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In this research endeavour, we delve into the realm of microgrid management, focusing 

specifically on enhancing its performance in the aftermath of a fault event. Microgrids, 

characterized by their incorporation of diverse replenishable energy sources like the sun 

and wind, alongside storage options like batteries and conventional methods of backup, 

like diesel generators, face significant challenges when confronted with sudden spikes in 

demand due to faults or disruptions. To address these challenges, we explore the 

application of three distinct optimization methodologies: Genetic Algorithm (GA), 

Simulated Annealing (SA), and Particle Swarm Optimization (PSO).These techniques are 

employed to dynamically adjust load demand within the microgrid, aiming to mitigate the 

impacts of the fault and restore stability and efficiency to the system. Through a 

comprehensive comparative analysis, we assess the efficacy of every optimization 

approach regarding its capacity for optimize load demand effectively, maintain system 

reliability, and maximize resource utilization. By examining key performance metrics such 

as cost reduction, load balancing, and energy efficiency improvement, Our goal is to 

provide insightful information about the strengths additionally limitations of each 

optimization technique. Ultimately, our study contributes to the body of knowledge 

surrounding microgrid management strategies, offering practical guidance for decision-

makers and engineers tasked with optimizing microgrid performance in real-world 

scenarios. 

Keywords: 

microgrid, optimization, demand, fault, 

reliability, load demand, stability 

1. INTRODUCTION

Microgrids have become a promising an answer for 

enhancing the resilience and sustainability power systems, 

especially in light of the rising demand and the growing 

penetration of sustainable energy resources. These localized 

grids, capable of operating independently or in conjunction 

with the main grid, offer numerous benefits, including 

improved reliability, reduced energy costs, and enhanced 

integration of renewable resources [1-3]. 

Optimization techniques play a vital part in tackling these 

issues by dynamically adjusting microgrid parameters to 

optimize performance in response to changing conditions. In 

this investigation, we focus on investigating the effectiveness 

of three optimization methods: Genetic Algorithm (GA), 

Simulated Annealing (SA), and Particle Swarm Optimization 

(PSO) in enhancing microgrid performance following a fault 

event. 

Our research attempts to provide light on the comparative 

performance of these optimization methods in mitigating the 

effects of faults and improving microgrid stability and 

efficiency. By analyzing key metrics such as load balancing, 

cost reduction, and resource utilization, we seek to identify 

various affecting parameters. 

1.1 Fault event and its imapct on the microgrid 

The capacity of microgrids to supply sustainable, localised 

electricity is making them an essential part of contemporary 

energy systems. By incorporating renewable energy sources 

and providing grid independence in the event of disruptions, 

they improve energy security. On the other hand, keeping 

operations running smoothly during fault events is a major 

difficulty for these systems. Power outages, economic losses, 

and safety concerns can result from fault events that impair 

microgrid operations. These events can include equipment 

failures, natural disasters, and cyber-attacks. However, the 

performance of microgrids can be significantly impacted by 

various factors, including faults or disturbances in the system. 

In the event of a fault, such as sudden load spikes or equipment 

failures, microgrids must swiftly adapt to maintain stability 

and meet demand while minimizing disruption to critical 

operations. 

Fault events can have far-reaching consequences for 

microgrids, jeopardising public safety, generating huge 

financial losses, and disrupting power supply stability [4]. 

Developing effective solutions to alleviate these interruptions 

is necessary for microgrid resilience, which is critical for 

guaranteeing a continuous and stable power supply. 

Immediate action is required to find answers that can 

strengthen microgrids' ability to withstand these kinds of 
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disturbances [5-7]. Systematic, efficient, and adaptive ways to 

improve microgrid resilience can be provided via 

optimization-based methodologies, which offer a promising 

option to pursue. There is a dearth of thorough optimisation 

methods that are tailored to address microgrid fault event 

resilience, despite the fact that these methods show promise. 

1.2 Research objectives behind the selection of the three 

optimization techniques 

It is critical to use suitable optimisation methods in the 

context of improving microgrid resilience to fault events. The 

dynamic and complicated character of the problem is well-

suited to the selected methods, which include Genetic 

Algorithm (GA), Simulated Annealing (SA), and Particle 

Swarm Optimisation (PSO). For microgrid resilience strategy 

optimisation, each of these methodologies shines due to its 

own set of advantages. 

1.2.1 Biologically inspired genetic algorithm 

GA is inspired by the process of natural selection, making 

it effective for exploring a vast search space through 

mechanisms akin to biological evolution such as selection, 

crossover, and mutation [8, 9]. The algorithm's global search 

ability helps in avoiding local optima, ensuring that the 

solutions found are more likely to be optimal or near-optimal 

for enhancing microgrid resilience. 

1.2.2 Simulated annealing 

SA is based on the annealing process in metallurgy, where 

controlled cooling of a material allows it to reach a state of 

minimum energy [9]. This analogy helps in finding an optimal 

solution by probabilistically accepting worse solutions to 

escape local minima. It is flexible and can be easily adapted to 

various types of optimization problems, including those with 

discrete and continuous variables. This method is particularly 

effective in large and complex search spaces, making it 

suitable for the intricate problem of microgrid resilience 

optimization where numerous potential fault events and 

mitigation strategies must be considered. 

1.2.3 Particle swarm optimization 

PSO is inspired by the social behavior of birds flocking or 

fish schooling. It uses a population of candidate solutions, 

called particles, which move through the search space 

influenced by their own and their neighbors' best positions. 

PSO is known for its efficiency in converging to optimal 

solutions with relatively less iteration compared to other 

algorithms. This is particularly advantageous for real-time 

applications in microgrid resilience where quick decision-

making is critical.The algorithm is adaptable and can 

dynamically adjust the movements of particles, making it 

effective in handling the dynamic and uncertain nature of fault 

events in microgrids. 

2. OVERVIEW OF THE BASIC PLANNING SCHEME

The basic planning scheme for the program begins with a 

clear identification of the problem statement and objectives, 

focusing on the optimization of microgrid performance 

following a fault event. Key parameters such as solar capacity, 

wind capacity, battery capacity, diesel capacity, and load 

demand are defined to establish the framework for the study 

[10]. Load demand is simulated both before and after the fault 

event, with the fault being introduced as a sudden increase in 

load demand at a specified time. Three optimization 

techniques - Genetic Algorithm (GA), Simulated Annealing 

(SA), and Particle Swarm Optimization (PSO) - are 

implemented to optimize load demand post-fault, each 

requiring the development of specific functions or algorithms. 

An analysis that draws comparisons is then carried out to 

evaluate the execution of these techniques based on metrics 

such as cost reduction, load balancing, and convergence speed. 

The results of the optimization process and comparative 

analysis are visualized using plots, graphs, and tables, 

facilitating clear presentation and interpretation. Finally, 

conclusions are drawn regarding the effectiveness of the 

optimization techniques, accompanied by recommendations 

for future research or practical implementation to further 

enhance microgrid performance in post-fault scenarios. 

3. DESIGN OF MICROGRID

In this segment, essential parameters for a microgrid system 

are defined, covering the capacities of various energy sources 

and storage components, including diesel generators, wind 

turbines, solar panels, and batteries as shown in Figure 1. 

Additionally, the duration of the simulation is specified to 

enable the analysis and optimization of the microgrids 

operation over a defined period, encompassing both solar and 

wind power generation [11-13]. 

