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Outliers in wireless sensor networks (WSNs), stemming from harsh environmental 

conditions and limited processing and communication capacities of sensor nodes, pose a 

significant challenge to data reliability and quality collected by the network. Energy-

efficient outlier detection methods are crucial for prolonging network lifespan. This study 

introduces a two-phase approach to address this challenge. At sensor nodes, a lightweight 

statistical method based on mean and standard deviation detects and removes outliers, 

conserving energy. Early outlier filtering reduces data transmission, saving substantial 

energy due to the high energy cost of communication in WSNs. At the base station, several 

unsupervised Machine Learning algorithms, including One Class Support Vector Machine 

(OCSVM), Histogram Based Outlier Score (HBOS), Isolation Forest (IForest), K-Nearest 

Neighbor (KNN), and Cluster Based Local Outlier Factor (CBLOF), identify remaining 

outliers. The base station, with greater computational power and energy resources, can 

handle these tasks without the constraints faced by sensor nodes. Evaluation using real-

world datasets demonstrates the effectiveness of our approach, achieving a 77.59% outlier 

removal rate at the node level while maintaining over 90% detection accuracy at the base 

station. By employing computationally light statistical methods at sensor nodes, reducing 

data transmission, and shifting complex tasks to the base station, our approach optimizes 

energy efficiency, minimizing consumption and reducing the need for frequent 

recalibration or maintenance, thereby extending the lifespan of the network. 
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1. INTRODUCTION

Wireless Sensor Networks (WSNs) that we know today are 

used in various domains including healthcare, agricultural 

industry, military, and environmental monitoring. In the 

healthcare industry, they are used to monitor the patients’ 

physical conditions, such as heartbeat and temperature, or to 

track patients and detect any unusual behavior, such as stroke 

or a fall. In a similar way, WSNs are used in the farming 

industry to automate many difficult tasks according to the need 

of farms, such as providing timely water supply, monitoring 

the temperature and the weather, or managing the use of 

fertilizers and pesticides. In the military, wireless sensors are 

used for surveillance, target tracking/soldier tracking, 

detection of snipers, and for many other purposes.  

WSN consists of numerous interconnected small nodes that 

can be deployed in a distributed area of interest and can be 

self-configured. Every node is commonly built with a 

microcontroller, memory, power supply, radio, and an 

assortment of sensors. WSN nodes are typically tiny, 

inexpensive, and have limited amounts of energy, computing 

power, and storage [1]. In a WSN, nodes communicate 

wirelessly, collaborating to collect, process, and transmit large 

amounts of sensed data to selected gateway nodes, which may 

include base stations, cluster heads, or data mules. These 

gateway nodes, also known as sink points, allow for extra data 

processing and analysis. 

Depending on the application type and the size of the WSN, 

data transmission can be accomplished through either a single-

hop or a multi-hop approach. In a single-hop network, nodes 

communicate directly with a central node, limiting scalability 

and potentially requiring more power. In contrast, multi-hop 

networks allow communication through multiple intermediate 

nodes, providing scalability, energy efficiency, increased 

reliability, and redundancy.  

In recent years, the efficiency of data collection in WSN has 

significantly increased with the integration of data mules [2, 

3]. Data mules are mobile devices deployed to improve the 

effectiveness of data collection. These devices, whether in the 

form of robots or vehicles, have the ability to function in 

various environments, including aerial (drones), land-based 

(ground vehicles), or water-based (underwater vehicles). The 

primary function of data mules is to go around the sensor 

network and collect data from individual sensors or sensor 

clusters and submit it to the base station. Figure 1 shows a 

generic WSN model using data mules. 

Even though WSNs have advanced a lot in recent years, 

they are still limited in what they can do because of the 

challenges they face. WSNs transmit their data with wireless 

links with no infrastructure and are prone to many failures, 
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such as hardware failure or physical damage due to harsh 

environment [4]. There are many hardware constraints that 

WSNs face, such as limited power supply, low processing, and 

below average transmission units. These constraints make it 

very difficult for WSNs to add any additional functionality or 

carry out complex tasks at the node level, as WSNs must 

collect data using imperfect sensor nodes with limited 

resources and power supply. Thus, the data gathered from 

these nodes is prone to diverse faults, potentially resulting in 

abnormal data patterns within the monitoring domain. These 

data readings that deviate significantly from normal readings 

and are inconsistent with the rest of the data are called outliers 

which are also known as anomalous [5]. 

 

 
 

Figure 1. WSN model using data mules 

 

Outlier detection is essential in WSNs as it plays a crucial 

role in maintaining data quality, system reliability, and 

facilitating well-informed decision-making. Its primary 

function is to identify anomalies and errors within sensor data, 

enabling early warning systems for abnormal conditions, 

optimizing resource utilization, and assisting in fault diagnosis.  

The accuracy, resilience, and operating efficiency of WSNs 

are greatly enhanced in a variety of scenarios and applications 

by proactively detecting and addressing anomalies. 

Outlier detection provides important benefits across various 

real-world applications such as healthcare, agriculture, 

military, and environmental monitoring. For instance, in 

healthcare, WSNs monitor crucial indicators like heart rate and 

temperature. In this case, the application of outlier detection 

assists in identifying irregularities in patient data, allowing 

early interventions for critical conditions. Similarly, in 

environmental monitoring applications, sensors continuously 

track parameters such as humidity and temperature in harsh 

regions, helping in the early detection of abnormal 

environmental changes. In military domain, outlier detection 

plays a vital role in identifying unusual activities such as 

unexpected movements or unauthorized access in sensitive 

areas. 

