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Diabetic Retinopathy and Glaucoma are two common diabetic retinal pathogens. It has the 

potential to damage human retina and result in vision impairment. Based on the 

International Diabetes Federation (IDF) reports, In India 77 million people were affected 

with diabetics 2019 and approximately 147.2 million people are expected by 2045. By 

effectively managing diabetes and undergoing routine eye examinations, would avoid or 

reduce the risk of eye complications such as diabetic retinopathy, cataracts, and Glaucoma. 

The Timely identification and precise delineation of affected areas in retinal pathogen 

images are crucial for effective disease management. To address this, we propose a novel 

hybrid diabetic retinal pathogen classification mechanism using Artificial Fish Swarm and 

Deep Convolutional Radial Basis Function network (AFS-DCRBF). This method utilizes 

retinal images containing normal, Diabetic-Retinopathy, and Glaucoma as inputs. 

Preprocessing of raw input images is performed using a spatial filtering technique in the 

initial phase. A vector-auto regression method is then employed for feature engineering, 

followed by retinal pathogen classification. The Deep-Convolutional Neural Network 

(DCNN) selects most informative traits from the extracted feature sequence, while the 

Radial Basis Function (RBF) module performs the classification task. The Artificial Fish 

Swarm (AFS) optimization fine-tunes the hyperparameters of DCRBF and improves 

classification performance. The proposed study was evaluated using ORIGA data set and 

publicly available datasets for DR. The proposed method required a total time of 1.12 

seconds and achieved 99.40% accuracy and 99.61%specificity, and dice coefficient of 0.97. 
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1. INTRODUCTION

The primary causes of poor eye vision and blindness 

worldwide are age-related retinal disorders, such as Diabetic 

Retinopathy (DR) and Glaucoma. Glaucoma is often 

characterized by irregular intraocular pressure regulation [1]. 

Glaucoma comprises various forms, including secondary, 

congenital, angle-closure, and open-angle Glaucoma [2]. DR is 

the primary consequence of diabetes mellitus and occurs due to 

swelling and bleeding of small blood vessels in the retina [3]. 

This leads to retinal damage and impaired vision. There are five 

different stages of DR, ranging from normal (nonDR) to 

proliferative DR [4]. Early identification and treatment of these 

retinal pathogens are required for better treatment outcomes [5]. 

Medical professionals use various methods to diagnose 

glaucoma, including measuring intraocular pressure [6] and 

examining of the optic nerve with a dilated eye examination. 

They also monitored the vision-loss region [7]. However, an 

accurate and reliable method for diagnosing retinal disease is 

necessary. Currently, DR is diagnosed through an intensive 

ophthalmologic examination with dilation [8], which involves 

taking cross-sectional retinal images to assess thickness and 

detect fluid leakage. This method requires highly qualified 

medical professionals and is time-consuming and expensive [9]. 

Therefore, there is a need for an alternative solution to 

accurately and reliably diagnose retinal pathogens [10]. 

Researchers currently use AI for pattern recognition and 

object identification to diagnose diabetic retinopathy (DR) and 

Glaucoma [11]. ML/DL algorithms offer the capability to 

capture and learn patterns in data, and make automatic 

predictions [12]. This automatic retinal fundus image 

prediction can assist medical professionals in taking 

appropriate treatment measures [13]. As a result, there are now 

more affordable, accessible, accurate, and reliable means of 

identifying DR and Glaucoma [14]. ML approaches such as 

random-forest (RF), K-Nearest Neighbor (KNN), and Support 

Vector Machine (SVM), are used to diagnose diabetic retinal 

pathogens from fundus images [15, 16]. These techniques 

undergo effective training, learn patterns from images, and 

perform classification. They are more accurate than manual 

detection but depend on the dataset quality and computational 

power. On the other hand, DL algorithms, such as CNN, Deep- 

Neural Networks, and DBN, capture diseases through 

extensive training and make predictions [17]. They also 

investigated spatial and temporal data aspects, making them 

more effective, although they require a lot of data for training 

and are resource-intensive [18]. 

Diabetic Retinopathy (DR) and glaucoma are significant 

eye diseases that require accurate identification and 

classification to ensure proper treatment. The ML / DL 
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algorithms used for image classification typically lack 

generalizability and lead to overfitting [19]. Weights, bias 

vectors, and other parameters must be optimized for effective 

training. Existing methods have excessive training time, over-

fitting, data dependency, a lack of generalizability, scalability, 

and resource consumption. To address these limitations, a new 

deep-learning method was developed. 

The primary contributions of the study are simply stated 

below: 

⚫ This research proposes a hybrid model that combines 

the Artificial Fish Swarm (AFS) optimization algorithm with a 

Deep Convolutional Radial Basis Function Network (DCRBF). 

This integration of optimization and deep learning techniques 

enhances classification performance. 

⚫ Spatial filtering was used for image preprocessing, 

and a vector-auto regression method was employed for feature 

extraction. These techniques facilitate effective feature 

engineering and enhance the capability of the model to 

differentiate among various classes of retinal pathogens. 

⚫ Finally, the outcomes of the proposed technique were 

evaluated and compared with existing techniques in terms of 

accuracy, precision, Dice coefficient, specificity, and 

sensitivity. 

⚫ Structure of remaining sections of the proposed work: 

Section-II reviews the Diabetic Retinopathy Classification and 

Glaucoma methods, Section-III describes the proposed 

method, Section-IV provides the results, and Section-V 

concludes the study. 
 

