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This article discusses the importance of accurate teeth segmentation in dental diagnosis and 

treatment. Rapid advancements in Artificial Intelligence have led to the development of 

various approaches for example Res-UNet deep learning architecture. Res-UNet++ has 

been proposed as a refined version of the Res-UNet architecture to improve teeth 

segmentation performance. Res-UNet++ integrates three additional elements: squeeze and 

excitation block, atrous spatial pyramid pooling, and attention block. The purpose of these 

components is to enhance the performance of Res-UNet by improving the recalibration of 

features at both the channel and spatial levels, capturing multi-scale contextual information, 

and prioritizing the relevant regions of interest. Res-UNet++, UNet and Res-UNet were 

compared on two publicly available dental image datasets using evaluation criteria such as 

the dice coefficient and mean Intersection over Union (mIoU). The evaluation of these 

algorithms was implemented under the same experimental settings to statistically assess the 

significance of the enhancements. The result shows the superiority of Res-UNet++ over 

UNet and Res-UNet. The effectiveness of Res-UNet++ is demonstrated by its impressive 

assessment scores: the dice coefficient of 92.91% and 95.58% for the two databases, and 

the mean Intersection over Union (mIoU) of 88.68% and 88.72%. 
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1. INTRODUCTION

In clinical practice, clinicians frequently use radio-graphs as 

a standard imaging system for diagnosing and treating tooth 

loss, thanks to their cost-effectiveness. Additionally, the 

panoramic X-rays provide a rich detail due to its ability of 

capturing a broad range of the maxillomandibular region. 

Moreover, its radiation level is the lowest compared to other 

techniques [1]. The panoramic radio-graphs have been used by 

dentists to identify various of dental problems including: bone 

abnormalities, cavities, hidden dental structures, and post-

traumatic fractures, which are difficult or almost impossible to 

detect through a visual examination [2]. Thus, the dentist will 

be able to prepare a suitable therapy strategy for each patient. 

In some situations, dentists may choose to outsource the task 

of analyzing X-rays due to its nature. This practice can be 

time-consuming. Requires a level of expertise to differentiate 

relevant dental features from non-essential ones such as jaw 

bones, nasal bones and spine bones [3]. Due to the 

dissimilarity of the dentist's experience levels by extracting the 

information from the radio-graph images, a different diagnosis 

for the same radio-graph may arise. Consequently, 

inappropriate treatments pathology for some cases could be 

happen [4]. 

Several algorithms and models are proposed to automate the 

diagnosis and solves this diagnosis diversity. Some of these 

systems utilize machine learning techniques like the contour 

model [5] and SVM [6] combined with handcrafted features. 

However, the performance of these methods is often limited 

by their reliance on handcrafted features [4]. On the other hand, 

breakthroughs have been achieved by developing automated 

systems through deep learning approaches that have surpassed 

machine learning algorithms in delivering superior results. 

Specialized architectures tailored for handling images across 

domains, such as UNet [7] and DeepMedic [8] have played a 

pivotal role in this field. These architectures have been 

redesigned into nested structures [9], or equipped with self-

adaptability features [10], for enhanced performance. Because 

of its range of customization choices, UNet has been viewed 

as a framework, more than just an architecture. Making it a 

good fit for incorporating new techniques [8]. However, with 

these advancements, teeth segmentation technology 

encounters obstacles due to the nature of dental anatomy and 

the requirement for precise techniques. The current methods 

encounter difficulties, with teeth that overlap, shape variations 

and imaging imperfections. These issues indicate that the 

segmentation required more enhancements, particularly the 

teeth segmentation. Thus, Res-UNet++ has been suggested as 

a method to get improved performance. 

Driven by the high-performance of Res-UNet++ [11] 

architecture in automatic polyp segmentation, this architecture 

has been adopted in the presented fundamental framework. 

