

Discrete Black Widow Optimization Algorithm for Multi-Objective IoT Application

Placement in Fog Computing Environments

Chouaib Maarouk* , Hichem Haouassi , Mohamed Mahdi Malik

ICOSI Laboratory, Computer Science Department, Abbes Laghrour University, Khenchela 4000, Algeria

Corresponding Author Email: maarouk.chouaib@univ-khenchela.dz

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ria.380403

ABSTRACT

Received: 26 December 2023

Revised: 12 May 2024

Accepted: 9 July 2024

Available online: 23 August 2024

 The “Internet of Things" describes a network comprising variedly distributed and

heterogeneous devices that communicate by exchanging data to realize various applications

with minimal human intervention. However, processing the massive amounts of data in the

cloud environment becomes challenging. To address this issue, fog computing has appeared

as a new paradigm that extends the capabilities of cloud computing to the edge of networks.

The deployment of applications on diverse and dispersed nodes is one of the key issues in

fog computing This article presents an approach to optimize application placement in fog

computing infrastructure by formulating it as a combinatorial problem that aims to

minimize both execution times and costs. Here, we propose a Discrete Black Widow

Optimization (DBWO) algorithm specifically designed to tackle the discrete nature of the

application placement in fog environments. Experimental results show that our approach

demonstrates an average improvement of 9% compared to several recent approaches in the

literature. In fog-only topology, DBWO demonstrated an improvement range from 4.30%

to 9.87%, while in fog-cloud topology, it showed notable performance improvement, with

fitness value enhancement ranging from 8% to 15.16%. This innovation represents a

significant stride towards efficient and cost-effective application placement in fog

computing environments.

Keywords:

Internet of Things (IoT), fog computing,

application placement, swarm intelligence,

discrete black widow optimization

1. INTRODUCTION

The twenty-first century has witnessed the transformative

rise of IoT, a technology that has become a cornerstone of

modern innovation. This technology entails the

interconnection of physical objects, such as sensors, smart

devices, and actuators, into a vast network. The sheer scale of

this interconnected ecosystem is staggering, with the number

of connected devices projected to reach a staggering 75 billion

by 2025 [1]. With this exponential growth comes an

unprecedented volume of data, necessitating substantial

computing power for efficient processing and storage [2].

Traditionally, IoT devices have often been limited in terms

of processing and storage capabilities. The data generated by

these IoT devices has been managed and stored in a centralized

cloud infrastructure. In terms of availability, processing

performance, and storage capacity, the cloud has aptly served

the needs of IoT applications. However, the centralization of

cloud computing presents challenges, particularly for

applications that require real-time processing and minimal

latency.

To address the limitations of cloud-based systems for time-

sensitive IoT applications, fog computing emerged as a

solution in 2012 [3]. Fog computing involves a paradigm shift

that enables the cloud to collaborate with distributed nodes

located closer to IoT devices. These nodes, often referred to as

"edge" devices, process data autonomously and directly,

making IoT applications more secure, less reliant on distant

cloud resources, and highly scalable when compared to relying

solely on traditional cloud computing.

Fog computing has emerged as a promising approach to

enhance network performance, mitigate overload, and reduce

latency, thereby meeting the stringent requirements of time-

sensitive applications. However, given the resource

constraints of edge devices, a critical challenge lies in

efficiently allocating resources and deploying applications to

ensure swift access to available resources for time-sensitive

applications.

The IoT application span a wide range of use cases each

with unique requirement in terms of latency, reliability and

resource consumption. For example, a smart healthcare

application might prioritize low latency for patient monitoring

[4], while a smart grid application might prioritize high

availability for real time energy management [5]. The

challenge of deploying IoT applications in fog computing

systems revolves around efficiently allocating these

applications to the available Fog nodes which serve as

intermediaries between devices and the cloud, have limited

computational and storage resources. Efficiently allocating

these resources to meet the requirement of diverse IoT

applications poses a significant optimization challenge and

falls into the category of NP-hard problems [6, 7], which

cannot be effectively solved using conventional optimization

techniques.

Revue d'Intelligence Artificielle
Vol. 38, No. 4, August, 2024, pp. 1077-1088

Journal homepage: http://iieta.org/journals/ria

1077

https://orcid.org/0000-0003-0591-0700
https://orcid.org/0000-0001-8465-499X
https://orcid.org/0000-0003-3251-5247
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.380403&domain=pdf

In the literature, the IoT application placement problem in

fog computing has garnered significant attention from

researchers in both academia and industry [7]. Numerous

studies have proposed optimization techniques to address

various aspects of the problem. Three main approaches have

emerged to address the application placement problem, each

tailored to varying application numbers and physical resource

requirements. The exact solution, while theoretically optimal,

is impractical for large-scale environments due to its time-

consuming nature. Heuristic methods offer a solution within a

reasonable timeframe but lack performance guarantees.

Lastly, meta-heuristic approaches, unrelated to the

optimization problem itself, guide the search towards near-

optimal solutions [3]. Meta-heuristic algorithms, such as

swarm intelligence and evolutionary techniques, have

demonstrated their efficacy in solving optimization challenges

across diverse domains [8]. One such bio-inspired meta-

heuristic approach is the Black Widow Optimization (BWO)

algorithm, proposed by Hayyolalam and Kazem [9]. BWO

draws inspiration from the intricate reproductive rituals of

black spiders and has shown promising results in addressing

continuous engineering optimization problems [9-11].

However, the application placement problem within fog-cloud

infrastructure inherently involves discrete optimization,

posing a challenge for the original BWO algorithm, designed

primarily for continuous optimization.

To bridge this gap, we present DBWO, which aims to tackle

the difficulties associated with optimizing application location

in fog-cloud infrastructures. DBWO, specifically designed for

discrete optimization tasks, places applications in the best

possible order by taking execution time and total cost into

account within a discrete parameter space. Unlike the original

BWO algorithm, DBWO it is well-suited to the particular

requirements of application placement in fog-cloud systems.

By offering more distributed and responsive solutions, fog

computing seeks to solve the drawbacks of conventional

cloud-centric IoT designs. By concentrating on improving

application placement in fog-cloud systems to achieve

effective and economical execution, our study makes a

contribution to this subject.

The main contributions of this paper are:

We have formulated the application placement in the fog-

cloud system as a multi-criteria optimization problem to attain

the optimal balance between execution time and total cost.

To the best of the authors’ knowledge, none of the previous

studies proposed a Discrete BWO algorithm. The focus of this

work is to present an effective implementation of the discrete

BWO algorithm, which is utilized to solve the problem of IoT

application placement. The objective of the optimization

problem is to minimize both the time and cost of running a

given set of applications on the fog infrastructure. This is

achieved by selecting the most suitable resources for each

application to ensure efficient and cost-effective execution.

The experimental results of several tested scenarios indicate

that the proposed DBWO approach delivers superior

performance in execution time and total cost compared to four

recently proposed approaches: Elitism Genetic Algorithm

(EGA), Discrete Particle Swarm Optimization (DPSO), Bee

Life Algorithm (BLA), and Gray Wolf Optimizer (GWO).

