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Electric vehicle (EV) technology is developing and requires effective and adaptive 

controllers to enhance performance and be the best sustainable solution to the population 

concerns caused by oil from other vehicles. This paper proposes a nonlinear Proportional 

Derivative (PD) controller to control motor speed in EV. The controller's optimal gains 

are tuned using Gorilla Troops Optimization (GTO). Two classical controllers (PID, PD) 

are compared with nonlinear PD controller, all tuned controller variables are determined 

using the GTO algorithm, and the Integral Time Absolute Error (ITAE) fitness function is 

adopted to maintain the system performance. To simulate the system response, MATLAB 

(Platforms for m-file and Simulink) is used. The achieved results are compared with the 

classical controllers (PD &PID) to demonstrate the efficacy of the suggested nonlinear PD 

controller. The benefits of using the nonlinear hyperbolic function effect on system 

behavior can be seen in its quick settling time, which is 9.6% faster than the traditional 

PID controller and 47% faster than the traditional PD controller. It also became apparent 

in its stable response, which was free of noise and overshoot while the PID controller 

overshoots with a value of (8.8). While in rise time, the proposed controller with 0.0083s 

outperforms the PID controller 0.4905s, and the PD controller 0.1315s. According to the 

simulation results, the nonlinear PD controller settling time is faster and more smoothly 

(0.0187s) than the PID (0.18s) and PD (0.88s) controllers, which are also optimized with 

the same GTO tuning algorithm.  The suggested controller and the intelligent tuning 

algorithm guided the system's response to produce the best outputs. The simulation results 

demonstrated a steady behavior and an effective response in tracking the intended speed 

value; transient analysis is utilized to explain the performance of the suggested controller. 
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1. INTRODUCTION

Nowadays, many countries try to promote the Electrical 

Vehicles (EV) use to fix the pollution issues and to reduce the 

fuel energy dependence due to its high prices and low batteries 

lifetime. The controlling of speed in EV required a controller 

that provides a maximum speed with a small values of error 

tracking and consumption of the power. The EV system is 

suffered from high nonlinearity and uncertain for the change 

of road states, system parameters, and finally external 

disturbances [1, 2]. 

In the electric vehicle system, the first trail for authors is to 

solve speed control matter; it is adopted as a subject for vast 

number of studies [3, 4] for the DC motor of an EV, a PID 

controller is suggested. In other systems [5], an electronic 

throttle valve's angular position is controlled by an Adaptive 

Neural Network-based Fuzzy Inference (ANFIS) controller. A 

modified harmony search optimization method is utilized [6] 

to ensure that the most effective tuning of the most well-liked 

existing PI has a positive impact on the speed management of 

EVs to introduce an intelligent type-2 fuzzy logic controller, 

in the study [7], a fractional order PID controller is presented 

for speed tracking performance. Using Gray Wolves 

Optimization (GWO) to optimize the controller's settings, an 

EV speed controller using a fuzzy-PID algorithm is developed 

[8], and finally a robust H∞ is suggested for improve the 

system stability [9]. These types have recently been used by 

many researchers with a variety of changes, such as the 

combination of an intelligent approach like a neural network 

[10, 11], or alter its arrangement to change the desired 

response of the system [12, 13], or used the fractional calculus 

such as fractional differential or fractional integral, or the two 

together become as a fractional to improve system response 

[14], the parameters are (λ for the integral and μ for derivative ), 

due to this the controller gains will be five tuned values. 

Fractional order fuzzy PID controller used in the study [15], a 

hybrid algorithm using the Flower Pollination Algorithm 

(FPA) and Genetic Algorithm (GA) introduced in the study 

[16], and Ant Colony Optimization (ACO) and Genetic 

Algorithm (GA)-based fuzzy PID controller presented in the 

studies [17-19]. Makrygiorgou and Alexandridis [20] focused 

on a cascaded PI/P scheme and a PI controller to regulate the 

EV's speed and DC voltage/battery, respectively. Jassim et al. 

[21] presented the use of particle swarm, multiverse

optimization algorithms, and PID controllers to develop the

optimal controller for electric vehicles. Nitesh and
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Ravichandra [22] introduced a fuzzy Type-2 controller for 

controlling single-wheel EVs. 