Figure 1. Architecture of a microgrid 

3.1 Solar PV array 

Using a simple model that requires just two parameters—

the amount of solar radiation and the ambient temperature—

the amount of power that the PV panels can generate can be 

estimated. In order to determine the power output of the PV 

panels, this model use the following Eq. (1): 

𝑃𝑝𝑣𝑜𝑢𝑡(𝑡) = 𝑃𝑝𝑣𝑟𝑒𝑓 ∗
𝐺𝑡(𝑡)

𝐺𝑡𝑟𝑒𝑓
∗ [1 + 𝐾𝑇(𝑇𝐶(𝑡) − 𝑇𝐶_𝑟𝑒𝑓)] (1) 

One simple model takes the outside temperature and the 

actual solar radiation (Gt, in kW/m2) as inputs and uses them 

to determine the wattage (W) of electricity (Ppvout) that solar 

panels produce. According to the manufacturer, the PV panels 

have a power rating (Ppv_ref) under the Standard Test 

Conditions (STC). TC_ref Stands for the cell’s temperature 

under reference conditions, usually 25℃, and 𝐺𝑡𝑟𝑒𝑓  are the

quantities of sunlight under reference conditions, which is 
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usually 1 kW/m². The formula KT=−3.7×10−3 per degree 

Celsius (℃) is used to express the maximum power’s 

temperature coefficient (KT) for silicon monocrystalline and 

polycrystalline solar cells [14-16]. Overall, the amount of 

power that photovoltaic (PV) panels are able to produce is 

dependent on a number of factors, including the amount of 

sunlight reaching the panels, the weather outside, and the 

specifics of the PV panels, including their rated power and 

temperature coefficients. Eq. (2) is used to express the cell 

temperature TC. 

𝑇𝐶(𝑡) = 𝑇𝑎𝑚𝑏(𝑡) + [0.025 ∗ 𝐺𝑡(𝑡)] (2) 

The overall power output generated by a group of 

photovoltaic panels is stated as Eq. (3): 

𝑃𝑝𝑣(𝑡) = 𝑃𝑝𝑣𝑜𝑢𝑡(𝑡) ∗ 𝑁𝑝𝑣 ∗ 𝜂𝑝𝑣 (3) 

The microgrid's total number of PV panels is denoted by Npv, 

and the efficiency of the PV panels is represented by ηpv. 

3.2 The wind turbine 

The wind speed is calculated at hub height using the power-

law model. The model makes use of the logarithmic when 

applied to a given location, legislation and the power law yield 

the vertical profile of wind speed [17]. We may find out how 

tall the wind turbine (WT) was by looking at the wind speed 

readings from an anemometer. There is a remarkable 

relationship between the height at which wind speed is greatest 

and the frequency with which it occurs. The formula for it is 

Eq. (4): 

𝑉2 = 𝑉1 ∗ (
ℎ

ℎ𝑟𝑒𝑓
)

𝑎

(4) 

where, V2 is the wind speed at the hub height of the WT in 

metres per second, and V1 is the wind speed at the reference 

height in milliseconds per second. In metres (m), h is the hub 

WT's height, and href (m). Several elements, such as 

topographical features, terrain roughness, temperature, wind 

speed, elevation above ground, and season, can affect the 

coefficient of friction, denoted by α. However, instead of the 

usual 0.20, the friction coefficient should be 0.11 in very 

windy conditions.  

One seventh is the generally accepted value of α. The power 

produced by each individual wind turbine (WT) can be 

determined using the following non-linear Eq. (5): 

𝑃𝑤𝑡_𝑜𝑢𝑡(𝑡)

=

{

0    𝑉 < 𝑉𝑐𝑢𝑡_𝑖𝑛

𝑉3(
𝑃𝑟

𝑉𝑟𝑎𝑡𝑒𝑑
3 −𝑉𝑐𝑢𝑡−𝑖𝑛

3 ) − 𝑃𝑟(
𝑉𝑐𝑢𝑡_𝑖𝑛
3

𝑉𝑟𝑎𝑡𝑒𝑑
3 − 𝑉𝑐𝑢𝑡_𝑖𝑛

3 )  𝑉𝑐𝑢𝑡_𝑖𝑛 ≤ 𝑉 < 𝑉𝑟𝑎𝑡𝑒𝑑

𝑃𝑟   𝑉𝑟𝑎𝑡𝑒𝑑 ≤ 𝑉 ≤ 𝑉𝑐𝑢𝑡_𝑜𝑢𝑡
0         𝑉 > 𝑉𝑐𝑢𝑡−𝑜𝑢𝑡

 (5) 

This equation takes into account the factors that include the 

current wind speed (m/s), the cut-in (Vcut_in) and the rated 

(Vrated) as well as the power ratng (PT) of the WT in kilowatts 

(kW), and finally, the wind speed at which the cut-out 

(Vcut_outt). These requirements are provided by the 

manufacturer and are vital to the functioning of the WT. 

Additionally, the total power produced by a group of WT is 

calculated using a corresponding Eq. (6): 

𝑃𝑤𝑡(𝑡) = 𝑃𝑤𝑡_𝑜𝑢𝑡(𝑡) ∗ 𝑁𝑤𝑡 ∗ 𝜂𝑤𝑡 (6) 

The number of WT in the microgrid is denoted by Nwt, while 

the efficiency of the WT is represented by ηwt. A graph in 

Figure 2 illustrates the relationship betweenthe WT generator's 

output power and wind velocity. 

Figure 2. WT's characteristic curve 

3.3 Bank of batteries 

Because WT and PV sources are extremely unpredictable, 

it is essential to incorporate BESU into the autonomous 

microgrid. In this case, HRES uses BESU to store excess 

energy for use when renewable energy is inadequate or 

unavailable [3]. The capacity of the BESU is determined by 

the following Eq. (7): 

𝐵𝑐𝑎𝑝 =
𝐴𝐷 ∗ 𝐸𝐿

𝜂𝑖𝑛𝑣 ∗ 𝜂𝐵𝑎𝑡𝑡 ∗ 𝐷𝑂𝐷
(7) 

To find the necessary number of parallel-connected BESU 

units, Nbatt_p, divide the entire required BESU capacity, Bcap, 

by the capacity of a single battery, Bb. Eq. (8) is used to express 

this calculation: 

𝑁𝑏𝑎𝑡𝑡_𝑝 =
𝐵𝑐𝑎𝑝

𝐵𝑏
(8) 

In Eq. (9), the number of BESU units to be linked in series, 

Nbatt_s, is calculated using Vs and Vbatt, the DC bus system 

voltage and the BESU voltage, respectively. The volt is the 

standard unit of measurement for these voltages. 

𝑁𝑏𝑎𝑡𝑡_𝑠 =
𝑉𝑠
𝑉𝑏𝑎𝑡𝑡

(9) 

Lastly, as shown in Eq. (10), the total number of BESU units, 

Nbatt, is determined by multiplying Nbatt_p and Nbatt_s together. 

𝑁𝑏𝑎𝑡𝑡 = 𝑁𝑏𝑎𝑡𝑡_𝑝 ∗ 𝑁𝑏𝑎𝑡𝑡_𝑠 (10)

The overall cost of the BESU, 𝐶𝐶
𝐵𝑎𝑡𝑡, can be found using Eq.

(11) if we assume that CBatt is the cost of one battery.

𝐶𝐶
𝐵𝑎𝑡𝑡 = 𝑁𝑏𝑎𝑡𝑡 ∗ 𝐶𝐵𝑎𝑡𝑡 (11) 
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When planning the storage system, it is essential to take the 

BESU's autonomy days into consideration in order to avoid 

power outages caused by renewable sources (PV and WT) 

because wind speed and solar irradiance intensity are 

unpredictable. When there is more energy than is required, it 

is stored in the BESU. To represent the power output of the 

BESU under different circumstances, one can use the 

following Eq. (12): 

 

𝑃𝐵𝑎𝑡𝑡(𝑡) = (𝑃𝑃𝑣(𝑡) + 𝑃𝑤(𝑡)) −
𝑃𝑙𝑜𝑎𝑑(𝑡)

𝜂𝐼𝑛𝑣
 (12) 

 

The given context uses the variables PPv(t), Pw(t), and Pload(t) 

to denote the energy produced by PV, the energy required by 

the load, and the inverter's efficiency, respectively. 