The rest of the paper is structured as follows: The following

section reviews relevant literature in the field, providing a

comprehensive overview of existing research. In Section 3, we

present the background and motivation for our work. Section

4 introduces our system model and the formulation of

application mapping within fog computing infrastructure. The

proposed DBWO algorithm, a key component of our

approach, is elaborated upon in Section 5. The experimental

results and an in-depth discussion of the algorithm's

performance can be found in Section 6. Finally, in Section 7,

we conclude our paper and outline future directions for

research.

2. RELATED WORKS

Due to the wide use of the cloud-fog environment, the

researchers attach great importance to its performance.

Because of the complexity of cloud fog, the optimal

application placement strategy is one of the important factors

influencing its performance [8, 12]. Different applications

placement strategies are proposed in the literature with the aim

to improve the computing efficiency of the cloud-fog

environment [6-8]. In this section, we present the previous

application placement strategies, focusing on their nature as

exact, heuristic, and metaheuristic solutions.

2.1 Exact solutions

Previous studies have used Integer Linear Programming

(ILP) solvers to obtain exact solutions for application

placement in fog infrastructure. Skarlat et al. [13] employed

the IBM CPLEX solver and Java ILP within the Ifogsim

simulator [14] to address the service placement problem in a

fog environment. Their optimization aimed to minimize the

usage of the fog environment while considering the

application's Quality of Service (QoS) requirements. The

results showed that their optimization reduced the execution

cost, and the solution did not violate the application deadline.

Similarly, Minh et al. [15] used an ILP solver to offer a

service placement policy that maximizes the placement of

services in a fog landscape, resulting in improvements in terms

of delay and energy usage. Arkian et al. [16] formulated the

service placement problem in a fog environment as mixed-

integer nonlinear programming (MINLP), with the objective

of lowering the total cost while meeting the application's QoS

requirements. The simulation findings demonstrated cost,

energy, and latency improvements.

Tran et al. [17] recommended service placement in a

decentralized fog landscape based on context-aware data such

as resource consumption, location, and reaction time. Their

proposed method was found to be efficient for maximizing fog

device utilization and decreasing latency. However, other

optimization methods are less prevalent, and only a few

scholars have investigated their application in fog computing.

For example, in the study [12], the problem was formulated

using constraint programming to satisfy the QoS criterion, and

Choco-solver was used to solve it.

2.2 Heuristics approaches

Exact solution algorithms, such as ILP solvers, are

frequently employed methods for tackling the issue of

application placement in fog computing systems. However,

due to their time-consuming nature, these algorithms are not

suitable for large-scale infrastructure. As an alternative,

heuristics algorithms, such as search-based strategies, are used

to find feasible solutions within an acceptable timeframe.

In the literature, researchers have suggested and explored

1078

various search-based algorithms to optimize application

placement in fog infrastructure. One such approach is the

greedy backtracking heuristic algorithm proposed by Brogi

and Forti [18], which employs fail-first or fail-last strategies to

select the candidate node. Brogi et al. [19] extended the

backtracking search algorithm [18] to estimate QoS assurance

using the Monte Carlo method. Xia et al. [20] proposed a

backtracking service placement solution that minimizes the

response time of IoT applications.

Similarly, Lera et al. [5] proposed a first-fit heuristic

algorithm to place services in fog device communities,

optimizing QoS and service availability. Benamer et al. [21]

proposed an exact and Latency Aware-Placement Heuristic

(LAPH) algorithm to place IoT modules to reduce overall

latency, with simulation results showing that the heuristic

approach is significantly closer to the optimal solution within

a short period of time. Finally, Azizi et al. [4] proposed a

heuristic algorithm called most delay-sensitive application

(MDAF) first for QoS-aware service placement, which

prioritizes time-sensitive applications closer to the data source,

resulting in improvements in latency and cost compared to the

edge ward algorithm [14].

2.3 Meta-heuristics approaches

In the current big data era, which includes fields like social

networks, health services, neuroscience, and eLearning,

massive amounts of high-dimensional data are ubiquitous. The

fast expansion of data and the need for responses in a short

time create difficulties in effectively and efficiently managing

applications and data, so it is desirable to apply intelligent

optimization techniques as metaheuristics. Metaheuristics are

optimization algorithms that are characterized by their

simplicity, it obtains promising results in several optimization

problems [22]. Metaheuristic algorithms can be simply

changed to address specific issues. It efficiently examines the

search space by balancing its two primary basic strategies,

exploration and exploitation of the search space [23].

Several metaheuristic algorithms have been applied to the

application placement issue throughout the last decade. Brogi

and Forti [18] provided a framework for installation of IoT

services in fog. To eliminate communication delays, they

devised a Genetic Algorithm (GA). The suggested approach

demonstrates a shorter deployment time than cloud-only

placement, a first-fit solution, and an exact solution. Bitam et

al. [24] suggested a multi-objective work scheduling issue in a

fog environment using the bee life method to find a point

where there is a compromise between the amount of memory

available and the time it takes to process a task. The evaluation

findings of their suggested method surpass those of Particle

Swarm Optimization (PSO) and GA. Ayoubi et al. [25]

presented an autonomous service placement using a four-

phase methodology: monitoring, analysis, decision, and

execution. The authors applied the Strength Pareto

Evolutionary Algorithm II (SPEA-II) to make decisions in

multi-objective optimization. Many performance criteria

indicate that the suggested approach surpasses existing state-

of-the-art approaches. Canali and Lancellotti [26] suggest a

genetic algorithm for service placement by mapping data

streams from the sensor to the fog node, the delay in

transmission between sensors and nodes is the optimization

aim of their research. Djemai et al. [27] introduced IoT

application mapping as a dual-objective optimization problem

to reduce system energy usage and boost QoS. The authors

presented a method for placement based on DPSO. The results

of simulations indicate that the DPSO approach decreases

energy usage and reaction time overall.

Guerrero et al. [28] addressed a multi-objective service

placement issue in a random fog network infrastructure,

considering three optimization objectives: network latency,

service dispersion, and resource consumption. The authors

used three evolutionary algorithms. The experimental results

showed the effectiveness of both NSGA-II and MOEA/D

compared to WSGA. Salimian et al. [29] proposed an

automatic application placement to optimize the system

performance and the execution cost in a three-layer

hierarchical architecture based on the GWO algorithm.

According to the simulations, the proposed GWO algorithm

outperforms the other five mentioned algorithms. Yadav et al.

[30] developed a hybrid algorithm using traditional GA and

PSO algorithms called GAPSO to optimize execution time and

energy consumption. The results of the experiments

demonstrate that GAPSO outperforms the GA and the PSO.

Natesha and Guddeti [31] formulated the application

placement as a multiobjective optimization problem and used

the Elitism Genetic Algorithm (EGA) to optimize execution

time, cost, and energy consumption. The results of simulations

showed that the proposed EGA outperformed the GAPSO [30]

and the other mentioned heuristic approaches.

Previous studies have utilized various techniques for

modeling the IoT application placement problem, as

summarized in Table 1. These include exact solutions such as

ILP heuristic approaches and metaheuristic algorithms. While

exact solution offer precision they can be impractical for large

scale deployments. Heuristic approaches may provide fast

solution but my not always guarantee optimality.

Metaheuristic algorithms may struggle to balance between

exploration and exploitation. In this paper, we propose a novel

metaheuristic approach that aims to balance between solution

quality and computational efficiency by considering

application requirements and nodes capabilities.