Outliers in WSNs can be detected at different stages of the 

data transmission process. Outlier detection techniques can be 

categorized as centralized, distributed, or hybrid depending on 

where the outliers are detected. In a centralized approach [6], 

data is gathered from multiple nodes and sent to a central base 

station. Finding outliers in the received data is the 

responsibility of the central base station. By sending data to a 

central location, this technique improves the detection process 

but may result in increased communication overhead.  Outliers 

are identified at individual nodes or node clusters using a 

distributed approach [7]. By finding outliers closer to the data 

source, this decentralized approach intends to reduce 

transmission overhead. The hybrid approach utilizes diverse 

outlier detection algorithms to detect outliers at various 

locations in the network [8]. By combining the advantages of 

both distributed and centralized techniques, this approach 

seeks to improve overall outlier detection performance. 

Choosing between centralized, distributed, or hybrid 

approaches often involves deciding on trade-offs between 

communication overhead, computational efficiency, and 

network condition adaptability. 

In WSN, Outlier detection methods can be categorized 

based on their underlying methodologies, mainly into 

statistical and machine methods [9-11]. Statistical methods 

involve analyzing the statistical properties of data such as 

mean, median, and z-score to identify outliers based on 

deviations from the expected distribution.  On the other hand, 

machine methods employ machine learning algorithms to 

learn patterns from the data and detect outliers by recognizing 

deviations from these learned patterns. Machine methods 

include nearest neighbor-based approaches, clustering 

approaches, Isolation Forests, Support Vector Machines, and 

others. Some of the mentioned outlier detection methods tend 

to be more power-efficient than others. Generally, statistical 

methods involve basic calculations that don't require an 

excessive amount of power, although the actual impact 

depends on the complexity of the statistical measures utilized.   

On the other hand, machine learning-based methods typically 

involve intensive computations, potentially leading to higher 

power consumption [11]. Hence, when selecting outlier 

detection methods for WSNs, it's crucial to prioritize power 

efficiency to minimize energy consumption and extend the 

lifespan of sensor nodes without frequent battery replacements. 

This becomes particularly important when nodes are 

positioned in remote or challenging-to-access areas, making 

battery replacement more difficult.  

In WSNs, many researchers have shown that data 

transmission costs for sensor nodes are higher than 

computation costs because communication uses more energy 

than computation [12]. Traditional outlier detection methods 

have mainly been designed based on centralized approaches, 

in which all data collected by sensor nodes is transmitted to a 

base station or cluster head for preprocessing. In fact, most 

existing anomaly detection techniques assume the availability 

of extensive computational resources and centralized access to 

all data within the relevant domain. Although this 

methodology exhibits a reasonable detection rate, it also leads 

to higher energy usage and communication overhead, 

ultimately reducing network lifetime and blocking network 

traffic. Moreover, processing data only at the base station 

results in a single point of failure for network operations and 

delays in anomaly detection and response times, impacting 

time-sensitive applications such as security monitoring, 

disaster response, or industrial automation. Consequently, 

these centralized approaches are unsuitable for WSNs due to 

the energy constraints characteristic of WSNs. 

Correspondingly, distributed approaches offer significant 

benefits, such as reducing communication overhead, providing 

real-time response, and avoiding single points of failure within 

the network. However, they also come with certain limitations, 
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including complexity, limited resources like processing power, 

memory, and energy, as well as potentially lower performance 

levels. Additionally, this approach faces communication 

constraints, such as substantial propagation delay, signal 

absorption, extreme path lengths, rapidly changing time-

varying channels, noise, and diffusion. Therefore, 

communication cost is inherently a fundamental challenge for 

outlier detection approaches in WSNs. In other words, how to 

reduce communication costs to extend system lifetime and 

minimize network traffic in WSNs is a major challenge. 

Addressing this issue requires innovative approaches that 

balance the trade-offs between detection accuracy, energy 

efficiency, and communication overhead. 

In this paper, we propose a two-step outlier detection 

technique for WSNs. At the sensor level, we apply a simple 

statistical method to address limited energy and computational 

power constraints. At the base station, we employ 

unsupervised machine learning to identify outliers that may 

have been missed at the sensor level. This approach aims to 

reduce communication overhead, optimize resource usage, 

and improve network performance and reliability. The 

objectives of the research can be defined as follows: 

1. Minimize the energy consumption and communication 

costs in WSNs resulting from high data transmission costs 

between sensors and the centralized location, while 

maintaining accuracy comparable to centralized detection. 

2. Prolong the operational lifespan of sensor nodes and the 

overall WSN by employing targeted outlier detection 

techniques aimed at reducing communication costs, reduce 

network traffic, and improve energy efficiency by efficiently 

identifying and addressing anomalies within the network. 

3. Ensure real-time anomaly detection and response by 

integrating localized anomaly detection at the node level with 

centralized detection at the base station. This ensures timely 

detection and mitigation of anomalies, which is crucial for 

applications that require immediate response to maintain 

operational integrity and security. 

By achieving these objectives, the study aims to enhance the 

efficiency, reliability, and sustainability of outlier detection 

techniques in WSNs, addressing key challenges related to 

communication costs, resource limitations, and real-time 

responsiveness.  

The rest of the article is organized in various sections 

including, motivation in Section 2, literature review in Section 

3, outlier detection algorithms in Section 4, data sets, analysis, 

and evaluation metrices in Section 5, results in Section 6 and 

conclusions in Section 7. 

 

 

2. MOTIVATION 

 

Wireless Sensor Networks were developed in the 1950s but 

because of their cost per sensor, limited energy supply, and the 

computational power needed to run the network, these WSNs 

were mostly used for military and government applications. 