Res-UNet++ is a novel architecture for medical image 

segmentation that improves upon the existing Res-UNet 
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model. Res-UNet is a combination of UNet and ResNet, two 

popular deep learning architectures for image segmentation 

and classification, respectively. Res-UNet uses residual blocks 

to enhance the feature extraction and skip connections to 

preserve the spatial information across the encoder-decoder 

network. It also allows for the propagation of information over 

layers, enabling the construction of deeper neural networks to 

address the degradation problem. Res-UNet++ extends Res-

UNet by incorporating three additional components: squeeze 

and excitation block, Atrous Spatial Pyramid Pooling (ASPP), 

and attention block modules within Res-UNet architecture to 

enhance teeth segmentation. These components aim to 

improve the performance of Res-UNet by enhancing the 

channel-wise and spatial-wise feature recalibration, capturing 

multi-scale contextual information, and focusing on the 

relevant regions of interest, respectively. Which means further 

enhances the architecture's ability to capture intricate details 

and spatial dependencies within the images. 

Res-UNet++ has been shown to achieve state-of-the-art 

results on various medical image segmentation tasks, such as 

polyp segmentation, brain tumor segmentation, and lung 

segmentation. Res-UNet++ is an advanced architecture that 

can handle the challenges of medical image segmentation, 

such as high inter-class similarity, intra-class variation, and 

low contrast. The model has been evaluated using two publicly 

accessible datasets. The TUFTS benchmark dataset serves as 

the first tool. The second dataset, used in the research [12], 

comprises de-identified panoramic dental x-ray photographs 

of 116 volunteers, sourced from Noor Medical Imaging Center, 

Qom, Iran. The experimental results display that the proposed 

model outperforms popular architectures like UNet [7] and its 

variant Res-UNet [13] efficiently with a notable performance 

increase. 

The remainder of the paper unfolds as follows: Section two 

delves into related work of teeth segmentation. Details 

concerning material and methodology appear in section three, 

while section four presents experimental results. Ultimately, 

Section five hosts a discussion regarding the conducted study 

and prospective improvements. 

 

 

2. RELATED WORKS 

 

The related work provides crucial insights into the evolution 

of dental image segmentation techniques leading up to the 

proposed Res-UNet++ architecture. Initially, Ronneberger et 

al. [7] announced the UNet architecture in 2015; since then, 

extensive investigation has been conducted on this topic and 

numerous studies confirmed its effectiveness in detecting and 

segmenting visual medical data. Over the years, diverse 

adaptations have transformed UNet: some included adding a 

batch normalization layer to its encoder component to improve 

stability, others applied innovative strategies aiming at 

boosting performance for designated tasks. 

Machado et al. [14] managed to segment the mandible bone 

in panoramic X-ray photography successfully. Widyaningrum 

et al. [15] further extended the research landscape by pursuing 

a segmentation methodology for periodontitis staging; they 

utilized two distinct approaches Multi-Label UNet and Mask 

RCNN, pre-training the latter for other tasks via transfer 

learning. Almalki and Latecki [16] employed cutting-edge 

self-supervised deep learning algorithms such as Sim-MIM 

and UM-MAE; this approach improved the efficiency of their 

model in interpreting a finite set of dental radio-graphs. They 

leveraged the Swin Transformer an influential variation of the 

transformer model in their research study. 

Attention techniques have also gained attention in teeth 

segmentation, as emphasized by Mahran et al. [17] and Harsh 

et al. [18], who utilized a channel-based Attention UNet 

models. These models incorporate attention blocks like 

Squeeze and Excitation (SE) to filter pertinent information, 

demonstrating superior performance compared to traditional 

methods. 

The extendibility of channel-wise attention in UNet to other 

applications, often blended with spatial attention [19], gathers 

features on a global scale for the input. It adapts different types 

of attention mechanisms specifically for UNet architecture like 

grid-based attention gate [20]. This mechanism calculates 

local-scale coefficients of attentions that allow more detailed 

output and have demonstrated excellent performance in tasks 

such as pancreas segmentation [20], deforestation detection 

[21] and ischemic lesion segmentation within the brain [22]. 