Table 1. Summary of existing optimization approaches for application placement in fog computing environment

Ref. Nature Algorithm Optimization Objectives Findings

[13] Exact Solution
IBM CPLEX, Java

ILP
Minimize usage, meet QoS Reduced cost, No violation

[15] Exact Solution ILP solver Maximize placement, delay Improved delay, Energy usage

[16] Exact Solution MINLP Lower cost, meet QoS Cost, Energy, Latency improvements

[17] Exact Solution
Constraint

Programming
Maximize utilization, reduce latency Efficient utilization, Latency reduction

[12] Exact Solution Choco-solver Satisfy QoS criterion Satisfactory QoS compliance

[21] Heuristic LAPH Reduce overall latency Closer to optimal latency

[12] Heuristic MDAF Prioritize time-sensitive apps Improved latency, Reduced cost

[18] Metaheuristic GA Minimize deployment time, QoS Shorter deployment time, Improved

1079

QoS

[24] Metaheuristic BLA Memory compromise, processing time Superior to PSO and GA

[25] Metaheuristic SPEA-II Various performance criteria Outperforms state-of-the-art

[26] Metaheuristic GA Minimize transmission delay Reduced transmission delay

[27] Metaheuristic DPSO Reduce energy usage, boost QoS
Decreased energy usage, Improved

QoS

[28] Metaheuristic
WSGA, NSGA-II

and MOEA/D

Network latency, service dispersion,

resource consumption

Effectiveness of NSGA-II and

MOEA/D

[29] Metaheuristic GWO Optimize performance, execution cost Outperforms other algorithms

[30] Metaheuristic
GAPSO (GA and

PSO)

Optimize execution time, energy

consumption
Superior to GA and PSO

[31] Metaheuristic EGA
Optimize execution time, cost, energy

consumption

Outperforms GAPSO and other

heuristic approaches

3. BACKGROUND AND MOTIVATION

In this section, we provide a comprehensive backdrop to the

challenges and opportunities presented by fog computing in

IoT landscape. We emphasize the need for advanced

optimization techniques to address the intricate problem of IoT

application placement in fog computing environments. Proper

placement of IoT application ensures that the data is processed

closer to devises, reducing latency and improving response

time. Efficient placement technique that uses swarm

intelligence and meta-heuristic algorithms, such as BWO

algorithm, are crucial for achieving optimal performance.

3.1 Fog computing in IoT

Fog computing, a paradigm introduced to address the

evolving landscape of IoT, has reshaped the way we process

and manage data generated by interconnected devices. IoT

encompasses a vast and growing network of sensors, smart

devices, and actuators, with projections estimating an

astonishing 75 billion connected devices by 2025 [1]. This

proliferation of IoT devices has ushered in a new era of data

generation, creating a pressing need for efficient data

processing and storage solutions.

Traditionally, the centralized comprising infrastructure

served as the primary hub for IoT data management. While

cloud computing offered scalability and storage capabilities, it

also posed significant challenges, particularly for applications

requiring real-time processing and low latency [21]. The

centralized nature of cloud computing meant that data had to

traverse long distances, resulting in undesirable delays and

potential performance bottlenecks.

3.2 Challenges in IoT application placement

The emergence of fog computing in 2012 [3] introduced a

new solution to the limitations of the cloud architectures, by

extending the capabilities of cloud computing to the edge of

networks. Offering several advantages, including reduced

reliance on distant cloud resources, and scalability that aligns

with the dynamic nature of IoT applications.

Yet, a significant challenge arises in this distributed

computing paradigm: efficiently allocating resources and

deploying applications to ensure swift access to available

resources for time-sensitive IoT applications. The core issue

revolves around the deployment of IoT applications in fog

computing environments, where applications must be

allocated to available physical resources to meet performance

and latency objectives. Given the sheer number of edge

devices within IoT networks, this problem falls into the

category of NP-hard problems [6, 7], making it impractical to

solve using conventional optimization techniques. Fog nodes

have resource constraints, such as computing power, storage

and network, make it difficult to allocate resources efficiently

while mating the applications requirements. The increasing

number of IoT devices make scalability another concern.

Additionally, Many IoT devices requires real-time processing

[4] and the dynamic nature of IoT ecosystem [6] make the

resources availability change constantly. Lastly Balancing

multiple objectives such as minimizing execution time, cost

simultaneously, adds to the complexity.

3.3 The need for optimization

Optimizing the placement of IoT applications in fog

computing environments becomes imperative to unlock the

full potential of this paradigm. It involves striking a delicate

balance between execution time and total cost [32], two

pivotal factors in fog computing scenarios. Achieving this

balance ensures that applications run efficiently, delivering the

desired performance while managing operational costs

effectively.

The complexity of this optimization challenge cannot be

overstated. Traditional optimization methods struggle to

address the resource allocation and application placement

problem effectively, particularly at the scale required for IoT

deployments. Thus, the need for advanced optimization

techniques, particularly meta-heuristic algorithms, becomes

apparent.

3.4 Swarm intelligence and meta-heuristic algorithms

One class of optimization techniques that has demonstrated

remarkable efficacy across diverse domains is swarm

intelligence and, more specifically, meta-heuristic algorithms.

These bio-inspired approaches draw inspiration from the

collective behaviors of social organisms and natural processes

to guide the search for near-optimal solutions [6].

Meta-heuristic algorithms offer the advantage of

adaptability and robustness, making them well-suited for

complex optimization challenges with no straightforward

analytical solutions. These algorithms have successfully

tackled optimization problems in various fields, from

engineering to logistics and finance.

3.5 The role of BWO

One such meta-heuristic algorithm that has gained attention

in optimization research is BWO algorithm, introduced by

Hayyolalam and Kazem [9]. BWO takes inspiration from the

1080

intricate reproductive rituals of black widow spiders and has

shown promise in addressing continuous engineering

optimization problems [9-11].

However, an inherent limitation of the original BWO

algorithm is its design for continuous optimization problems,

which poses a challenge when dealing with discrete decision

variables. This limitation necessitates the development of a

specialized optimization approach tailored explicitly for

discrete problems, such as the application placement challenge

within fog-cloud infrastructure.

3.6 Research gap and motivation for DBWO

This research identifies a critical gap in the existing

landscape of optimization techniques for fog computing

application placement. While meta-heuristic algorithms,

including BWO, have demonstrated their prowess in solving

optimization problems, none have been tailored explicitly for

discrete optimization in the context of IoT application

placement.

Motivated by the unique demands of fog computing and the

need to optimize application placement within a discrete

parameter space, we introduce DBWO algorithm. DBWO is

designed to excel at handling discrete decision variables,

making it particularly well-suited to address the complex

challenges posed by the discrete nature of IoT application

placement in fog-cloud infrastructure.

4. SYSTEM MODEL

In this section, we discuss the structure of our fog

computing system and define application placement as a

combinatorial optimization approach.

4.1 System architecture

Fog computing is a system that is characterized by high

levels of distribution and flexibility that allows data to be

processed closer to the user’s location, resulting in lower

latency, greater efficiency, improved scalability, and better

resource utilization. This system comprises cloud servers, fog

servers, a fog broker, and IoT devices.

