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Cardiovascular disease (CVD) is becoming more prevalent as a health issue and ranks as a 

top cause of mortality globally. Effectively identifying CVD is frequently a challenging 

process, given that minor errors can result in significant consequences. To address this 

challenge, healthcare organizations have recently embraced Internet of Things (IoT) to 

collect patients' vital signs using wearable sensors, these data are then stored and 

transmitted to machine learning (ML) based prediction systems.  Among the various ML 

algorithms, the K-Nearest Neighbors (K-NN) algorithm stands out for its simplicity and 

effectiveness in CVD prediction. However, its reliance on majority voting can lead to 

classification errors, especially when test vectors are closer to minority class neighbors.  To 

address this limitation, we propose the Enhanced K-Nearest Neighbors (E-KNN) algorithm, 

specifically designed to refine classification accuracy by incorporating a weighted distance 

measure that considers both neighbor proximity and class distributions. The E-KNN model 

has undergone comprehensive testing in comparison to standard ML methods. The 

experimental findings demonstrate that the introduced model surpasses current 

methodologies based on performance assessment indicators, recording a 91.43% notable 

accuracy level. To leverage the E-KNN algorithm, we have developed an IoT platform that 

gathers crucial patient data and transmits it to the E-KNN based model. 
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1. INTRODUCTION

Good health is essential and represents a fundamental desire 

of every individual, necessary to enable them to efficiently 

fulfill their daily responsibilities and achieve their long-term 

goals. However, the healthcare industry is currently facing 

several challenges, such as a shortage of medical staff, an 

escalating healthcare costs, and an aging population. In 2000, 

the world population over 60 years of age was 11%, and this 

percentage is projected to increase to 22% by 2050 [1]. These 

challenges are compounded by lifestyle factors such as 

unhealthy diets, smoking, obesity, and stress, which contribute 

to an increased prevalence of chronic diseases, notably CVD. 

CVD encompass a range of conditions impacting the heart 

and the vascular system. As per the World Health 

Organization (WHO), between 1990 and 2019, the global 

patient count for CVD surged from 271 million to 523 million, 

while fatalities attributed to these conditions climbed from 

12.1 million to 18.6 million, constituting 32% of worldwide 

deaths in 2019 [2]. In Algeria, the annual death rate due to 

CVD is projected at 34% [3].  

Diagnosing CVD is an incredibly complex task, and 

multiple tests are typically necessary to reach a precise 

conclusion. If a heart disease goes undetected and untreated, 

many complications can arise, such as arrhythmias peripheral 

artery disease, and sudden cardiac arrest, among others. 

Fortunately, with the emergence of artificial intelligence and 

IoT, it is now possible to predict CVD at an early stage, which 

can contribute to mitigating complications and reducing 

mortality rates. 

The concept of "IoT" encompasses a network of physical 

items embedded with sensors, software, and various 

technological features. These objects are created to connect 

with other objects and systems over the internet, making it 

easier for them to share data [4]. These objects can be simple 

household appliances, wearable devices, or highly complex 

industrial equipment [5]. The IoT is a vital technological tool 

in the healthcare sector, it facilitates the real-time detection, 

tracking, and monitoring of vital signs, including 

electrocardiogram (ECG or EKG), blood glucose levels, 

respiratory rate, and blood lipid levels, thereby aiding in the 

detection and prevention of various illnesses [6, 7]. The use of 

ML for analyzing this data is rapidly increasing, contributing 

to the reduction of healthcare costs and the improvement of the 

patient-doctor relationship [8]. The concept of "ML" was 

introduced by Arthur Samuel in 1959, described as a discipline 

allowing computers to acquire knowledge autonomously 

without being explicitly programmed [9]. ML harnesses data 

and algorithms to emulate human learning, aiming for 

continuous improvement in accuracy. It employs techniques 

and tools to uncover patterns within datasets, building models 

that faithfully represent the data. These models enhance our 
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grasp of phenomena, such as pinpointing risk factors for CVD, 

and forecasting future occurrences, like identifying 

individuals at elevated risk for CVD. When effectively 

implemented, ML empowers healthcare professionals to make 

precise diagnoses, select optimal treatments, and reduce 

medical expenses. 

K-NN is fundamentally a non-parametric classification 

algorithm where the decision on the class of a new observation 

is based on the majority of classes of its K nearest neighbors. 

Although simple and intuitive, standard K-NN can be 

ineffective or inaccurate in situations where data from 

minority classes are physically close to the new observation, a 

common scenario in unbalanced medical datasets.  

To overcome this drawback, we propose the Enhanced K-

Nearest Neighbors (E-KNN) algorithm, which enhances 

classification accuracy by taking into account both neighbor 

proximity and class distributions. This refinement of the 

traditional majority voting method employs a weighted 

distance measure that incorporates not only neighbor closeness 

but also their class distributions. The main modifications of the 

E-KNN algorithm are as follows: 

▪ Neighbor weighting based on class density: E-KNN 

introduces a probability factor P that weights the 

contribution of each neighbor based on the density of 

its class in the immediate neighborhood. This 

weighting allows for better consideration of minority 

classes, thus improving the algorithm's ability to handle 

imbalanced class distributions. 