Based on lead compensation, a sophisticated control 

algorithm is suggested [23] to regulate the electric vehicle 

system's speed. The compensator parameters are then 

optimally defined using the Zebra Optimization Algorithm 

(ZOA) so that the system outputs and reference model are 

asymptotically identical with a desired steady-state error. 

Alkreem and Abbas [24] suggested using Model Predictive 

Control (MPC) to address the problems with the EV system. 

Additionally, two optimization algorithms-improved chaotic 

electromagnetic field optimization and electrically charged 

particle optimization-are used for optimizing the MPC's 

performance. Numerous recent publications highlighted the 

contributions and efforts of other researchers in this area. 

Based on a neural network (NN) and driver behavior data, a 

dual-mode adaptive cruise control (ACC) strategy that 

combines MPC and NN was proposed [25] to create an 

intelligent ACC system. A novel approach to energy 

management has been put forth, which entailed employing a 

Markov chain and real-time data to model the driver's behavior, 

which was then applied to a stochastic MPC algorithm [26]. A 

novel form of adaptive cruise control (ACC) algorithm was 

introduced, integrating active disturbance rejection control 

(ADRC) and MPC. The MPC is used by the ACC system's 

upper controller [27]. 

This study presents an effective nonlinear PD (NLPD) 

controller scheme with the advantage of utilizing an intelligent 

optimization technique for adjusting the gains or parameters 

of the controller required to improve the EV dynamic response 

by accurately tracking the driver-selected desired speed. 

The following is a list of this paper: The mathematical 

modeling of the EV system is illustrated in Section 2. The 

suggested controller for speed control is described in Section 

3. In Section 4, the GTO algorithm is illustrated. Section 5

presents the numerical results, while Section 6 presents this

article's conclusions.

2. ELECTRICAL VEHICLE Modeling

Figure 1. Electronic throttle control schematic [10] 

Figure 2. Vehicle Simulink model [8] 

Figure 1 depicts the electronic throttle control system for 

electric vehicles employing a DC servo motor and the 

configuration of leader-follower are used for the dynamics of 

the vehicle as explained in the Simulink circuit shown in 

Figure 2 [28]. 

The vehicle dynamics are represented by equations below: 

𝑚�̈� = 𝑓𝑒(𝜃) − 𝑎�̇�2 − 𝑓𝑔 (1) 

𝑓�̇�(𝜃) =
1

𝜏𝑓

(−𝑓𝑒(𝜃) + 𝑓𝑖 + 𝛾√𝜃) (2) 

where, 𝑓𝑒  is engine force, which depends on the throttle

position, 𝑓𝑔 represents gravity-induced force, which depends

on the grade of the road, θ is position of the throttle, �̇� presents 

speed of the vehicle. The basic assumptions are listed below: 

• 30% of a vehicle's weight is the gravitationally induced

force 𝑓𝑔

• Engine time constant 𝜏𝑓  is assumed to be 0.2s., with a

typical range of 0.1 to 1s.

The values for the parameters are indicated in Table 1. 

Table 1. EV parameter values [8] 

Variable Notation Value 

Vehicle Mass M 1000Kg 

Coefficient of Aerodynamic Drag α 4N(m/s)2 

Coefficient of Engine Force 𝛾 12500N 

Engine idle Force fi 6400N 

The transfer function based on explained system dynamics 

is 

𝑉(𝑠)

𝜃(𝑠)
=

829000

𝑠(𝑠 + 5)
(3) 

State space system equations 

𝐴 = [
0 1
0 −5

] , 𝐵 = [
0

829000
] , 𝐶 = [1 0], 𝐷 = [0] 

The System is |λI-A|=0, then λ1=0 & λ2=-5. System is 

observable and controllable with matrix Q &R with rank equal 

1. 

𝑄 = 829000 × [
0 1
0 −5

] & 𝑅 = [
1 0
0 1

] 

3. SUGGESTED NONLINEAR CONTROLLER

PID controllers are considered as widely applicable and 

conventional controller types that are utilized to improve the 

desired system responsiveness. In this paper a nonlinear 

relation is introduced to enhance system behavior and make 

the system stable [29, 30]. In order to manage the motor speed 

in an EV, a nonlinear PD controller's optimal gains are tuned 

using GTO algorithm. Following that, two classical controllers 

(PID and PD) will be used for comparison purposes, the GTO 

method is used to find all tuned controller variables, and the 

fitness function ITAE will be applied to maintain system 

performance. As can be noticed in Figure 3, it is a 

multiplication of a nonlinear variable (𝑒) and the PD controller 

variables, this nonlinear formula is a function of system error 
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as explained in Eq. (4). 