Soon the popularity of these networks grew along with their 

applications and WSNs became a topic of interest in the 

scientific community. WSNs consist of many different sensors 

like temperature, humidity, pressure, proximity, and acoustics 

sensors, which collect data from the environment and send it 

back to the base station for further processing [13]. For this 

reason, they can be dispersed in the environment randomly and 

the data collected from the environment can be used to monitor 

the environment or to maintain some specific condition in that 

environment. Even though WSNs have a wide range of 

applications, the cost it takes to implement WSNs is still not 

feasible for many day-to-day applications. 

To ensure the reliability of data coming from a sensor it is 

crucial that the data is free from any kind of anomaly and if 

there is any outlier in the data, it is detected by the system [11]. 

The detected outlier can be used to make some specific action. 

For example, when monitoring a forest using temperature 

sensors, fire in the forest can cause outliers in the data and 

when the system detects these outliers it can trigger an event 

such as calling the forest rangers or sounding an alarm. But 

sometimes these outliers may also be a result of faulty sensor 

or an error in the data transcription and transmission, or it can 

be a result of intrusion in the system. These outliers along with 

noisy data can cause transmission overhead, communication 

delay and energy drainage [11]. Thus, it is crucial to detect 

outliers in a WSN to ensure the reliability, efficiency, and 

security of data, as well as the effective operation of the 

network, regardless of the type of outlier. A key challenge in 

the advancement of WSNs is the development of algorithms 

for outlier detection that achieve accurate and speedy detection 

while minimizing energy costs. 

To remove these outliers from the data many different 

techniques have been presented by scientists and engineers 

such as statistical based Zhang et al. [14], clustering based 

Rajasegarar et al. [15], classification based Feng et al. [16], 

nearest neighbor based Xie et al. [17], and others. Among 

these, machine learning-based approaches are preferred for 

outlier detection due to their high accuracy, adaptability to 

dynamic data patterns, and real-time capabilities, making them 

well-suited for outlier detection in WSNs where the 

environment may vary. Some machine learning models, 

especially those designed for efficiency, can provide real-time 

outlier detection. This becomes crucial for applications in 

WSNs that require timely responses due to their time-sensitive 

nature. Additionally, machine learning-based techniques have 

the ability to automatically learn and extract relevant 

important features from the data, eliminating the need for 

manual feature engineering and potentially enhancing overall 

efficiency of complex outliers. 

However, machine learning -based approaches come with 

challenges. They are more complex, requiring significant 

computational power, which may be impractical for nodes in 

WSNs with limited energy, storage, and computational 

resources. The majority of existing anomaly detection 

techniques operate under the assumption of having significant 

computational resources and centralized access to all data 

within the relevant domain [18]. Kumar et al. [13] 

recommended that machine learning algorithms are needed to 

run centrally (centralized approach).  While this centralized 

strategy overcomes the energy constraints of machine learning 

-based approaches, it prevents real-time outlier detection, 

which is crucial, particularly for dynamic outdoor applications.  

Moreover, not applying any kind of detection technique on the 

node level (decentralized setting) can cause transmission delay 

and communication overhead because of too many outliers 

coming from the sensor which can also decrease the efficiency 

and efficacy of the network [11, 18]. In a decentralized setting, 

statistical methods offer practical solutions for the detection of 

outliers at individual nodes. Typically, statistical methods are 

computationally less intensive compared to machine learning- 

bases methods, making them well-suited for effective 

implementation in such settings. Methods like the z-score or 

quantile-based measures analysis can be applied without 
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significantly burden nodes with limited processing power. 

These techniques are easily interpretable and can identify 

outliers by utilizing information at the local level. However, 

the challenge is to ensure that statistical methods can 

effectively detect anomalies without having a global view of 

the entire network. Additionally, the performance of statistical 

techniques may face challenges in scenarios involving 

complex and non-linear patterns, or where the assumptions 

regarding data distribution are not met. These limitations 

highlight the potential risks associated with depending 

exclusively on statistical methods for outlier detection. 

Another drawback is that Machine learning models often 

require a substantial amount of historical labeled training data 

especially with Supervised Learning methods, which may be 

challenging to obtain in certain WSN scenarios. One approach 

to overcome this challenge is the utilization of Unsupervised 

machine learning algorithms, as they do not require historical 

labeled inputs for algorithm training. However, the majority of 

research works focus on using supervised machine learning for 

outlier detection in WSN. A recent survey on machine learning 

algorithms for WSNs [13] indicates that 67% of current studies 

utilize supervised learning algorithms to solve WSN issues, 

while unsupervised learning methods have been applied in 

only 18% of WSN problem-solving issues in recent years. 

The decision between employing machine learning or 

statistical methods in centralized and decentralized outlier 

detection approaches requires careful evaluation of factors 

including interpretability, adaptability, computational 

efficiency, data availability, and real-time processing needs. 

Making informed decisions can lead to the development of 

outlier detection strategies aligning with the specific 

characteristics and constraints of WSNs. This, in turn, 

contributes to the overall enhancement of their reliability and 

efficiency. This research aims to advance the field of outlier 

detection in WSNs by investigating and comparing the 

effectiveness of machine learning and statistical methods 

within centralized and decentralized frameworks.  The 

primary objective is to find a balance that ensures accurate 

outlier detection while taking into account the energy 

constraints of WSN nodes. Ultimately, improving the 

reliability, efficiency, and real-time responsiveness of WSNs, 

making valuable contributions to the advancement of outlier 

detection techniques. 