 

2. RELATED WORKS 
 

Sudhan et al. [20] introduced a novel deep DL framework 

for early prediction of glaucoma. This approach uses a deep 

CNN to classify of retinal images. Initially, the authors utilized 

a U-Net structure for augmentation of the optic cup and a pre-

trained DenseNet for feature extraction and selection. This 

method was trained and tested using the ORIGA dataset and 

achieved 97.32% accuracy. However, the combination of 

multiple DL methods increases architectural complexity. 

Bilal et al. [21] proposed a two-phase automatic diabetic-

retinopathy identification framework using a DL algorithm. In 

the first phase, a pre-trained U-Net was employed for the optic 

disc fragmentation. Subsequently, in the second phase, a CNN 

was deployed for the extraction of features. The CNN pre-

processes the retinal images and selects unique attributes. This 

framework was evaluated using three publicly available DR 

datasets, namely DIARETDB0, Messidor2, and EyePACS1, 

and achieved accuracies of 93.42%, 94.59%, and 97.92%, 

respectively. However, this method requires additional 

computational resources. 

 

Table 1. Summary of various methodologies 

 
References Methodology Data Collection Approach Key Findings Limitations 

[20] 
Deep Convolutional 

Neural Network 

Glaucoma segmentation, and acquired accuracy 

of 97.32% 

Higher accuracy, and 

accurate segmentation 

Implementation 

complexity 

[21] 
Convolutional neural 

network 

DR detection, and achieved accuracy of 

93.42%, 94.59%, and 97.92% for 

DIARETDB0, Messidor-2, and EyePACS-1 

datasets 

Effective feature 

extraction and 

selection 

Computational 

demands 

[22] 
Combination of SVM and 

CNN 
Earned 91.9% accuracy in the training phase 

Effective training and 

feature tracking 

Overfitting issue 

and lack of 

generalization 

ability 

[23] Deep Neural Network Improved accuracy, sensitivity, and specificity 

Intelligent glaucoma 

detection with greater 

accuracy 

Not suitable for 

large image 

sequence 

[24] 
Transfer-learning-assisted 

VGGNet algorithm 

Achieved accuracy of 92.25%, 93.95%, and 

96.60% for DIARETDB0, Messidor-2, and 

EyePACS-1 

Efficient image 

segmentation 

Depends on 

trained models 

[25] 

Data fusion algorithm 

(clustering-based 

automatic method) 

Earned accuracy of 97.34% 

Accurate 

segmentation and 

classification 

Lacks 

interpretability and 

scalability 

[26] 
Transfer learning-based 

DL mechanism 
Multimodal medical image classification 

Effective image 

fusion and feature 

extraction 

Resource-intensive 

and time-

consuming 

[27] 
Deep Convolutional 

Neural Network 
DSC-0.87, and IOU-0.80 

Accurate and reliable 

image segmentation 
Not interpretable 

[28] 
Restricted Boltzmann 

Machines 
Accuracy 96.15% 

Optimal feature 

extraction and fine-

tuning 

Cannot handle 

large datasets 

[29] 

Deep Convolutional 

Recurrent Network 

integrated with Enhanced 

Aquila Optimization 

Accuracy-95.04%, 

Kappa value-97.83% 

Improved 

classification 

accuracy, and cataract 

detection 

Consumes more 

power and time 

Jena et al. [22] developed a classification strategy using a 

DL algorithm to categorize DR classes. The method involves 

applying contrast-constrained adaptive histogram equalization 

to improve image quality, tracking asymmetric DL attributes 

using the U-Net structure, and employing a combination of 

CNN with SVM for classification. However, this framework 

exhibited a lack of generalization ability and was prone to 

overfitting. 

Thanki et al. [23] designed an intelligent computer-based 

classification strategy using a DNN and ML to analyze retinal 

fundus images and predict glaucoma images. The method 

utilized DNN for feature extraction and ML for classification; 

1286



 

however, it could not process large sequences of images 

simultaneously. 

Bilal et al. [24] presented a two-stage mechanism for 

automatically categorizing DR using retinal fundus images. 

This work focused on accurately distinguishing different stages 

of DR and employed the U-Net technique for image 

segmentation and the transfer-learning-assisted VGGNet 

algorithm for classification. The method was validated using 

public datasets, namely DIARETDB0, Messidor-2, and 

EyePACS-1, and achieved accuracy rates of 92.25, 93.95, and 

96.60%, respectively. However, this method relies on pre-

trained models. 

Ali et al. [25] proposed an innovative automatic 

classification methodology based on a clustering algorithm that 

utilizing DR data collected from the Bahawal Victoria Hospital 

(BVH) in Pakistan. This method employs a data fusion 

algorithm to improve the accuracy of the classification process. 

Five different ML approaches, including the logistic model tree, 

multilayer perceptron, sequential minimal optimization, simple 

logistic, and decision tree, were used for classification, 

achieving accuracies of 97.34%, 96.23%, 95.53%, 91.66%, and 

93.81%, respectively. However, this method lacked 

interpretability and scalability. 

Kalamkar and Geetha [26] developed a hybrid mechanism 

combining transfer learning and DL methods for multimodal 

medical image classification, using discrete wavelet transform 

to fuse input data images and pre-trained VGG19 for feature 

extraction. The method was tested using MRI and CT datasets. 

However, this method is resource-intensive and time-

consuming. 

