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ABSTRACT 
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 In this work, the Saint-Venant torsion problem of prismatic bars with rectangular cross-

sections was presented as a boundary value problem (BVP) of the theory of elasticity. The 

governing partial differential equation was formulated and shown to be a Poisson equation 

in terms of the Prandtl stress functions. The Poisson equation governing the Saint-Venant 

torsion problem was expressed in variational form using Galerkin variational method. The 

trial function that apriori satisfies the boundary conditions was chosen as a trigonometric 

cosine series of infinite terms; and in terms of unknown undetermined coefficients or 

parameters. The unknown parameters were determined by solving the Galerkin variational 

integral; thus fully determining the Prandtl stress function. The shear stresses were then 

determined. The maximum shear stress was also obtained. The moment of the cross-section 

was determined and found to depend on non – dimensional torsional parameters F1(a/b). 

The maximum shear stress was also found to depend on dimensionless torsional parameters 

F2(a/b) which were determined and tabulated. It was found that the solutions obtained using 

the Galerkin method were mathematically closed form solutions because the exact shape 

functions were used to approximate the trial solution. Expressions obtained for the Prandtl 

stress function, shear stresses and moment of cross-section were exact and agreed with 

solutions in the technical literature. 
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1. INTRODUCTION 

 

When a torque is applied to a beam with non-circular cross-

section, the cross-section rotates about the longitudinal axis of 

the beam and simultaneously undergoes a significant 

distortion. The cross-section thus undergoes both twisting and 

warping deformations [1-8]. Such problems are formulated 

using theory of elasticity principles. The foundational 

assumptions of the formulation are the strain-displacement 

(kinematic) relations of infinitesimal/small deformation 

assumptions, the stress-strain laws, the differential equations 

of equilibrium and compatibility requirements. Saint-Venant 

formulated the problem using theory of elasticity and Prandtl 

solved the problem in terms of Prandtl’s stress functions. 

Prandtl’s formulation of the Saint-Venant torsion problem 

leads to a Poisson type partial differential equation (PDE); 

which can be solved using analytical or numerical methods. 

Available analytical techniques include the method of 

separation of variables, eigenfunction expansion methods, 

integral transform methods and Green’s function methods. 

The numerical methods that can be used to solve the torsion 

problem are the numerical methods available for solving the 

boundary value problems (BVP) in engineering. Some of the 

numerical techniques for solving BVP which are applicable to 

the Poisson type PDE are Galerkin’s variational method, 

Extended Galerkin’s variational method, Ritz’s method, Finite 

Element method (FEM), Finite difference method (FDM); and 

Boundary element methods (BEM) [1–13]. 

In this work, the Saint-Venant problem of torsion of 

prismatic bars with rectangular cross-section will be 

formulated in variational form, and solved using the Galerkin 

variational method. 

Research aim and objectives 

 

The research aim is to use the Galerkin variational method 

to solve the Saint-Venant torsion problem for prismatic bars 

with rectangular cross-sections. The specific objectives are: 

(1) to formulate the Saint-Venant torsional problem for 

prismatic bars with rectangular cross-sections using theory of 

elasticity principles and techniques 

(2) to show that the formulated Saint-Venant torsional 

problem is governed by a partial differential equation called 

the Poisson equation when expressed in terms of the Airy’s 

and Prandtl’s stress functions of elasticity 

(3) to express the boundary value problem (BVP) in 

variational form using the Galerkin variational method 

(4) to solve the Galerkin variational equation for the 

problem and thus obtain solutions for the unknown parameters 

in the assumed (trial) solutions for the Airy’s or Prandtl’s 

stress function 

(5) to obtain analytical expressions for the torque, shear 

stresses and torsional parameters 

(6) to show that Galerkin’s variational method can be 

used to obtain closed form mathematical solutions to the BVP 

of Saint-Venant torsion for prismatic bars with rectangular 

cross-sections. 