An energy generation shortfall is shown when PBatt<0, 

which means that the power generated is not enough to fulfil 

the demand. The opposite is true when PBatt>0; this indicates 

that power generation is greater than power demand. In the 

extremely unlikely event where PBatt(t)=0, the power input 

from renewable sources is equal to the power required by the 

load. 

An important determinant of the BESU's performance and 

an indication of its present capacity during system evaluation 

is its state of charge (SOC) [18-20]. The SOC can be used for 

charging and discharging purposes. When the demand for 

energy exceeds the supply from renewable energy sources 

(RES), the BESU is able to accept energy in the charging mode. 

When the produced power is inadequate to fulfil the demand, 

on the other hand, it switches to the discharging mode. Eqs. 

(13)-(15) are used to determine the charge and discharge 

amounts at time’t’: 

Charging mode, if; 

 

𝑃𝑝𝑣(𝑡) + 𝑃𝑤𝑡(𝑡) > 𝑃𝑙𝑜𝑎𝑑(𝑡)  (13) 

 

𝐸𝐵𝑇(𝑡) = 𝐸𝐵𝑇(𝑡 − 1) ∗ (1 − 𝜎) + ((𝑃𝑝𝑣(𝑡) +

𝑃𝑤𝑡(𝑡)) −
𝑃𝑙𝑜𝑎𝑑(𝑡)

𝜂𝐼𝑛𝑣
) ∗ 𝜂𝐵𝑎𝑡𝑡  

(14) 

 

Discharging mode, if; 

 

𝑃𝑝𝑣(𝑡) + 𝑃𝑤𝑡(𝑡) < 𝑃𝑙𝑜𝑎𝑑(𝑡)  

𝐸𝐵𝑇(𝑡) = 𝐸𝐵𝑇(𝑡 − 1) ∗ (1 − 𝜎) + (
𝑃𝑙𝑜𝑎𝑑(𝑡)

𝜂𝐼𝑛𝑣
− (𝑃𝑝𝑣(𝑡) + 𝑃𝑤𝑡(𝑡)))/𝜂𝐵𝑎𝑡𝑡 

(15) 

 

In the given context, EBT(t) depicts the BESU's available 

capacity at hour (t) in kWh, while EBT(t-1) shows the available 

capacity at hour (t-1) in kWh. The self-discharge rate of the 

BESU is denoted by σ, and the efficiency of the BESU, 

expressed as a percentage, during charging and discharging is 

represented by ηBatt. 

In addition, the BESU is capable of meeting the demand if 

the state of charge at time’t’ (SOC(t)) is greater than the 

minimal SOC threshold (SOCmin). Just like SOC(t) will charge 

the BESU with any excess power, SOCmin sets at 30% and 

SOCmax at 100%, so will the process continue until the SOC 

achieves the maximum SOC threshold. The maximum state of 

charge (SOC) is equal to the BESU's overall capacity (Bbatt). 

We can express this relationship using Eq. (16): 

 

𝐵𝑐𝑎𝑝(𝐴ℎ) =
𝑁𝑏𝑎𝑡𝑡
𝑁𝑏𝑎𝑡𝑡_𝑠

∗ 𝐵𝑏(𝐴ℎ) (16) 

In this investigation, 70% was used as the maximum 

allowable depth of discharge (DOD), which is given as a 

percentage (%). That the BESU is not totally drainable is what 

it means. The DOD figure indicates the highest possible 

discharge rate. Here is Eq. (17) that finds the BESU's 

minimum capacity: 

 

𝐸𝐵𝑎𝑡𝑡_𝑚𝑖𝑛 = (1 − 𝐷𝑂𝐷) ∗ 𝐸𝐵𝑎𝑡𝑡−𝑚𝑎𝑥  (17) 

 

Additionally, the limitation of BESU capacity at any given 

hour is represented by Eq. (18): 

 

𝐸𝐵𝑎𝑡𝑡−𝑚𝑖𝑛 ≤ 𝐸𝐵𝑎𝑡𝑡(𝑡) ≤ 𝐸𝐵𝑎𝑡𝑡m (18) 

 

3.4 Diesel generator 

 

When the capacity of the renewable energy sources (PV and 

WT) and the BESU is insufficient, the DG is employed in the 

MS as an additional power source [21]. We employ Eq. (19) 

to streamline the dependence of the DG model on fuel 

consumption: 

 

𝐹𝐷𝐺(𝑡) = 𝛼𝑃𝐷𝐺(𝑡) + 𝛽𝑃𝑟 (19) 

 

PDG Stands for the actual power generated in kilowatts, Pr 

for the capacity of the generator in kilowatts or rated power, 

and FDG for generator fuel consumption in litres per hour. α 

and Η are the coefficients for the fuel curve slope and fuel 

intercept, respectively, in kWh. The values of α and β utilised 

in this research are 0.246 and 0.084157, respectively. Eq. (20) 

can be used to find the efficiency of DGs: 

 

𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝜂𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 ∗ 𝜂𝑏𝑟𝑎𝑘𝑒−𝑡ℎ𝑒𝑟𝑚𝑎𝑙  (20) 

 

The total efficiency of the DG is represented by η overall, 

the generator efficiency by η, and the thermal brake efficiency 

by η brake−thermal. According to Eq. (21), the sum of a set of 

DG's power output is: 

 

𝑃𝑟 = 𝑃𝑆_𝐷𝐺 ∗ 𝑁𝐷𝐺  (21) 

 

where, NDG is the number of distributed generation units (DG) 

in the microgrid and PS_DG is the power output of one DG. In 

general, the cost of fuel (CF) over a power system's usable 

lifetime can be represented using Eq. (22): 

 

𝐶𝐹 = 𝐶𝑓 ∑ 𝐹𝐷𝐺(𝑡)

8784

𝑡=1

 (22) 

 

as the present price of diesel fuel per litre, expressed in US 

dollars per litre (Cf). According to Eq. (23), the methodology 

for calculating DG's CO2 emissions is based on the one that 

the IPCC has recommended. 

 

𝐶𝑂2 = 𝐹𝐷𝐺 ∗ 𝑁𝐶𝑉 ∗ 𝐸𝐹 (23) 

 

Fuel consumption (in tonnes per year), net calorific value 

(in kilojoules per metric tonne of fuel), and emission factor (in 

kilogrammes per thousand joules per metric tonne of fuel) are 

all variables in this equation. 

The analysis in this study made use of the acquired 

coefficients. 
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3.5 Inverter and converters 

One function of a converter is to change the voltage from 

AC to DC and back again. As shown in Figure 1, the 

inverter/converter allows for the simultaneous bidirectional 

flow of energy between the AC and DC buses. Integrating AC 

and DC power sources necessitates the use of a power 

converter. For instance, even if the load in question is AC, PV 

and BESU produce DC output. System efficiency, anticipated 

peak and trough energy demands, and surges inform the design 

of the AC-to-DC/DC-to-AC converter. The peak load demand 

𝑃𝐿
𝑝𝑒𝑎𝑘

) determines the size of the converter. Eq. (24) is used to

compute the rated power of the inverter, ηInv. 

𝑃𝐼𝑛𝑣 =
𝑃𝐿
𝑝𝑒𝑎𝑘

𝜂𝐼𝑛𝑣
(24) 

The efficiency of the inverter can be expressed using the 

following Eq. (25): 

𝜂𝐼𝑛𝑣 =
𝑃

𝑃 + 𝑃𝑜 + 𝐾𝑃2
(25) 

The values of P, P0, and K can be determined using the 

following Eq. (26): 

{

𝑃 =
𝑃𝑜𝑢𝑡
𝑃𝑛

, 𝑃0 = 1 − 99(10 𝜂10⁄ − 1 𝜂100⁄ − 9)2

𝐾 =
1

𝜂100
− 𝑃0 }

(26) 

The manufacturer specifies both η10  and η100 , where Pn
represents the rated power of the inverter.  