Nisa et.al. [27] developed an image classification method 

that utilized a pre-trained U-Net with ResNet Encoder for 

image segmentation. The efficiency of this method was 

evaluated using the Dice Similarity Coefficient (DSC) and 

Intersection Over Union (IOU), and the results demonstrated 

that the method achieved a DSC of 0.87 and an IOU of 0.80. 

However, this method cannot be interpreted. Naramala et al. 

[28] proposed a method that utilized ML/DL approaches to 

address diagnostic issues.  

Saju and Rajesh [29] introduced an optimized Deep 

Convolutional Recurrent Network integrated with enhanced 

aquila optimization for cataract detection, using both slit and 

retinal images and Batch Equivalence ResNet-101 for image 

segmentation. This method achieved 95.04% accuracy and 

97.83% kappa value, but it consumed more power and time to 

implement. A summary of various methodologies is presented 

in Table 1. 

 

 

3. MATERIALS AND METHODS 

 
The development of the proposed optimized deep learning 

method was aimed at achieving an accurate classification of 

DR and Glaucoma. The method integrates the attributes of 

Artificial Fish Swarm (AFS) with a Deep Convolutional 

Radial Basis Function Network (DCRBF) architecture. The 

architecture of the proposed method is depicted in Figure 1. It 

comprises four distinct phases: data acquisition, preprocessing, 

feature engineering, and classification. In the initial phase, 

retinal fundus images were obtained from standard sources 

and imported into the system. In the second phase, the 

collected raw images were preprocessed using a spatial 

filtering mechanism to eliminate noise and enhance image 

quality.

 

 
 

Figure 1. Proposed flow diagram 
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In the third phase, feature engineering was conducted using 

the vector-auto regression method. This approach enables the 

system to differentiate between feature differences in normal 

and retinal pathogen images, resulting in a reduction in data 

dimensionality. In the fourth phase, the developed DCRBF 

was employed for the classification task, and its 

hyperparameters were fine-tuned and optimized using the AFS 

algorithm. 

 

3.1 Retinal image acquisition and preprocessing 

 

The first stage of the suggested framework entails the 

acquisition of retinal fundus images, which include examples 

of normal, glaucoma, and diabetic retinopathy (DR) pathogens. 

Because the images were obtained from diverse sources, they 

were manually annotated and consolidated into a unified 

dataset for prediction. Following the annotation process, the 

dataset comprised three distinct categories: Normal, DR, and 

Glaucoma. The annotated dataset is represented by Eq. (1): 

 

𝑅𝑖𝑚𝑑 = [𝑟𝑚1, 𝑟𝑚2, 𝑟𝑚3, 𝑟𝑚4, . . . . . . 𝑟𝑚𝑞] (1) 

 

where, Rimd represents the consolidated retinal image dataset, 

rm represents the images present in the dataset, and q denotes 

the number of images available. Unprocessed retinal images 

often contain extraneous elements, such as backgrounds and 

noise, which can impede accurate analysis. To address this 

issue, a spatial filtering mechanism was implemented in the 

present study. Spatial filtering is a widely used technique 

designed to improve the quality of images by applying a filter, 

commonly referred to as a mask or kernel, to every pixel in the 

image. This method effectively eliminates noise and other 

undesirable characteristics, thereby enhancing overall image 

quality. The underlying principle of spatial filtering is 

convolution, which is particularly useful for obscuring and 

eliminating small image details and noise. Consequently, 

spatial filtering is a predominantly employed technique for 

enhancing image quality. Spatial filtering is mathematically 

expressed by Eq. (2): 

 

𝑃(𝑎, 𝑏) = ∑ ∑ 𝑟𝑚(𝑎 + 𝑢, 𝑏 + 𝑣)

𝑣

𝑗=−𝑣

𝑢

𝑖=−𝑢

∗ 𝑀(𝑢, 𝑣) (2) 

 

where, 𝑃(𝑎, 𝑏)indicates the pre-processed image (pixel value 

at location (𝑎, 𝑏) in the filtered image, 𝑟𝑚(𝑎 + 𝑢, 𝑏 +
𝑣)defines the pixel value at a location (𝑎 + 𝑢, 𝑏 + 𝑣) in the 

input image, 𝑀(𝑢, 𝑣) refers to the filter or mask applied, and 

u and v indicate the extent of the filter kernel. Furthermore, an 

image normalization technique known as min-max scaling was 

implemented to standardize the image. This approach 

guarantees that all the pixel values within the image are 

confined within a consistent range. 

 

3.2 Image segmentation 

 

In this study, a U-Net architecture was modified by 

incorporating a Grey Wolf Optimizer (GWO) to increase the 

effectiveness of image segmentation. The modified 

architecture combines the GWO and U-Net frame works to 

enhance the precision and effectiveness of the image 

segmentation. The U-Net architecture consists of three 

fundamental blocks: encoder, bottleneck, and decoder. The 

encoder module uses convolutional layers in conjunction with 

pooling operations to achieve progressive downsampling. 

The primary objective of the U-Net is to reduce the feature 

map’s spatial dimension. To achieve this, a deep neural 

network known as a bottleneck follows the encoder module. 

The bottleneck evaluates high-level features from the feature 

maps generated by the encoder after several layers of 

downsampling operations. The decoder module generates 

segmented images by up-sampling the pixel size of the feature 

maps, and reversing the downsampling carried out by the 

encoder. The blocks were connected using skip connections 

after the downsampling and upsampling. The skip connections 

link the appropriate encoder and decoder levels, providing the 

generation of both encoder provides high level semantic 

information, while the decoder captures fine-grained details. 