 

 

2. THEORETICAL FRAMEWORK 

 

The study considered an isotropic, homogeneous long bar 

with prismatic cross-section denoted by R2 on the yz 

coordinate plane. The longitudinal axis is coincident with the 

x – Cartesian coordinate axis. The bar is fixed at x = 0. The end 
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at x = l is subject to a torsional moment which twists it by an 

angle l where  is the twist rate and l is the length of the bar 

[14–21]. Other relevant literature can be found in Roohi et al. 

[22] and Heydari et al. [23]. 

The assumptions of the formulation are as follows: 

(1) the cross-sections in the yz coordinate plane undergo 

rotation as a rigid body. For non-circular cross-sections, the 

cross-section will experience twisting. It is deflected in the x – 

coordinate direction 

(2) the deflection and twist rate are constant along the 

longitudinal axis of the bar. This renders the problem a two-

dimensional (2D) problem in the theory of elasticity 

(3) the material of the bar is isotropic and homogeneous. 

 

2.1 Displacement field 

 

The three dimensional (3D) Cartesian components of the 

displacement field, following Saint-Venant hypothesis [14–21] 

are given by: 

 

( , , ) ( , ) ( , )u x y z y z y z=   =                                (1) 

 

( , , )v x y z xz xz= − = −                       (2) 

 

( , , )w x y z xy xy= − =                        (3) 

 

where (y, z) is an unknown function which is used to define 

the deflection and is a function of the y and z Cartesian 

coordinate variables. u, v, and w are the components of 

displacement in the x, y and z Cartesian coordinate directions, 

respectively.  =  is the twist rate. 

 

2.2 Strain field 

 

Using the strain-displacement equations for infinitesimally 

small deformation, the strain fields are obtained as follows: 

 

0xx

u

x


 = =


                     (4) 

 

0yy

v

y


 = =


                              (5) 

 

0zz

w

z


 = =


                              (6) 

 

2xy xy

u v
z

y x y

     
 =  = + =  −   

     
   (7) 

 

2xz xz

u w
y

z x z

   
 =  = + =  + 

   
                      (8) 

 

 2 0yz yz

v w
x x

z y

 
 =  = + = − +  =

 
                  (9) 

 

xx, yy, zz are the normal strains while xy, yz and xz are the 

shear strains. Thus, the strain – compatibility equation 

becomes: 

 

2 2

1 1 2
xyxz y z

y z y z z y y z z y

             
− =  + −  − =  + − − =     

             

    (10) 

 

Provided  
𝜕2𝜑

𝜕𝑦𝜕𝑧
=

𝜕2𝜑

𝜕𝑧𝜕𝑦
                                       (11) 

 

Eq. (11) implies that (y, z) is required to be a continuous 

function of y and z. 

 

2.3 Stress fields 

 

The generalized Hooke’s law of linear isotropic elasticity is 

given generally by  

 

2 2( )ij ij xx yy zz ij ij v ijG G =   +  +  +  =   +      (12) 

 

where ij = 1 for i = j; ij = 0 for i  j 

 and G are the Lamé’s constants G is the shear modulus. v 

is the volumetric strain. 

 

0v xx yy zz =  +  +  =                  (13) 

 

The stress fields are given by  

 

0xx yy zz =  =  =                              (14) 

 

2xy xy xyG G G z
y

 
 =  =  =  − 

 
         (15) 

 

2xz xz xzG G G y
z

 
 =  =  =  + 

 
       (16) 

 

0yz yzG =  =            (17) 

 

where xx, yy, zz are normal stresses xy, yz, xz are shear 

stresses. 

 

2.4 Differential equations of equilibrium 

 

The differential equations of equilibrium in the absence of 

body forces fi given in general by Eq. (18). 

 

0j j ij if   = =                            (18) 

 

Simplify to become Equations (19)-(21). 