Figure 3. Nonlinear PD controller 

𝐾𝑛(𝑒) = 𝑇𝑎𝑛ℎ(𝑒) =
𝑒𝑥𝑝(𝑘0𝑒) − 𝑒𝑥𝑝 (𝑘0𝑒)

𝑒𝑥𝑝(𝑘0𝑒) + 𝑒𝑥𝑝 (𝑘0𝑒)
(4) 

𝑒 = {
𝑒 |𝑒| ≤ 𝑒𝑚𝑎𝑥

𝑒𝑚𝑎𝑥 . 𝑠𝑖𝑔𝑛(𝑒) |𝑒| > 𝑒𝑚𝑎𝑥
(5) 

kp, kd and 𝑘0 are three gains are tuned  to its optimal values

for reaching to the optimal system response. 

4. GORILLA TROOPS OPTIMIZATION

Due to the fact that natural organisms have a collective 

intelligence that has been researched and modelled by 

intelligent algorithms, optimization algorithms have become 

an efficient technique to solve many challenges. The artificial 

GTO algorithm is one of these formulas [31-33]: 

Stage 1: Exploration 

Each gorilla is now taken into consideration as a potential 

opponent for the best decision made by the silverback. In this 

stage, there are three options that are expressed in Eq. (6) 

below. The first option is to move to an unknown location and 

increase the exploration of GTO, the second is to move to a 

different group and balance the two stages of exploration and 

exploitation, and the third is to move to a predetermined 

location and increase GTO capability in order to explore 

various locations. 

𝐺𝑋(𝑡 + 1)

= {

(𝑈𝐿 − 𝐿𝐿)𝑟1 + 𝐿𝐿,       𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑃
(𝑟2 − 𝑎)𝑋𝑟(𝑡) + 𝐿 × 𝐻, 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 0.5

𝑋(𝑖) − 𝐿 (𝐿(𝑋(𝑡) − 𝐺𝑋𝑟(𝑡)) + 𝑟3(𝑋  𝐺𝑋𝑟(𝑡))) 𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5

 (6) 

The current position is the vector (t), and the nominated 

location for the following iteration is GX(t+1). Any group 

candidate who is randomly selected from the group is 

represented by the variable 𝑋𝑟(𝑡), and 𝐺𝑋𝑟(𝑡) is the location

of this random one. The variables' upper and lower limits are 

𝑈𝐿 and 𝐿𝐿, and the random integers between 0 and 1 are used 

as the parameters 𝑟1, 𝑟2 ,l, Z and 𝑟3. The variables, 𝑎, 𝐿 and 𝐻
is claculated as follows: 

𝑎 = 𝐶 × (1 − 𝐼𝑡 ∕ 𝑀𝑎𝑥𝐼𝑡) (7) 

𝐶 = cos(2 × 𝑟4) + 1 (8) 

𝐿 = 𝑐 × 𝑙 (9) 

𝐻 = 𝑍 × 𝑋(𝑡) (10) 

𝑍 = [−𝑎,𝑎] (11) 

Stage 2: Exploitation 

There are two choices available at this stage: the first is to 

follow the adult leader Silverback, and the second is to engage 

in competition with the adult females. Comparing the obtained 

parameter value in Eq. (11), each alternative is picked; the first 

option is chosen if a≥W, and the second option is selected if 

a<W. W is a pre-set variable that was made before to the 

algorithm's execution. 

• Adult silverback gorillas should be followed.

The other gorillas follow the silverback gorilla's lead in

making this decision and go in quest of potential food sources. 

The following options are available if a≥W is determined in 

Eq. (12): 

𝐺𝑋(𝑡 + 1) = 𝐿 × 𝑀 × (𝑋(𝑡) − 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘) + 𝑋(𝑡). (12) 

• Adult females face competition

This decision is made when young male gorillas are

approaching adolescence and there is fierce competition 

among them to form their own sets by selecting the adult 

females. This option is made if a<W and expressed as 

illustrated in the relations below: 

𝐺𝑋(𝑖) = 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 − (𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 × 𝑅
− 𝑋(𝑡) × 𝑅) × 𝐴

(13) 

𝑅 = 2 × 𝑟5 − 1 (14) 

𝐴 = 𝛽 × 𝐸 (15) 

𝐸 = {
𝑁1 = 𝑟𝑎𝑛𝑑 ≥ 0.5
𝑁2 = 𝑟𝑎𝑛𝑑 < 0.5

(16) 

Figure 4. GTO algorithm 

1069



"𝑟5" designates a random value between [0, 1] where "R"

specifies the impact force and is calculated using Eq. (13). Eq. 