The performance of U-Net was assessed during the training 

phase using a loss function as represented in Eq. (3): 

 

𝐿𝐹𝑛(𝑝, 𝑝′) = − ∑ 𝑝′(𝑖)

𝑚

𝑖=1

𝑙𝑜𝑔(𝑝(𝑖)) (3) 

 

where, 𝐿𝐹𝑛  indicates the loss function, m refers to the number 

of classes, 𝑝′(𝑖) denotes the probability of the 𝑖𝑡ℎ class in the 

groundtruth, and 𝑝(𝑖) represents the predicted probability of 

the 𝑖𝑡ℎclass. The objectivewas to reduce the loss incurred by U-

Net during the training process using the Grey Wolf Optimizer 

(GWO) method. GWO optimizes U-Net parameters, including 

weights and bias vectors, by adjusting their positions within the 

parameter space as they traverse it. During fine-tuning, the U-

Net parameters were initialized to those of the wolf population. 

The GWO method reduces the loss function during training by 

optimizing U-Net parameters as represented in Eq. (4): 

 

𝑅(𝑡 + 1) = 𝑅′(𝑡) − �̄�. �̄� (4) 

 

where,  𝑅(𝑡 + 1)  denotes the updated position of the 

parameters, 𝑅′(𝑡) defines the current position of the parameter 

with greater fitness, �̄�defines the coefficient vectors, and �̄� 

defines the variation between the optimal and current positions 

which is estimated using Eq. (5): 

 

�̄� = |�̄�. 𝑅′(𝑡) − 𝑅(𝑡)| (5) 

 

where, �̄� indicates the coefficient vector and 𝑅(𝑡) denotes the 

current position of the parameter. The determination of the 

fitness value for the updated parameters marks the final stage 

of the optimization process. Subsequently, the parameter that 

exhibited the highest fitness value was selected for training. 

Through iterative fine-tuning, the parameters were refined to 

achieve optimal performance. 

 

3.3 Feature extraction 

 

The proposed approach utilizes vector auto-regression 

(VAR) to extract the most salient features from a filtered image, 

thereby effectively reducing the dimensionality of the data. 

VAR is a statistical method that establishes relationships 

between multiple time series variables. In this context, VAR 

classifies each pixel as a time series and examines the 

correlation between neighboring pixels. The pixel values are 

then transformed into vectors, and the VAR model is applied to 

these vectors. The VAR model formulates a system of linear 

equations at each time step to delineate the correlations among 

the variables within the system, and is mathematically 
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expressed in Eq. (6): 

 

𝑌𝑡 = 𝐶 + 𝐴1𝑌𝑡−1 + 𝐴2𝑌𝑡−2 + 𝐴3𝑌𝑡−3+. . . . . +𝐴𝑛𝑌𝑡−𝑛

+ 𝑒𝑡 
(6) 

 

where, 𝑌𝑡  defines the vector of the pixel values at time 𝑡,𝑛 

denotes the order of the VAR model, 𝐴1𝐴𝑛  represents the 

coefficient matrices, and 𝑒𝑡  refers to the error term. The 

coefficients in the Vector Autoregression (VAR) model 

determine the characteristics of the features and illustrate the 

progression of the pixel values over time. These coefficients 

delineate the gradual transformation of pixel values, and 

elucidate the temporal connections and interdependencies 

among adjacent pixels. 

 

3.4 Classification 

 

An enhanced deep learning method has been developed to 

improve the classification of retinal pathogens. By 

incorporating AFS optimization and DCRBF, the proposed 

approach reduces resource usage and computational time 

while achieving precise classification results. As shown in 

Figure 2, the DCRBF combines a deep CNN approach with an 

RBF approach. The DCNN technique focuses on identifying 

the most informative attributes from the extracted feature 

sequence, whereas the RBF approach is utilized to classify 

retinal pathogens. Meanwhile, AFS optimization refines the 

hyperparameters of the DCRBF approach and optimizes its 

training process, ultimately resulting in improved 

classification accuracy. 

 

 
 

Figure 2. DCRBF layers 

 

In the proposed work, the Deep Convolutional Neural 

Network (DCNN) serves as a feature selector, utilizing the 

extracted feature vector from the Vector Autoregression (VAR) 

model as its input. The DCNN comprises multiple layers, 

including input, convolution, pooling, and fully-connected 

output layers. The input layer processes the VAR feature 

sequence, whereas the convolutional layer automatically 

extracts the relevant local patterns from the input feature 

sequences. The convolutional layer is mathematically 

represented by Eq. (7): 

 

𝐹𝑖 = 𝐴𝑉(𝑊𝑖 ∗ 𝑃𝑖−1 + 𝑏𝑖) (7) 

 

where, 𝐹𝑖  denotes the feature map, 𝐴𝑉refers to the activation 

function, 𝑊𝑖  represents the weight matrix, 𝑃𝑖−1  indicates the 

previous layer’s output, and 𝑏𝑖  defines the bias vector. The 

pooling layers in the network reduce the feature maps size 

generated by the convolutional layers. A fully connected layer 

then flattens the selected features into vectors. The output layer 

of the network provides the most informative feature subset 

that is used for retinal disease classification. This feature subset 

is then input into the RBF approach, which undergoes extensive 

training and classification. The input, hidden, and output layers 

comprise RBF neural network architecture. The input layer of 

the RBF accepts the selected feature subset as input and each 

feature is represented by an input node. The hidden layer of 

RBF is composed of neurons with RBF activation functions. 