 

0
xy xz

y z

 
+ =

 
                           (19) 

 

0
xy

x


=


                                          (20) 

 

0xz

x


=


                                    (21) 

 

2.5 Prandtl’s stress function (y, z) 

 

Prandtl defined stress functions (y, z) which are functions 

of the y and z coordinate variables of the cross-section, and 
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independent of x such that the differential equations of 

equilibrium are satisfied by the non-vanishing stress 

components xy and xz as follows: 

 

( , )xy G y z
z


 = 


                       (22) 

 

( , )xz G y z
y


 = − 


                         (23) 

 

It is observed that for Prandtl’s stress functions Eqns. (22) 

and (23), Eq. (19) becomes: 

 
2 2

0G G G G
y z z y y z z y

          
 + −  =  −  =   

         
     (24) 

 

if  

 
2 2

y z z y

   
=

   
                                           (25) 

 

Prandtl’s stress functions are solutions of the differential 

equation of equilibrium if the functions are continuous. The 

strain components are given in terms of the Prandtl stress 

function (x, z) as: 

 

xy
xy

G z

 
 = = 


                              (26) 

 

xz
xz

G y

 
 = = −


                               (27) 

 

Then the strain compatibility equation is 

 
2 2 2 2

2 2 2 2

xyxz

y z y z y z

          
− = − − = − + 

      
 

      (28) 

 

From Eq. (10), Eq. (25) can be expressed as: 

 
2 2

2 2
2

y z

    
− + =  

  
                      (29) 

 

Simplifying, 

 
2 2

2
2 2

2
( , ) ( , )

( , )
y z y z

y z
y z

   
 = + =   = −

 
 (30) 

 

where  

 
2 2

2
2 2y z

 
 =  = +

 
                         (31) 

 

 or 2 is the Laplace differential operator. 

 

 

 

2.6 Boundary condition 

 

The boundary condition for the Prandtl stress function for a 

cross-sectional profile with no holes is 

 

0( , )y z =                                      (32) 

 

on the boundary . 

 

2.7 Torque, section moment and shear stresses 

 

The torque or torsional moment, M is computed as the 

double integral over the cross-section 

 

2

( )xy xz

R

M z y dydz= − +                          (33) 

 

where R2 is the cross-section of the bar. 

 

2R

M G z G y dydz
z y

  
= −  −  

                       (34) 

 

2R

M G z y dydz
z y

  
= −  + 

                      (35) 

 

Using the method of integration by parts, 

 

2 2 2

( , ) ( , )z

R R R

z dydz z n ds y z dydz y z dydz
z




=  −  = − 

   
   (36) 

 

2 2

( , )

R R

y dydz y z dydz
y


= − 

                          (37) 

 

2

2 ( , )

R

M G y z dydz G J=   =                      (38) 

 

where 

 

2

2 ( , )

R

J y z dydz=                               (39) 

 

J is the moment of the cross-section, or torsional constant.  

The modulus of the shear stress is 

 

( )
1 22 2 /

xy xzT =  +                           (40) 

 

 

3. METHODOLOGY 

 

For a rectangular cross-section on the yz Cartesian 

coordinate plane defined by  

 

−
𝑎

2
≤ y ≤

𝑎

2
;−

𝑏

2
≤ z ≤

𝑏

2
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where a  b > 0 the Prandtl stress function that satisfies the 

boundary condition Eq. (32) is assumed in terms of the 

unknown parameters Cmn as the infinite series: 

 

( , ) cos cosmn

m n

m y n z
y z C

a b

 
 

 =             (41) 

 

m = 1, 3, 5, 7, 9, …;  n = 1, 3, 5, 7, 9, … 

 

Since  

 

( ) ( ) 0
2 2

, ,
a b

y z y z =  =  =  =         (42) 

 

The Galerkin variational integral becomes: 

 
2 2

2

2 2

2 0

/ /

/ /

( )cos cos

b a

b a

m y n z
dydz

a b
− −

  
  + =     (43) 

 

Expanding, 

 
2 2

2 2

2 2
2 2

02

/ /

/ /

cos coscos cos

b a

mn

m nb a

m y n zm y n z
dydzC

a ba by z

 

− −

            
=+ +          

 
    (44) 

 

 

4. RESULTS 

 

The Galerkin variational integral is 

 
2 2 2 2

2 2
2 2

/ /

/ /

cos cos

b a

mn

m nb a

m y n z
c

a by z

 