In this setup, we define critical parameters that characterize 

a microgrid system, incorporating the capacities of various 

energy sources and storage components, such as solar panels, 

wind turbines, batteries, and diesel generators [16]. 

Specifically, the solar capacity is established at 100 kW, 

representing the maximum potential power output from solar 

panels. The wind capacity is specified as 50 kW, indicating the 

potential power generation capacity of the wind turbines. 

Additionally, the battery capacity is set to 200 kWh, reflecting 

the maximum energy storage capacity of the batteries.  

This parameter as shown in Table 1 serves a critical role in 

modeling and analyzing the microgrids behaviour over the 

specified time frame. It enables comprehensive simulation, 

evaluation, and optimization of the microgrids operation and 

performance throughout the week, offering valuable insights 

into its functionality and efficiency. 

Table 1. Parameters of considered system 

Parameter Value 

Solar Capacity 100KW 

Wind Capacity 50KW 

Battery Capacity 200KW 

Diesel Capacity 150KW 

Number of Hours 168 

3.6 Load demand generation 

The process of generating random load demand involves 

simulating the power consumption requirements of the 

microgrid system over a predefined period, in this case, a week. 

To achieve this, a range of potential load values is specified, 

reflecting the anticipated variability in power demand 

throughout the week [22]. Using this range, random values are 

generated for each hour of the week, capturing the stochastic 

nature of electricity consumption patterns. These randomly 

generated load values represent the projected power demand 

of the microgrid under normal operating conditions, without 

any fault or disturbance. By incorporating randomness into the 

load demand generation process, the simulation accounts for 

the inherent unpredictability in electricity usage, which can be 

influenced by factors such as weather conditions, human 

behaviour, and operational dynamics [5]. This approach 

allows for a more realistic representation of the microgrids 

behaviour and enables comprehensive analysis and 

optimization of its performance under varying load conditions. 

Here's the Eq. (27) to generate a random load value for a 

particular hour. 

𝐿ℎ𝑜𝑢𝑟 = 𝑅𝑎𝑛𝑑𝑜𝑚(𝐿𝑚𝑖𝑛 , 𝐿𝑚𝑎𝑥) (27) 

where, Lhour is the randomly generated load value for a specific 

hour; Random(Lmin, Lmax) is a function that generates a random 

number within the range [Lmin, Lmax]. 

Introducing a fault in the microgrid system involves 

simulating a sudden increase in demand, which is represented 

by multiplying the original load demand values by 1.2, 

resulting in a 20% increase in load. This increase in demand 

reflects a scenario where the microgrid experiences a sudden 

surge in power consumption due to a fault or disturbance.The 

load demand values are adjusted to reflect the increased 

demand. Each original load demand value is multiplied by 1.2, 

resulting in a 20% increase in demand across all 

hours.Multiplying by 1.2 increases each load demand value by 

20%. For example, if the original load demand for a specific 

hour was 100 units, after the fault, it would become 120 units. 

This process of introducing a fault allows for the 

examination of how the microgrid system responds to sudden 

increases in demand, aiding in the analysis and optimization 

of its performance under various operating conditions which 

is expressed in Eq. (28): 

Original Load Demand: 𝐿𝑏𝑒𝑓𝑜𝑟𝑒
Load Demand After Fault: 𝐿𝑎𝑓𝑡𝑒𝑟 = 𝐿𝑏𝑒𝑓𝑜𝑟𝑒 × 1.2

(28) 

where, Lbefore represents the original load demand values 

before the fault; Lafter represents the load demand values after 

the fault. 

Multiplying by 1.2 increases each load demand value by 

20%. For example, if the original load demand for a specific 

hour was 100 units, after the fault, it would become 

100×1.2=120. 

4. PARTICLE SWARM OPTIMIZATION

The related work on Particle Swarm Optimization (PSO) as 

expressed in Figure 3 encompasses a broad spectrum of 

research spanning multiple disciplines and application 

domains [6]. Within the field of optimization, PSO has been 

extensively studied and compared with other metaheuristics 

algorithms to evaluate its performance and effectiveness. 

Researchers have conducted theoretical analyses, algorithmic 

improvements, and empirical studies to understand the 

underlying principles of PSO and enhance its capabilities. 
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Figure 3. Flowchart of particle swarm optimization 

One significant area of related work focuses on the 

theoretical aspects of PSO, including convergence analysis, 

parameter selection, and stability properties. Numerous 

studies have investigated the convergence behaviour of PSO 

variants under different problem settings, providing insights 

into the algorithm’s convergence speed and robustness. 

Additionally, researchers have proposed methods for selecting 

appropriate parameter values, such as inertia weight, 

acceleration coefficients, and swarm size, to improve PSO’s 

performance across various optimization tasks. Furthermore, 

efforts have been made to analyze the stability and 

convergence properties of PSO in dynamic optimization 

scenarios, where the objective function or problem constraints 

change over time. 

Another area of related work involves the development and 

evaluation of advanced PSO variants and hybrid approaches. 

Researchers have proposed numerous enhancements to the 

standard PSO algorithm, such as adaptive parameter 

adjustment mechanisms, diversity maintenance strategies, and 

hybridization with other optimization techniques. Hybrid PSO 

algorithms integrate concepts from evolutionary algorithms, 

ant colony optimization, simulated annealing, and other 

metaheuristics to create more robust and efficient optimization 

frameworks. Empirical studies comparing different PSO 

variants and hybrid approaches have been conducted to assess 

their performance on benchmark functions, real-world 

problems, and optimization benchmarks. 

In addition to theoretical and algorithmic advancements, 

related work on PSO encompasses a wide range of application 

domains, including engineering design, control systems, data 

mining, machine learning, and image processing. Researchers 

have applied PSO to solve various optimization problems, 

such as parameter tuning in machine learning algorithms, 

feature selection in data mining tasks, design optimization of 

engineering structures, and control parameter optimization in 

complex systems. Case studies and empirical evaluations have 

demonstrated the effectiveness of PSO in addressing real-

world optimization challenges and achieving competitive 

results compared to other optimization techniques. 

Overall, the related work on PSO reflects a vibrant and 

diverse research landscape, characterized by theoretical 

investigations, algorithmic developments, and practical 

applications across numerous domains. As PSO continues to 

evolve and adapt to new challenges, researchers are likely to 

explore novel variants, hybrid approaches, and application-

specific adaptations to further enhance its performance and 

applicability in solving complex optimization problems. 

The Particle Swarm Optimization (PSO) algorithm 

implemented in the provided program optimizes the load 

demand of a grid system by adjusting the battery and diesel 

capacities to meet the demand while considering solar and 

wind capacities. The PSO algorithm operates by iteratively 

updating the positions of particles in the search space 

according to their velocities in Eq. (29), aiming to find the 

optimal solution. The position update equations in PSO are 

expressed in Eq. (30). 

Velocity Update Equation: 

𝑉𝑖,𝑗
𝑘+1 = 𝜔. 𝑉𝑖,𝑗

𝑘 + 𝐶1. 𝑟1. (𝑝𝑏𝑒𝑠𝑡𝑖,𝑗 − 𝑥𝑖,𝑗
𝑘 )

+ 𝐶2. 𝑟2(𝑔𝑏𝑒𝑠𝑡𝑗 − 𝑥𝑖,𝑗
𝑘 )

(29) 

where, 𝑉𝑖,𝑗
𝑘+1  is the velocity of particle i in dimension j at

iteration k+1; 𝜔. 𝑉𝑖,𝑗
𝑘  is the inertia weight, controlling the

impact of the previous velocity; C1 and C2 are acceleration 

coefficients; r1 and r2 are random values sampled from a 

uniform distribution; pbesti,j is the best position of particle 𝑖 in 

dimension 𝑗  found by the particle itself; gbestj is the best 

position among all particles in dimension j found by any 

particle in the swarm; 𝑥𝑖,𝑗
𝑘  is the position of particle i in 

dimension j at iteration k. 