▪ Calculation and adjustment of new distances Dn (X,Y): 

The distances between each test point X and its K 

neighbors Y, Dn(X,Y), are calculated using a weighting 

factor P and a distance adjustment parameter d. The 

parameter d adjusts the measured distance between 

points to avoid unfairly favoring either the majority or 

minority classes. This ensures fair treatment of all 

classes and improves the overall accuracy of the 

classification. 

▪ Selection of the most representative neighbor: By 

sorting the newly calculated distances Dn(X,Y) in 

ascending order, the algorithm selects the most 

influential neighbor for classifying the test vector X. 

This neighbor is chosen not only for its proximity but 

also for its statistical relevance, ensuring a more precise 

and balanced classification. 

This paper introduces E-KNN as a novel approach to CVD 

prediction, combining IoT capabilities with advanced ML 

techniques to create a more accurate, responsive, and patient-

centric predictive model. Through comprehensive testing and 

analysis, E-KNN demonstrates superior performance over 

standard ML methods, showcasing its potential to significantly 

improve the diagnosis, prediction, and management of CVD 

in an IoT-enabled healthcare landscape. 

The contributions of this work are twofold. Firstly, we 

introduce an enhanced version of the K-NN algorithm, 

denoted as E-KNN, which serves as the foundation for a CVD 

prediction system. We thoroughly evaluate its performance, 

comparing it to traditional ML algorithms such as K-NN, 

Random Forest (RF), Decision Tree (DT), Logistic Regression 

(LR), Support Vector Machine (SVM), and other existing 

research works in the field. Secondly, we developed a 

biomedical data acquisition system, comprising an Arduino 

board and multiple device sensors: a blood pressure sensor for 

measuring arterial pressure, a heart rate sensor for pulse 

monitoring, and an AD8232 electrocardiographic sensor for 

recording cardiac electrical activity. These devices collect 

physiological data which are then transmitted and processed 

by the E-KNN algorithm to enhance diagnostic precision for 

cardiovascular conditions. 

The subsequent sections of this document are organized in 

the following manner: Section 2 describes ML algorithms used 

in this study and related works on CVD prediction; Section 3 

outlines the architecture of the CVD prediction model and 

describes the proposed E-KNN algorithm. Section 4 outlines 

the experimental framework and discusses the outcomes 

derived from assessing the models. In conclusion, Section 5 

offers insights and explores prospective future endeavors 

aimed at expanding and refining the suggested CVD 

prediction model. 

 

 

2. LITERATURE REVIEW 

2.1 Used ML classifiers  

 

In the realm of ML, three principle classes of algorithms 

exist: supervised, unsupervised, and reinforcement learning as 

illustrated in Figure 1.  

 

 
 

Figure 1. Types of ML algorithms [10] 
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In this paper, we focus on supervised learning, which 

involves labeled data based on the desired outcome. This form 

of learning is frequently utilized for predictive analysis. On the 

other hand, unsupervised learning addresses problems of 

grouping, association, and dimension reduction by building 

models from unlabeled data. Reinforcement learning uses 

learning algorithms that learn from repeated experiences 

through trial and error. This technique has been successfully 

applied to various problems, such as robotic control, task 

scheduling, and telecommunications. 

The study discussed in this paper used various supervised 

machine learning algorithms, including K-NN [11], SVM [12, 

13], DT [14, 15], RF [16, 17], and LR [18]. In the following, 

a comprehensive description of the K-NN algorithm will be 

provided, coupled with a concise overview of other algorithms 

such as SVM, DT, RF and LR. 

KNN: The K-NN algorithm is a supervised classification 

algorithm that allocates a class to a test vector by comparing it 

to a set of labeled vectors recorded during the learning phase. 

This comparison aims to extract the K vectors that are closest 

to the considered vector in terms of distances [19]. There are 

several formulas to calculate the distance between two vectors 

X(x1, x2, …, xn) and Y(y1, y2, …, yn), with the most commonly 

used being Euclidean distance, which is delineated by the 

equation below, Eq. (1) 

 

𝐷(𝑋, 𝑌) = √∑(𝑥𝑖 − 𝑦𝑖)2
𝑖=𝑛

𝑖=1

 (1) 

 

The class assigned to the test vector is the most voted class 

among the k classes obtained in the comparison step [20]. 

 

 
 

Figure 2. Class prediction of tested vector by K-NN 

 

Figure 2 is an illustrative example of classification by K-

NN. The K-NN algorithm calculates the distances between the 

data that we want to predict the class of (the black circle) and 

all the existing training data (the pink squares and green 

triangles). These distances are then sorted from smallest to 

largest. A number of neighbors, K, is chosen (for example, 

k=3), and the majority class (the red squares) is assigned to the 

tested data. The pseudo code of the KNN is as follows: 

 

Input: Training dataset, Test dataset, K 

Output: Class of test vector X 

Begin 

For each test vector X in the Test dataset 

For each training vector Y in the Training dataset 

Calculate the distance between X and Y, denoted as D(X, 

Y), using Eq. (1). 

