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In this work, the Saint-Venant torsion problem of prismatic bars with rectangular cross-
sections was presented as a boundary value problem (BVP) of the theory of elasticity. The
governing partial differential equation was formulated and shown to be a Poisson equation
in terms of the Prandtl stress functions. The Poisson equation governing the Saint-Venant
torsion problem was expressed in variational form using Galerkin variational method. The
trial function that apriori satisfies the boundary conditions was chosen as a trigonometric
cosine series of infinite terms; and in terms of unknown undetermined coefficients or
parameters. The unknown parameters were determined by solving the Galerkin variational
integral; thus fully determining the Prandtl stress function. The shear stresses were then
determined. The maximum shear stress was also obtained. The moment of the cross-section
was determined and found to depend on non — dimensional torsional parameters F1(a/b).
The maximum shear stress was also found to depend on dimensionless torsional parameters
F2(a/b) which were determined and tabulated. It was found that the solutions obtained using
the Galerkin method were mathematically closed form solutions because the exact shape
functions were used to approximate the trial solution. Expressions obtained for the Prandtl
stress function, shear stresses and moment of cross-section were exact and agreed with

solutions in the technical literature.

1. INTRODUCTION

When a torque is applied to a beam with non-circular cross-
section, the cross-section rotates about the longitudinal axis of
the beam and simultaneously undergoes a significant
distortion. The cross-section thus undergoes both twisting and
warping deformations [1-8]. Such problems are formulated
using theory of elasticity principles. The foundational
assumptions of the formulation are the strain-displacement
(kinematic) relations of infinitesimal/small deformation
assumptions, the stress-strain laws, the differential equations
of equilibrium and compatibility requirements. Saint-Venant
formulated the problem using theory of elasticity and Prandtl
solved the problem in terms of Prandtl’s stress functions.

Prandtl’s formulation of the Saint-Venant torsion problem
leads to a Poisson type partial differential equation (PDE);
which can be solved using analytical or numerical methods.
Available analytical techniques include the method of
separation of variables, eigenfunction expansion methods,
integral transform methods and Green’s function methods.
The numerical methods that can be used to solve the torsion
problem are the numerical methods available for solving the
boundary value problems (BVP) in engineering. Some of the
numerical techniques for solving BVP which are applicable to
the Poisson type PDE are Galerkin’s variational method,
Extended Galerkin’s variational method, Ritz’s method, Finite
Element method (FEM), Finite difference method (FDM); and
Boundary element methods (BEM) [1-13].

In this work, the Saint-Venant problem of torsion of
prismatic bars with rectangular cross-section will be
formulated in variational form, and solved using the Galerkin
variational method.
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Research aim and objectives

The research aim is to use the Galerkin variational method
to solve the Saint-Venant torsion problem for prismatic bars
with rectangular cross-sections. The specific objectives are:

(1) to formulate the Saint-Venant torsional problem for
prismatic bars with rectangular cross-sections using theory of
elasticity principles and techniques

(2) to show that the formulated Saint-Venant torsional
problem is governed by a partial differential equation called
the Poisson equation when expressed in terms of the Airy’s
and Prandtl’s stress functions of elasticity

(3) to express the boundary value problem (BVP) in
variational form using the Galerkin variational method

(4) to solve the Galerkin variational equation for the
problem and thus obtain solutions for the unknown parameters
in the assumed (trial) solutions for the Airy’s or Prandtl’s
stress function

(5) to obtain analytical expressions for the torque, shear
stresses and torsional parameters

(6) to show that Galerkin’s variational method can be
used to obtain closed form mathematical solutions to the BVP
of Saint-Venant torsion for prismatic bars with rectangular
cross-sections.

2. THEORETICAL FRAMEWORK

The study considered an isotropic, homogeneous long bar
with prismatic cross-section denoted by R?> on the yz
coordinate plane. The longitudinal axis is coincident with the
x — Cartesian coordinate axis. The bar is fixed at x = 0. The end



at x = [ is subject to a torsional moment which twists it by an
angle /0" where 0' is the twist rate and / is the length of the bar
[14-21]. Other relevant literature can be found in Roohi et al.
[22] and Heydari et al. [23].

The assumptions of the formulation are as follows:

(1)  the cross-sections in the yz coordinate plane undergo
rotation as a rigid body. For non-circular cross-sections, the
cross-section will experience twisting. It is deflected in the x —
coordinate direction

(2)  the deflection and twist rate are constant along the
longitudinal axis of the bar. This renders the problem a two-
dimensional (2D) problem in the theory of elasticity

(3) the material of the bar is isotropic and homogeneous.