However, its application remains absent from dental 

segmentation tasks thus far, according to our knowledge. Dayı 

et al. [23] assessed the diagnostic precision of deep learning 

models in segmenting occlusal, proximal, and cervical caries 

lesions seen on panoramic radio-graphs; their assessment used 

a dataset comprising 504 anonymized panoramic radio-graphs. 

Nafi’iyah et al. [24] trained an ensemble consists 3 models of 

Mobile-NetV2 on 106 panoramic images to alleviate the 

problem of mandibular segmentation; this approach also 

addressed the primary shortcomings of prior existing methods 

which did not fully represent the mandible. The same method 

has been followed by Arora et al. The authors [25] employed 

a model grounded in an encoder/decoder framework. The 

encoder segment incorporated numerous convolution neural 

network-based models, utilizing each network and combining 

their outputs to create fine grained contextual features to 

segment the teeth. 

The proposed Res-UNet++ architecture builds upon these 

advancements, integrating elements from previous studies 

such as attention mechanisms and SE blocks while also 

addressing the specific challenges of teeth segmentation. By 

drawing upon the insights gained from prior research, Res-

UNet++ aims to push the boundaries of dental image 

segmentation and contribute to improved diagnostic and 

treatment planning processes. 

 

 

3. RES-UNET++ 

 

The Res-UNet++ network is based on the Deep Residual 

UNet (Res-UNet) which incorporates the well-known network 

UNet and ResNet network [7, 13]. ResNet provides a robust 

learning of the residual technique as mentioned by He et al. 

[26]. It has been widely recognized for its ability to address the 

degradation problem surpassing architectures, like Highway 

Networks and DiracNets. A study by Monti et al. [27], 

compared networks designed to tackle degradation 

highlighting the performance of ResNet in overcoming such 

challenges. 

The proposed Res-UNet++ architecture includes 

components like blocks, squeeze excitation blocks, Atrous 

Spatial Pyramid Pooling (ASPP) and attention blocks. By 

integrating the residual block data flow smoothly across layers 

in this structure allowing for the creation of a neural network 

that effectively addresses degradation concerns, within each 

encoder. This process enhances channel inter-dependencies 
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while reducing the computational costs. The proposed Res-

UNet++ framework composes 1 stem-block, 3 sequential 

encoder- blocks, an ASPP unit in-between followed by another 

set of three decoder blocks at the end. Figure 1 illustrates the 

schematic representation of Res-UNet++ framework. The 

residual unit, visible in this block diagram, integrates batch-

normalization techniques, ReLU linear activation, and 

convolution segments. Two consecutive (3×3) convolution 

blocks, in conjunction with an identity mapping, compose 

every encoder block. Within each convolution blocks, a batch 

normalization layer, a ReLU activation layer and a 

convolution layer. Moreover, the identity mapping creates a 

linkage between the input and output of its respective encoder 

block. The initial convolution layer of the encoder-block 

employs a strided convolution layer to halve the spatial 

dimensions of the feature maps. 

The squeeze-excitation-block processes the encoder block's 

output. Acting as a bridge, the ASPP expands the filters' field-

of-view to encompass a broader context. Correspondingly, 

residual units also comprise the decoding path. Prior to each 

unit, the attention-block heightens the efficacy of the feature-

maps. This is immediately followed by a nearest neighbor up-

sampling of feature maps from the lower hierarchy. The 

feature-maps concatenated from their corresponding encoding 

pathway. Ultimately, the result of the decoder block undergoes 

ASPP processing and culminates in a 1×1 convolution with 

sigmoid activation, producing the segmentation map. 

A progression from the fundamental Res-UNet++ is marked 

by the integration of squeeze-excitation-blocks depicted in 

Figure 1 by Cornflower Blue, the ASPP module emphasized 

in Flush Orange, and the attention-block highlighted in Hot 

Pink. Succinct elucidations of each constituent element are 

further expounded upon in the subsequent subsections. 