End For 

Sort all calculated distances D(X, Y) in increasing order. 

Select the K smallest distances to determine the K closest 

neighbors. 

For each of the K neighbors 

Count the frequency of each class among these neighbors. 

End For 

Assign the test vector X to the class most frequent among 

the K closest neighbors. 

End For 

End 

 

SVM: The SVM algorithm is widely used for classification 

and regression analysis, especially for binary classification 

problems. SVM functions by projecting the input data into a 

higher-dimensional feature space, where it identifies the best 

hyperplane that enlarges the gap between the two categories. 

This hyperplane is defined by the support vectors, which 

represent the data points nearest to the decision margin. By 

increasing the separation between the hyperplane and the 

nearest data points of each category, SVM delivers a strong 

classification framework that demonstrates reduced sensitivity 

to noise and outliers. 

LR: Logistic regression operates as a predictive model for 

categorizing a dependent variable Y by employing a sigmoid 

function on multiple independent variables Xi. This model is 

refined through gradient descent to ascertain the best weights 

for Xi that reduce the logistic loss function, thereby forecasting 

the class with the greatest probability estimation. 

DT: The DT is an easy-to-understand decision-making tool 

that uses a tree-like graph to make decisions. It selects the best 

predictor feature by calculating a splitting criterion, which is 

used to divide the data into subsets until a stopping criterion is 

met. The stopping criterion could be a maximum tree depth, a 

minimum number of instances in a node, or a threshold value 

for the splitting criterion. Pruning may be used to remove 

complex or overfitted branches. To make a prediction, input 

data is fed into the tree, and the algorithm follows the tree's 

branches based on the input features until it reaches a leaf node 

containing the predicted outcome. 

RF: The RF algorithm functions by generating a collection 

of decision trees, where each tree is built from a randomly 

chosen subset of training data. This method of selecting 

subsets at random aids in mitigating overfitting risks and 

increases the variety among the trees. Aggregating the 

outcomes from all trees, the RF algorithm yields predictions 

that are both more precise and robust than those from an 

individual decision tree. For classification tasks, the algorithm 

aggregates the predictions of all the individual trees and selects 

the most frequent prediction as the final output. This approach 

not only improves the precision of the forecast but also aids in 

reducing the effects of noisy or outlier data points. For 

regression tasks, Random Forest Algorithm takes the average 

prediction of all the trees as the final output, which provides a 

smooth and continuous prediction surface that can handle 

nonlinear relationships between the independent and 

dependent variables. 

 

2.2 Survey of previous work 

 

After describing the ML algorithms we have implemented 

for CVD prediction, we now move on to explore some relevant 

studies conducted by other researchers in the same field. 

Rajdhan et al. [21] looked at how well the DT, LR, RF, and 

NB algorithms could predict CVD using the dataset provided 

by the UCI ML Repository. This study revealed that the RF 

algorithm achieved the top accuracy rate of 90.16%, 
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establishing it as the most effective method for heart disease 

prediction. 

Ware et al. [22] conducted a study to compare six different 

machine learning techniques for heart disease prediction using 

the Cleveland dataset. The dataset was preprocessed by 

removing all noisy and missing data before analysis. The 

techniques evaluated were SVM, K-NN, RF, DT, LR, and NB, 

employing a range of performance measures. The findings 

indicated that SVM achieved the greatest accuracy rate of 

89.34%, surpassing the performance of other methods. 

Magar et al. [23] developed a ML-based web application 

for heart disease prediction. This research utilized various ML 

algorithmes, such as DT, LR, NB, and SVM. To train these 

algorithms, the authors allocated 75% of the Cleveland 

dataset, reserving the final 25% for evaluating their precision. 

The outcomes revealed LR to be the top-performing algorithm, 

achieving an 82.89% accuracy rate. SVM followed closely 

with an accuracy of 81.57%, whereas both DT and NB 

recorded accuracy rates of 80.43%. 

Shah et al. [24] developed a model for predicting heart 

disease by applying ML methods such as RF, DT, K-NN, and 

NB. They trained these classifiers with the Cleveland dataset, 

which was pre-processed before being utilized in the model. 

The findings indicated that K-NN achieved the top accuracy 

rate of 90.78%. 

Arghandabi and Shams [25] created a predictive model for 

heart disease employing a variety of ML classifiers, such as 

DT, K-NN, Gradient Boosting (GB), SVM, and LR 

algorithms. The study used 73% of the UCI heart dataset for 

training and 37% for testing the accuracy of the algorithms. 

The outcomes demonstrated that K-NN recorded a notable 

accuracy of 85.7%. 