Position Update Equation: 
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𝑥𝑖,𝑗
𝑘+1 = 𝑥𝑖,𝑗

𝑘 + 𝑣𝑖,𝑗
𝑘+1 (30) 

where, 𝑥𝑖,𝑗
𝑘+1 is the updated position of particle i in dimension 

j at iteration k+1. 

These equations govern the movement of particles within 

the search space, allowing the PSO algorithm to explore and 

exploit the solution space efficiently. By iteratively updating 

the velocities and positions of particles based on their personal 

best positions and the global best position found by any 

particle, PSO aims to converge towards the optimal solution 

over multiple iterations. 

5. GENETIC ALGORITHM

As demonstrated in Figure 4, the programme makes use of 

the Genetic Algorithm (GA), an effective optimisation method 

that draws inspiration from evolution and natural selection. It 

runs on a population of chromosomes that encode possible 

solutions to the optimisation issue; each chromosome 

represents a possible solution. The optimisation challenge, as 

it pertains to the programme involves adjusting battery and 

diesel capacities to minimize the difference between load 

demand and total power generation post-fault. 

The GA begins by initializing a population of chromosomes 

randomly within the specified range of battery and diesel 

capacities. Each chromosome's fitness is evaluated using a 

fitness function that calculates the difference between the load 

demand and the total power generation considering the 

candidate solution's battery and diesel capacities. The fitness 

function penalizes solutions that deviate significantly from 

meeting the load demand post-fault. 

After evaluating the fitness of each chromosome in the 

population, the GA proceeds to select parent chromosomes 

based on their fitness. This selection process favors 

chromosomes with higher fitness values, increasing their 

likelihood of being chosen as parents for reproduction. The 

chosen parent chromosomes undergo crossover and mutation 

operations to produce offspring chromosomes with variations 

in their genetic makeup. 

Offspring can acquire traits from both parents through the 

process of crossover, which is the transfer of genetic 

information between chromosomes from two different parents. 

Random alterations to the chromosomes of the progeny are 

introduced via mutation, which increases genetic variety and 

delays the convergence to less-than-ideal solutions. 

The next generation population is made up of the offspring 

chromosomes and some of the fittest parent chromosomes [7]. 

This process of selection, crossover, and mutation iterates over 

multiple generations, gradually improving the population's 

overall fitness. As the generations progress, the GA converges 

towards optimal or near-optimal solutions that minimize the 

difference between load demand and total power generation 

post-fault. 

In the context of the program, the GA optimization process 

adjusts battery and diesel capacities to optimize grid operation 

after fault scenarios such as sudden changes in load demand or 

renewable energy capacities. By iteratively evolving the 

population of candidate solutions, the GA effectively adapts 

grid operation to mitigate the impact of faults and ensure 

efficient energy management. Through its robust evolutionary 

mechanism, the GA offers a flexible and adaptive approach to 

addressing complex optimization problems in grid 

management. 

Figure 4. Flowchart of genetic algorithm 

The formula used in the Genetic Algorithm (GA) for 

optimizing the grid operation is the fitness function, which 

evaluates the fitness of each chromosome (candidate solution). 

The fitness function calculates the squared difference among 

the load demand and the total power generation considering 

the candidate solution's battery and diesel capacities. 

Mathematically, it can be expressed as: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 

∑ (𝐿𝑜𝑎𝑑_𝑑𝑒𝑚𝑎𝑛𝑑𝑖 − (𝑆𝑜𝑙𝑎𝑟_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ×
𝑁
𝑖=1

𝑠𝑖𝑛 (
2𝜋×𝑖

24
) +𝑊𝑖𝑛𝑑_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × 𝑐𝑜𝑠 (

2𝜋×𝑖

24
) +

(𝐵𝑎𝑡𝑡𝑒𝑟𝑦_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝐷𝑖𝑒𝑠𝑒𝑙_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦)))

2

(31) 
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where, Load_demandi is the load demand at hour I ; 

Solar_Capacity is the solar capacity; Wind_Capacity is the 

wind capacity; Battery_Capacity is the battery capacity; 

Diesel_Capacity is the diesel capacity; N is the total amount 

of time spent optimizing period. 

This Eq. (31) represents the optimization's goal, aimingto 

minimize the squared difference between the load demandand 

the total power generation with the given capacities. The GA 

iteratively evaluates this fitness function for different 

candidate solutions, guiding the evolutionary process towards 

solutions that better match the load demand while considering 

the constraints of the system. 

6. SIMULATED ANNEALING

The SA optimization in the provided program addresses a 

fault scenario marked by a sudden decrease in solar and wind 

capacities. Initially, fault ratios are set, indicating a 50% 

decrease in solar capacity and a 40% decrease in wind capacity. 

These ratios are utilized to compute the capacities after the 

fault occurrence. The optimization process commences with 

the formulation of an objective function designed to minimize 

the squared difference between load demand and total power 

generation post-fault.  

Subsequently, the Simulated Annealing (SA) algorithm as 

shown in Figure 5 is employed for optimization. SA, inspired 

by metallurgical annealing, iteratively explores the solution 

space by probabilistically accepting modifications to 

candidate solutions. At each iteration, the objective function is 

evaluated for potential adjustments to battery and diesel 

capacities. SA iterates until convergence, determined by 

predefined criteria like reaching a maximum iteration count or 

achieving satisfactory solution quality. 

Upon completion, the SA optimization yields the optimized 

load demand profile and the corresponding cost, indicative of 

the minimized objective function value. Visualization aids in 

interpreting the optimization's impact, with plots illustrating 

load demand pre-fault and post-fault, alongside the optimized 

load demand profile derived from the SA algorithm. This 

visual representation facilitates comprehension of how the 

optimization influences grid operation to better align with load 

demand despite the fault condition. 

For the grid optimization problem in the provided program, 

the objective function can be defined as the total squared 

variations between the actual load demand and the total power 

generation from renewable sources and backup systems, given 

a set of decision variables representing the capacities of the 

battery and diesel backup systems. 

Here's a more abstract representation of the objective 

function for the grid optimization problem in Eq. (32): 

Objective Function: 

𝑓(𝑥) =∑(𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑜𝑎𝑑𝑖 − (𝑡𝑜𝑡𝑎𝑙𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖
(𝑥)))

2𝑁

𝑖=1

(32) 

where, actual_loadi represents the actual load demand at hour 

i; (total_generationi(x)) represents the total power generation 

at hour i given the candidate solution x, which includes the 

capacities of the battery and diesel backup systems. 

The candidate solution x typically consists of decision 

variables that define the capacities of the battery and diesel 

backup systems. The SA algorithm explores the solution space 

by iteratively adjusting these decision variables to minimize 

the objective function. 

During every iteration of the SA algorithm, a novel 

candidate solution x’ is generated by perturbing the current 

solution x based on a probabilistic criterion. The new solution 

is accepted or rejected based on its impact on the objective 

function and a cooling timetable, which manages the trade-off 

between exploration and exploitation. 

Overall, the objective function defines the optimization 

problem's goal, and the SA algorithm aims to find the solution 

x that minimizes this objective function, effectively optimizing 

the grid operation in response to the fault scenario. 

Figure 5. Flowchart simulated annealing 
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7. EVALUATION AND SIMULATION RESULTS 

 

Case 1: Grid operation before and after fault 

A. Grid operation before fault: The Figure 6 shows the 

Grid Operation before Fault offers a comprehensive view of 

the load demand behaviour in the grid system prior to 

encountering any faults. It showcases a stable pattern of load 

demand over a 24-hour period, reflecting the system's normal 

operation without disruptions. This stability is crucial, 

indicating the smooth functioning of the grid without sudden 

changes in demand that could lead to operational challenges. 