Figure 1. An overview of our system model

The fog broker receives applications from IoT devices and

deploys them on either fog nodes or cloud nodes based on their

requirements and the availability of resources. After

execution, the results are sent back to the fog broker and then

to the IoT devices. Fog computing allows for the dynamic

distribution of applications across various resources while

ensuring optimal performance. Figure 1 illustrates the typical

system architecture of a fog computing infrastructure, which

consists of IoT devices, fog nodes, and cloud nodes.

4.2 Application model

As shown in Figure 2, IoT applications are built on a

concept of sense-process-act in which raw data is collected by

IoT devices (sensors), processed by services running in fog

and cloud nodes, and the processed data is sent to the actuators.

The service placement in fog nodes depends on the resources

requested by the services and the availability of these

resources in the fog nodes.

Figure 2. Application model [33]

We consider that IoT devices generate data that is sent to a

variety of applications. Each one is encapsulated in a single

processing module that may be separately implemented across

the system nodes. In this context, the application can be

modelled as a monolithic service [33]. The requested

processing, memory, and bandwidth resources characterize

each application. The amount of resources requested will vary

depending on the type of application.

4.3 Application placement problem formulation

The placement of application entails assigning a set of

applications to the best available nodes in a distributed system,

while taking into account the different characteristics of each

application and node. We assume a set of m fog-cloud

nodes 𝐹𝑁 = { 𝐹𝑁1, 𝐹𝑁2, 𝐹𝑁3, … , 𝐹𝑁𝑚} , each node i

encompasses computing resources Ri {CPUi (MIPS), RAMi

(Mb), bandwidthi (Mbps)}.

We also assume that exist n applications 𝐴 =
{ 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛} sent to the fog broker to be placed. Each

application 𝐴𝑗 is characterized by requested resources

𝑅𝑒𝑞𝑗 {CPUj (MIPS), RAMj (Mb), bandwidthj (Mbps)}.

The application placement in the system is mathematically

modeled as follows:

Let R = [CPUi, RAMi, Bwi] be a matrix with m rows (fog

nodes) and 3 columns (CPU, RAM, Bandwidth) representing

the available resources of fog nodes .

𝑅 = (

𝐶𝑃𝑈1 𝑅𝐴𝑀1 𝐵𝑤1

𝐶𝑃𝑈2 𝑅𝐴𝑀2 𝐵𝑤2

… … …
𝐶𝑃𝑈𝑚 𝑅𝐴𝑀𝑚 𝐵𝑤𝑚

) (1)

where, CPUi, RAMi, Bwi represent available CPU (in MIPS),

RAM (in Mb) and Bandwidth (in Mbps) of the ith fog nodes

respectively.

Let Req= [CPUj, RAMj, Bwj] be a matrix with n rows

(applications) and 3 columns (resource requirements).

1081

𝑅𝑒𝑞 = (

𝐶𝑃𝑈1 𝑅𝐴𝑀1 𝐵𝑤1

𝐶𝑃𝑈2 𝑅𝐴𝑀2 𝐵𝑤2

… … …
𝐶𝑃𝑈𝑛 𝑅𝐴𝑀𝑛 𝐵𝑤𝑛

) (2)

where, CPUj, RAMj, Bwj resource requirements CPU (in

MIPS), RAM (in Mb) and Bandwidth (in Mbps) of the jth

application respectively.

Let P be a binary matrix with n rows and m columns, where

Pij = 1 if the jth application is executed in the ith node and Pij

= 0 otherwise. Such as the sum of each, row equal to one.

𝑃 = (

𝑃11 𝑃12 ⋯ 𝑃1𝑛

𝑃21 𝑃22 ⋯ 𝑃2𝑛

⋮ ⋮ ⋱ ⋮
𝑃𝑚1 𝑃𝑚2 ⋯ 𝑃𝑚𝑛

) (3)

Let Placement Cost Matrix (PCM) be three-dimensional

matrix with n rows m columns and three slices (one for each

resource).

𝑃𝐶𝑀 =

𝑃𝐶𝑀(: ; : ; 1) = (

𝑃𝐶𝑀111 𝑃𝐶𝑀121 ⋯ 𝑃𝐶𝑀1𝑛1

𝑃𝐶𝑀211 𝑃𝐶𝑀221 ⋯ 𝑃𝐶𝑀2𝑛1

⋮ ⋮ ⋱ ⋮
𝑃𝐶𝑀𝑚11 𝑃𝐶𝑀𝑚21 ⋯ 𝑃𝐶𝑀𝑚𝑛1

)

𝑃𝐶𝑀(: ; : ; 2) = (

𝑃𝐶𝑀112 𝑃𝐶𝑀122 ⋯ 𝑃𝐶𝑀1𝑛2

𝑃𝐶𝑀212 𝑃𝐶𝑀222 ⋯ 𝑃𝐶𝑀2𝑛2

⋮ ⋮ ⋱ ⋮
𝑃𝐶𝑀𝑚12 𝑃𝐶𝑀𝑚22 ⋯ 𝑃𝐶𝑀𝑚𝑛2

)

𝑃𝐶𝑀(: ; : ; 3) = (

𝑃𝐶𝑀113 𝑃𝐶𝑀123 ⋯ 𝑃𝐶𝑀1𝑛3

𝑃𝐶𝑀213 𝑃𝐶𝑀223 ⋯ 𝑃𝐶𝑀2𝑛3

⋮ ⋮ ⋱ ⋮
𝑃𝐶𝑀𝑚13 𝑃𝐶𝑀𝑚23 ⋯ 𝑃𝐶𝑀𝑚𝑛3

)

(4)

where, PCMijk is the cost of placing the jth application on the

ith node for the kth resource.

The objective function is to reduce executing time and cost

by taking into account the available resources of the fog nodes

and the application requirements.

The objective function can be defined as:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐹) = 𝛼 × 𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒 + 𝛽 × 𝑇𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡 (5)

where, α and β are weighting factors that determine the relative

importance of the execution time and the total cost in the

objective function where (𝛼 + 𝛽 = 1).

The total time can be represented as:

𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒 = max (∑ ∑
𝑅𝑒𝑞(𝑗,1)

𝑅(𝑖,1)

𝑛

𝑗=1

𝑚

𝑖=1

) (6)

where, 𝑅𝑒𝑞(𝑗,1) represents the requested CPU by the jth

application, 𝑅(𝑖,1) represents the available CPU on the ith fog

node. Total execution time means maximum processing time

of all nodes, which is calculated as the sum of the execution

time of all applications in a single fog node divided by the

available CPU in the node.

The total cost of placing the application on fog nodes can be

calculated as the sum of the execution cost, memory cost and

bandwidth cost. Let’s assume that CPT, CDP, and CPB are the

cost per unit of CPU, RAM, and bandwidth respectively.

The total cost can be formulated as follows:

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = ∑ ∑(𝑅𝑒𝑞𝑗1 ∗ 𝑃𝑖𝑗 ∗ 𝐶𝑃𝑇 + 𝑅𝑒𝑞𝑗2

𝑛

𝑗=1

𝑚

𝑖=1

∗ 𝑃𝑖𝑗 ∗ 𝐶𝑃𝐷+ 𝑅𝑒𝑞𝑗3 ∗ 𝑃𝑖𝑗 ∗ 𝐶𝑃𝐵)

(7)

where, 𝑅𝑒𝑞𝑗1 , 𝑅𝑒𝑞𝑗2 , 𝑅𝑒𝑞𝑗3 are the CPU, RAM, and

Bandwidth requirements of application j respectively.