Reddy et al. [26] developed a system capable of diagnosing 

heart disease with the help of ten ML classifiers, including NB, 

LR, SMO, IBK, AdaBoostM1 paired with Decision Stump, 

AdaBoostM1 paired with LR, Bagging paired with REPTree, 

Bagging paired with LR, JRip, and RF. These classifiers 

underwent training utilizing the comprehensive attributes from 

the Cleveland heart dataset and optimal attribute sets derived 

from three evaluators: correlation-based feature subset, chi-

squared attribute, and ReliefF attribute. The findings indicated 

that Sequential Minimal Optimization, when applied to the 

complete attribute set, reached an accuracy of 85.148%. 

Meanwhile, the most precise results, with an accuracy of 

86.468%, were achieved with the optimal attribute set 

identified by the chi-squared attribute evaluator. 

Kavitha et al. [27] crafted a combined model for forecasting 

heart disease by integrating RF and DT classifiers. This model 

attained an 88.7% accuracy rate in predicting heart disease 

with the Cleveland dataset. Experimental findings suggested 

that this integrated model outperformed the individual RF and 

DT models in terms of efficacy. 

Chowdhury et al. [28] examined the effectiveness of DT, 

LR, K-NN, NB, and SVM as ML algorithms for the early 

detection of CVD. They compiled a dataset consisting of 564 

cases and 18 attributes from healthcare sectors and hospitals 

in Sylhet, Bangladesh. The findings revealed that SVM 

achieved the top accuracy rate of 91% for the selected 

instances of the dataset. 

Menaa et al. [29] focused on developing and enhancing a 

Dense-DNN based model for predicting heart disease. They 

assessed the Dense-DNN model's performance in comparison 

with various ML models, such as SVM, LR, RF, DT, GNB, K-

NN, and XGBoost. To refine the model's efficiency, the 

researchers applied a genetic algorithm for choosing the most 

pertinent attributes. Without feature selection, the Dense-DNN 

model reached a 91.7% accuracy level, which increased to 

95% when feature selection was implemented. The model 

exhibited superior accuracy with MAE/RMSE values of 

0.083/0.289 without attribute selection and 0.050/0.224 with 

attribute selection. 

Pan et al. [30] carried out a comprehensive examination of 

numerical, categorical, and mixed features using cutting-edge 

ML techniques. The research employed a range of ML 

algorithms, such as Gradient Boosting (GB), Extreme 

Gradient Boosting (XGBoost), AdaBoost (AdaB), CatBoost 

(CatB), artificial neural networks (ANN), RF, SVM, DT, and 

LR. For their analysis, the authors selected the widely 

recognized Cleveland heart disease dataset as a benchmark for 

their research.  The evaluation of performance metrics 

indicated that categorical features surpassed numerical and 

combined features in effectiveness. Additionally, the study 

revealed that a combination of SVM and AdaBoost classifiers, 

when applied to categorical features, yielded the best results 

for predicting CVD. 

Almulihi et al. [31] introduced a deep-stacking ensemble 

approach aimed at the early detection of cardiac conditions 

using basic data and symptoms. Along with SVM as a learning 

meta-model, the model includes two hybrid models that have 

already been optimized and trained: the Convolutional Neural 

Network-Long Short-Term Memory (CNN-LSTM) and the 

Convolutional Neural Network-Recurrent Grid Unit (CNN-

GRU). The Recursive Feature Elimination (RFE) selection 

technique was used to select the most relevant attributes from 

two datasets: Cleveland and Heart Diseases. The model in 

question was assessed against other machine learning models, 

showing that its performance greatly outshined those 

implemented in the research. 

Jansi Rani et al. [32] aimed to develop a wearable 

biomedical prototype for predicting the occurrence of cardiac 

conditions. The prototype included an ECG sensor to monitor 

the variation in ECG patterns, and several algorithms were 

trained using the Cleveland dataset to detect heart conditions 

at an early stage. Findings indicated that the Random Forest 

algorithm achieved the top accuracy rate of 88% in forecasting 

heart conditions. 

Umer et al. [33] introduced an intelligent healthcare system 

that leverages IoT and Cloud technologies. This system 

incorporates a deep learning CNN model to classify heart 

failure patients into two categories: alive or deceased. To 

continuously monitor the health status of cardiac patients in 

real-time, a set of sensors tracks various vital signs, including 

Heart Rate (HR), Blood Pressure (BP), Temperature, Blood 

Glucose, Cholesterol, and Electrocardiogram (ECG) signals. 

These sensor data are transmitted to a Cloud web server for 

processing and subsequently forwarded to the CNN model for 

predicting the patient's health condition. The dataset used for 

this study contains 13 attributes and was sourced from the UCI 

repository called Heart Failure Clinical Records. The 

predictive model developed in this research attains an 

impressive accuracy rate of 92.89%. 

Subahi et al. [34] the primary aim of this investigation is to 

enhance the precision of heart disease assessments through the 

utilization of the Modified Self-Adaptive Bayesian algorithm 

(MSABA). Sensors are deployed to monitor a range of cardiac 

parameters, including ECG pulses, temperature, heart rate, 

blood glucose, lipid levels, and other relevant factors, to 

continuously observe the overall health status of individuals 
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afflicted with heart conditions. The model's training and 

testing phases employed datasets from Cleveland, Hungarian, 

and a merged dataset known as CH. The proposed approach, 

MSABA, demonstrates an impressive accuracy rate of 90%. 