− −

     
+   

   
   

 cos cos
m y n z

dydz
a b

  
 

 

2 2

2 2

2

/ /

/ /

cos cos

b a

b a

m y n z
dydz

a b
− −

  
= −   (45) 

 
2 2 2 2

2 2

/ /

/ /

cos cos cos cos

b a

mn

m n b a

m n m y n z m y n z
C dydz

a b a b a b

 

− −

           
− +    

      
  

 

2 2

2 2

2

/ /

/ /

cos cos

b a

b a

n z m y
dydz

b a
− −

  
= −            (46) 

 

−2 is expanded in Fourier cosine series as: 

 

2 cos cosmn

m n

m y n z
a

a b

 
 

− =                 (47) 

 

where  

 
2 2

2 2

4
2

/ /

/ /

( )cos cos

b a

mn

b a

m y n z
a dydz

ab a b
− −

 
= − 

         (48) 

 
1 1

2 2
4 2 2

2 1 1( ) ( )

m n

mn

a b
a

ab m n

− −

= − − −
 

              (49) 

 

122 2 2
2

2 2

2 4 2 4 1
1

( ) ( ) ( )
( )

m n
m n

mna
mn mn

+
−+ −

− − −
= − =

 
      (50) 

 

So, 

 

21
2

2

2 4
2 1

( )
( ) cos cos

m n

m n

m y n z

a bmn

+ 
− −  

− = −


         (51) 

 

So, 

 
2 2 2 2

2 2

/ /

/ /

cos cos cos cos

b a

mn

m n b a

m n m y n z m y n z
C dydz

a b a b a b

 

− −

           
− +    

      
  

12 2 22

2
2 2

1 2 4
/ /

/ /

( ) ( )( )
cos cos cos cos

m n
b a

m n b a

m y n z m y n z
dydz

a b a bmn

+
− 

− −

 − −    
=


  

      (52) 

 
2

112 22 52 2

2 2 2 2
2

2 4 1 2 1 1( ) ( ) ( )

m n m n

mn

m n
C

a bmn mn m n

a b

+ − +
−−

 −   −     
= + =                   +    

      

  

      

1
5 2

4 2 2 2 2

2 2

2 1 1( )

m n

mn b m n a

a b

+
−

−  
=    +   

   

             (53) 

 

1
5 2 22

4 2 2 2 2

2 1 1( )

( )

m n

mn

a b
C

mn m b n a

+
−

−
=

 +
      (54) 

 

The Prandtl stress function is then: 

 

1
2

5 2 2

4 2 2 2 2

1
2

( ) cos cos

( , )
( )

m n

m n

m y n z

a b a by z
mn m b n a

+
−

 
 

−

 =
 +

       (55) 

 

(y, z) is obtained as a trigonometric cosine series of infinite 

terms. The series is a convergent series since 

 

|𝐶𝑚𝑛 cos
𝑚𝜋𝑦

𝑎
cos

𝑚𝜋𝑧

𝑏
| ≤ |𝐶𝑚𝑛| ≤ constant (

1

𝑚2𝑛2
) and, 

∑ ∑
1

𝑚2𝑛2
= (∑

1

𝑚2
∞
𝑚 ) (∑

1

𝑛2
∞
𝑛 )∞

𝑛
∞
𝑚  

 

4.1 Moment of the cross-section (torsional constant, j) 

 

From Eq. (39), 

 

1
22 2 5 2 2

4 2 2 2 2
2 2

1
2

2

/ /

/ /

( ) cos cos

( )

m n

b a

m nb a

m y n z

a b a bJ dydz
mn m b n a

+
−

 

− −

 
−

=
 +
 

         (56) 

 

1 2 26 2 2 2

4 2 2 2 2
2 2

2 1
/ /

/ /

( )
cos cos

( )

m n
b a

m n b a

a b m y n z
J dydz

a bmn m b n a

+
− 

− −

−  
=

 +
  

      (57) 

 

8 3 3

6 2 2 2 2 2 2

2 1

( )m n

a b
J

m n m b n a

 