 

3.1 Units of residue 

 

He et al. [26] proposed the deep residual learning 

framework as a solution to the degradation problem that 

notoriously challenges training of deep neural networks due to 

increasing network depth. The Res-UNet [7] framework 

leverages full pre-activation residual units and skip 

connections, making the deep network training simpler and 

preventing information degradation. It offers distinct 

advantages such as reduced parameters, enhanced semantic 

segmentation performance, and stands comparable to more 

complex networks in terms of effectiveness [13]. 

Consequently, Res-UNet has been selected as a backbone 

architecture for the proposed model because of these benefits. 

 

3.2 Units for squeezing and excitation 

 

Hu et al. [28] emphasizes the integration of Squeeze-and-

Excitation (SE) blocks into convolutional neural networks 

(CNNs) using both empirical evidence and theoretical 

frameworks. Empirically, extensive tests have been 

demonstrated the effectiveness of SENets, which include SE 

blocks, in achieving state-of-the-art performance across 

diverse datasets such as ImageNet, CIFAR-10, and CIFAR-

100. Notably, incorporating SE blocks into established 

architectures like ResNet-50 and DenseNet has led to 

significant performance gains. Theoretical analysis 

underscores the potential of SE blocks: they enhance 

representational power and generalization capabilities indeed, 

through explicit modeling of inter-channel dependencies; this 

facilitates selective feature emphasis and global information 

utilization. Squeeze and excitation techniques enhance the 

network's information representation capacity by efficiently 

representing interdependencies between channels and re-

calibrating features response. make the network more sensitive 

to important features and less sensitive to unimportant features. 

It does this in two phases: squeezing and exciting. The initial 

phase, referred to as the squeeze phase, it integrates global 

average pooling with each channel to compress them; thereby 

generating channel-specific statistics for information 

embedding on a large scale. Subsequently, the excitation phase 

ensues with a goal to thoroughly encapsulate each channel's 

inherent dependencies [28]. Within the proposed framework, 

a residual-block has been combined with a squeeze and 

excitation block; this serves as an effective strategy that 

increases generalization capabilities across various datasets 

and improves network performance overall. 

 

3.3 Atrous spatial pyramidal pooling utilizes 

 

Atrous convolutions, often referred to as dilated 

convolutions, deviate from standard convolutions by 

incorporating empty spaces within the convolutional kernel. 

The presence of these gaps, or holes, enables the convolutional 

operation to extract input signals with a wider receptive field, 

so extracting information from a more extensive context 

without augmenting the number of parameters or 

computational expense. The dilation rate in atrous 

convolutions regulates the distance between kernel elements 

and defines the effective stride inside the input feature map. 

Atrous convolutions may capture multi-scale information at 

different resolutions by modifying the dilation rate. This 

allows the network to extract features at several scales 

simultaneously. Atrous convolutions are highly effective in 

semantic images segmentation as they allow the network to 

include contextual information from a broader variety of 

spatial settings, therefore capturing multi-scale information 

more efficiently. The Res-UNet++ design combines features 

from paralleled convolution layers with different dilation rate 

to collect the multi-scale data efficiently. This process is 

achieved by incorporating the atrous convolutions in the ASPP 

structure within Res-Unet++. The procedure enables the 

model to be adjusted to various object scales and situations to 

enhance its capacity of precise teeth segmentation [29, 30]. 

The ASPP in the proposed architecture serves as a 

connection between the encoder and decoder components, as 

described in Figure 1. The ASPP model provides promising 

outcomes in segmentation challenges by supplying essential 

multi-scale information. The multi-scale information has been 

leveraged to gather precious multi-scale information for 

semantic segmentation tasks. 

 

3.4 Units of attention 

 

Attention mechanisms, a concept widely embraced in 

Natural Language Processing (NLP) [18], concentrate on a 

subset of the input. These mechanisms have demonstrated 

their usefulness in semantic segmentation tasks such as pixel-

wise prediction [31]. Intrinsically, they identify sections of the 

neural network that need increased focus which subsequently 

reduces the computational load involved in transforming data 

from each tooth image into a fixed-dimensional vector. 