Djerioui et al. [35] proposed a model using the SVM 

algorithm for the effective prediction of heart disease. The 

authors employed Neighborhood Component Analysis (NCA) 

to select the most relevant attributes in order to enhance the 

performance of the suggested method. The proposed model 

achieved an accuracy rate of 85.43%. 

 

 

3. PROPOSED RESEARCH METHODOLOGY 

 

Technological advancements such as IoT, ML, and deep 

learning have a significant impact on the healthcare sector. 

These innovations make it possible to continuously monitor a 

patient's health condition in real-time, which in turn allows for 

the prompt identification of potential health concerns. To 

provide more accurate assessments of cardiac illnesses, we 

have developed an IoT platform that leverages biomedical 

sensors to collect essential medical data. Subsequently, this 

data is filtered, processed, and directed to a CVD prediction 

system based on the E-KNN algorithm. In Figure 3, the 

depicted experimental process outlines the functioning of the 

envisaged predictive system for CVD. The system comprises 

two modules: data acquisition module and predictive analysis 

module. 

 

 
 

Figure 3. Architecture of the proposed system 

 

3.1 Data acquisition module 

 

This module is responsible for collecting and analyzing 

real-time data necessary for the diagnosis of CVD from 

wearable biomedical devices and a user profile, preparing it 

for use in ML predictions.  

 

 
 

Figure 4. Developed hardware system 

The hardware part of this data acquisition module consists 

of an Arduino board that acts as the brain of the system and 

multiple biomedical sensors, as depicted in Figure 4. Its 

primary role involves sensing and transmitting data via a serial 

communication connection. On the other hand, the software 

part comprises a Python application that receives the 

transmitted data, process it to extract usable features for ML 

modeling, and then store it in both a MySQL database and a 

CSV file. 

The data collection operation starts by capturing the dataset 

features thalach, TRESTBPS, Slope, Oldpeak, and restecg 

from available sensors when the relevant button on the Python 

application is clicked. 

The patient's continuous pulse rate is obtained using the 

pulse sensor. Upon clicking the Pulse Sensor button, 10 

successive pulse rates are captured and sent to the application 

over a serial connection port. The highest value among these 

10 rates is considered as the THALACH value. When the 

Blood Pressure Sensor button is pressed, the resting blood 

pressure TRESTBPS is measured and also transmitted to the 

application. 

The AD8232 ECG sensor is used for capturing small 

electrical signals from the patient's heart with a sampling rate 

of 1000Hz. When the ECG Sensor button is pressed in the 

Python application, 60000 consecutives ECG data samples are 

transferred to the application and saved in a separate CSV file. 

This saved ECG signal is further processed to extract desired 

features like SLOPE, OLDPEAK, and RESTECG, as 

illustrated in Figure 5. 

 

 
 

Figure 5. ECG signal processing steps 

 

The ECG signal processing starts by detecting the QRS 

complex using the Pan-Tompkins algorithm [36]. It works by 

bandpass filtering the signal, differentiating it to enhance QRS 

complex peaks, squaring the signal to further emphasize these 

peaks, and then applying a moving window integration process 

to smooth the signal and detect QRS complexes as local 

maxima. This algorithm is implemented in the Python toolbox 

for neurophysiological signal processing NeuroKit2 [37]. 

Next, the ST-segment is extracted from the identified QRS 

complex and R-peaks. The ST-segment is an isoelectric 

section of the ECG signal that follows the QRS complex and 

precedes the T-wave. It provides information about the 

inclination and the steepness of the signal waveform. It is 

defined as a segment of the signal following the J-point (end 

of the QRS complex) and extending for an 80-120ms duration. 

1309



 

The ST segment is measured at a point 60-80ms after the J-

point (J-60 and J-80) to avoid the influence of the J-point itself.  

After the ST segmentation step, the SLOPE of the ST-

segment is calculated. The slope of the ST-segment refers to 

the rate of change of the ST segment's amplitude over time. 

The amplitude of the ST-segment is defined as the deviation 

from the baseline. The slope is measured as the change in 

voltage between the J-point and the J-60/J-80 divided by the 

change in time. It is expressed in millivolts per millisecond 

(mV/ms). A positive slope indicates an upsloping or ascending 

ST-segment, while a negative slope indicates a downsloping 

or descending ST-segment. 

The OLDPEAK in an ECG signal refers to the ST-segment 

depression (ST depression) induced by angina relative to rest. 

It is measured as the vertical distance (in millimeters) between 

the baseline and the J-point (or the J-60/J-80 points during an 

exercise stress test). On the other hand, the RESTECG 

categorical value is deduced based on resting 

electrocardiographic results such as T-wave inversion, 

oldpeak, and left ventricular hypertrophy (LVH).   