=
 +

                  (58) 

 

Let  
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a
r

b
=                                     (59) 

 

or  

 

a br=                                     (60) 

 

then, 

 

8 6 3

6 2 2 2 2 2 2 2

2 1

( )m n

b r
J

m n m b n b r

 

=
 +

                 (61) 

 

8 6 3

6 2 2 2 2 2 2

2 1

( )m n

b r
J

m n b m n r

 

=
 +

                       (62) 

 

8 4 3

6 2 2 2 2 2

2 1

( )m n

b r
J

m n m n r

 

=
 +

                        (63) 

 

Alternatively, 

 

8 6

3 6 2 2
2 2 2 2

2

2 1

m n

a
J

r m a
m n n a

r

 

=
 

+ 
 

                        (64) 

 

8 6

3 6 2 2 2 2 2
2 2

2

2 1

m n

a
J

r m a n a r
m n

r

 

=
  +
 
 

                     (65) 

 

8 6 2

3 6 2 2 2 2 2 2

2

( )m n

a r
J

r m n a m n r

 

=
 +
                           (66) 

 

8 6

6 2 2 2 2 2 2

2 1

( )m n

a
J

r m n a m n r

 

=
 +
                           (67) 

 

8 4

6 2 2 2 2 2

2 1

( )m n

a
J

r m n m n r

 

=
 +
                              (68) 

 

or  

 

8 3 3

6 2 2 2 2
2 2 2

2

2 1

m n

a b
J

m b n a
b m n

b

 

=
  +
 
 

            (69) 

 

8 3

6 2 2
2 2 2

2

2 1

m n

a b
J

n a
m n m

b

 

=
 

+ 
 

                        (70) 

8 2
3

6 2 2
2 2 2

2

2 /( )

m n

a b
J ab

n a
m n m

b

 

=
 

+ 
 

               (71) 

 

3
1

a
J F ab

b

 
=  

 
                                     (72) 

 

where  

 

8 2

1 6 2 2
2 2 2

2

2 /( )

m n

a a b
F

b n a
m n m

b

 
 

= 
   

+ 
 

             (73) 

 

4.2 Shear stress tensors 

 

The shear stresses are found from the Prandtl stress function 

as: 

 
1

5 2 2 2

4 2 2 2 2

2 1( )
( , ) ( , ) cos cos

( )

m n

xy

m n

a b m y n z
y z G y z G

z a z bmn m b n a

+
− 

 −   
 =  = 

  +


       (74) 

 
1

5 2 2 2

4 2 2 2 2

2 1( )
( , ) ( , ) cos cos

( )

m n

xz

m n

a b n z m y
y z G y z G

y b y amn m b n a

+
− 

 −    
 = −  =−   

   +


 

   (75) 

 

5 2 2

3 2 2 2 2

2 1( )
( , ) cos sin

( )

m n

xy

m n

G a b m y n z
y z

a bm m b n a

+
 

 −  
 =

 +
      (76) 

 

m = 1, 3, 5, 7, 9, …; n = 1, 3, 5, 7, 9, … 

 

5 2 2

3 2 2 2 2

2 1( )
( , ) sin cos

( )

m n

xz

m n

ab m y n z
y z G

a bn m b n a

+
 

−  
 = − 

 +
       (77) 

 

m = 1, 3, 5, 7, 9, …; n = 1, 3, 5, 7, 9, … 

 

The maximum shear stress max is found as: 

 
1

25 2

23
2 2

2

12
max

( )

m

m n

G a

ab m m n
b

−

 
 
 −  

 =     + 
    

               (78) 

 

2
2max

a
G ab F

b

 
 =   

 
                                             (79) 

 

where  

 
1

23

2 22 1 2
25

2

1

2

( )

m

m n

a a
F F

n ab b a m m
bb

−
 

 
 −     

=             +       

    (80) 

 

The non-dimensional torsional parameters 𝐹1(
𝑎

𝑏
) and 𝐹2(

𝑎

𝑏
) 

for the Saint Venant torsion of prismatic bars with rectangular 

cross-sections are tabulated as Tables 1 and 2 for various 

values of the ratio a/b for the present study and 1 2,F F  are for 

results from Jan Francu et al. [3]. 
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Table 1. Variation of torsional parameter F1 with a/b 