In this research, we introduce a two-phase outlier detection 

approach designed to identify outliers at both sensor nodes and 

the base station levels in a WSN. Specifically, at the sensor 

level, we utilize a statistical technique that is resource-efficient 

to detect and eliminate outliers while considering energy and 

computational limitations. On the other hand, we use 

Unsupervised Machine Learning methods at the base station 

to find outliers that could have gone undetected at the sensor 

level, improving the network's overall accuracy and reliability. 

The primary objective of this approach is to minimize 

communication overhead and decrease the number of outliers 

transmitted to the base station. This reduction strategy aims to 

extend the overall lifespan of the network by minimizing 

unnecessary data transmission and optimizing resource 

utilization. 

The main contributions of this paper are as follows: 

1. Minimize communication overhead in the network by 

adopting a two-phase outlier detection approach, which 

effectively addresses outlier detection at both the sensor nodes 

and the base station levels. By incorporating outlier detection 

methods at multiple stages, the approach aims to optimize 

resource utilization, decrease unnecessary data transmission, 

and ultimately enhance the overall performance and reliability 

of the network.   

2. Compare the effectiveness and performance of the two-

step approach (node-level processing + base station) against a 

scenario where only base station-level is applied. This 

comparison helps in understanding the additional value of 

integrating a simple statistical method at the sensor level to 

remove outliers locally and whether it affects outlier detection 

compared to base station alone.   

3. Assess the effectiveness of diverse unsupervised Machine 

Learning algorithms for outlier detection at the base station.  

The aims to gain insights into the practicality and efficacy of 

these methods in real-world WSN scenarios, particularly when 

integrated with statistical methods implemented at the node 

level.  

 

 

3. LITERATURE REVIEW 

 

In this section, we highlight the most popular and recent 

studies proposed by researchers for outlier detection in WSNs. 

Wang et al. [19] proposed an isolation-based distributed 

outlier detection framework using nearest-neighbor ensembles 

(iNNE). This framework consists of a local detector and a 

global detector. The local detectors are constructed in each 

node through iNNE algorithm, while the global detector is 

created combining local detectors from a node and its 

neighboring nodes. Experimental results showed enhanced 

detection accuracy and reduced false alarms compared to other 

techniques. However, limitations include reliance on static 

parameters and system complexity. 
Miao et al. [20] formulated a distributed online one-class 

SVM algorithm where they use a random approximate 

function which maps the input data to low-dimension feature 

space to get a cost function. Then another cost function is 

created by adding sparse constraint to the previous one, 

stochastic gradient descent is then applied to this function to 

get two distributed functions do OCSVM and sparse 

doOCSVM. The proposed algorithms offer low misdetection 

rates and high true positive rates with minimal resource usage, 

ideal for resource-constrained of WSNs. However, challenges 

like implementation complexity and scalability need 

addressing for wider real-world deployment. 
Poornima and Paramasivan [21] proposed an Online 

Locally Weighted Projection Regression (OLWPR) for 

anomaly detection in WSNs, utilizing PCA for dimensionality 

reduction. LWPR regression predicts sensor values, compared 

to actual readings, with error determined using a dynamic 

threshold. Achieving an 86% detection rate and 16% error rate, 

the method exhibits high detection rates and few false alarms. 

However, its efficacy may depend on training data quality, 

facing challenges in computational complexity and scalability. 

Gupta et al. [22] utilize the Outlierness Factor-based on 

Neighbourhood (OFN) technique to analyze and detect the 

outliers in sensor network. In the proposed approach, the initial 

step involves determining the neighborhood points, followed 

by the calculation of the weight assigned to the neighborhood 

data. The (OFN) technique is applied to categorize outlier data 

points into events and errors. This classification is based on 

spatial correlations, representing neighborhood readings, and 

temporal correlations, representing timestamps of readings. 

The performance of the proposed approach was evaluated on 

a real dataset. While the proposed technique showcases 
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notable strengths in efficiency compared to previously 

considered approaches, it also exhibits potential weaknesses 

such as sensitivity to parameter settings and the complexity of 

real-time adaptability to dynamic environmental conditions.  

Thangaramya et al. [23] introduced a secured WSN 

communication model using fuzzy temporal clustering and 

trust analysis. Their method enhances routing security by 

identifying malicious nodes and improves communication 

reliability, packet delivery, delay, and energy consumption. 

However, implementation complexity and scalability 

challenges persist, and there's a lack of comparison with other 

mechanisms regarding outlier detection's impact on packet 

delivery. 

Zidi et al. [24] propose a two-phase detection technique 

using Support Vector machine. In the first phase a decision 

function along with support vectors are established in 

anticipated time, which is then fed to cluster head to classify 

data. In phase two an observation vector is created using the 

last three data measurements on which the decision function is 

applied. If the result is positive the data is correct otherwise it 

is considered an anomaly. The algorithm provides the most 

detection accuracy as compared to other algorithms used in the 

experiment with an accuracy of more than 99%. Despite its 

resource-efficient nature, SVM-based fault detection may 

encounter complexities in implementation and parameter 

tuning, potentially affecting its performance in dynamic and 

nonlinear scenarios.  Nevertheless, its adaptability and 

validation in real-world applications highlight its suitability 

for practical deployment in wireless sensor networks. 

Yu et al. [25] proposed an unsupervised contextual outlier 

detection method in WSNs. The method identifies outlier 

correlations based on contextual spatial and temporal neighbor 

values using DBSCAN and Grid partitioning. The 

experimental results demonstrate that this method can 

accurately and efficiently detect not only individual anomalies 

but also anomalous events. The proposed method for anomaly 

detection in WSNs demonstrates adaptability and 

comprehensive detection capabilities. However, its 

effectiveness relies on the selection of clustering method, 

which has a certain influence on the detection results. 