Due to the unavailability of sensors to measure chest pain 

(CP), the number of major vessels colored by fluoroscopy 

(CA), serum cholesterol (CHOL), glucose level (FBS), and 

exercise-induced angina (EXANG), their lab values are 

directly stored in a personal profile along with the patient's age 

and sex. 

The final extracted and computed values will serve as input 

features for the selected best model identified by the predictive 

analysis module. The model will leverage these features to 

make informed predictions based on the individual's health 

data, aiding in early detection and prevention strategies for 

CVD. 

The system architecture of the data acquisition module is 

shown in Figure 6. 

 

 
 

Figure 6. System architecture of the data acquisition module 

 

Predictive analysis module 

The predictive analysis module consists of five main steps: 

data collection, exploratory data analysis, data preprocessing, 

data classification, and performance evaluation. 

 

3.2.1 Data collection 

The data collection step aims to gather relevant information 

from reliable sources such as medical records, surveys, genetic 

tests, and data sensors. For our study, we use the Cleveland 

Heart Disease dataset [38], a publicly available and well-

known dataset. This dataset comprises medical data related to 

patients referred to the Cleveland Clinic Foundation between 

1988 and 1990 for suspected heart disease. It contains 303 

instances, with 13 independent variables representing clinical 

measurements and demographic information and one 

dependent variable as the target variable. The target variable 

has two classes. In class 1, heart disease is detected, whereas 

in class 0, there is no presence of heart disease. Table 1 

furnishes an in-depth exposition of the Cleveland dataset. 

 

Table 1. Cleveland heart dataset attributes 

 
S. No. Attribute Description of attribute 

1 AGE Years of age (29-77) 

2 SEX 0: male, 1:female 

3 TRESTBPS 
Standing blood pressure of the patient 

(in mm Hg) (94 to 200) 

4 CHOL 
Serum cholesterol (in mg/dl) (126 to 

564) 

5 CP 

Type of chest pain 

1: typical angina, 

2: atypical angina, 

3: non-anginal pain, 

4: nosymptoms 

6 FBS 
If fasting blood glucose >120 mg / dl 

1: true, 0: false 

7 RESTECG 

Electrocardiographic result at rest 

0 = normal, 

1 = ST-T wave abnormality, 

2 = definite left ventricular hypertrophy 

by Estes’ criteria 

8 THALACH 
The maximum heart rate of the 

individual (71- 202) 

9 EXANG 
Angina induced by exercise 

1 = yes, 0 = no 

10 OLDPEAK 
ST depression induced by exercise 

compared to rest (0 to 6.2) 

11 SLOPE 

the slope of the peak exercise ST 

segment 

1 = up-sloping, 

2 = flat, 

3 = down-sloping 

12 CA 
Number of major vessels colored by 

fluoroscopy (0-3) 

13 THAL 

A blood disorder called thalassemia 

3 = normal,  

6 = fixed defect,  

7 = reversible defect 

14 Target 
1: presence of heart disease, 

0: absence of heart disease 

 

3.2.2 Exploratory data analysis 

Exploratory data analysis involves examining datasets to 

identify their main attributes, unveil relationships between 

variables, detect outliers and anomalies, and test underlying 

assumptions. Table 2 presents the statistical distribution of the 

different attributes of our dataset, such as minimum, maximum, 

average, standard deviation (STD), and missing values. 

According to our exploratory analysis of the data, we found no 

missing values in the Cleveland dataset. 

Figure 7 shows the visualization graphs of the target class. 

It can be noted that there are 138 individuals without heart 

disease, representing 45.5% of the sample, while 165 

individuals have heart disease, accounting for 54.5%. It 

indicates that the percentage of individuals with and without 

heart disease is almost equal, i.e., the dataset is balanced. A 

balanced dataset is crucial for attaining optimal classification 

results as it enables the model to be trained on an equal number 

of positive and negative instances. 

Figure 8 illustrates the univariate analysis for the attributes 

of the dataset. It reveals that the dataset comprises eight 
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categorical attributes (SEX, CP, FBS, RESTECG, EXANG, 

SLOPE, CA, and THAL) and five numerical attributes (AGE, 

trestbps, chol, thalach, oldpeak). Specifically: 

 

Table 2. Statistical distribution of Cleveland dataset 

 
Attribute Mini Max Mean STD Missing Values 

age 29.0 77.0 54.366337 9.082101 0 

sex 0.0 1.0 0.683168 0.466011 0 

cp 0.0 3.0 0.966997 1.032052 0 

trestbps 94.0 200.0 131.623762 17.538143 0 

chol 126.0 564.0 246.264026 51.830751 0 

fbs 0.0 1.0 0.148515 0.356198 0 

restecg 0.0 2.0 0.528053 0.525860 0 

thalach 71.0 202.0 149.646865 22.905161 0 

exang 0.0 1.0 0.326733 0.469794 0 

oldpeak 0.0 6.2 1.039604 1.161075 0 

slope 0.0 2.0 1.399340 0.616226 0 

ca 0.0 4.0 0.729373 1.022606 0 

thal 0.0 3.0 2.313531 0.612277 0 

target 0.0 1.0 0.544554 0.498835 0 

 

 
 

Figure 7. Target visualization 

 

▪ SEX: There are more male participants than female. 