Moreover, 𝑃𝑖𝑗 represents the binary placement decision with

𝑃𝑖𝑗 = 1 if the jth application is executed on the ith node, and

𝑃𝑖𝑗 = 0 otherwise. By summing up the cost for each

application and each fog node, we get the overall cost of

placing all the application on the fog nodes.

Resource constraint: each fog node has limited computer

power, memory, and network bandwidth. Therefore, we need

to ensure that the total resource requirement of all applications

that run on a fog node do not surpass the resource of that node.

This condition can be stated as:

{

∑ (𝑅𝑒𝑞𝑗1 ∗ 𝑃𝑖𝑗
𝑛
𝑗=1) ≤ 𝐶𝑃𝑈𝑖

∑ (𝑅𝑒𝑞𝑗2 ∗ 𝑃𝑖𝑗
𝑛
𝑗=1) ≤ 𝑅𝐴𝑀𝑖

∑ (𝑅𝑒𝑞𝑗3 ∗ 𝑃𝑖𝑗
𝑛
𝑗=1) ≤ 𝐵𝑤𝑖

 ∀𝑖 = 1, 2, … , 𝑛 (8)

Binary constraint: each application must be placed on only

one fog node. this constraint can be mathematically expressed

as:

∑ 𝑃𝑖𝑗

𝑚
𝑗=1 = 1, ∀𝑖 = 1, 2, … , 𝑛 (9)

5. THE DISCRETE BLACK WIDOW APPLICATION

PLACEMENT ALGORITHM

In this section, we present our proposed DBWO algorithm

for IoT application placement in fog computing infrastructure.

The DBWO algorithm is an extension of the original BWO

algorithm, customized to address the challenges of the IoT

application placement problem.

5.1 Original BWO

The original BWO algorithm, proposed by Hayyolalam and

Kazem [9], is a metaheuristic technique inspired by the

predatory behavior of black widow spiders. This algorithm

offers a powerful yet straightforward approach to tackle

complex nonlinear optimization problems.

The BWO algorithm follows a series of steps:

-Population initialization: BWO begins with the creation of

a population of candidate solutions represented as vectors of

real values. These candidates, referred to as "widows," are

evaluated using a fitness function specific to the optimization

problem.

-Procreation: After population initialization, procreation

occurs. Two parents are randomly selected from the

population and mate, producing two offspring. The male

spider is often consumed by the female during or after mating.

-Cannibalism: Cannibalism mechanisms are employed to

eliminate weaker widows from the population. These include

scenarios where females consume males, stronger spiders

consume weaker siblings, and young spiders consume their

mothers.

-Mutation: Following cannibalism, a mutation operation

randomly exchanges two elements within a widow's vector.

This promotes diversity within the population and can lead to

1082

the exploration of solutions with higher fitness.

-Natural selection and repetition: BWO algorithm

iteratively repeats the procreation, cannibalism, and mutation

stages across multiple generations. Through this process, only

the fittest solutions persist and evolve, ultimately aiming to

find an optimal solution.

5.2 DBWO for IoT applications placement

Here, we introduce a discrete version of the BWO

algorithm, named DBWO, specifically designed to tackle the

challenges of application deployment within the fog

computing infrastructure. Figure 3 illustrates the general

structure of the Algorithm.

Figure 3. Flowchart of the black widow optimization

algorithm [25]

5.2.1 Widow (solution) encoding

Instead of the original BWO algorithm, the proposed

DBWO uses integer-based encoding to represent the

application placement solution. In our representation, a widow

is an array of 1 × 𝑀 (a set of M application) placed in fog

nodes (devices). In the Figure 4, we present an example of

placement of five applications in fog nodes.

Figure 4. Example of application placement encoding

In DBWO algorithm, a widow wi represents a feasible

solution that represents applications placement in fog-cloud

nodes. For example, in Figure 4, five application {A1, A2, A3,

A4, A5} are placed on node1 (N1), node3 (N3), node5 (N5),

node2 (N2) and node1 (N1) respectively.

5.2.2 Population initialization

In the proposed DBWO algorithm, each widow in the initial

population is generated randomly by assigning to each

variable the value of the fog-cloud node. As illustrated in

Table 2, the initial population of four widows is randomly

generated for the placement of seven applications.

Table 2. Example of initial population

 A1 A2 A3 A4 A5

W1 1 2 1 3 2

W2 3 3 2 1 1

W3 2 1 2 3 4

W4 4 3 2 1 1

5.2.3 Discrete procreation

In the continuous optimization context of the original BWO

[9], this operation seamlessly creates offspring solutions by

blending elements from parent solutions. However, to adapt to

our discrete optimization problem, we introduce a novel

procreation mechanism, presented as Eq. (10):

{
𝑦1 = {

𝑥1 𝑖𝑓 𝑎 ≥ 0.5
𝑥2 𝑒𝑙𝑠𝑒

𝑦2 = {
𝑥2 𝑖𝑓 𝛼 ≥ 0.5
𝑥1 𝑒𝑙𝑠𝑒

 (10)

In Eq. (10), the variables x1 and x2 represent the parents, α

is a real random vector selected from the range [0, 1], and y1

and y2 are the resulting offspring solutions.

The modified procreation mechanism, as expressed in Eq.

(10), fundamentally changes how offspring solutions are

generated. It introduces a parameter α, which is a real random

vector constrained within the range [0, 1]. This parameter is

central to the procreation process and plays a decisive role in

determining which elements from the parents (x1 and x2) are

included in the offspring (y1 and y2).

In the Figure 5, an example of the discrete procreates

operation is showed.

Figure 5. Example of discrete procreate operation

5.2.4 Cannibalism

Post-procreation, a selective cannibalistic process is

employed to cull weaker widows from the population. Three

types of cannibalism are enacted:

-Female cannibalism: The female spider terminates the

male during or after mating, with fitness being the defining

criterion for gender.

-Sibling cannibalism: The stronger spider consumes its

weaker sibling, as determined by their respective fitness

levels.

-Maternal cannibalism: Even the young spiders engage in

cannibalism, devouring their mother.

Upon the removal of the population's least fit individuals, a

rejuvenated population (Population 2) is formed.

5.2.5 Mutation

Subsequent to the cannibalism phase, a mutation operation

is introduced, targeting a randomly chosen subset of black

widow solutions. This mutation operation orchestrates a

random exchange of two elements within each spider's vector,

as depicted in Figure 6. This mutation is vital for infusing

diversity into the spider population, thwarting premature

convergence toward suboptimal solutions. The element

exchange can potentially unveil novel combinations with

1083

higher fitness values than those of the parent spiders. The

extent of mutation is governed by a predefined mutation rate,

ultimately yielding a fresh population (Population 3) from the

preceding one.

Figure 6. Example of mutation operation

The Algorithm 1 presents the outlines of the proposed

DBWO algorithm.

Algorithm 1. Discrete black widow optimization Algorithm for

application placement in cloud-fog environnement

Input: Applications , Nodes

Output: applications_placed

1. // Initialization

2. Npop = // population size ; Mrate=

3. // Mutation rate ; Prate = // procreation rate ;

4. Crate = // cannibalism rate ;

5. Nf = // dimension size ; Iterations= //

6. //initial population

7. Create a random initial population

8. Using Eq. (5), determine the fitness of each solution.

9. According to Prate determine Nrep // offspring

10. While nbr<iterations do

11. // Procreation

12. For Iter = 1 to Nrep do

13. Select two widows randomly

14. from pop1 as parents.