(14) applied to calculate conflict violence, and the coefficient

vector A applied to determine how intense it is. A few

variables are defined before to the process starting, such as a,

𝛽, and E, which are utilized to reflect the impact of violence

on the decision dimensions. Next, the fitness function for each

GX (t) is determined. If the fitness function of GX (t) GX

(t)<X(t), GX(t) will be chosen as the X(t) decision, and the

silverback leader will be chosen based on which option is the

best among all of the group's options. Each phase of the GTO

algorithm is illustrated in Figure 4.

5. SIMULATION RESULTS

In order to track and monitor the controller's behavior using 

Matlab 2019, the simulation results for the recommended 

controller for controlling speed in an EV system are shown in 

this section. The GTO algorithm's variables are displyed in 

Table 2. GTO parameters were tuned by trial and error 

(manually) and chosen for this specific application. The fitness 

function ITAE [34] was used in the GTO tuning iterations to 

check and reduce system error, as detailed in Eq. (17) below. 

Figure 5 shows the proposed system's block diagram. 

𝐼𝑇𝐴𝐸 = ∫ 𝑡
∞

0

|𝑒|𝑑𝑡 (17) 

Table 2. GTO parameters 

Description Value 

Population no. 50 

Maximum iteration number 30 

Dimension 2 

Figure 5. EV system nonlinear controller based on GTO 

algorithm 

Figure 5 shows the response of the system. The GTO 

algorithm is used to compare the proposed controller's 

performance to that of two conventional controllers (PD and 

PID) tuning. 

The response of the three best controllers is shown in Figure 

6, and the controllers' tuned gains are displayed in Table 3. The 

simulation results demonstrated a steady behavior and an 

effective response in tracking the intended speed value; 

transient analysis is utilized to explain the performance of the 

suggested controller. The numerical findings demonstrated 

that, when compared to two traditional controllers (PD and 

PID), the suggested controller improved system performance 

the most. Finally, the controller behavior is improved by the 

nonlinear function to more precisely achieve the desired 

optimal response with a zero-error value and steady response. 

Based on the comparison, it is concluded that the suggested 

controller's results are enhanced and made more noticeable, 

which is reflected in Table 4 in its evaluation Criteria. These 

characteristics show how the suggested controller is enhanced 

and made to have a noticeable and stable behavior in system 

response. 

Figure 6. EV actual speed responses for the three optimal 

controllers 

Table 3. Gains tuned values for optimal controllers using 

GTO 

Controller Kp KI KD 𝐤𝟎

Optimal PD 0.0047 - 0.00092 - 

Optimal PID 0.0381 0.0583 0.00025 - 

Optimal NLPD 0.631 - 0.00366 2 

Table 4. Response analysis comparison for the controllers 

Controller 

Maximum 

Overshoot 

(Mp %) 

Peak 

Time 

(Tp) 

Rise 

Time (tr) 

Settling 

Time (ts) 

PD 0 1.2 0.4905 0.88 

PID 8.8 0.4 0.1315 0.18 

Nonlinear PD 0 0.025 0.0083 0.0187 

In the step response study, a comparison between the 

suggested controller and conventional PD and PID controllers 

was made. This comparison illustrates how the suggested 

controller responds more consistently and effectively than 

conventional ones. The benefits of using the nonlinear 

hyperbolic function effect on system behavior can be seen in 

its quick settling time, which is 9.6% faster than the traditional 

PID controller and 47% faster than the traditional PD 

controller. It also became apparent in its stable response, 

which was free of noise and overshoot while the PID controller 

overshoots with a value of (8.8). The propsed nonlinear PD 

controller is faster with rise time of 0.0083s than the PID 

controller, which is 0.4905s, and the traditional PD controller, 

which is 0.1315s. According to the simulation results, the 

nonlinear PD controller settling time is faster and more 

smoothly (0.0187s) than the PID (0.18s) and PD (0.88s) 

controllers, which are also optimized with the same GTO 

tuning algorithm. The usage of the nonlinear function and the 

unique GTO algorithm, which drove the system to the desired 

speed efficiently, are responsible for this effective response. 