▪ CP (Chest Pain Type): The distribution shows that 

type 0 (typical angina) is the most common, followed by non-

anginal pain, atypical angina, and asymptomatic types. 

▪ FBS (Fasting Blood Sugar): The majority of 

participants have fasting blood sugar below 120 mg/dl. 

▪ RESTECG (Resting Electrocardiographic Results): 

Shows a mix, with the majority having type 1 (ST-T wave 

abnormality). 

▪ EXANG (Exercise Induced Angina): Most 

participants did not experience angina induced by exercise. 

▪ SLOPE: The slope of the peak exercise ST segment 

has a majority in slope 2. 

▪ CA (Number of Major Vessels Colored by 

Fluoroscopy): A large number of participants have 0 major 

vessels colored by fluoroscopy, indicating no major blockages. 

▪ THAL: The most common value is 2 (fixed defect), 

followed by 3 (reversible defect) and 1 (normal). 

▪ AGE: The age distribution is roughly normal, 

centered around mid-50s. 

▪ Trestbps (Resting Blood Pressure): Shows a normal 

distribution with a mean around 130 mm Hg. 

▪ Chol (Serum Cholesterol): The distribution is slightly 

right-skewed, indicating a few participants with very high 

cholesterol levels. 

▪ Thalach (Maximum Heart Rate Achieved): The 

distribution is slightly left-skewed, with most participants 

achieving a high maximum heart rate. 

 

 

 

 
 

Figure 8. Univariate analysis of Cleveland attributes 

 

The correlation matrix stands as a fundamental instrument 

in the conduct of exploratory data analysis, it helps us to select 

the most important variables for analysis. It is represented in 

the form of a table that displays Pearson correlation 

coefficients (P) between several variables. These coefficients 

gauge both the magnitude and orientation of the linear 

association between two variables, encompassing a numerical 

scale that spans from -1 to 1." If the correlation coefficient 

between two variables is greater than 0.7, we can conclude that 

these variables are strongly correlated [39]. When two 

variables are strongly correlated, it may suggest that they 
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contain similar information, and one of them can be removed 

without affecting the analysis results.  

By examining the correlation matrix presented in Figure 9, 

we observe that our variables are not strongly correlated and 

can be used in the development of the ML model. 

 

 
 

Figure 9. Correlation matrix 

3.2.3 Data preprocessing 

Data preprocessing is an essential phase in the development 

of reliable and precise ML models. It guarantees that the data 

is purified, uniform, and prepared for training. To preprocess 

our data, we followed two steps: removing duplicate records 

and normalizing the data using the StandardScaler technique 

[40]. This technique transforms each variable X so that its 

mean (μX) is zero and its standard deviation (σX) is equal to 1, 

using the Eq. (2) 

 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝜇𝑥

𝜎𝑥
 (2) 

 

3.2.4 Data classification 

Data classification involves the systematic arrangement and 

tagging of data into specific groups, facilitating the discovery 

of patterns and insights for predictive purposes. In our 

methodology, the preprocessed dataset was segmented into 

two portions: 77% allocated for training and 23% designated 

for testing purposes. The training portion served to refine our 

developed model, E-KNN, alongside a suite of supervised ML 

techniques such as K-NN, SVM, DT, LR, and RF, aimed at 

segregating patients according to their heart disease risk levels. 

The effectiveness of these models was then assessed using the 

testing portion. To enhance the performance of our models, we 

fine-tuned the model's hyper parameters by harnessing the 

power of GridSearchCV with a cross-validation set defined at 

5 folds. 

Now, let's delve into the details of the proposed E-KNN 

algorithm, which we will use for classifying patients into 

categories with and without heart disease. 

Proposed algorithm E-KNN. The traditional K-NN 

algorithm classifies a test vector into the most frequent 

category among its K nearest neighbors, which can sometimes 

lead to incorrect classifications, especially in cases where the 

test vector is physically closer to the elements of a minority 

category, as illustrated in Figure 10 which displays scenarios 

that were misclassified by the KNN algorithm. 

 
(a) Scenario 1 

 
(b) Scenario 2 

 
(c) Scenario 3 

 

Figure 10. Examples of misclassified data by K-NN 

 

In the first scenario, the test vector is closer to the minority 

(negative) class. However, for K values greater than or equal 

to 7, the K-NN algorithm assigns the unclassified test vector 

to the majority (positive) class, even though it belongs to the 

minority class. In the second scenario, for K greater than or 

equal to 11, the K-NN algorithm assigns a positive value to the 

test vector, despite it being very close to the negative category 

vectors. In the third scenario, when the number of neighbors 

in the negative category is equal to the number of neighbors in 

the positive category, the K-NN algorithm assigns a random 

value to the test vector. 