 

 
 

Figure 6. Grid operation before fault 

 

Throughout the plot, the load demand fluctuates within a 

defined range, demonstrating the inherent variability 

characteristic of real-world grid systems. These fluctuations, 

represented by peaks and troughs, stem from various factors 

such as daily routines, industrial activities, and weather 

conditions, all of which influence electricity consumption 

patterns. 

Moreover, the load demand follows a discernible cyclic 

pattern, with predictable variations corresponding to different 

times of the day. This cyclic behaviour mirrors the typical 

consumption patterns observed among electricity users, with 

higher demand during peak hours and lower demand during 

off-peak hours. Understanding these patterns is pivotal for grid 

operators as they undertake resource allocation and capacity 

planning to meet varying demand levels effectively. 

By analysing the plot, grid operators gain insights into load 

trends, enabling them to identify recurring patterns or 

anomalies in demand. This analysis serves as a foundation for 

informed decision-making in grid management, allowing 

operators to anticipate and respond to changes in demand 

efficiently. 

Furthermore, the plot serves as a baseline for comparison 

with the grid operation post-fault. By contrasting the load 

demand before and after the fault occurrence, operators can 

assess the fault's impact on the grid system and evaluate the 

effectiveness of mitigation strategies implemented thereafter. 

This comparative analysis aids in refining fault response 

protocols and enhancing grid resilience to future disturbances. 

In summary, the plot provides valuable insights into the 

normal operation of the grid system, aiding operators in 

understanding typical load behaviour and preparing for 

deviations resulting from faults or disturbances. 

B. Grid operation after fault: The Figure 7 provides the 

information about Grid Operation after Fault illustrates the 

load demand (in kW) over time (in hours) following the 

occurrence of a grid fault system.  

Following the fault, which corresponds to a sudden increase 

in load demand, the plot exhibits a significant deviation in load 

demand compared to the pre-fault scenario. The load demand 

profile depicted in red shows a noticeable increase across the 

entire 24-hour period, indicating a surge in consumer demand 

that surpasses the grid's capacity to supply electricity. This 

increase in load demand disrupts the previously stable 

operation of the grid system, causing load demand to deviate 

from its typical patterns. 

 

 
 

Figure 7. Grid operation after fault 

 

The sudden surge in load demand highlights the 

vulnerability of the grid to unexpected events and underscores 

the importance of effective fault detection and mitigation 

strategies. Possible causes of this fault could include 

equipment malfunction, sudden changes in consumer 

behaviour, or disruptions in energy supply. Identifying the root 

cause of the fault is crucial for implementing targeted solutions 

and preventing similar incidents in the future. 

The deviation in load demand presents operational 

challenges for grid operators, requiring prompt action to 

stabilize the system and restore normalcy. Grid operators may 

need to deploy additional resources, redistribute power, or 

implement demand management measures to alleviate strain 

on the grid and ensure continued reliability of electricity 

supply. 

Case 2: Best optimization method for sudden increase in 

demand 

A. Grid operation after PSO optimization 

In summary, the plot illustrates the disruptive impact of a 

sudden increase in load demand fault on grid operation. It 

emphasizes the significance of proactive fault administration 

and optimization methods to improve grid resilience and 

reliability, particularly in response to fluctuations in load 

demand. 

 

 
 

Figure 8. Grid operation after PSO optimization 

 

The program employs Particle Swarm Optimization (PSO) 

to address the impact of faults on grid operation. It adjusts load 

demand post-fault, leveraging parameters like solar and wind 

capacity, battery storage, and diesel backup. Through PSO, it 

minimizes deviations between actual and desired load demand, 

optimizing grid stability while considering resource 

constraints. This iterative algorithm simulates a swarm of 

particles in a multidimensional space, updating their positions 

and velocities based on performance. The optimized load 

demand profile attained aims to maximize resource utilization, 

such as renewable and storage, while meeting demand 

efficiently. Visualizing results via plots enables operators to 

evaluate the optimization's efficacy in restoring grid stability 

post-fault. Additionally, the associated cost quantifies 

1083



deviation from optimized load demand, aiding in performance 

assessment. Ultimately, PSO offers a dynamic solution to 

mitigate disruptions, enhancing grid resilience and ensuring 

reliable electricity supply as shown in Figure 8. 

B. Grid operation after GA optimization: The program

utilizes a Genetic Algorithm (GA) for optimization following 

a fault in the grid system. This optimization process aims to 

adjust the load demand post-fault, taking into account 

parameters such as solar and wind capacity, battery storage, 

and diesel backup. GA operates by iteratively evolving a 

population of potential solutions, mimicking the process of 

natural selection and genetic variation. Each solution, or 

individual, represents a potential load demand profile, and its 

fitness is evaluated based on how well it aligns with the desired 

grid operation. Through processes like crossover and mutation, 

GA iteratively refines the population to converge towards 

optimal solutions that minimize deviations from the desired 

load demand profile [9]. The resulting optimized load demand 

profile seeks to balance resource utilization and demand 

satisfaction, ensuring efficient grid operation while mitigating 

the impact of the fault.  

Visualizing the results via plot as shown in Figure 9 allows 

operators to assess the effectiveness of the GA optimization in 

restoring grid stability post-fault. Additionally, the associated 

cost quantifies the deviation from the optimized load demand, 

aiding in evaluating the optimization's performance. In 

summary, GA offers a robust and adaptive approach to fault 

mitigation, enhancing the resilience and reliability of the grid 

system. 

Figure 9. Grid operation after GA optimization 

C. Grid operation after SA optimization: The program

employs Simulated Annealing (SA) for optimization after a 

fault occurrence in the grid system. SA optimization aims to 

adjust the load demand following the fault, considering 

parameters like solar and wind capacity, battery storage, and 

diesel backup. SA is a method of stochastic optimization 

influenced by the heating up process in study of metals. It 

iteratively investigates the space of solutions by accepting 

changes that improve the objective function value and 

occasionally allowing changes that increase the function value, 

akin to the annealing process where a material's temperature is 

gradually lowered to reduce defects. This exploration-

exploitation balance enables SA to escape local optima and 

converge towards global optima. The optimized load demand 

profile obtained through SA seeks to minimize deviations 

from the desired grid operation while efficiently utilizing 

available resources to meet demand. Visualization of the 

results via plots as shown in Figure 10 facilitates the 

evaluation of SA optimization's effectiveness in restoring grid 

stability post-fault. Additionally, the associated cost provides 

a quantitative measure of the deviation from the optimal load 

demand, aiding in assessing the optimization's performance. In 

summary, SA offers a versatile and effective approach to fault 

mitigation, contributing to the resilience and reliability of the 

grid system [10]. 

Figure 10. Grid operation after SA optimization 

D. Grid operation after Simulated Annealing (SA)

optimization for sudden increase in demand fault: The plot 

as demonstrated in Figure 11 illustratesthe load requirement 

dynamics following the occurrence of a sudden increase in 

demand fault scenario, optimized using the best-performing 

method among Particle Swarm Optimization (PSO), Genetic 

Algorithm (GA), and Simulated Annealing (SA). 

Figure 11. Grid operation after SA optimization for sudden 

increase in demand fault 

The chosen optimization method, identified based on its 

performance metrics, is used to adjust the load demand profile 

post-fault. The plot compares the load demand after the fault 

(depicted in red) with the optimized load demand profile 

(depicted in blue). By visualizing these profiles over time, grid 

operators can assess the efficiency of the selected optimization 

technique in mitigating the impact of the fault and restoring 

grid stability. The optimization process aims to minimize 

deviations from the desired grid operation while efficiently 

utilizing available resources such as renewable energy sources, 

battery storage, and diesel backup. Evaluating the plot and 

associated metrics allows operators to make informed 

decisions regarding fault management strategies, thereby 

enhancing the resilience and reliability of the grid system in 

response to sudden demand surges. 