The RBF activation function is typically a Gaussian function 

centered at each neuron in the hidden layer, and it calculates 

the correlation between the input data and the center of each 

RBF neuron, as defined in Eq. (8): 

 

𝑅𝐵𝐹(𝑓𝑒) = 𝑒
−

‖𝑓𝑒−𝐶𝑒𝑖‖2

2𝑠𝑡2  (8) 

 

where, 𝑅𝐵𝐹(𝑓𝑒) denotes the RBF activation function for the 

input feature 𝑓𝑒, 𝐶𝑒𝑖  denotes the 𝑖𝑡ℎ neuron’s, and 𝑠𝑡 indicates 

the Gaussian function's standard deviation. Then, the Radial 

Basis Function (RBF) network was then trained to carry out the 

classification task. The training process comprises two key 

stages: centroid selection and weight training. The centroid 

represents the core of the RBF neuron. Following its 

determination, the weights connecting the RBF neurons to the 

output layer were trained. Typically, the gradient descent 

method is used for RBF training. Ultimately, the output layer 

of the RBF network delivers the classification outcomes 

represented in Eq. (9): 

 

𝑌𝑗(𝑓𝑒) = 𝑠𝑡 (∑ 𝑊𝑟𝑖𝑗𝑅𝐵𝐹(𝑓𝑒)

𝑘

𝑖=1

) (9) 

 

where, 𝑌𝑗(𝑓𝑒) represents the output of the 𝑗𝑡ℎ neuron for input 

𝑓𝑒,  𝑊𝑟𝑖𝑗  represents the weight from RBF neuron 𝑖 to output 

neuron𝑗, and 𝑘 defines the number of RBF neurons. After the 

weights were trained, the Radial Basis Function (RBF) 

network is utilized to classify new retinal images. The output 

neuron with the highest activity typically predicts class. To 

enhance the training process, it is essential to finetunes the 

hyperparameters of a DCRBF network. To address this, the 

current study employed an Artificial Fish Swarm (AFS) 

optimization algorithm to fine-tune the DCRBF 

hyperparameters. 

 

3.5 Optimization 

 

The AFS algorithm is an optimization method that draws 

inspiration from the characteristics and behaviors of fish 

within a population. This technique was applied to optimize 
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the hyperparameters of the DCRBF in the aforementioned 

study. The AFS approach aims to identify the most effective 

configuration of the hyperparameters, thereby enhancing the 

training process of DCRBF and resulting in optimal outcomes. 

The hyperparameter set consists of various components, such 

as the learning rate, weight matrix, bias vector, and centroid 

selection. The AFS optimization process commences by 

generating an initial population, each member of which 

represents a specific set of hyperparameters for DCRBF. 

Following initialization, the fitness solution for each 

hyperparameter sequence is calculated. 

In the AFS optimization process, the fish navigate their 

solution space, which is influenced by factors such as their 

individual and social experiences, as well as the exploration-

exploitation trade-off. Similarly, the hyperparameter set 

moves within its parameter space and is updated based on its 

fitness value and movement strategies. The hyperparameter set 

with the highest fitness value was then selected for DCRBF 

training. Consequently, AFS optimization improves the 

classification performance by fine-tuning the hyperparameters. 

The flow diagram is shown in Figure 3 and the pseudocode in 

Algorithm 1. 

 

 
 

Figure 3. Flow diagram of proposed work 

 

Algorithm 1: AFS-DCRBF 

Start 

{ 

Initialize input dataset 𝑅𝑖𝑚𝑑; 

//Annotate and consolidate the dataset into three classes 

Preprocessing () 

       { 

             Apply spatial filter; 

             Normalize the dataset; //use min-max scaling 

} 

     Segmentation () 

        { 

           Initialize U-Net parameters;  

           //Define encoder, bottleneck, and decoder; 

Downsample image // encoder 

            Extract high-level features //Bottleneck  

Upsample feature maps // decoder 

            U-Net training () 

                { 

                   Calculate loss function;  

                    Initialize GWO parameters and population; 

Define objective function; 

                    Evaluate fitness; 

                    For each iteration t: 

                          Update the position of parameters;  

                           Calculate fitness for updated parameters;  

                    U-Net parameters=fine-tuned parameters; 

} 

            } 

     Feature extraction () 

        { 

Initialize VAR model parameters; 

           For each pre-processed image: 

               Apply the VAR model; //extract the relevant 

features 

Extract feature coefficients; //Transform pixels into vectors 

} 

       Feature selection () 

          { 

Initialize the feature coefficient and DCNN parameters; 

               Learn the patterns; //Convolutional layers 

Down-sampling; //Pooling layer 

                Flatten features; //fully-connected layer 

                Train DCNN; // Select the most informative 

features 

} 

        Classification () 

              { 

                   Initialize RBF parameters; 

                    RBF training; //Train the RBF for 

classification 

                    Classification=output probability//output layer 

} 

         Optimization () 

                 { 

                     Initialize the AFS parameters and RBF 

parameter sequence; 

For each iteration i:  

                        { 

Define objective function (); 

Evaluate fitness; 

                         Update the position and fine-tune the 

parameters; 

                         Calculate fitness for the updated parameter 

set; 

} 

i++; 

      RBF parameters=tuned parameter set; 

} 

} 

Stop 

 

 

4. RESULTS AND DISCUSSION 

 

This research presented a novel deep-learning approach for 

the identification of DR and Glaucoma. It integrates artificial 
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fish swarm optimization and deep convolutional Radial Basis 

Function Networks for precise classification. The proposed 

framework was implemented in MATLAB software version 

R2020a, operating on a 64-bit Windows platform. The method 

was trained and evaluated using the publicly available dataset 

from Kaggle, and the experimental outcomes were assessed in 

terms of the Dice Coefficient, accuracy, specificity, sensitivity, 

and F-measure. 