Chander and Kumaravelan [12] proposed a two-step 

approach for secure routing and outlier detection in WSNs. 

First, the fuzzy rule and cluster-based secured routing with 

outlier detection (FRCSROD) algorithm secures 

communication. Second, the fuzzy rule and distance-based 

outlier detection algorithm (FRDOA) identifies malicious 

nodes. This approach enhances security, reliability, and packet 

delivery rates while reducing communication delays. However, 

the complexity may increase computational overhead and 

impact scalability and resource use. 

 

 

4. OUTLIER DETECTION ALGORITHMS 

 

We implemented and evaluated five machine learning 

algorithms for outlier detection in WSNs. In the next 

subsections we briefly discuss overview of the utilized 

unsupervised machine learning algorithms. 
 

4.1 OCSVM 

 

OCSVM [26, 27] is an unsupervised machine learning 

algorithm that works by creating a hypersphere around the data 

in a feature space and creating a hyperplane which has a 

maximum distance between the data points and the origin. The 

second class in OCSVM is considered to be the origin. 

OCSVM uses a parameter v (Nu) which lies between (0, 1) 

and it is the upper bound on the fractions of outliers we want 

to allow. OCSVM is commonly used in various fields such as 

cybersecurity, fraud detection, and industrial monitoring 

where detecting anomalies is crucial for maintaining system 

integrity and security. OCSVM can be computationally 

efficient in analyzing high-dimensional data with a reasonable 

sample size, however, its utility diminishes when dealing with 

extensive datasets or extremely high-dimensional feature 

spaces. 

 

4.2 HBOS 

 

The Histogram Based Outlier Score [28] is an unsupervised 

machine learning algorithm used to detect outliers. It works by 

creating a univariate histogram for each feature with dynamic 

or static bandwidth. Afterwards each datapoint is given a score 

based on the histogram created and the greater the score, the 

more likely the datapoint is an outlier. HBOS is effective for 

real-time anomaly detection, making it ideal for quick and 

scalable solutions. It identifies unusual network traffic, detects 

payment fraud, monitors business transactions, and tracks 

patients' vital signs. HBOS processes data quickly, suitable for 

large datasets, but its storage needs can be high due to 

histograms and outlier scores scaling with dataset size. 

 

4.3 IForest 

 

Isolation Forest [29] make use of isolation trees and work in 

a similar way as random forest. The principle behind Isolation 

Forest is that in each dataset outliers are much easier to isolate 

than a normal datapoint. IForest randomly picks up a feature 

and builds isolation tree on that feature until the datapoint is 

completely isolated. The lesser the number of partitions it took 

to isolate a datapoint, the higher the chances of that datapoint 

to be an outlier. IForest is used in various domains: detecting 

intrusions in network security, identifying fraudulent 

transactions in finance, and spotting unusual patient data in 

healthcare. Its time and space complexity can vary from 

moderate to high, depending on dataset size, number of 

features, and tree depth. 

 

4.4 KNN 

 

K-Nearest Neighbour [30] is a non-parametric lazy 

algorithm that uses proximity to classify datapoints into 

different classes. KNN uses Euclidean distance to calculate the 

distance between the datapoint and its K neighbours and then 

sorts the distance in order of smallest to largest. The datapoints 

that have the largest distance from their neighbours in 

considered to be an outlier. KNN is a versatile and effective 

algorithm used in recommendation systems, targeted 

marketing, cybersecurity, and environmental monitoring. It is 

efficient for small to medium-sized datasets, but its scalability 

decreases with larger datasets due to extensive distance 

calculations. 

 

4.5 CBLOF 

 

Cluster Based Local Outlier Factor [31] arranges a given 

dataset into several clusters and then calculates the size of 

those clusters and identifies them into small and large clusters. 
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For each datapoint outlier score is calculated using the CBLOF 

which is measured using the size of the clusters. CBLOF is 

used in cybersecurity to detect network anomalies, in 

healthcare for monitoring patient data, and in finance to 

identify fraudulent transactions. Its time complexity varies 

with the clustering algorithm and dataset size, and it requires 

storage space that scales with the dataset's size and features. 

 

 

5. EXPERIMENTAL SETUP 

 

5.1 Data set 

 

The dataset used in this research was published by 

Suthaharan et al. [32], who belongs to the department of 

Computer Science, at the University of North Carolina at 

Greensboro. The data was collected from multi-hop and 

single-hop network scenarios using real sensor networks and 

protocols. Sensors were deployed in both indoor and outdoor 

environments and were used to collect the reading of 

temperature and humidity. In the indoor settings, it's 

reasonable to presume that conditions were more stable and 

controlled compared to outdoor environments. Factors like 

consistent room temperature, controlled humidity levels, and 

limited exposure to external elements could characterize these 

indoor setups. On the other hand, outdoor deployments are 

subject to natural environmental fluctuations including 

changes in temperature and humidity, exposure to sunlight, 

wind speed, and other outdoor elements. 

The data collection spanned 6 hours. At the midpoint of this 

duration, anomalies were generated in one sensor node in each 

setup (indoor and outdoor) by using a hot water kettle, which 

raised both the temperature and humidity simultaneously. 

Introducing anomalies through the use of a hot water kettle 

likely caused abrupt increase in temperature and humidity. 

This simulates sudden environmental changes that sensors 

might experience in real-world situations, such as equipment 

failures, unexpected weather fluctuations, or localized 

environmental disturbances. These anomalies serve as crucial 

data points for training anomaly detection algorithms within 

WSNs. Table 1 shows the number of instances in each data 

sample of the dataset.