Case 3: Best optimization method for sudden decrease 

in battery capacity 

A. Grid operation after PSO optimization at first
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Scenario: In this scenario, a fault is introduced characterized 

by a sudden decrease in solar and wind capacities, simulating 

a situation where renewable energy generation is 

compromised. Specifically, the solar capacity is decreased by 

50%, and the wind capacity is reduced by 40%. Following the 

fault, the grid operation undergoes optimization using both 

Particle Swarm Optimization (PSO) and Genetic Algorithm 

(GA) methods to mitigate the impact of the reduced renewable 

energy generation on load demand [11]. 

The PSO optimization from Figure 12 adjusts the load 

demand profile after the fault, aiming to restore grid stability 

by considering the available resources such as battery storage 

and diesel backup. The resulting optimized load demand 

profile minimizes deviations from the desired grid operation 

while efficiently utilizing the remaining renewable energy 

capacity and supplementary resources. 

Figure 12. Grid operation after PSO optimization at first 

scenario 

B. Grid operation after GA optimization at first fault

scenario: Similarly, the GA optimization in Figure 13 also 

addresses the altered grid conditions by adapting the load 

demand profile to optimize system performance. By 

leveraging the GA's evolutionary search mechanism, the 

algorithm identifies an adjusted load demand profile that 

minimizes disruptions caused by the reduced solar and wind 

capacities, thereby enhancing grid reliability and resilience. 

Figure 13. Grid operation after GA optimization at first fault 

scenario 

The generated plots visualize the grid operation after PSO 

and GA optimizations, comparing the load demand after the 

fault (depicted in red) with the optimized load demand profiles 

(depicted in blue).  

These visualizations enable grid operators to evaluate the 

effectiveness of each optimization method in responding to the 

fault scenario, facilitating informed making decisions to 

guarantee the stability and reliability of the grid system. 

C. Grid operation after SA optimization at first fault

scenario: Following the introduction of a fault scenario 

characterized by a sudden decrease in solar and wind 

capacities, Simulated Annealing (SA) optimization is applied 

to adapt the load demand profile and enhance grid stability 

[12]. SA offers a stochastic optimization approach, exploring 

the solution space to identify an adjusted load demand profile 

that mitigates the impact of reduced renewable energy 

generation. By iteratively refining the load demand profile 

based on probabilistic transitions, SA aims to minimize 

deviations from the desired grid operation while effectively 

utilizing available resources like battery storage and diesel 

backup. 

The resulting optimized load demand profile, obtained 

through SA optimization, is depicted alongside the load 

demand after the fault in the generated plot. This visualization 

enables a direct comparison between the original grid 

operation following the fault (depicted in red) and the 

optimized load demand profile (depicted in blue) achieved 

through SA optimization. By assessing the effectiveness of SA 

in responding to the fault scenario, grid operators can gain 

insights into the algorithm's ability to restore grid stability and 

minimize disruptions caused by the reduced solar and wind 

capacities. 

Overall, the plot in Figure 14 illustrates the impact of SA 

optimization on grid operation under the specified fault 

scenario, highlighting the algorithm's contribution to 

enhancing the resilience and reliability of the grid system. 

Through SA optimization, grid operators can proactively 

manage fault conditions and optimize system performance, 

ensuring the continued delivery of reliable electricity supply 

to consumers. 

Figure 14. Grid operation after SA optimization at first fault 

scenario 

Simulated Annealing (SA) stands out as an optimization 

method for addressing sudden increases in demand fault due 

to its unique approach modeled after the metallurgical 

annealing procedure. Beginning with a first solution, this 

algorithm investigates nearby solutions recursively allowing 

occasional acceptance of worse solutions based on a 

probability distribution function controlled by a temperature 

parameter. Initially set high, the temperature facilitates 

exploration and acceptance of suboptimal solutions, gradually 

decreasing over iterations to favor convergence towards an 

optimal solution. Because it can travel beyond local optima 

and into different areas of the search universe, SA particularly 

effective for complex landscapes or issues with multiple local 

optima. In Table 2, SA achieved the best outcome with a cost 
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of 2723502.18, showcasing its capability to efficiently 

navigate the solution space and find a satisfactory solution for 

sudden increases in demand fault. 

Table 2. Optimization results for first fault scenario (Sudden 

increase in demand) 

Method Cost(KW*2) Best Method 

Particle Swarm 

Optimization 
2723520.89 

Simulated 

Annealing Genetic Algorithm 2723502.21 

Simulation Annealing 2723502.18 

D. Grid operation after simulated annealing 

optimization for sudden decrease in solar and wind fault: 

This research is an integral part of a broader optimization 

process aimed at mitigating the effects of a sudden decrease in 

solar and wind capacities within a power grid context [13]. It 

begins by evaluating the costs associated with employing 

various optimization methods, including Particle Swarm 

Optimization (PSO), Genetic Algorithm (GA), and Simulated 

Annealing (SA). Subsequently, it generates a plot as shown in 

Figure 15 illustrating the load demand before and after 

optimization, utilizing the selected method's output data. 

Figure 15. Grid operation after simulated annealing 

optimization for sudden decrease in solar and wind fault 

This visualization aids in comparing the system's 

performance under the fault condition with its optimized state. 

The dearticleion elucidates the characteristics of the 

considered optimization methods, highlighting their respective 

inspirations and functionalities. Factors influencing method 

selection, such as problem complexity and computational 

resources, are underscored. Ultimately, the research facilitates 

informed decision-making in grid management by providing a 

systematic framework for optimization method selection and 

visualization of their impact on load demand dynamics during 

fault scenarios. 

Simulated Annealing (SA) emerges as the optimal 

optimization method for addressing sudden decreases in solar 

and wind capacities fault in Table 3, boasting a cost of 

2368602.16. SA operates on a principle inspired by 

metallurgical annealing, where it begins with a preliminary fix 

and progressively investigates adjacent solutions.Its 

uniqueness lies in the acceptance of occasionally worse 

solutions, governed by a probability distribution function 

influenced by a temperature parameter. Initially, this 

temperature is set high, facilitating extensive exploration of 

the solution space and acceptance of suboptimal solutions. As 

iterations progress, the drop in temperature, tightening the 

acknowledgement criterion and guiding the formula towards 

convergence to an optimal solution. SA's strength lies in its 

ability to navigate complex landscapes and escape local 

optima, making it particularly suited for problems with 

multiple local optima or intricate solution spaces. In this 

specific scenario, SA outperformed Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA), showcasing 

its effectiveness in efficiently finding satisfactory solutions for 

sudden decreases in solar and wind capacities faults. 

Table 3. Optimization results for second fault scenario 

(Sudden decrease in solar and wind capacities) 

Method Cost(KW*2) Best Method 

Particle Swarm 

Optimization 
2368605.61 

Simulated 

Annealing Genetic Algorithm 2368602.27 

Simulation Annealing 2368602.16 

Case 4: Best optimization method for sudden decrease 

in solar and wind capacities fault 

A. Grid operation after PSO optimization at third fault

scenario: The Figure 16 introduces fault scenario, a sudden 

decrease in battery capacity is simulated by reducing the 

capacity of the technique for storing batteries. Specifically, the 

research modifies the wind and solar capacities after the fault 

to reflect a 10% decrease in their respective capacities. 