Attention mechanisms stand out due to their simplicity, 

adaptability to diverse input sizes, and ability to enhance 
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feature quality-all factors that elevate results. Unlike previous 

methods such as UNet [7] and Res-UNet [13], which directly 

concatenate the encoder's feature maps with those of the 

decoder, the presented architecture draws inspiration from 

attention mechanisms' successes in both NLP and computer 

vision contexts by introducing an attention block within its 

decoder segment. This augmentation allows for an intense 

focus on vital areas within the feature maps.

 

 
 

Figure 1. Block diagram of the proposed Res-UNet++ architecture 
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4. EXPERIMENT 

 

The investigation has been conducted through a 

comprehensive series of steps that encompasses algorithm 

training, validate the parameters, and test the model on unseen 

images. To evaluate the Res-Unet++ algorithm, the algorithm 

performance has been precisely compared with the well-

known Unet and Res-Unet networks. By these comparative 

analyses, we can holistically understand both the strengthens 

and weakness of Res-Unet++ architecture. The algorithms 

have been applied on two publicly available datasets. These 

data sets consist a diverse set of samples to simulate the reality, 

which has a diverse of teeth cases. Thus, these datasets were 

carefully selected to thorough evaluate the performance of the 

proposed algorithm. The model's performance has been 

thoroughly evaluated by analyzing important metrics 

including the dice coefficient, mean Intersection over Union 

(mIoU), and Pixel Accuracy (PA). 

Furthermore, deeper investigation was probed into nuanced 

evaluations: the focus extends to the architectures' robustness 

when faced with challenging or previously unseen samples. 

Conducting these analyses on different datasets, the 

conclusion is corroborated and remain sturdy and relevant 

across a myriad of scenarios. 

 

4.1 Datasets 

 

4.1.1 Multimodal dataset from TUFTS university 

The multimodal dataset from TUFTS University [32] 

consists of 1,000 de-identified images of panoramic radio-

graphs, Figure 2 (a), and five additional major components 

which include: i) teeth masks Figure 2 (b), ii) 

maxillomandibular masks, iii) eye tracker-generated maps in 

both grey and quantized formats, iv) detailed text descriptions 

of each radio-graph, and finally, v) two forms of abnormality 

segmentation mask-expertly annotated and student-level. 

Expert-annotated images may display a higher level of 

experience, expertise, and accuracy in identifying and labeling 

abnormalities in panoramic radio-graphs compared to their 

student-level annotated counterparts. The dental professionals 

involved likely provide annotations that are more accurate and 

reliable due to their extensive experience and specialized 

knowledge; they possess an advanced understanding of dental 

pathology as well as radio-graphic interpretation - this results 

in the finer identification plus labeling of abnormalities. As a 

gold standard for comparison and benchmarking purposes, 

expert annotations excel. Conversely, the accuracy and 

consistency of student annotations may fluctuate based on 

their dental training level and experience; limited proficiency 

in radio-graph interpretation can lead to discrepancies or errors 

within these notes. Student annotations, however, do more 

than just offer a different perspective on radio-graphic 

interpretation; they actually provide valuable insights into the 

learning process and diagnostic skill development among 

dental students. 

4.1.2 Noor Medical Imaging Centre (NMIC) 

A de-identified dataset has been used, consisting of 116 

panoramic dental x-ray radio-graphs from volunteers at Noor 

Medical Imaging Center (NMIC), Qom, Iran [12]. Although 

this dataset includes manual segmentations of mandibles, 

these segmented images were deemed irrelevant to presented 

study; therefore, only the original images served for the 

research purposes. The Soredex CranexD digital panoramic x-

ray unit took the images. All image widths vary between 2,600 

and 3,138 pixels, while their heights range from 1,050 to 1,380 

pixels. During data preprocessing, all panoramic dental x-ray 

images were resized to a standard size of 1,500x1,500 pixels. 