2.1 Displacement field
The three dimensional (3D) Cartesian components of the

displacement field, following Saint-Venant hypothesis [14-21]
are given by:

u(x,y,z) = 0'g(y, z) = B(y. 2) M
V(X Y,Z) = —0'xz = —Bxz (2)
W(x, y,z) =-8'%y = Bxy A3)

where ¢@(y, z) is an unknown function which is used to define
the deflection and is a function of the y and z Cartesian
coordinate variables. u, v, and w are the components of
displacement in the x, y and z Cartesian coordinate directions,
respectively. f = 0’ is the twist rate.

2.2 Strain field

Using the strain-displacement equations for infinitesimally
small deformation, the strain fields are obtained as follows:

Exx = & =0 (4)
ov

8yy = 5 =0 (5)
en :% —0 (©)

ou ov 0
B o

ou_ ow (09
Yxz = 28y oz ox B( P yj (3

oV ow

YyZZZSyZ:E'FE:—BX'FBX:O (9)

€xx, €y, €z are the normal strains while vy, v,z and v, are the
shear strains. Thus, the strain — compatibility equation
becomes:
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3 ) 2
%_%:iﬁ(%*'y)_éﬁ(a_@_zjzﬁ(a P 1-

25 1)y (10
oy oz oy oy dyor

ozdy

% _ 3%
0yoz - 0z0y (l 1)

Provided

Eq. (11) implies that @(y, z) is required to be a continuous
function of y and z.

2.3 Stress fields

The generalized Hooke’s law of linear isotropic elasticity is
given generally by
(12)

’Eij = k@u (SXX +Ey T &y ) + ZGSij = Xaija\, + ZGSij

Yy
where 0;; =1 fori=j; 0; =0 fori+#j

A and G are the Lamé’s constants G is the shear modulus. ¢,
is the volumetric strain.

8y =&xx TEy +8;, =0 (13)
The stress fields are given by
GXX :ny :GZZ :0 (14)
o9
Ty =Gryy =2Gg,, =BG 5— z (15)
o9
T,; =Gy, =2Ge,, =BG E+ y (16)

where Oy, Gy, O are
stresses.

normal stresses Ty, Tyz, T are shear

2.4 Differential equations of equilibrium

The differential equations of equilibrium in the absence of
body forces f; given in general by Eq. (18).

ZJ 8117,] = fi =0 (18)
Simplify to become Equations (19)-(21).
ot 0
v, Tx g (19)
oy 0z
ot
Xy
Y —0 20
OX (20)
0Ty,
X _po 21
OX @1

2.5 Prandtl’s stress function ¢(y, z)

Prandtl defined stress functions ¢(y, z) which are functions
of the y and z coordinate variables of the cross-section, and



independent of x such that the differential equations of

equilibrium are satisfied by the non-vanishing stress
components Ty, and T, as follows:
a9
Txy :GBE(Y'Z) (22)
%
Xz :_GBE(yv Z) (23)

It is observed that for Prandtl’s stress functions Eqns. (22)
and (23), Eq. (19) becomes:

2 (g ) o2 _cpl o (24
ay(GBazj+az( Bé’yj oyoz 826'y_0 @4
if

2 2

20 _ P 5)

oyoz  ozoy

Prandtl’s stress functions are solutions of the differential
equation of equilibrium if the functions are continuous. The
strain components are given in terms of the Prandtl stress
function ¢(x, z) as:

Dy _gd
Ty =5 TP (26)
_ Tx __ o)
Txz = G B@y 27)

Then the strain compatibility equation is

g Uy _ g% _ @:_ (@ @j
o oz lBay P oy’ s
(28)
From Eq. (10), Eq. (25) can be expressed as:
2 2
—B(a—j) + @J 2B (29)
oy oz?
Simplifying,
2*0(v.2) , 2%0(y.2)
Ad = Y e V2(y, z) = -2 (30)
where
* &
A=V? o t— (31

A or V2 is the Laplace differential operator.
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2.6 Boundary condition

The boundary condition for the Prandtl stress function for a
cross-sectional profile with no holes is

oy, z)=0 (32)

on the boundary I.