 

Table 1. Number of instances in each data sample of the dataset 

 
Setting Normal Anomaly 

Single hop-indoor 4300 117 

Single hop -outdoor 5009 32 

Multi hop -indoor 4633 57 

Multi hop -outdoor 4590 100 

5.2 Analysis 

 

In this research we propose a two-phase detection technique 

to detect outliers in WSNs. Phase one is performed on the 

sensor nodes in which outliers above a certain threshold are 

removed from the data set. Phase two will be performed at the 

base station, here we will be using a machine learning 

algorithm to further detect outliers that were not detected in 

phase one. We used five different unsupervised machine 

learning algorithms to detect outliers to check the performance 

of algorithms when combined with standard deviation. 

To assess the effectiveness of the proposed approach in 

terms of their ability to detect outliers in a WSN, two types of 

analyses were performed. 

EXPERIMENT 1: The aim of the initial experiment was to 

evaluate the effectiveness of various machine learning 

algorithms in terms of their ability to detect outliers at the base 

station. Here we performed five different unsupervised 

machine learning algorithms OCSVM, HBOS, IForest, KNN, 

and CBLOF. Unsupervised machine learning algorithms are 

used as they require no labeled inputs to train the algorithm 

and it can detect hidden patterns in a dataset on its own. On 

other hand, supervised machine learning needs labelled inputs 

and outputs to train the algorithm and learn overtime. 

Therefore, unsupervised machine learning is more suitable for 

WSNs as WSNs are randomly deployed into nature where the 

availability of labelled historical data is sometimes not 

possible. 

This experiment involved two main phases: the training 

phase and the testing phase. In the training phase, classifiers 

were trained using all observations including both normal and 

anomalous observations, without the use of labels. During the 

testing phase, all observations are categorized into either the 

normal data class or the anomaly class based on the previously 

trained model. In this process, the classifier assigns labels to 

each observation based on its predictions, distinguishing 

between normal and anomalous instances. 

Throughout the testing process, the classifiers recorded the 

number of True Positives (TPs), True Negatives (TNs), False 

Positives (FPs), and False Negatives (FNs). These recorded 

values are then used to calculate performance metrics 

mentioned in the next subsection, offering a comprehensive 

evaluation of the classifiers' performance.  

EXPERIMENT 2: The aim of the experiment was to 

evaluate the effectiveness and the performance of the proposed 

two-phase detection approach to compare it with the 

centralized approach at detecting anomalies in WSNs. This 

experiment has two phases. In the first phase on sensor nodes, 

outliers above a threshold are removed. The second phase at 

the base station uses a machine learning algorithm to identify 

undetected outliers from phase one.  

Phase 1: At the node level we used simple standard 

deviation to mark any reading that is two standard deviations 

away from the mean to be labelled as an outlier and we 

removed those reading form the datasets (the value of standard 

deviation can be set according to the environment the network 

will be configured in). The remining data that was not removed 

will then be used in step two to detect further anomalies that 

were not able to be detected in phase one. The aim of this phase 

is to minimize the number of outliers by setting a range 

depending on the environment the sensor is in, which will 

decrease the number of readings to be sent to the base station.  

Phase 2: At the base station, where more power resources 

are available, we performed the same machine learning 

algorithms we used in experiment 1 to detect outliers in the 

dataset that were not detected in phase one. This phase 

involved training classifiers on all observations (normal and 

anomalous) without labels. In the testing phase, the classifier 

categorized observations into normal or anomaly classes. In 

the testing phase, we recorded True Positives (TPs), True 
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Negatives (TNs), False Positives (FPs), and False Negatives 

(FNs) to compute performance metrics.  

The proposed algorithm works through the following steps:  

1. Read the dataset.  

2. Calculate upper and lower limits for the dataset based on 

the mean and standard deviation. 

3. Find data points in the dataset that fall outside the 

calculated upper and lower limits.  

4. Create a subset containing only the data points that are 

inside the calculated upper and lower limits. 

5. Initialize Features and Labels on the cleaned dataset. 

6. Initialize Model 

7. Fit the Model: Train the model on the feature data. 

8. Use the trained model to predict outliers in the feature 

data. 

9. Calculate various performance metrics such as accuracy, 

true positive rate (TPR), false positive rate (FPR), and 

Matthew’s correlation coefficient (MCC). 

Machine learning algorithms for outlier detection were 

implemented using the PyOD package [33], a specialized 

Python package designed for anomaly detection. Default 

parameter values are employed in each machine learning 

approach. 

 

5.3 Evaluation metrices 

 

In the context of outlier detection, a confusion matrix is used 

to assess the effectiveness of the outlier detection model. 

Unlike traditional binary classification settings, outlier 

detection focuses on finding instances that substantially vary 

from the norm. The confusion matrix for outlier detection 

typically includes the following components:  

·True Positive (TP): Instances that are actual outliers and 

are correctly identified as outliers by the model. 

·False Positive (FP): Instances that are not outliers but are 

incorrectly identified as outliers by the model. 

·Ture Negative (TN): Instances that are not outliers and 

are correctly identified as non-outliers by the model.  

·False Negative (FN): Instances that are actual outliers but 

are incorrectly identified as non-outliers by the model. 