In Figure 2 (f), an example of an input image has been 

provided. A teeth mask has been obtained for each panoramic 

dental x-ray image in the dataset through manual labeling. 

Figure 2 (g) labels all the teeth in this mask, as described. 

 

4.2 Implementation details 

 

The model was implemented and trained on an NVIDIA 

RTX 3080 GPU using the PyTorch framework version 1.6.0. 

and tensorboardX library. Initially, the developed model 

trained using 16 batch size. Moreover, in conjunction with 

32GB RAM, Adam algorithms has been used the for-

optimization tasks. Algorithm's learning rate was programmed 

at 0.0001. Lower learning rate generally is preferred, even 

though it may decelerate the speed of convergence. 

Conversely, adopting a higher learning rate often impedes 

achieving convergence effectively. 

In this study, the variability in image sizes within and across 

datasets have been taken into account to develop a strategy that 

effectively utilizes the GPU and minimizes training time. The 

images displayed varying resolutions, which led us to resize 

them consistently to a resolution of 1,500×1,500 pixels. For 

further precision, the training dataset has been enhanced by 

cropping each image with a margin of 224×224 before have 

been used in the frameworks. The proposed approach 

integrates also a diverse range of techniques that have been 

used to augment the data, including center and random 

cropping, horizontal and vertical flipping, scale and 

illumination level augmentation, cutout, and random rotation. 

The rotated samples have been rotated at random angle from a 

range spanning 0 to 90°. To balance model performance 

assessment, the data were allocated 80%, 10%, and 10% for 

training, validation, and testing respectively. Training all 

models over 75 epochs with a reduced learning rate facilitated 

generalization. In line with specific requirements, the batch 

size, epoch count, and learning rate has been adjusted 

accordingly. To mitigate the risk of overfitting, which could 

potentially compromise accuracy-an issue that often arises 

with smaller batches-a larger batch size has been chosen. 

Further enhancing the proposed model's performance, The 

Stochastic-Gradient-Descent has been integrated with Restart 

(SGDR) into the training strategy. 

 

 

 

 
(a) •  (f) 
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Figure 2. A sample of the datasets and predictions done on the test set. The first row (a & f) are samples of 

TUFTS and NMIC, respectively. (b & g) are the ground truth of first row. (c & h) are the prediction results of 

Res-Unet++, (d & i) is the prediction results of Unet, and (e & j) is the prediction results of Res-Unet 

 

 
5. OBATAINED RESULTS 

 

The effectiveness of the Res-UNet++ architecture has been 

demonstrated through a dual set of experiments conducted on 

the TUFTS and NMIC datasets. To compare models, the 

outcomes derived from the proposed Res-Unet++ were 

juxtaposed, original UNet, and original Res-UNet 

architectures-both conventionally favored choices for 

semantic segmentation undertakings. 

 

5.1 Results derived from the TUFTS dataset 

 

We meticulously fine-tuned the hyper-parameters-elements 

such as learning rate, epoch count, optimizer, batch size, and 

filters size-to refine the Res-UNet++ model. This endeavor 

necessitated us to train frameworks with diverse hyper-

parameter configurations and then rigorously evaluate their 

performance. Table 1 presents the results for Res-UNet++, 

Res-UNet [32], and UNet [32]. The proposed model 

significantly outperformed in achieving the highest scores for 

dice coefficient and mean Intersection over Union (mIoU) on 

the TUFTS dataset. Despite UNet displaying higher Pixel 

Accuracy (PA), it produced less competitive scores for dice 

coefficient and mIoU essential metrics for any semantic 

segmentation task 

 

Table 1. Models’ evaluation results on TUFTS dataset 

 
Method Dice MIoU PA 

ResNet++ 92.91 88.68 95.12 

ResNet 92.36 86.49 95.13 

UNet 92.46 86.67 95.22 

 

The recommended architecture demonstrated remarkable 

dominance over baseline models considering both dice 

coefficient and mIoU measures. Figure 2 confirms that results 

as Figure 2 (c)(d)(e) represent the obtained segmented images 

from Unet, Res-Unet, and Res-Unet++, respectively. 