The incapacity to adjust control parameters in real-time and 

the inability to adjust to changing control targets are the 

drawbacks of utilizing the proposed controller. 
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To determine the effective response of the suggested 

nonlinear PD controller in this paper, a comparison study of 

transient response analysis with other controllers tuned using 

different new optimization algorithms (such as the Linear 

Quadratic Regulator (LQR), Observer Based Controller 

(OBC), and Pole Placement Technique (PPT) are designed. 

Several adaptive controllers, like the Self Organizing 

Controller (SOC), along with intelligent control techniques, 

such as fuzzy logic PD and fuzzy logic PI) is also carried out 

in Table 5. 

Table 5. Comparison study of transient response analysis 

with other controllers 

Controller 

Maximum 

Overshoot 

(Mp %) 

Rise 

Time (tr) 

Settling 

Time (ts) 

PD 0 0.4905 0.88 

PID 8.8 0.1315 0.18 

The proposed nonlinear PD 0 0.0083 0.0187 

PID [28] 15.6 0.19 0.79 

GA-PID [28] 9.5 0.05 0.27 

PPT [35] 8.10 0.72 1.79 

OBC [35] 1.31 1.64 1.87 

Optimal LQR [35] 0.03 1 1 

SOC [35] 11.7 2.63 9.55 

Fuzzy PD [35] 2.2 1.15 1.5 

Fuzzy PI [35] 0.6 1.7 2.1 

ANN [36] ≈ 0 0.765 1.29 

FPD [36] ≈ 0 0.218 0.392 

FPD+I [36] ≈ 0 0.205 0.352 

As can be seen from Table 5, the suggested controller 

outperforms the other controllers due to its quick response 

time of the EV. Even with a new tuning algorithm, the issue is 

the trade-off between the controller's stability represented by 

the overshoot and its quick response represented by a fast-

settling time, as was explicitly demonstrated as was explicitly 

demonstrated in compared achieved values. 

6. CONCLUSION

The suggested nonlinear PD controller was shown to be 

effective. The suggested controller's primary function is to 

monitor an EV's intended speed value. The suggested system 

was simulated using the MATLAB/Simulink platform. The 

numerical findings demonstrated that, when compared to two 

traditional controllers (PD and PID), the suggested controller 

improved system performance the most. Finally, the controller 

behavior is improved by the nonlinear function to more 

precisely achieve the desired ideal response with a zero-error 

value and steady response. The suggested controller's most 

frequent drawbacks are low performance to handle strong non-

linearities, trouble handling numerous variables with strong 

interaction, difficulty handling multiple constraints, and 

difficulty performing optimization. The proposed controller 

outperforms the PID controller by approximately 9.6% and the 

traditional PD controller by approximately 47% in the setting 

time. While the proposed controller. While in the rise time, the 

proposed controller with 0.0083s outperforms the PID 

controller 0.4905s, and the PD controller 0.1315s. According 

to the simulation results, the nonlinear PD controller settling 

time is faster and more smoothly (0.0187s) than the PID (0.18s) 

and PD (0.88s) controllers, which are also optimized with the 

same GTO tuning algorithm. The suggested controller and the 

intelligent tuning algorithm guided the system's response to 

produce the best outputs. The advantages of the nonlinear PD 

controller include its simplicity, rapidity, high precision, and 

ability to achieve good control effect without overshooting. 

But the incapacity to adjust control parameters in real-time and 

the inability to adjust to changing control targets are the 

drawbacks of utilizing the proposed controller. This study can 

be extended by employing alternative optimization methods 

instead of GTO in order to adjust the parameters of the 

controller, such as Zebra optimization algorithm, a hybrid 

firefly and particle swarm optimization, and African vultures’ 

optimization algorithm. For comparison study purposes, other 

controllers can be employed, including recurrent neural 

networks like PID controller, neural fractional order PID 

controller recurrent, and fuzzy logic controllers. Furthermore, 

hardware components can be used to construct the best 

suggested controller for controlling the speed of an EV. A two-

link rigid robotic manipulator is one example of a plant that 

can be used to implement the best recommended controller. 
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