2.7 Torque, section moment and shear stresses

The torque or torsional moment, M is computed as the
double integral over the cross-section

M = ”(—rxyz + 1y, Y)dydz (33)
R2
where R? is the cross-section of the bar.
M :J‘j(—GB@z—GB@y)dydz (34)
164 oy
R2
M= —GB”[ jdydz (35)
Using the method of integration by parts,
@ zd = — = — (36)
ydz = | ¢zn, ds o(y, z)dydz = (Y, z)dydz
[ fene oo
%
H— ydydz = —j d(y, 2) dydz (37)
2 o 2
R R
M = zGB”' o(y, 2)dydz = GBJ (38)
2
where
(39)

= z_”¢(y, 7)dydz
2

J is the moment of the cross-section, or torsional constant.
The modulus of the shear stress is

mi=( + )"

+ sz (40)

3. METHODOLOGY

For a rectangular cross-section on the yz Cartesian
coordinate plane defined by

<y<

NIQ
N R
NIU‘
IN
N
IN
N o



where a > b > 0 the Prandtl stress function that satisfies the man_2 m+n

boundary condition Eq. (32) is assumed in terms of the a _ (=24 2)4? 24y (-2)4%(-1) 2 (50)
unknown parameters C,;, as the infinite series: ™ mnm - mnm
mmy nnz So,
oy, 2) = ZZC”‘” cos—cosT 41)

— ( 2)4 mmy nz
-2= 1) 2 cos—cos 51
m=1,3,5,7,9,...; n=1,3,5,7,9, ... ZZ( ) a b D

Since So,
a b b2 al2
¢(y =t—, Z) = ¢(y' Z= i_) =0 (42) —= 2+ L cosMcosEcosMcosmdydz
2 2 zz 7!/2!/2((51) (bj] a b
o o b2 a2 T
The Galerkin variational integral becomes: Sy Mmsiwsﬂmmﬂcos 2 dydz (52)
mon _bj2-an mn* b b
b/2 a/2 , ,
mt nmnz m+n— m+n
I (V2¢+2) cos—y cos——dydz=0 (43) (2)42(_1)72 me e )t Zs(_l)T’l( 1
! 2 oI ((mf (o) BN
ERtEER)
a b
Expanding, s mn
_2°(-1) 2 1 (53)
wear (L (44) - mnr® b2m? + nla2
J. J {[ z][zzcm" cosmcos J z}cos—ycosmdydz 0 _—
—br2-an o 62 b b a2b2
m+n
. RESULTS 25 (_1)77 a2b2 1
Co = (54)
4 2102, 2,2
The Galerkin variational integral is T mn(m“b* +n“a”)
b2 al2 » o The Prandtl stress function is then:
mmy  nmz
[ [ 23S0 cmmeos Mo
a b
—b/2-a/2 M n ( 1) m;nfl cos mmy cos nrz
m'r n'nz >a?p? - 'y
cos—ycos—dydz o(y,2) = 22 b Zz —a4_ b (55)
a b mn(m2b? +nZa?)
b/2 al2
y
= -2 COSTC ST dydz (45) &(y, z) is obtained as a trigonometric cosine series of infinite
—b/2-al2 terms. The series is a convergent series since
bi2 a2 Ty 1
ZZ—cmn J J' ((_) +(Mj jcosmcosﬂcosmﬂycosﬂdydz |Conn cos—cos—l < |Conl < constant( - 2) and,
a b a b a b
~b/2-al2 Z Z - ( wi)( OOL)
b/2 al2 m&n mznz mo2 n o2
= I J. —2C05s—— n'z cos Tcydydz (46)
b 4.1 Moment of the cross-section (torsional constant, j)
—b/2-al2 J
. From Eq. (39),
-2 is expanded in Fourier cosine series as: a- (39)
b/2 al2 ( 1)2 1cos mry cos finz
nnz ral’on a_ b (56)
—_ —2 —_— J=2 dydz
2= zzam” COS COS b 47 —'t!./z—a'!‘/z n* ;Zn“ mn(m?b? + n%a?) Yy
where 0 s (- 1)7”—1 a2 57
) =zz *  mn(m?b® +n?a?) I I COSTCOS v G
b/2 al2 m.n -b/2-al2
amn J. J- (- 2)cos cosEdydz (43)
b 52 28 a3b3
ZZ 7 (58)
i m? (m b% +n?a?)
4 5 2b -
ag,=—+-2-—(-1) 2 —(-1) 2 (49)
m = 25 — 2(- ) ( ) Lot
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or

then,

220°r3 o 1
J =
6 Z;mZnZ(msz +n2b2r2)

280813 = 1
J =
6 ZZn:mZanZ(mZ +n2r2)

84,3
J=2b5r ZZ%“)

T —~ e~ m°n°“(m° +n°r

2

286

r3r® zz m?n%a (m +n2r2)

286

ZZmzn a (m +n%r?)