 

5.2 Results derived from the NMIC dataset 

 

To comprehensively assess the automatic teeth 

segmentation performance, supplementary experiments were 

conducted to evaluate the model's generalizability. then the 

adaptability of this model has been examined within the 

proposed architecture by testing its performance on an 

alternative dataset. This crucial step towards generalization 

signifies a significant stride in building a medically viable 

model. Table 2 summarizes the outcomes of each architecture 

on the NMIC datasets. In terms of dice coefficient and mIoU, 

the presented architecture remained competitively positioned; 

Table 2 offers further qualitative outcomes from all models. 
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Table 2. Results of the tested Models on NMIC dataset 

 

Method Dice MIoU PA 

ResNet++ 95.58 88.72 97.44 

ResNet 93.87 87.35 97.19 

UNet 94.32 88.13 97.48 

 

Res-UNet++ provides preferable results over the baseline 

models as shown in Figure 2. The outcomes display that this 

method is finer in quantitate, and qualitative. Moreover, it is 

clear that this approach is exceedingly efficient in the case of 

TUFTS dataset as well as NMIC. In medical images 

segmentation applications, the Res-UNet++ technique is the 

model of choice because of its mIoU and dice coefficient 

potency. It is necessary to apply the proposed architecture to 

TUFTS and NMIC datasets to determine its competence in 

clinical and medical image segmentation applications. This 

holds true in general and even with the scarcity of images in 

the NMIC dataset. The fact that Res-UNet++ demonstrates 

exceptional results on independent and different datasets, 

shows its ability to be generalized to other datasets including 

real-life clinical applications. The dataset consists of 

deviations in image disorders, teeth attributes, and patient 

maxillomandibular demographics, demonstrating practical 

diversity experienced in clinical practice. As a result, this will 

have a great influence on patient care via promoting the 

accuracy of diagnosis. 

The dice coefficient is defined as the extent of the overlap 

amidst the predicted segmentation mask and the ground truth 

mask. It weighs the similitude between these masks via 

regarding false positives and false negatives. In contracts, the 

Pixel accuracy evaluates the percentage of accurately 

classified pixels in the segmentation mask without regarding 

the class imbalance between tooth and non-tooth pixels. 

Res-Unet++ in both experiments achieved a high dice 

coefficient while preserving a competitive pixel accuracy. 

Thus, resulting in superior capturing of the intricate details of 

teeth and perform well in classifying most pixels correctly. 

A higher Dice coefficient or mIoU means a more promising 

model accuracy for the segmentation of anatomical structures 

and pathological areas. This leads to an improvement in 

clinical missions including diagnosis, treatment planning, and 

patient observation. An effective treatment planning could be 

achieved by accurate pathology identifier. The latest need an 

accurate teeth segmentation that helps the specialist identify 

the condition correctly. Hence, improving the accuracy of 

teeth segmentation will significantly improve the dental care 

outcomes. From this relation, we can estimate the potential of 

the teeth segmentation in practical use at the dental clinics. 

 

 

6. DISCUSSION 

 

The Res-UNet++ approach shows favorable outcomes for 

both the TUFTS and NMIC datasets. Figure 1 illustrates a 

segmentation map by Res-UNet++, demonstrating an 

enhanced ability to capture shape information effectively, 

compared to other architectures within the same datasets. This 

suggests that, contrasted with currently dominant state-of-the-

art models, the segmentation mask generated by Res-Unet++ 

bears a more striking resemblance to the ground truth. Notably, 

the UNet architecture also produces highly competitive 

segmentation masks. 

Res-Unet++ utilize a spectrum of available loss functions, 

encompassing binary cross entropy, dice loss, and mean 

square loss during the model training process. The empirical 

results underscored an upward trend in the Dice coefficient 

values upon evaluation, highlighting commendable 

performance by the presented model. When the Dice 

coefficient has been excluded from this array of loss functions; 

all other options yielded significantly lower mIoU values. The 

dice coefficient loss function has been selected empirically. 