 

4.1 Dataset description 

 

The current investigation utilized publicly accessible 

Diabetic Retinopathy and Glaucoma datasets from Kaggle 

Digital Retinal pictures for Vessel Extraction (DRIVE) and the 

Structured Analysis of the Retina (STARE). The former is 

accessible at < https://www.kaggle.com/diabetic-retinopathy-

detection / data > and comprises five classes, namely Non DR, 

Mild, Moderate, Severe, and Proliferate DR. The dataset is 

furnished in CSV format, with a size of 88.29GB and consists 

of 3658 images. Conversely, the Glaucoma dataset is available 

at < https://www.kaggle.com/arnavjain1/glaucoma-datasets > 

and comprises 2-class labels, namely Glaucoma (With 

Glaucoma) and No Glaucoma, with 2040 image files. Because 

these datasets were obtained from different sources, they were 

manually annotated by combining the collected dataset into a 

single directory with three classes (normal, DR, and 

Glaucoma). Next, the dataset was split at 80: 20 for training 

and testing. Table 2 lists the sample retinal image and its 

corresponding segmentation. 

 

Table 2. Input images and their pre-processed and segmented images 

 

Class Input Images Pre-processed Tracked Image Segmentation 

Diabetic 

Retinopathy 

    

Glaucoma 

    

Normal 

Healthy 

    
 

4.2 Performance assessment 

 

This module evaluates the proposed framework's accuracy 

and loss throughout training and testing. This evaluation tracks 

the model’s performance as iterations increases. The training 

accuracy of the model serves as an indicator of its ability to 

effectively capture and learn patterns from training data. This 

metric is useful for determining the speed at which the 

proposed method can distinguish between images of DR, 

Glaucoma, and Normal Healthy eyes. The developed 

algorithm achieved an average training accuracy of 0.97 as the 

number of iterations increased. 

Thus, testing accuracy indicates the model’s proficiency in 

performing diabetic retinal pathogen classification on unseen 

data (test data). The proposed approach achieved a higher 

testing accuracy of 0.94 as the iteration count increased. Figure 

4 illustrates the validation of accuracy. 
 

 

Figure 4. Model accuracy validation 
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Conversely, the loss parameter measures the error that 

arises during both training and testing processes. The training 

loss reflects the error that occurs when recognizing the image 

patterns. The proposed method attained a minimum training 

loss of 0.03 as the iteration count increased. 

The testing loss is a measure of the misclassifications made 

by the proposed method and serves to quantify the disparity 

between the actual and predicted results of the test data. The 

devised framework achieves a lower loss value of 0.06, as 

shown in Figure 5. The enhanced accuracy and minimized loss 

attained by the proposed algorithm throughout the training and 

testing phases substantiates its ability to discern retinopathy 

patterns with precision and accuracy. 

A confusion matrix is useful for comparing predicted class 

labels to actual class labels to evaluate a classification 

approach. As depicted in Figure 6, the confusion matrix 

obtained through the utilization of the proposed method is 

exhibited. 

 

 
 

Figure 5. Model loss validation 

 

 
 

Figure 6. Confusion matrix 
 

4.3 Metrics evaluation 

 

This section evaluates and compares the proposed method 

with several existing techniques, including modified Gear and 

steering based Rider-Optimization with Deep-Belief Network 

(MGGSR-DBN), CNN, Gaussian Algorithm with CNN (GA-

CNN), Capsule Neural Network (CapsNet), Regional CNN 

(RCNN), and Transfer Learning with CNN (TL-CNN). 

 

4.3.1 Accuracy 

A model's accuracy is the percentage of right predictions out 

of all the predictions. The formula for determining accuracy is 

provided in Eq. (10): 

 

𝐴𝑞𝑦 = (
𝑡𝑝𝑡 + 𝑡𝑛𝑔

𝑡𝑝𝑡 + 𝑡𝑛𝑔 + 𝑓𝑝𝑡 + 𝑓𝑛𝑔

) (10) 

 

where, 𝐴𝑞𝑦  indicates the model accuracy 𝑡𝑝𝑡 ngt 𝑓𝑝𝑡  and 

𝑓𝑛𝑔 terms "true-positive," "true-negative," "false-positive," 

and "false-negative" refer to, respectively, a correct 

identification of a positive case, a correct identification of a 

negative case, an incorrect identification of a positive case as 

negative, and an incorrect identification of a negative case as 

positive. 