284

sz (m +n?r?)

or

0

22a%h’ ¢ 1
J:
756 ;;bz Zz[m b2+na j

b2

8.3
Zabzz (;l nzazj
m* +

N m2n? 2
2
Z_ZZ . 2.2 -ab?
" m?n (m2+n a j

b2

8 o0 o0

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)
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J=F ( b)ab?’ (72)
where

(a/b)’

29T o
" m2n (m2+ a j
bZ

(5)-3

4.2 Shear stress tensors

The shear stresses are found from the Prandtl stress function

as:
f 5 (74)

m+n 1
(-1) 2 051 8( mny)

> > . cos—=
mn(m?b?+nZa?) oy

a0 =-8p 2y 2)= Gﬁz ab’ ZZ

a

(75)

m+n

2
Ty (Vs z)—BGZSa bzz (12 cosmsinE (76)

m(m2b? + na a b
m=1,3,5,7,9,...,n=1,3,5,7,9, ...
25ab2 (-1) 2 . mny  nmz 77
Pa(2) =GP Z:Z:n(m 2% + n%a?) nTCOST 77)
m=1,3,5,7,9,..;,n=1,3,5,7,9, ...

The maximum shear stress Tmax 1S found as:

m-1

o T
. GBZ ZZ = (78)

[m o j
bZ
T = GPab’F, (%) (79)
where
Lﬂ

3
5(5)-505) . @z ZZW (50

The non-dimensional torsional parameters F; (%) and F, (%)

for the Saint Venant torsion of prismatic bars with rectangular
cross-sections are tabulated as Tables 1 and 2 for various

values of the ratio a/b for the present study and Ifl, IE2 are for

results from Jan Francu et al. [3].



Table 1. Variation of torsional parameter F; with a/b

r=a/b F1(a/b) Fyi(a/b) [3]

1 0.1406 0.141
1.2 0.1661

1.5 0.1958 0.196
2 0.2287 0.229
2.5 0.2494

3 0.2633 0.263
4 0.2808 0.281
5 0.2913 0.291
6 0.298 0.298
8 0.307 0.307
10 0.3123 0.312
0 1/3 1/3

Table 2. Variation of torsional parameter F, for with a/b for
Saint Venant torsion of bar with rectangular section

r=a/b F,(a/b) Fy(a/b) [3]

1 0.208 0.208
15 0.231 0.231
2 0.246 0.246
3 0.267 0.267
4 0.282 0.282
5 0.292 0.292
6 0.299 0.299
8 0.307 0.307
10 0.313 0.313
) 1/3 1/3

The deflection function ¢(y, z) is obtained from solving the

following equations obtained from Eqns. (7), (8), (26) and (27):

% _,_%
Y z e (81)
and
% ., __%
> VT Y (82)
Thus,
a—@:@+z (83)
oy oz
or,
o _ _ 00 _
Py y (84)

By integration of Eq. (83) we obtain Eq. (85) as @(y, z)

m+n n
o (1) 2 sin ysiniy

ZZ -

m(mb2+na)

oy, 2) = +yz  (85)

4.3 Numerical problem

A numerical problem to illustrate the validity of the results
obtained in this study considers the calculation of torsional
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constant J, given by the expressions in Eqns. (72) and (73)
where Eq. (73) is presented as Table 1 in terms of a/b. The
torsional contant is important in torsion problems since it
determines the torsional rigidity D; as follows:
D, =GJ (86)

We compare our results with results from Jan Francu et al.
[3] who presented a Navier series solution of the torsion
problem leading to results that are identical with the results
from the present study which employed the Galerkin method.
Numerical solutions are presented for various values of a

and b as follows and compared with results from Jan Francu et
al. [3].

Table 3. Results for torsional stiffness for various cross-
sections, and comparison with results from Jan Francu et al.

