⎪
⎧+20

+10
0

−10
−20

 

6 
6 
6 
6 
6 

17.017007 
17.01048 
17.00396 
16.99744 

16.990929 

12.25913 
30.84763 
30.85033 
30.85303 
30.85573 

43.9038 
43.88705 
43.87023 
43.8534 
43.83659 

𝑂𝑂𝑟𝑟 

⎩
⎪
⎨

⎪
⎧+20

+10
0

−10
−20

 

6 
6 
6 
6 
6 

17.00396 
17.00396 
17.0039 
17.0039 
17.00396 

14.02484 
31.75033 
30.85033 
29.95033 
29.0503 

43.87023 
43.87023 

43.870237 
43.8702 
43.87023 

s 

⎩
⎪
⎨

⎪
⎧+20

+10
0

−10
−20

 

6 
6 
6 
6 
6 

17.06070 
17.0322 
17.0039 
16.97577 
16.94769 

11.8642 
32.61924 
30.8503 
29.0811 

27.31168 

44.0166 
43.94327 

43.870237 
43.79749 
43.72504 

𝐷𝐷𝑡𝑡 

⎩
⎪
⎨

⎪
⎧+20

+10
0

−10
−20

 

6 
6 
6 
6 
6 

17.00426 
17.004118 
17.0039 
17.00381 
17.0036 

12.22485 
30.8502 

30.85033 
30.85038 
30.8504 

43.87101 
43.87062 
43.87023 
43.8698 
43.8694 

𝜏𝜏 

⎩
⎪
⎨

⎪
⎧+20

+10
0

−10
−20

 

6 
6 
6 
6 
6 

17.0060 
17.0049 
17.0039 
17.0029 
17.0019 

12.2332 
30.8619 

30.85033 
30.8387 
30.8271 

43.8754 
43.8728 
43.87023 
43.8676 
43.865 

𝑣𝑣𝑐𝑐 

⎩
⎪
⎨

⎪
⎧+20

+10
0

−10
−20

 

6 
6 
6 
6 
6 

14.3255 
15.60286 
17.0039 
18.5331 
20.1947 

12.32495 
31.4724 
30.8503 
30.2313 

29.61547 

36.9598 
40.2553 
43.8702 
47.81556 
52.1025 

d 

⎩
⎪
⎨

⎪
⎧+20

+10
0

−10
−20

 

6 
6 
6 
6 
6 

42.8818 
52.04806 
62.5602 
74.5001 
87.95177 

13.40037 
24.65992 
23.3896 
22.1549 
20.9569 

110.6350 
134.2840 
161.4053 
192.210 
226.9155 

 
7.1 Managerial insights 

 
This study offers valuable insights for inventory managers, 

providing effective strategies to address challenges posed by 
seasonal demand fluctuations. The emphasis on precisely 
forecasting seasonal demand highlights its pivotal role in 
optimizing inventory management and enhancing cost 
efficiency across various industries. A significant managerial 
insight arises from the integration of machine learning 
techniques, particularly decision tree classifiers, which 
markedly improve the accuracy of demand forecasts. 

A crucial lesson from this research underscores the 
substantial costs associated with relying on fixed demand 
assumptions. Opting for seasonal forecasted demand over 
static predictions presents businesses with the opportunity to 
make noteworthy reductions in overall costs. For example, 
envision a retail company specializing in vegetables and fruits. 
Traditional approaches, maintaining a fixed inventory quantity 
year-round, may result in surplus during low-demand periods 
and shortages during peak seasons. However, employing 
machine learning for precise seasonal demand forecasting 
empowers managers to strategically adjust ordering quantities 
and replenishment periods. This adaptability allows 

companies to optimize inventory levels, reduce expenses 
linked to prevent stock-outs, surplus inventory and elevate the 
overall customer experience. 

The study's findings also shed light on optimal policies for 
organizations grappling with imperfect deteriorating products 
in their inventory systems. Policymakers aiming to minimize 
overall costs can benefit by exercising greater control over 
sensitive parameters related to total cost. Businesses, 
especially in industries like retail and pharmaceuticals, stand 
to gain tangible advantages by incorporating these findings 
into their practical operations. The implementation of 
improved management policies, driven by seasonal demand 
estimates and optimized ordering practices, holds the potential 
to enhance operational efficiency and boost profitability. 
 
 
8. CONCLUSION 

 
In summary, the present paper introduces a more practical 

inventory model designed for imperfectly decaying items, 
which incorporates a Machine Learning technique for seasonal 
demand prediction. The incorporation of deterioration rate and 
defective percentage quantity as fuzzy variables addresses 
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inherent uncertainties, allowing for permitted shortages that 
are partially backlogged over the finite planning horizon. 

Recognizing the pivotal role of product demand in business 
operations, particularly its seasonal variations, the study 
utilizes a time series predicting method to analyse seasonal 
forecasted demand. The results highlight the generation of 
direct month-wise predicted demand, offering managers 
valuable insights to enhance the management of inventory is 
based on expected demand. The Sign Distance method is used 
for defuzzification, aiding in the determination of optimal 
replenishment periods and ordering quantities that minimize 
total average cost, including emission costs over the finite 
planning horizon. 

The numerical example confirms the robustness of the 
mathematical model, unveiling a significant decrease in 
overall costs when employing projected seasonal demand as 
opposed to fixed demand. Sensitivity analysis pinpoints 
critical parameters demanding heightened managerial 
attention. Graphical representation illustrates the curvature of 
the total cost function, emphasizing its highly non-linear 
nature. 

To enhance the model's versatility, future extensions could 
explore alternative demand forecasting approaches, such as 
decision tree methods forecasting. Additionally, a comparative 
study across different forecasting methods could provide 
valuable insights. Further extensions may involve 
incorporating different fuzzy variables to account for 
increased uncertainty in parameter estimation. 
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NOMENCLATURE 

T The planning horizon (Year) 

ti 
The time throughout the ith replenishment 
cycle whenever the stock level reaches zero. i 
= 0,1, 2, ..., n1 − 1 

si 
The time for ith replenishing cycle when 
inventory levels approach insufficiency or 
shortage i = 0,1… . . ., n1 – 1 

ILi+1(t) 
The overall stock level for (i+1)th order cycle at 
time t  where ti ≤ t ≤ si+1

ILSi+1(t) 
The firm’s level of inventory for (i+1)th order 
cycle at time t that goes to the shortage, where 
si ≤ t ≤ ti

K Defective percentage 
D Demand rate unit/year 
θ Degradation rate 
θi Fuzzy deterioration rate 

hˆc 
The amount of CO2 associated with each unit 
inventory holding cost (refrigeration cost) 
$/unit/year 

Pr The cost of each acquired unit 

Pˆr 
The amount of CO2 emitted following the 
purchase costs per unit. c: Steady carbon 
emission cost per dollar  $/unit 

Transportation variables 

𝐶𝐶1 Fuel consumption of a retailer's vehicle when 
empty. (litres per kilometre) 

𝐶𝐶2 
Extra energy consumption for each ton of 
payload due to refrigeration and vehicle 
services during transportation. (litre/km/ ton) 

𝑒𝑒1 Fee for carbon dioxide emissions related to 
retail transportation. ($/km) 

𝑒𝑒2 
Additional (refrigeration) carbon emission 
cost incurred by the retailer per unit item 
during transportation. ($/unit/km) 

d The distance traveled from the supplier to the 
retailer. (km) 

𝐹𝐹𝑐𝑐 
Fixed transportation costs incurred when the 
retailer places an order. ($) 
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