 

 
 

Figure 7. Evaluation of model accuracy for different data 

classes 
 

The accuracy of the proposed model in comparison to 

existing methods for different data classes (NR-Normal Retina, 

DR – Diabetic Retinopathy, GR – Glaucoma Retina) is shown 

in Figure 7. The accuracy of the proposed model is compared 

to that of conventional classification techniques such as 

MGSR-DBN, CNN, GA-CNN, CapsNet, RCNN, and TL-

CNN. For the NR class, it achieved 99.56% accuracy, whereas 

the other existing models achieved accuracies of 94.97, 87.65, 

89.66, 92.15, 93.11, 95.23, and 87.90, respectively. Similarly, 

for the DR class, it achieved 99.21% accuracy, whereas the 

other existing models achieved accuracies of 95.17, 87.90, 

89.26, 92.05, 93.75, 94.90, and 92.15, respectively. Finally, 

for the GR class, it achieved 99.43% accuracy, whereas the 

other existing models achieved accuracies of 94.99, 87.61, 

89.43, 91.95, 93.54, 94.93, and 95.51, respectively. This 

shows that the proposed work is more accurate than 

conventional models. 

 

4.3.2 Precision  

The measurement of precision assesses the level of accuracy 

in making positive predictions. It was calculated by comparing 

the model's correct positive predictions with its overall 

positive predictions. This concept is mathematically 

represented by the formula provided in Eq. (11): 
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𝑃𝑒𝑠 = (
𝑡𝑝𝑡

𝑡𝑝𝑡 + 𝑓𝑝𝑡

) (11) 

 

where, 𝑃𝑒𝑠 represents the precision. 

Figure 8 presents the assessment of the system's precision 

utilizing conventional methods. The precision attained by the 

proposed algorithm was evaluated against existing 

methodologies such as MGSR-DBN, CNN, GA-CNN, 

CapsNet, RCNN, and TL-CNN for various input classes, 

including NR, DR, and GR. The precision rates achieved by 

the proposed model and conventional techniques were 93.96, 

86.18, 89.45, 92.43, 91.17, 94.71, and 99.12, respectively, for 

the DR class. This evaluation of precision validates that the 

proposed technique attained a higher precision rate compared 

to the others. 

 

 
 

Figure 8. Precision validation 

 

4.3.3 Sensitivity 

The model's sensitivity measures its ability to recognize 

positive cases. This is the percentage of positive predictions 

that are correct for all positive situations. The formula for 

determining the sensitivity is expressed in Eq. (12): 

 

𝑆𝑒𝑛 = (
𝑡𝑝𝑡

𝑡𝑝𝑡 + 𝑓𝑝𝑡

) (12) 

 

where, 𝑆𝑒𝑛 defines the sensitivity parameter. 

 

 
 

Figure 9. Comparison of sensitivity 

 

The comparison of system sensitivity with the existing 

methods is presented in Figure 9. The existing techniques 

employed for comparative study include MGSR-DBN, CNN, 

GA-CNN, CapsNet, RCNN, and TL-CNN. The above-stated 

conventional techniques and the proposed method attained 

sensitivity of 96.34, 87.65, 89.45, 93.35, 91.54, 95.86, and 

99.60, respectively, for the NR class. For the GR class, these 

approaches earned sensitivity of 96.51, 87.45, 89, 93.71, 92.64, 

95.86, and 99.73, respectively. On the other hand, these 

methods acquired sensitivity of 96.19, 87.65, 89.22, 93.80, 

92.49, 95.86, and 99.5, respectively. From the comparative 

sensitivity study, it is clear that the developed approach 

achieved a better sensitivity rate than the conventional 

approaches. 

 

4.3.4 F-measure 

In situations with an imbalance of positive and negative 

occurrences, the F-Measure indicates the harmonic mean of 

precision and recall, providing a balanced approach for 

categorization performance assessment. The F-measure 

calculation is presented in Eq. (13): 

 

𝐹𝑚𝑒 = (2 × (
𝑅𝑒𝑐 × 𝑃𝑐𝑟

𝑅𝑒𝑐 + 𝑃𝑐𝑟

)) (13) 

 

where, 𝐹𝑚𝑒  denotes the F-measure, 𝑅𝑒𝑐  represents the recall, 

and 𝑃𝑐𝑟  defines precision. 

 

 
 

Figure 10. F-measure evaluation 
 

The results of the F-measure validation are shown in Figure 

10. Existing techniques, including MGSR-DBN, CNN, GA-

CNN, CapsNet, RCNN, and TL-CNN, as well as the research 

work, achieved F-measures of 96.41, 87.65, 89.20, 93.89, 

92.33, 95.09, and 99.30, respectively, for the overall dataset. 

For the GR class, these techniques achieved F-measures of 

96.30, 87.50, 88.89, 93.80, 9.30, 95.1, and 99.65, respectively. 

This comparative analysis confirms that the proposed method 

outperforms the existing techniques in terms of the F-measure. 

 

4.3.5 Dice coefficient 

The Dice-coefficient is a metric used to assess the similarity 

between two sets and is frequently employed in image 

segmentation tasks. It measures the model's predictions' 

agreement with the ground truth in diabetic retinal pathogen 

identification. The formula for the Dice coefficient is 

expressed in Eq. (14): 

 

𝐷𝑐 =
(2 ∗ (𝑋 ∩ 𝑌))

(|𝑋| + |𝑌|)
 (14) 

 

where, 𝐷𝑐  indicates the Dice Coefficient, |𝑋| indicates the size 
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of set X (the predicted segmentation mask), and |𝑌| denotes 

the size of set Y (ground truth segmentation mask). 