15. Generate D offspring using Eq. (10)

16. Destroy father //cannibalism

17. Destroy some children based on Cr //cannibalism

18. Preserve the remaining solution into population 2

19. End for

20. //Mutation

21. According to Mrate determine

22. Nm // count of mutation

23. For Iter = 1 to Nm do

24. Choose a random individual from Pop1

25. Employ mutation and create a new solution

26. Save new generated solution in pop3

27. End for

28. // updating

29. Population = Pop2+Pop3

30. Calculate fitness value and evaluate solution

31. Nbr = nbr + 1

32. End while

33. Return best_widow from pop

6. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the experimental results and

analysis of the performance of our proposed DBWO algorithm

in simulated Fog environments. We compare our approach

with recent literature methods in terms of application

placement in cloud-fog environments, and provide details on

the experimental setting, evaluation metrics, and comparative

results in the following sub-sections.

6.1 Experimental settings

To evaluate the DBWO algorithm, experiments are

performed using the Ifogsim [9] simulator, an open-source

simulator based on Cloudsim, programmed in Java. The tests

are conducted on a personal computer equipped with a 64-bit

Windows 10 operating system, an Intel Core i5-4310u 2.00

GHz CPU, and 4 GB of memory, ensuring consistency and

reproducibility of the experimental setup. The proposed

DBWO algorithm has been tested using a set of fog-cloud

nodes and their respective physical resource capabilities as

detailed in Table 3. Additionally, we utilize the same

application requirements as presented in Table 4 across all

experiments for a fair comparison among the DBWO

algorithm and the other algorithms under evaluation.

Table 3. Fog-cloud nodes characteristics

 CPU RAM Bandwidth

Fog node [700-1900] 5000 10000

Cloud node [5000-10000] 10000 10000

Cost

 CPU RAM Bandwidth

Fog node [0,1 - 0,5] [0,01-0,04] [0,01- 0,03]

Cloud node [1,0 - 3,0] [0,05-0,10] [0,05- 0,10]

Table 4. Applications requirements

 CPU RAM File Size Output Size

Applications

requirements

[10000-

100000]

[50-

200]
[20-100] [20-100]

6.2 Evaluation metrics

The primary objective of this study is to achieve a balance

between the execution time and total cost of application

placement in the proposed system.

-The execution time that represents how long the system

needs to execute all the applications, it is calculated using Eq.

(6).

-The total cost that represents the required amount of money

must be used to execute all the IoT applications in the system;

it is calculated using Eq. (7).

6.3 DBWO evaluation and convergence study

Figure 7. Convergence curve of the DBWO algorithm

The convergence of DBWO is experimentally analyzed.

Figure 7 Presents the results of our algorithm in fog

environment placing 100 applications in 10 fog nodes and 5

cloud the application requirement and the fog-cloud nodes

1084

characteristics are shown respectively in Table 3, Table 4.

DBWO reached the best fitness value when the population size

is 200 and the number of generations is 100. Hence, we use

these values for the rest of the experiments.

6.4 Comparison with other approaches

Since our proposed DBWO is a Swarm-based

metaheuristic, we compared it to the following four recently

proposed swarm-based IoT application placement Algorithms.

The comparison is made in terms of execution time and cost.

EGA [31], which is a multi-objective Elitism-based Genetic

Algorithm, it aims to reduce service time, cost, and energy

usage.

DPSO [27] is a discrete version of the particle swarm

optimization algorithm that is proposed to the IoT services

placement with the aims to minimizing the cost and

maximizing the quality of experience.

BLA [24] is a placement approach based on bees life

metaheuristic to solve scheduling problem in fog computing

system. It aims to minimizing the CPU execution time and the

allocated memory.

GWO [29] is a gray wolf optimization algorithm proposed

to optimize the IoT application placement execution cost.

Table 5 displays the parameter settings used for the

proposed algorithm and the other four algorithms. We have

varied the parameter values to evaluate their effect on the

performance of the proposed algorithm as shown in Figure 7.

Our results indicate that the proposed algorithm achieves near-

optimal performance when the number of individuals is 200

and the generation number is 100.

The DBWO’s other parameters are set as in the original

version of the BWO [9], where procreation rate is 0.6 , the

mutation rate is 0.4, and the cannibalism rate is 0.44, and the

parameters of the compared algorithms are fixed as in their

papers. All these settings provide insight into how to tune the

parameters in order to achieve the highest performance of the

proposed algorithm for the problem at hand. For the rest of the

experiment, we use the same parameters for all the algorithms

in Table 5.

Table 5. Parameters setting for the DBWO and the compared

algorithms

Algorithm Parameter

DBWO

Procreation rate =0,6

Mutation rate = 0,4

Cannibalism rate = 0,44

EGA

Crossover probability = 0,5

Mutation rate = 0,3

Elitism rate = 0,08

DPSO
C1 = C2 = 2

P = 40

BLA

Queen = 1

Drones = 50

Workers = 149

GWO
wolf minimum position = 0

wolf maximum position = 100

We considered two different network topologies: fog-only

and cloud-fog. In the first scenario, we used a fog-only

topology, which only contained fog nodes. In the second

scenario, we used a cloud-fog topology that contained both fog

nodes and cloud nodes. This difference in the network

topologies had a significant effect on the results of our study

the fog-only topology was limited in its capabilities, while the

cloud-fog topology was able to take advantage of the

additional resources provided by the cloud nodes. We analyze

the impact of varying the number of applications on the fitness

value, the execution time, and the total cost.

6.5 First scenario: Application placement in fog only

topology

The fitness value, which represents the quality of the

solution in terms of both the execution time and total cost, was

calculated as the mean of 10 independent runs in Figure 8. The

results showed that the best performance was achieved with

algorithm DBWO, followed by algorithms GWO, EGA,

DPSO, and BLA respectively. It is clear that DBWO

outperformed the other algorithms with a fitness value of

0.941 when compared to the other four algorithms, which is

better than GWO, EGA, DPSO, and BLA by 4.30%, 5.35%,

5.77%, and 9.87% respectively.

Figure 8. Fitness value of DBWO, GWO, EGA, DPSO and

BLA algorithms in the first scenario

In the first scenario, we defined a fog-only topology with 10

fog nodes, available resource characteristics listed in Table 3,

and varying application request numbers ranging from 40 to

500 requests. The application requirements were specified in

Table 4. The balancing factors 𝛼 and 𝛽 of the fitness function

were set to 0.5, which gave equal weight to execution time and

overall cost. Each algorithm was then executed, the results

obtained were compared in terms of fitness value, execution

time, and total cost, as shown in Figures 9-11 respectively.

Figure 9. Applications placement exaction time in the first

scenario

1085

The execution time for each of the five algorithms was also

evaluated, and the results in Figure 9 illustrate that the DBWO

algorithm took the least amount of time to complete. The

DBWO algorithm, for example, runs 400 applications in an

average time of 1946.20, whereas the other algorithms took

2105.50, 2130.74, 2185.50, and 2352.14 for GWO, EGA,

DPSO, and BLA respectively to complete the same data set.