Figure 16. Grid operation after PSO optimization at third 

fault scenario 

Following this adjustment, Particle Swarm Optimization 

(PSO) is applied to optimize grid operation in response to the 

altered fault scenario. PSO iteratively adjusts system 

parameters to minimize a predefined cost function, aiming to 

restore grid stability and efficiency post-fault. The resulting 

optimized load demand (`optimized_load_demand_pso`) and 

its corresponding cost (`pso_cost`) reflect the improved grid 

operation achieved through PSO optimization. Subsequently, 

a plot visualizes the load demand before and after optimization, 

with the optimized load demand depicted in blue and the 

original demand in red. This visualization facilitates a clear 

comparison of system performance, showcasing the 

effectiveness of PSO in mitigating the impact of the fault 

scenario on grid operation [17]. By introducing this fault 

scenario and assessing the performance of PSO in optimizing 

grid operation, the article contributes to the understanding of 

how different optimization strategies can be utilized to address 

various fault scenarios, thereby enhancing grid resilience and 

reliability. 

B. Grid operation after GA optimization at third fault

scenario: In Figure 17, the Genetic Algorithm (GA) is 

1086



employed to optimize grid operation in response to the 

introduced fault scenario, characterized by a sudden decrease 

in battery capacity. In order to find the ideal or nearly ideal 

solution to a given problem, a population of alternative 

solutions is iteratively evolved by the heuristic search 

technique known as genetic and natural selection (GA). By 

applying GA, the article adjusts system parameters to 

minimize a predefined cost function, aiming to restore grid 

stability and efficiency post-fault. 

Figure 17. Grid operation after GA optimization at third fault 

scenario 

The resulting optimized load demand 

(`optimized_load_demand_ga`) and its corresponding cost 

(`ga_cost`) represent the improved grid operation achieved 

through GA optimization. Subsequently, a plot visualizes the 

load demand before and after optimization, with the optimized 

load demand depicted in blue and the original demand in red. 

This visual comparison enables a clear assessment of system 

performance, highlighting the effectiveness of GA in 

mitigating the impact of the fault scenario on grid operation. 

GA's the capacity to effectively investigate the space of 

solutions and handle complex optimization problems makes it 

a suitable option for dealing with difficulties in power grid 

management. By integrating GA optimization into the grid 

management strategy, this approach enables the development 

of adaptive solutions that efficiently respond to sudden 

disruptions in battery capacity, thereby enhancing grid 

reliability and minimizing operational costs [18]. 

C. Grid operation after SA optimization: In this

optimization step as shown in Figure 18, Simulated Annealing 

(SA) is utilized to address the newly introduced fault scenario, 

which involves a sudden decrease in battery capacity. SA is a 

probabilistic optimization approach that draws inspiration 

from the metallurgical annealing process, which involves 

heating and subsequently cooling a material to achieve its 

optimal state. 

Similarly, SA investigates the solution space iteratively, 

acknowledging changes that decrease the value of the 

objective function with a specific probability, even if they 

worsen the solution temporarily. Through this technique, SA 

is able to develop near-optimal solutions to difficult 

optimization problems and escape local minima. By applying 

SA, the article adjusts system parameters to minimize a 

predefined cost function, aiming to restore grid stability and 

efficiency post-fault. 

The resulting optimized load demand 

(`optimized_load_demand_sa`) and its corresponding cost 

(`sa_cost`) reflect the improved grid operation achieved 

through SA optimization. Subsequently, a plot visualizes the 

load demand before and after optimization, with the optimized 

load demand depicted in blue and the original demand in red. 

This visual comparison facilitates a clear assessment of system 

performance, demonstrating the effectiveness of SA in 

mitigating the impact of the fault scenario on grid operation. 

SA's the capacity to effectively investigate the solution space 

and escape local optima makes it well-suited for addressing 

challenges in power grid management. By integrating SA 

optimization into the grid management strategy, this approach 

enables the development of adaptive solutions that efficiently 

respond to sudden disruptions in battery capacity, thereby 

enhancing grid reliability and minimizing operational costs. 

Figure 18. Grid operation after SA optimization 

D. Grid operation after particle swarm optimization for

decrease in solar and wind capacities fault: In this 

comparative analysis as shown in Figure 19, the optimization 

methods—Three algorithms—Genetic Algorithm (GA), 

Simulated Annealing (SA), and Particle Swarm Optimization 

(PSO)—are evaluated for their effectiveness in addressing a 

fault scenario characterized by a sudden decrease in solar and 

wind capacities.  

Figure 19. Grid operation after particle swarm optimization 

for decrease in solar and wind capacities fault 

The costs incurred after optimization using each method are 

printed to provide a quantitative assessment of their 

performance. Subsequently, the article determines the best 

optimization method for the given fault scenario by selecting 

the one with the lowest cost. This decision is based on a 

comparison of the costs obtained from each optimization 

method. The best method is then utilized to optimize the grid 

operation, and the resulting optimized load demand is plotted 

alongside the original demand for visualization. This 

comparison facilitates an evaluation of the efficiency of each 
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optimization technique in mitigating the impact of fault 

scenario on grid operation. By selecting the method with the 

lowest cost, the article identifies the optimal approach for 

addressing sudden decreases in solar and wind capacities 

within the power grid [19]. This comprehensive analysis 

enables informed decision-making in selecting the most 

suitable optimization strategy to enhance grid resilience and 

reliability in response to such fault scenarios. 

This output presents the results of applying different 

optimization methods (PSO, GA, SA) to address various fault 

scenarios in a power grid system [20]. Each optimization 

method is evaluated based on its ability to minimize the cost 

associated with the fault scenario. 

For the sudden increase in demand fault scenario, all three 

optimization methods were able to converge to solutions with 

similar costs. However, Simulated Annealing (SA) was 

identified as the best optimization method for this scenario 

based on its slightly lower cost compared to PSO and GA. 

Similarly, for the sudden decrease in solar and wind 

capacities fault scenario, all methods achieved comparable 

results. However, SA again outperformed the other methods, 

being identified as the best optimization method. 

In contrast, for the sudden increase in solar and wind 

capacities fault scenario, Genetic Algorithm (GA) was 

determined to be the best optimization method, as it resulted 

in the lowest cost among the three methods. 

Lastly, for the sudden decrease in solar and wind capacities 

fault scenario, Particle Swarm Optimization (PSO) was 

identified as the best optimization method based on its lowest 

cost compared to GA and SA. 

Overall, these findings demonstrate the effectiveness of 

different optimization methods in addressing various fault 

scenarios in the power grid system, with each method 

performing optimally under specific conditions. 

8. CONCLUSIONS

In conclusion, this research presents a comprehensive 

exploration of optimization methods, such as Genetic 

Algorithm (GA), Simulated Annealing (SA), and Particle 

Swarm Optimization (PSO), applied to address various fault 

scenarios in a power grid system. Through systematic 

comparisons, the article identifies the best optimization 

method for each specific fault scenario, considering factors 

such as sudden increases or decreases in demand, solar and 

wind capacity faults, and even a decrease in battery capacity. 

The results showcase the effectiveness of each optimization 

method in adapting the grid operation to mitigate the impact 

of faults. PSO, GA, and SA, each with their unique search 

strategies, demonstrate their capabilities in optimizing load 

demand and minimizing costs under different fault conditions. 

For future enhancements, the research can be extended to 

include more sophisticated grid models, considering 

additional constraints and complexities in the power system. 

Potential challenges include various sources of real-time data, 

including weather predictions, load demands, and renewable 

energy production, are complicated.  Moreover, incorporating 

machine learning techniques to predict fault occurrences and 

improve the adaptability of optimization algorithms could 

enhance the robustness of the grid management system. 

Additionally, real-time data integration and dynamic 

optimization approaches can be explored to make the system 

more responsive to changing conditions.  

In summary, this research establishes the framework for 

additional study and advancement in the area of smart grid 

management, providing insights into the performance of 

various optimization methods and paving the way for more 

advanced and adaptive grid control strategies. 
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