These values are then used to calculate performance metrics 

like accuracy, false positive rate (FPR), and true positive rate 

(TPR), which offers a concise overview of a model's 

performance. To evaluate the performance of the algorithms 

that we used in this research, we have used four evaluations 

metrices.  

a) Detection Accuracy (DA): which is calculated as the 

number of predictions that were correctly classified by the 

algorithm. It is defined as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

b) True Positive Rate, which is the measure of how many 

positive cases were positive in actual. It is defined as: 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

c) False Positive Rate. which is the measure of positive 

outcomes that were considered incorrect. It is defined as: 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (3) 

d) Matthew’s correlation coefficient (MCC), and it 

measures the difference between actual value and predicted 

value. It is defined as: 

 

MCC=
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃) (𝑇𝑃+𝐹𝑁)
 (4) 

 

 

6. RESULTS 

 

This section reports the results derived from the conducted 

experiments. The main purpose of this research is to evaluate 

and compare the performance of the proposed two-phase 

detection approach with the centralized approach at detecting 

anomalies in WSNs, and to find which algorithms perform 

better in both settings.  

 

6.1 Phase one results 
 

In this subsection, we present and discuss the results 

obtained from phase one of the study. Table 2 provides a 

comprehensive record, documenting the initial count of 

outliers in each of the four datasets and presenting the 

outcomes after performing standard deviation on the datasets. 

As observed, the utilization of the standard deviation method 

on the datasets provides notable success in efficiently 

eliminating outliers across different scenarios. Specifically, in 

the single-hop indoor dataset, we successfully removed 72% 

of outliers. Similarly, for the single-hop outdoor dataset, 90% 

of outliers was effectively removed. In the case of the multi-

hop indoor dataset, 62% of outliers was successfully removed, 

and in the multi-hop outdoor dataset, 85% of outliers was 

eliminated during phase one. Collectively, these outcomes 

represent a significant 77.59% reduction in outliers during the 

initial phase of the experiment. 

In the upcoming subsections, we present and analyze the 

results of the two-step approach (node-level processing + base 

station) in comparison to a situation where only base station-

level outlier detection methods are employed. The primary 

objective is to determine whether the utilization of standard 

deviation method at the sensor level for outlier removal has an 

impact on the performance compared to an approach only 

relying on the base station. 
 

6.2 Comparison accuracy 

 

We observe that HBOS performs the best in terms of outlier 

detection without applying phase one and with higher number 

of outliers in the dataset with an accuracy of more than 97.7% 

most of the time but at the same time it is also affected the 

most when it comes to detect outliers with lesser outliers in the 

dataset. The accuracy of HBOS drops from 99.59 to 90.31% 

with a difference of 9.28% when the number of outliers drops 

from 100 to 15 after performing phase one in Table 3. KNN 

on other hand is least affected by applying phase 1 and gives 

an almost constant accuracy of more than 94% in all four 

datasets with and without performing phase 1. In single-hop 

outdoor-data, KNN gave 94.5% accuracy with phase 1 and 

94.1% without performing phase 1. OSCVM, IForest, and 

CBLOF have little effect on the accuracy while we perform 

standard deviation in phase 1, with an average fluctuation of 

around 2%. 

 

6.3 Comparison TPR 

 

The results of TPR form Table 4 show that KNN gives the 
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highest TPR of 1.0 most of the time and standard deviation 

does not affect its TPR. OCSVM also gives a TPR of 1.0 in 

indoor situations on both multi-hop and single-hop data 

readings and applying phase 1 on the dataset does not affect 

the true positive but in outdoor sensors it does drop by 0.3. 

This is also true for the other algorithms as most of the time 

they give a reading of 1.0 in indoor situations but in outdoor 

data readings a lesser number of outliers give lesser TPR. 

 

6.4 Comparison FPR 

 

According to the results of FPR in Table 5, HBOS gives the 

least FPR values that range between 0.00 and 0.02 without 

applying phase one. After that KNN gives a slightly higher 

values of FPR than HBOS, which ranged between 0.04 and 

0.05 for both scenarios and is least affected by phase one but 

HBOS on other hand is affected the most and the FPR values 

increase to 0.07 – 0.09. CBLOF, IForest and OCSVM give 

almost identical FPR reading and are not that affected by the 

addition of phase one to the experiment. 

 

6.5 Comparison MCC 

 

Looking at Figures 2 and 3 below, we can observe that all 

classifiers achieved MCC values above 0.0, which indicates 

that there is a strong relationship between reality and 

prediction. Moreover, according to the results of the figures 

below, we can see that HBOS performs in indoor 

environments without applying phase one and gives a reading 

0.84 and 0.91 but these readings drop to 0.28 and 0.17 

respectively. After that KNN can be ranked in second position 

and it also performs better than other algorithms with the 

addition of phase one. OCSVM, CBLOF and IForest perform 

almost the same in terms of performance according to MCC. 

 

Table 2. Number of outliers before and after phase 1 

 

 Outliers Before Node-Level Removal Outliers Count After Node-Level Removal Reduction Percentage 

Dataset    

Single hop-indoor 117 32 %72 

Single hop -outdoor 32 3 %90 

Multi hop -indoor 58 22 %62 

Multi hop -outdoor 100 15 %85 

 

Table 3. Accuracy comparsion 

 
Accuracy Comparison 

 Base Station Only Node-Level Processing + Base Station 

Dataset OCSVM HBOS IFORST KNN CBOLF OCSVM HBOS IFORST KNN CBOLF 

Single hop-indoor 92.64 98.98 92.66 95.72 92.69 90.72 92.67 90.72 95.38 90.74 

Single hop-outdoor 90.60 97.72 90.58 94.10 90.56 90.02 91.93 89.98 94.50 90.00 

Multi hop outdoor 90.64 97.87 90.43 95.33 90.43 89.94 90.89 89.86 95.16 86.60 

Multi hop-indoor 92.13 99.59 92.15 95.33 92.15 90.31 90.71 90.31 94.70 90.31 

 