Overall, the DBWO algorithm outperformed the other

algorithms in terms of execution time, with less execution time

than GWO, EGA, DPSO, and BLA by 8.13%, 10.39%,

11.05%, and 19.12% respectively.

Figure 10. Applications placement total cost in the first

scenario

In Figure 10, the results for the total cost of the five

algorithms are shown for the fog-only scenario. The DBWO

algorithm had the lowest total cost, but as the topology

consisted only of fog nodes, the processing, memory, and

bandwidth costs were similar for all nodes. However, even in

this scenario, the DBWO algorithm outperformed the other

four algorithms (GWO, EGA, DPSO, and BLA) and achieved

better overall performance, reducing the total cost in all data

sets by 0.45%, 0.50%, 0.62%, and 0.74% respectively. This

comparison shows that the DBWO algorithm can be an

effective tool for optimizing fog-based IoT networks in terms

of both time efficiency and cost reduction compared to other

algorithms.

6.6 Second scenario: Application placement in fog and

cloud topology

In the second scenario, we defined a more complex

topology of 27 nodes composed of 20 fog nodes and 7 cloud

nodes, using the characteristics mentioned above. This

allowed us to utilize the advantages of both fog and cloud

nodes, as the fog nodes had better connectivity and

responsiveness but limited resources, whereas the cloud nodes

provided higher processing power and memory while also

requiring a greater monetary cost. In this scenario, we varied

the number of requested applications from 100 to 1000, and,

according to Table 3, the application requirement was

generated at random. We performed simulations to determine

the performance of both physical topologies, exploring their

respective impacts on application execution time, fitness

value, and cost.

The fitness value of the five algorithms is depicted in Figure

11. The results showed that using both fog and cloud nodes

allowed us to balance the performance between execution time

and cost. Figure 11, clearly shows that the proposed DBWO

outperforms all of the compared algorithms across all

applications simples by 8%, 12.16%, 13%, and 15.16% for

DPSO, EGA, GWO, and BLA respectively. With an average

fitness value of 0.63.

Figure 11. Fitness value of DBWO, GWO, EGA, DPSO and

BLA algorithms in the second scenario

Figure 12. Applications placement exaction time in the

second scenario

Figure 13. Applications placement total cost in the second

scenario

In all of the experiment, the DBWO had the lowest

execution time and total cost compared to other algorithms as

illustrated in Figure 12. In terms of execution time, DBWO

outperformed DPSO, EGA, GWO, and BLA by 1.95%,

9.16%, 7.25%, and 10.11% respectively. In terms of cost, as

illustrated in Figure 13. It outperformed them by 2.9%, 4.19%,

1086

7.70%, and 8.0% respectively.

6.7 Analysis of experimental results

According to the analysis of the results in the two scenarios

in which DBWO was tested and compared with EGA, DPSO,

GWO, and BLA. In both scenarios, DBWO outperformed the

compared algorithms in terms of fitness value, in fog only

topology with improvement range from 4.30% to 9.87%.

Similarly, in the fog cloud topology showed notable

performance improvement, with fitness value range from 8%

to 15.16%. Notably, DBWO proved to be particularly effective

in the more complex topology, where its performance

improvement was most pronounced.

It is clear that DBWO surpassed the other algorithms in

terms of efficiency in both execution time and total cost in both

scenarios, where the first scenario was a simple fog only

scenario and the second scenario was a more complex scenario

consisting of both fog and cloud nodes. In simple

environments, GWO performed better than EGA, DPSO, and

BLA. When the environment was more complex, DPSO

provided better results than GWO, EGA, and BLA However,

DBWO provided better results than all the algorithms in both

scenarios, confirming its versatility and adaptability in

optimizing resource utilization and enhancing the scalability

of fog environments.

7. CONCLUSION

The execution performance constraints have a major

influence on the accommodation of IoT applications running

in fog scenarios, which require a best management of the

applications in the network. In this work, we present a novel

metaheuristic called DBWO for optimizing IoT application

deployment in a fog computing system that consider the

applications constraints and the network characteristics. Our

approach is a multi-objective discrete black widow

optimization algorithm that aims to reduce the application's

processing time and overall cost in a fog computing system.

Experimental results on the Ifogsim simulator demonstrate

that in both simple and complicated contexts, the proposed

method surpasses four existing meta-heuristic approaches in

terms of cost and execution time.

Our current work primarily focuses on static scenarios, and

there is a growing need to address real-time dynamic

environments in fog computing. Future improvements could

involve developing adaptive algorithms capable of

dynamically adjusting application placements based on

changing network conditions and workload demands.

Additionally, the scalability of the proposed method for larger

and more complex systems warrants further investigation to

ensure its effectiveness in practical deployment scenarios.

Additionally, future research could investigate the scalability

of the proposed method for larger and more complex systems.

In addition, our plan involves expanding the proposed

algorithm to encompass additional functionalities to other

types of services and analyze the impact of mobility and

resource requirements in a fog-cloud architecture.

REFERENCES

[1] Alavi, A.H., Jiao, P., Buttlar, W.G., Lajnef, N. (2018).

Internet of Things-enabled smart cities: State-of-the-art

and future trends. Measurement, 129: 589-606.

https://doi.org/10.1016/j.measurement.2018.07.067

[2] Ray, P.P. (2018). A survey on Internet of Things

architectures. Journal of King Saud University-

Computer and Information Sciences, 30(3): 291-319.

https://doi.org/10.1016/j.jksuci.2016.10.003

[3] Bonomi, F., Milito, R., Zhu, J., Addepalli, S. (2012). Fog

computing and its role in the internet of things. In

Proceedings of the first edition of the MCC Workshop on

Mobile Cloud Computing, Helsinki, Finland, pp. 13-16.

https://doi.org/10.1145/2342509.2342513

[4] Azizi, S., Khosroabadi, F., Shojafar, M. (2019). A

priority-based service placement policy for fog-cloud

computing systems. Computational Methods for

Differential Equations, 7(4S): 521-534.

[5] Lera, I., Guerrero, C., Juiz, C. (2018). Availability-aware

service placement policy in fog computing based on

graph partitions. IEEE Internet of Things Journal, 6(2):

3641-3651. https://doi.org/10.1109/JIOT.2018.2889511

[6] Salaht, F.A., Desprez, F., Lebre, A. (2020). An overview

of service placement problem in fog and edge computing.

ACM Computing Surveys (CSUR), 53(3): 65.

https://doi.org/10.1145/3391196

[7] Brogi, A., Forti, S., Guerrero, C., Lera, I. (2020). How to

place your apps in the fog: State of the art and open

challenges. Software: Practice and Experience, 50(5):

719-740. https://doi.org/10.1002/spe.2766

[8] Nayeri, Z.M., Ghafarian, T., Javadi, B. (2021).

Application placement in Fog computing with AI

approach: Taxonomy and a state of the art survey.

Journal of Network and Computer Applications, 185:

103078. https://doi.org/10.1016/j.jnca.2021.103078

[9] Hayyolalam, V., Kazem, A.A.P. (2020). Black widow

optimization algorithm: A novel meta-heuristic approach

for solving engineering optimization problems.