 
𝐫 = 𝐚/𝐛 𝑭𝟏(𝒂/𝒃) 𝑭𝟏̅̅̅̅ (𝒂/𝒃) [3] 

1 0.1406 0.141 

1.2 0.1661  

1.5 0.1958 0.196 

2 0.2287 0.229 

2.5 0.2494  

3 0.2633 0.263 

4 0.2808 0.281 

5 0.2913 0.291 

6 0.298 0.298 

8 0.307 0.307 

10 0.3123 0.312 

 1/3 1/3 

 

Table 2. Variation of torsional parameter F2 for with a/b for 

Saint Venant torsion of bar with rectangular section 

 
𝐫 = 𝐚/𝐛  𝑭𝟐(𝒂/𝒃)  𝑭𝟐̅̅̅̅ (𝒂/𝒃) [3] 

1 0.208 0.208 

1.5 0.231 0.231 

2 0.246 0.246 

3 0.267 0.267 

4 0.282 0.282 

5 0.292 0.292 

6 0.299 0.299 

8 0.307 0.307 

10 0.313 0.313 

 1/3 1/3 

 

The deflection function (y, z) is obtained from solving the 

following equations obtained from Eqns. (7), (8), (26) and (27): 

 

z
y z

 
− =

 
                             (81) 

 

and  

 

 y
z y

 
+ = −

 
                       (82) 

 

Thus, 

 

z
y z

 
= +

 
          (83) 

 

or,  

 

y
z y

 
= − −

 
                      (84) 

 

By integration of Eq. (83) we obtain Eq. (85) as (y, z) 

 

2
5 3

4 2 2 2 2 2

1
2

( ) sin sin

( , )
( )

m n

m n

m y n y

a b a by z yz
m m b n a

+

 
 

−

 = +
 +
      (85) 

 

4.3 Numerical problem 

 

A numerical problem to illustrate the validity of the results 

obtained in this study considers the calculation of torsional 

constant J, given by the expressions in Eqns. (72) and (73) 

where Eq. (73) is presented as Table 1 in terms of a/b. The 

torsional contant is important in torsion problems since it 

determines the torsional rigidity Dt as follows: 

 

tD GJ=                                            (86) 

 

We compare our results with results from Jan Francu et al. 

[3] who presented a Navier series solution of the torsion 

problem leading to results that are identical with the results 

from the present study which employed the Galerkin method. 

Numerical solutions are presented for various values of a 

and b as follows and compared with results from Jan Francu et 

al. [3]. 

 

Table 3. Results for torsional stiffness for various cross-

sections, and comparison with results from Jan Francu et al. 

[3] 

 
Cross-section a/b F1 J=ab3F1 

Present 

study 

F1 𝐉
= 𝒂𝒃𝟑𝑭𝟏̅̅̅̅  

Jan 

Francu 

et al [3] 

a (cm) b 

(cm) 

  (cm4)  (cm4) 

2 2 1 0.1406 2.2496 0.141 2.256 

4 2 2 0.2287 7.3184 0.229 7.328 

6 2 3 0.2633 12.6384 0.263 12.624 

8 2 4 0.2808 17.9712 0.281 17.984 

10 2 5 0.2913 23.304 0.292 23.28 

12 2 6 0.298 28.604 0.298 28.604 

16 2 8 0.307 39.296 0.307 39.296 

20 2 10 0.3123 49.968 0.312 49.92 

 2  1/3  1/3  

 

 

5. DISCUSSION 

 

This work has successfully presented the Saint-Venant 

torsion problem of prismatic bars with rectangular cross-

section as a boundary value problem (BVP) of the theory of 

elasticity using Prandtl’s stress function (y, z). The resulting 

BVP was observed to be a Poisson type partial differential 

equation in terms of the Prandtl’s stress functions. The basis 

(shape) functions that satisfies the boundary conditions given 

in terms of trigonometric (cosine) functions; and the assumed 

(trial) Prandtl stress function used was given as Eq. (45) – a 

double trigonometric cosine series of infinite terms. 