The Dice coefficients for the comparison between the 

conventional techniques and the proposed approach are 

presented in Figure 11. For the NR class, the conventional 

techniques and the proposed approach achieved Dice 

coefficients of 0.93, 0.80, 0.85, 0.93, 0.90, 0.93, and 0.98, 

respectively. For the DR class, the techniques achieved Dice 

coefficients of 0.94, 0.81, 0.83, 0.91, 0.88, 0.94, and 0.97, 

respectively. Additionally, for the GR class, the approaches 

achieved Dice coefficients of 0.94, 0.82, 0.81, 0.90, 0.91, 0.90, 

and 0.97, respectively. These results demonstrate that the 

developed system attained a significantly higher Dice 

coefficient than the conventional methods. 
 

 

 

Figure 11. Dice coefficient comparison 

 

4.3.6 Computational time 

The amount of time required for the system to finish tasks 

such as image preprocessing, segmentation, feature extraction, 

selection, classification, and optimization is referred to as the 

computational time. This was determined by calculating the 

total time taken by the system to perform all of these tasks, and 

the results are presented in Figure 12. and Figure 13 

demonstrate that the developed method required a total time of 

1.12 seconds and a computational time for validation using 

different techniques respectively. 

In this research, we present a novel segmentation and 

classification method for diabetic retinal. Our method utilized 

two publicly available datasets, DR and Glaucoma, and 

combines them into a single annotated dataset. Our method 

also employs a custom Fine-tuned U-Net approach for 

accurate segmentation of diabetic retinal pathogens. In 

addition, we developed a hybrid DCRBF technique for the 

precise classification of DR and Glaucoma. To further 

improve the classifier's performance, we employed AFS 

optimization to fine-tune the DCRBF parameters. 

 

 
 

Figure 12. Computational time of the proposed method 

 

 
 

Figure 13. Computational time validation 

 

 

The research presented in this study was developed and 

conducted using MATLAB, and the outcomes were assessed 

in terms of accuracy, recall, F-measure, and precision. 

Additionally, a thorough comparative analysis was conducted 

using existing techniques, such as MGSR-DBN, CNN, GA-

CNN, RCNN, and TL-CNN. A complete comparative analysis 

is presented in Table 3 & Table 4. 

 

Table 3. Overall comparative analysis 

 

 Accuray Precision Specificity Sensitivity F-Measure 
Dice 

Coefficient 

Computatinal 

Time 

MGSR-DBN 94.94 94.18 96.52 96.34 96.37 0.93 5.32 

CNN 87.72 86.17 87.81 87.58 87.48 0.81 7.8 

GA-CNN 89.45 89.68 89.17 89.22 89.06 0.83 6.5 

CapsNet 92.05 92.58 93.62 93.62 93.81 0.91 5.9 

RCNN 93.46 91.37 92.62 92.55 92.32 0.89 6.21 

TL-CNN 95.21 94.48 95.36 95.86 95.05 0.93 3.82 

Proposed 99.40 99.25 99.47 99.61 99.46 0.97 1.13 
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Table 4. Methodologies with performance analysis 

 

Methods Technique & Advantages Limitations 
Performance Metric 

Accuracy Specificity 

U-Net Image segmentation with its symmetrical architecture Suffer from overfitting and limited fields 98.17 98.21 

ResNet 
It allows effective training of very deep networks and 

it minimize the gradient issues 

It requires substantial computational 

resources 
97.23 97.30 

DenseNet 
Feature reuse, helps gradient flow and reducing 

parameter count 
Occupies more memory 95.40 95.61 

VGG-16 
Simple and effective 

High computational cost due to their large 

number of parameters 

96.61 96.22 

VGG-19 97.02 96.87 

FT-U-

Net 

Balances U-Net's benefits with improved 

generalization through transfer learning 
Needed large amounts of labelled data 99.55 99.64 

The proposed technique’s segmentation performance, 

including its specificity and accuracy, was compared to 

conventional methods such as U-Net, ResNet, DenseNet, 

VGG-16, and VGG-19. The proposed work achieved 99.55% 

accuracy and 99.64%, specificity, whereas the conventional 

methods achieved accuracies of 98.17%, 97.23%, 95.40%, 

96.61%, and 97.02%, and specificity of 98.21%, 97.30%, 

95.61%, 96.22%, and 96.87%, respectively. A comparison of 

the segmentation performances is presented in Table 4. This 

analysis demonstrates that the proposed method outperforms 

conventional techniques. 
 

 

5. CONCLUSIONS 
 

This work introduces an optimized hybrid method (AFS-

DCRBF) for classifying diabetic retinal pathogens using the 

DR and Glaucoma datasets available on Kaggle. By 

combining the benefits of AFS with DCRBF, the developed 

method achieves effective retinal pathogen classification. The 

MATLAB implementation of the method achieved an average 

performance of 99.40% accuracy, 99.25% precision, 99.47% 

specificity, 99.61% sensitivity, 99.46% F-measure, and 0.97 

dice coefficient. Additionally, an extensive comparative study 

was conducted using techniques such as the MGSR-DBN, 

CNN, GA-CNN, CapsNet, RCNN, and TL-CNN. Among 

these techniques, the proposed method outperformed the 

others, with improved performance in accuracy, precision, 

specificity, F-measure, and dice coefficient by 4.46%, 5.07%, 

2.95%, 3.27%, and 0.04, respectively. Real-time retinal 

pathogen categorization is shown to be effective and suitable. 
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NOMENCLATURE 

 

DL Deep Learning 

AFS Artificial Fish Swarm 

DR Diabetic Retinopathy 

CNN Convolutional Neural Network 

GWO Grey Wolf Optimizer 

SVM Support Vector Machine 

 

1296