Engineering Applications of Artificial Intelligence, 87:

103249. https://doi.org/10.1016/j.engappai.2019.103249

[10] Al-Rahlawee, A.T.H., Rahebi, J. (2021). Multilevel

thresholding of images with improved Otsu thresholding

by black widow optimization algorithm. Multimedia

Tools and Applications, 80(18): 28217-28243.

https://doi.org/10.1007/s11042-021-10860-w

[11] Houssein, E.H., Helmy, B.E.D., Oliva, D., Elngar, A.A.,

Shaban, H. (2021). A novel black widow optimization

algorithm for multilevel thresholding image

segmentation. Expert Systems with Applications, 167:

114159. https://doi.org/10.1016/j.eswa.2020.114159

[12] Salaht, F.A., Desprez, F., Lebre, A., Prud'Homme, C.,

Abderrahim, M. (2019). Service placement in fog

computing using constraint programming. In 2019 IEEE

International Conference on Services Computing (SCC),

Milan, Italy, pp. 19-27.

https://doi.org/10.1109/SCC.2019.00017

[13] Skarlat, O., Nardelli, M., Schulte, S., Dustdar, S. (2017).

Towards QoS-aware fog service placement. In 2017

IEEE 1st International Conference on Fog and Edge

Computing (ICFEC), Madrid, Spain, pp. 89-96.

https://doi.org/10.1109/ICFEC.2017.12

[14] Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.

(2017). iFogSim: A toolkit for modeling and simulation

of resource management techniques in the Internet of

Things, Edge and Fog computing environments.

Software: Practice and Experience, 47(9): 1275-1296.

1087

https://doi.org/10.1002/spe.2509

[15] Minh, Q.T., Nguyen, D.T., Van Le, A., Nguyen, H.D.,

Truong, A. (2017). Toward service placement on fog

computing landscape. In 2017 4th NAFOSTED

Conference on Information and Computer Science,

Hanoi, Vietnam, pp. 291-296.

https://doi.org/10.1109/NAFOSTED.2017.8108080

[16] Arkian, H.R., Diyanat, A., Pourkhalili, A. (2017). MIST:

Fog-based data analytics scheme with cost-efficient

resource provisioning for IoT crowdsensing applications.

Journal of Network and Computer Applications, 82: 152-

165. https://doi.org/10.1016/j.jnca.2017.01.012

[17] Tran, M.Q., Nguyen, D.T., Le, V.A., Nguyen, D.H.,

Pham, T.V. (2019). Task placement on fog computing

made efficient for IoT application provision. Wireless

Communications and Mobile Computing, 2019(1):

6215454. https://doi.org/10.1155/2019/6215454

[18] Brogi, A., Forti, S. (2017). QoS-aware deployment of

IoT applications through the fog. IEEE Internet of Things

Journal, 4(5): 1185-1192.

https://doi.org/10.1109/JIOT.2017.2701408

[19] Brogi, A., Forti, S., Ibrahim, A. (2017). How to best

deploy your fog applications, probably. In 2017 IEEE 1st

International Conference on Fog and Edge Computing

(ICFEC), Madrid, Spain, pp. 105-114.

https://doi.org/10.1109/ICFEC.2017.8

[20] Xia, Y., Etchevers, X., Letondeur, L., Lebre, A.,

Coupaye, T., Desprez, F. (2018). Combining heuristics

to optimize and scale the placement of IoT applications

in the fog. In 2018 IEEE/ACM 11th International

Conference on Utility and Cloud Computing (UCC),

Zurich, Switzerland, pp. 153-163.

https://doi.org/10.1109/UCC.2018.00024

[21] Benamer, A.R., Teyeb, H., Ben Hadj-Alouane, N.

(2018). Latency-aware placement heuristic in fog

computing environment. In On the Move to Meaningful

Internet Systems. OTM 2018 Conferences: Confederated

International Conferences: CoopIS, C&TC, and

ODBASE 2018, Valletta, Malta, pp. 241-257.

https://doi.org/10.1007/978-3-030-02671-4_14

[22] Agrawal, P., Abutarboush, H.F., Ganesh, T., Mohamed,

A.W. (2021). Metaheuristic algorithms on feature

selection: A survey of one decade of research (2009-

2019). IEEE Access, 9: 26766-26791.

https://doi.org/10.1109/ACCESS.2021.3056407

[23] Hussain, K., Salleh, M.N.M., Cheng, S., Shi, Y. (2019).

On the exploration and exploitation in popular swarm-

based metaheuristic algorithms. Neural Computing and

Applications, 31(11): 7665-7683.

https://doi.org/10.1007/s00521-018-3592-0

[24] Bitam, S., Zeadally, S., Mellouk, A. (2018). Fog

computing job scheduling optimization based on bees

swarm. Enterprise Information Systems, 12(4): 373-397.

https://doi.org/10.1080/17517575.2017.1304579

[25] Ayoubi, M., Ramezanpour, M., Khorsand, R. (2021). An

autonomous IoT service placement methodology in fog

computing. Software: Practice and Experience, 51(5):

1097-1120. https://doi.org/10.1002/spe.2939

[26] Canali, C., Lancellotti, R. (2019). GASP: genetic

algorithms for service placement in fog computing

systems. Algorithms, 12(10): 201.

https://doi.org/10.3390/a12100201

[27] Djemai, T., Stolf, P., Monteil, T., Pierson, J.M. (2019).

A discrete particle swarm optimization approach for

energy-efficient IoT services placement over fog

infrastructures. In 2019 18th International Symposium

on Parallel and Distributed Computing (ISPDC),

Amsterdam, Netherlands, pp. 32-40.

https://doi.org/10.1109/ISPDC.2019.00020

[28] Guerrero, C., Lera, I., Juiz, C. (2019). Evaluation and

efficiency comparison of evolutionary algorithms for

service placement optimization in fog architectures.

Future Generation Computer Systems, 97: 131-144.

https://doi.org/10.1016/j.future.2019.02.056

[29] Salimian, M., Ghobaei-Arani, M., Shahidinejad, A.

(2021). Toward an autonomic approach for Internet of

Things service placement using gray wolf optimization

in the fog computing environment. Software: Practice

and Experience, 51(8): 1745-1772.

https://doi.org/10.1002/spe.2986

[30] Yadav, V., Natesha, B.V., Guddeti, R.M.R. (2019). GA-

PSO: Service allocation in fog computing environment

using hybrid bio-inspired algorithm. In TENCON 2019 -

2019 IEEE Region 10 Conference (TENCON), Kochi,

India, pp. 1280-1285.

https://doi.org/10.1109/TENCON.2019.8929234

[31] Natesha, B.V., Guddeti, R.M.R. (2021). Adopting

elitism-based Genetic Algorithm for minimizing multi-

objective problems of IoT service placement in fog

computing environment. Journal of Network and

Computer Applications, 178: 102972.

https://doi.org/10.1016/j.jnca.2020.102972

[32] Maarouk, C., Haouassi, H., Malik, M.M., Saidi, K.

(2024). Hybrid grey wolf optimizer and elitism genetic

algorithm for multi-objective IoT service placement in

fog computing environment. AIJR Abstracts, pp. 45-46.

https://doi.org/10.21467/abstracts.163

[33] Mahmud, R., Ramamohanarao, K., Buyya, R. (2020).

Application management in fog computing

environments: A taxonomy, review and future directions.

ACM Computing Surveys (CSUR), 53(4): 88.

https://doi.org/10.1145/3403955

1088