[3]
Cross-section  a/b F1 J=ab’F1  F1 ]
Present = ab’F,
study Jan
Francu
etal [3]
a (cm) b (cm* (cm*)
(cm)
2 2 1 0.1406 2.2496 0.141 2.256
4 2 2 0.2287 7.3184 0.229 7.328
6 2 3 0.2633 12.6384 0.263 12.624
8 2 4 02808 17.9712 0.281 17.984
10 2 5 02913 23304 0.292 23.28
12 2 6 0.298 28.604  0.298 28.604
16 2 8 0.307 39.296  0.307 39.296
20 2 10 0.3123 49.968 0.312 49.92
o0 2 S 1/3 0 1/3 S

5. DISCUSSION

This work has successfully presented the Saint-Venant
torsion problem of prismatic bars with rectangular cross-
section as a boundary value problem (BVP) of the theory of
elasticity using Prandtl’s stress function ¢(y, z). The resulting
BVP was observed to be a Poisson type partial differential
equation in terms of the Prandtl’s stress functions. The basis
(shape) functions that satisfies the boundary conditions given
in terms of trigonometric (cosine) functions; and the assumed
(trial) Prandtl stress function used was given as Eq. (45) — a
double trigonometric cosine series of infinite terms.

The Galerkin variational formulation of the Saint-Venant
torsion equation was obtained as Eq. (45). The unknown
parameters of the Galerkin formulation was obtained by
solving the Galerkin variational statement of the Poisson
equation as Eq. (54). The Prandtl stress function was thus
completely determined as Eq. (55), which was found to be a
rapidly convergent double trigonometric cosine series with
infinite terms.

The moment of the cross-section was obtained in terms of
the ratio of the cross-sectional dimensions (a/b) as Eqns. (71),
and (72) where Eq. (72) is expressed in terms of the non-
dimensional torsion parameter, Fi(a/b) Fi(a/b) is found to
depend on the ratio (a/b) as Eq. (73). Values of Fi(a/b) for
various values of a/b were calculated and shown in Table 1.

The non-vanishing shear stress fields were found as Eqns.
(76) and (77). The maximum shear stress was obtained as Eq.



(78) and presented in terms of the dimensionless torsion
parameter F>(a/b) as Eq. (79). The dimensionless torsion
parameter F»(a/b) was calculated for various values of (a/b)
and presented as Table 2.

The numerical results obtained for the torsional constant .J
for various values of the cross-sectional dimensions were
identical with the results obtained by Jan Francu et al. [3] who
used Navier series method.

6. CONCLUSIONS

The conclusions of this study are as follows:

(1) the Galerkin variational method has been
successfully used to present the Poisson equation for the Saint-
Venant torsion of prismatic bars with rectangular cross-section
in variational form.

(2) the Galerkin solutions yielded mathematically closed
form and exact solutions to the Saint-Venant torsion problem
of prismatic bars with rectangular cross-section.

(3) Exact solutions were obtained because the shape
functions used were exact shape functions which apriori
satisfied all the boundary conditions.

(4) the exact solutions obtained for the Prandtl stress
function, the shear stresses and moment of the cross-section
were convergent series with infinite terms.

(5) the solutions obtained were closely similar to the
solutions obtained by Jan Francu et al. [3] who used Navier
series method.
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NOMENCLATURE

Xz
u(x,y,z)
V(X Y,2)
w(X,Y,2)
v, and z
0=p

o0, 2)

Exxs Eyy, €2z
Yxys Vxzs Vyz
A

G

Dy

€y

0jj

Tij

&y

Gixx, Oyy, Ozz
Txys Tazy Tyz
o0, 2)

R2

M

r

J
m,n,m',n'
a,b

Cmn

Cartesian coordinates in three dimensions

Displacement field components in the x,

Cartesian coordinate directions

twist rate

unknown function related to deflection and
used to define the deflection

normal strains

shear strains

Lamé’s content

shear modulus or modulus of rigidity
torsional rigidity

volumetric strain

Kronecker’s delta

stress using indicial notation

strain using indicial notation

normal stresses

shear stresses

Prandtl’s stress function

cross-section of the bar

torque, torsional moment

boundary of the cross-section

moment of the cross-section, St Venant
torsional constant

integers

in-plane dimensions (length and width)
unknown parameter of the Prandtl’s
stress function

20

Amn cosine series parameter
r aspect ratio

F (a/ b)} . . .

dimensionless torsion parameters

F, (a/b)

|51 (a /b)} dimensionless  torsion  parameters
— obtained by Jan Francu et al. [3] using
F, (a/b) Navier series method
2D two dimensional
3D three dimensional
BEM boundary element method
BVP boundary value problem
PDE partial differential equation
FEM finite element method
FDM finite difference method
MATHEMATICAL SYMBOLS
> summation
> double summation
[ integration (integral)
] double integration (double integral)

0 . — .

= partial derivative with respect to x

0 . — .

— partial derivative with respect to y
oy

2

—_— mixed partial derivative

oXoy
A=V? Laplacian