Table 4. TPR comparison 

 
TPR Comparison 

 Base Station Only Node-Level Processing + Base Station 

Dataset OCSVM HBOS IFORST KNN CBOLF OCSVM HBOS IFORST KNN CBOLF 

Single hop-indoor 1.0 1.0 1.0 1.0 1.0 1.0 0.97 1.0 1.0 1.0 

Single hop-outdoor 0.97 0.72 0.94 1.0 0.94 0.67 0.45 0.33 1.0 0.67 

Multi hop outdoor 0.76 0.26 0.67 0.93 0.67 0.45 0.14 0.36 0.86 0.09 

Multi hop-indoor 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 

Table 5. FPR comparison 

 
FPR Comparison 

 Base Station Only Node-Level Processing + Base Station 

Dataset OCSVM HBOS IFORST KNN CBOLF OCSVM HBOS IFORST KNN CBOLF 

Single hop-indoor 0.07 0.01 0.07 0.04 0.07 0.09 0.07 0.09 0.04 0.09 

Single hop-outdoor 0.09 0.02 0.09 0.05 0.09 0.01 0.08 0.09 0.05 0.09 

Multi hop outdoor 0.09 0.01 0.09 0.04 0.09 0.09 0.08 0.09 0.04 0.09 

Multi hop-indoor 0.08 0.00 0.08 0.04 0.08 0.09 0.09 0.09 0.05 0.09 

 

6.6 Results discussion 

 

The primary objective of this study is to assess and compare 

the effectiveness of the proposed two-phase detection 

approach with the centralized method in identifying anomalies 

within WSNs.  Specifically, the research endeavors to 

determine whether applying standard deviation method at the 

node level has a negligible impact on the performance machine 

learning methods, particularly assessing whether it does not 

significantly influence the outcomes of anomaly detection. 

Looking at the results, it is evident that during phase one, we 

successfully eliminated 62% to 90.62% of the outliers from the 

datasets. These numbers greatly reduce the amount of data 

being transmitted over the network and thus can result in 

energy saving, less communication overhead, and less 

transmission delay. Furthermore, the results indicate that the 

addition of standard deviation does not significantly impact 

the accuracy of most algorithms.  Specifically, KNN displays 
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minimal influence, with an average fluctuation of only 0.63% 

when standard deviation is applied. The accuracy of the other 

three algorithms (OCSVM, IFORST, CBOLF) is also affected 

only by an average of around 2%, and HBOS shows a 

fluctuation around 8%, on average. Therefore, we can 

conclude that it is safe to apply phase one with the most 

unsupervised machine learning algorithms and that applying 

standard deviation at node level does not affect the 

performance of machine learning algorithms by a significant 

amount. Other metrics results also confirm this finding. In both 

scenarios, where standard deviation was not applied at the 

node level and when it was applied, consistently low FPR 

values were obtained. The FPR ranged from 0.0% to 0.09% 

without applying standard deviation at the node level, and 

from 0.01% to 0.09% when it was applied at the node level. 

Furthermore, the results indicate that KNN consistently 

achieves the TPR of 1.0, irrespective of whether standard 

deviation is applied at the node level or not. The remaining 

algorithms also obtained high TPR values, mostly reaching or 

closely 1.0 in indoor data for both scenarios. However, an 

average reduction of 0.3 in TPR is observed for outdoor data 

after the implementation of standard deviation. Finally, MCC 

values exceeding 0.0 in both scenarios affirm a strong 

association between reality and prediction. 

 

 
 

Figure 2. Base station only 

 

 
 

Figure 3. Node-level processing + base station 

 

The observed performance variations in outlier detection 

algorithms like HBOS, when applied to datasets with fewer 

outliers, can be ascribed to algorithmic characteristics such as 

sensitivity to data distribution, threshold adjustments, 

adaptability to data variability, and changes in data density and 

statistical assumptions. In contrast, robust algorithms like 

KNN are less impacted because they depend on local 

neighborhood information. Machine learning algorithms such 

as SVM and IForest show intermediate sensitivity, adjusting 

their models based on training data but still influenced by 

distribution changes. Recommendations include careful 

algorithm selection, parameter tuning, ensemble approaches, 

and data preprocessing to improve outlier detection across 

varying outlier densities and dataset characteristics. 

 

 

7. CONCLUSION 

 

The proposed two-phase outlier detection approach in 

wireless sensor networks (WSNs) provides several significant 

benefits positively impacting network efficiency, energy 

consumption, and communication overhead. By minimizing 

the number of outliers transmitted through the network, the 

proposed method optimizes data transmission and processing, 

thereby improving overall network performance and resource 

utilization. This reduction in outliers also leads to lower 

energy consumption at both sensor nodes and the base station, 

contributing to extended network lifetime and decreases 

maintenance requirements.  Additionally, the method lowers 

communication overhead by reducing outlier data 

transmission, which enhances bandwidth utilization, decreases 

network traffic, and improves data delivery reliability. The 

quantitative results of the method, with an average reduction 

of 77.59% in outliers during phase one and nearly 90% 

accuracy in phase two, illustrate its effectiveness in improving 

data quality, processing efficiency, and anomaly detection 

capabilities in WSNs. These results are particularly 

groundbreaking as they showcase a practical and scalable 

solution for real-world WSN deployments, paving the way for 

more reliable, energy-efficient, and robust sensor networks. 

Ultimately, these advancements contribute to the broader goal 

of creating more dependable and sustainable IoT ecosystems, 

where outlier detection plays a vital role in ensuring data 

integrity, system reliability, and operational efficiency. 
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