Also, the variables like the number of filters, batch size, 

optimizer and chosen loss function have been observed how 

considerably wield influence over outcomes. Increasing 

dataset size, supplementing with additional augmentation 

techniques and integrating post-processing steps could 

potentially improve model performance. The augmentation 

introduced by the proposed architecture may embraced, 

despite an increase in parameter count, to train the proposed 

model for superior results. The Res-UNet++ architecture may 

apply to the pattern classification as well as the segmentation 

process in the medical field or beyond that. These applications 

warrant further comprehensive validation. This code has been 

diligently optimized to a considerable extent using the 

available expertise and knowledge. Avenues for further 

refinement continue to exist, potentially influencing 

architectural outcomes. The presented code has been executed 

exclusively on an Nvidia RTX 3080 GPU machine; this raises 

the important consideration that image resizing during such a 

process might result in losing critical information. Moreover, 

integrating more parameters into Res-UNet++ prolongs the 

training duration. The approximate time to train the models 

Unet, Res-Unet, and Res-Unet++ using 2,000 Samples was 11, 

12, and 13 minutes, respectively. However, the testing time 

was almost same and negligible. 

 

 

7. CONCLUSION 

 

In this study, Res-Unet++ has been presented to improve the 

accuracy of teeth segmentation. The presented architecture 

achieves optimal performance by harnessing components like 

residual-block, squeeze-and-excitation block, ASPP, and 

attention-block. Residual blocks enable the direct flow of 

information through shortcut connections, facilitating the 

training of deeper neural networks and enhancing the model's 

ability to capture complex patterns and details in teeth images. 

Teeth segmentation needs to focus on some details in the 

images rather than others. This attention could be competently 

achieved by utilizing Squeeze and excitation blocks. Squeeze 

and excitation blocks recalibrate the feature responses 

according to the channel by emphasizing informative details 

and suppressing others. Additionally, the teeth and details 

scale may differ from image to image and from tooth to tooth, 

therefore the ASPP module has been chosen in the proposed 

algorithm. The ASPP can handle the different details scales by 

utilizing dilated convolution with different rates. Moreover, 

some regions in the maxillomandibular radio-graphs are more 

important rather than other regions. This spatial selectivity has 

been implemented by using Attention blocks. Thus, the 

segmentation accuracy has been promoted. Residual, squeeze 

and excitation, Attention, and ASPP blocks together widely 

enhanced the segmentation accuracy and reduced the effect of 

the surrounding tissues. 

Res-UNet++, UNet, and Res-UNet were compared on two 

publicly available dental image datasets TUFTS and NMIC 

using evaluation criteria such as the dice coefficient and mean 

Intersection over Union (mIoU) and precision accuracy (PA). 
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The evaluation of these algorithms was implemented under the 

same experimental settings to statistically assess the 

significance of the enhancements. The result shows the 

excellence of Res-UNet++ over UNet and Res-UNet. The 

effectiveness of Res-UNet++ is demonstrated by its 

impressive assessment scores: the dice coefficient of 92.91% 

and 95.58% for the two databases, and maintaining high mean 

Intersection over Union (mIoU) of 88.68% and 88.72%. The 

experiment results are summarized in Tables 1 and 2. The 

images masks and the segmented images in Figure 2, shows 

the advantages of the proposed model over the UNet and Res-

UNet models. The study attributes the success of Res-UNet++ 

to its adoption of elements including residual blocks, ASPP, 

squeeze and excitation blocks and attention blocks. These 

advancements have the potential to enhance practices by 

increasing accuracy reducing errors and potentially 

streamlining dental examinations. Despite its performance 

there are considerations to take into account when balancing 

performance enhancements, with computational complexity. 

This becomes more crucial when considering the training 

times resulting from higher parameter numbers underscoring 

the importance of understanding these trade-offs for actual use, 

in clinical settings. 
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