The Galerkin variational formulation of the Saint-Venant 

torsion equation was obtained as Eq. (45). The unknown 

parameters of the Galerkin formulation was obtained by 

solving the Galerkin variational statement of the Poisson 

equation as Eq. (54). The Prandtl stress function was thus 

completely determined as Eq. (55), which was found to be a 

rapidly convergent double trigonometric cosine series with 

infinite terms. 

The moment of the cross-section was obtained in terms of 

the ratio of the cross-sectional dimensions (a/b) as Eqns. (71), 

and (72) where Eq. (72) is expressed in terms of the non-

dimensional torsion parameter, F1(a/b) F1(a/b) is found to 

depend on the ratio (a/b) as Eq. (73). Values of F1(a/b) for 

various values of a/b were calculated and shown in Table 1. 

The non-vanishing shear stress fields were found as Eqns. 

(76) and (77). The maximum shear stress was obtained as Eq. 
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(78) and presented in terms of the dimensionless torsion 

parameter F2(a/b) as Eq. (79). The dimensionless torsion 

parameter F2(a/b) was calculated for various values of (a/b) 

and presented as Table 2. 

The numerical results obtained for the torsional constant J 

for various values of the cross-sectional dimensions were 

identical with the results obtained by Jan Francu et al. [3] who 

used Navier series method. 

 

 

6. CONCLUSIONS 

 

The conclusions of this study are as follows: 

(1) the Galerkin variational method has been 

successfully used to present the Poisson equation for the Saint-

Venant torsion of prismatic bars with rectangular cross-section 

in variational form. 

(2) the Galerkin solutions yielded mathematically closed 

form and exact solutions to the Saint-Venant torsion problem 

of prismatic bars with rectangular cross-section. 

(3) Exact solutions were obtained because the shape 

functions used were exact shape functions which apriori 

satisfied all the boundary conditions. 

(4) the exact solutions obtained for the Prandtl stress 

function, the shear stresses and moment of the cross-section 

were convergent series with infinite terms. 

(5) the solutions obtained were closely similar to the 

solutions obtained by Jan Francu et al. [3] who used Navier 

series method. 
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NOMENCLATURE 

x, y, z Cartesian coordinates in three dimensions 

( , , )

( , , )

( , , )

u x y z

v x y z

w x y z







Displacement field components in the x, 

y, and z Cartesian coordinate directions 

=  twist rate 

(y, z) unknown function related to deflection and 

used to define the deflection 

xx, yy, zz normal strains 

xy, xz, yz shear strains 

 Lamé’s content 

G shear modulus or modulus of rigidity 

Dt torsional rigidity 

v volumetric strain 

ij Kronecker’s delta 

ij stress using indicial notation 

ij strain using indicial notation 

xx, yy, zz normal stresses 

xy, xz, yz shear stresses 

(y, z) Prandtl’s stress function 

R2 cross-section of the bar 

M torque, torsional moment 

 boundary of the cross-section 

J moment of the cross-section, St Venant  

torsional constant 

m, n, m, n integers 

a,b in-plane dimensions (length and width) 

Cmn unknown parameter of the Prandtl’s 

stress function 

amn cosine series parameter 

r aspect ratio 

( )

( )2

1 /

/

F a b

F a b





dimensionless torsion parameters 

( )

( )2

1 /

/

F a b

F a b





dimensionless torsion parameters 

obtained by Jan Francu et al. [3] using 

Navier series method 

2D two dimensional 

3D three dimensional 

BEM boundary element method 

BVP boundary value problem 

PDE partial differential equation 

FEM finite element method 

FDM finite difference method 

MATHEMATICAL SYMBOLS 

 summation 

 double summation 

 integration (integral) 

 double integration (double integral) 

x




partial derivative with respect to x 

y




partial derivative with respect to y 

2

x y



 
mixed partial derivative 

=2 Laplacian 
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