To address this issue and minimize the number 

of misclassified cases by the K-NN algorithm, the E-KNN 

algorithm revises the majority vote approach by adopting a 

sophisticated mechanism that adjusts distances based on the 

class distribution and the proximity of neighboring points. 

This section outlines the steps of the E-KNN algorithm and the 

improvements made over the K-NN algorithm, explaining 

how they contribute to enhanced classification accuracy.  

 

Calculation of Euclidean distance D(X,Y): 

Calculate the Euclidean distance that separates each test 

point X and its neighbors Y, using the Eq. (1). 

•Sort all calculated distances D(X,Y) in ascending order. 

•Select the K smallest distances to determine the K nearest 

neighbors. 

 

Calculation of the probability factor P:  

P is defined as the ratio of the number of neighbors in a 

specific class (𝑁𝑐) to the total number of neighbors (𝐾). The 

P factor is designed to weight the contribution of each 

neighbor based on the density and prevalence of their 

respective class in the immediate vicinity. The probability 

factor P is calculated by Eq. (3): 

 

𝑃 =
𝑁𝑐
𝐾

 (3) 

 

Calculation and adjustment of the new distance 𝐷𝑛(𝑋, 𝑌) 
To calculate 𝐷𝑛(𝑋, 𝑌) , which measures the separation 

between each point X and its neighbors Y of the majority class, 

apply the following Eq. (4): 
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𝐷𝑛(𝑋, 𝑌) = 𝐷(𝑋, 𝑌) − ((𝐷(𝑋, 𝑌) ∗ 𝑃) + 𝑑) (4) 

 

To calculate 𝐷𝑛(𝑋, 𝑌) , which measures the separation 

between each point X and its neighbors Y of the minority class, 

apply the following formula Eq. (5): 

 

𝐷𝑛(𝑋, 𝑌) = 𝐷(𝑋, 𝑌) − ((𝐷(𝑋, 𝑌) ∗ 𝑃) − 𝑑) (5) 

 

The use of the 𝑑 parameter (distance adjustment parameter) 

is crucial. By adding or subtracting 𝑑, the algorithm adjusts 

the measured distance between points to avoid unfairly 

favoring either the overrepresented (majority classes) or 

underrepresented (minority classes). This helps ensure that all 

classes are treated fairly in the classification process, thus 

improving the overall accuracy of the algorithm. 

 

Sorting and classification 

After calculating all the new distances 𝐷𝑛(𝑋, 𝑌) , sorting 

them in ascending order allows the algorithm to determine the 

most influential neighbor for classifying the test vector X, 

selecting the one with the lowest 𝐷𝑛(𝑋, 𝑌) . This method 

ensures that the class assigned to X is represented by not only 

the closest neighbor but also the most statistically relevant. 

This approach enhances the integrity and increases the overall 

accuracy of the model. 

 

 
 

Figure 11. Calculation of new distance Dn 

 

 
(a) Scenario 1 

 
(b) Scenario 2 

 

Figure 12. Class prediction by E-KNN 

 

To illustrate the mechanism of weighted distance and the 

classification of a test point X. Figure 11 shows an illustrative 

example of the distance calculation Dn. For this scenario, we 

have K=3 neighbors (two positive neighbors and one negative 

neighbor). The probability of assigning the positive class to the 

tested vector is p=
2

3
. To calculate the new distance Dn that 

separates the tested vector and each element of the positive 

class, we use the formula Dn=D-((D*
𝟐

𝟑
)+d). The probability of 

assigning the negative class to the tested vector is p=
1

3
. To 

calculate the new distance Dn that separates the tested vector 

and each element of the negative class, we use the formula 

Dn=D-((D*
𝟏

𝟑
)-d).  

Figure 12 shows an illustrative example of class prediction 

by E-KNN algorithm. 

In scenario (1), we have K=6 (4 positive neighbors and 2 

negative neighbors). After calculating and sorting the new 

distances Dn, the tested vector is assigned to the negative 

category, which is a minority category. In scenario (2), we 

have K=6 (4 positive neighbors and 2 negative neighbors). 

After calculating and sorting the new distances Dn, the tested 

vector is assigned to the positive category, which is the 

majority category. The pseudo code of the E-KNN is as 

follows: 

 

Input: Training dataset, test dataset, K, d 

Output: Class of test vector X 

Begin 

For each test vector X in the Test dataset 

For each training vector Y in the Training dataset 

Calculate the distance between X and Y, denoted as 

D(X,Y), using Eq. (1). 

End For 

Sort all calculated distances D(X, Y) in increasing order. 

Select the K smallest distances to determine the K closest 

neighbors. 

Compute the probability P of assigning the neighbor Y's 

class to the test vector X based on the distribution of the K 

neighbors using Eq. (3). 

For each of the K neighbors 

Calculate the new distance Dn(X,Y) using formula Eq. (4) 

for the majority class and formula Eq.(5) for the minority 

class. 

End For 

Sort the new distances Dn(X,Y) in ascending order and 

select the smallest distance and the neighbor corresponding 

to that distance. 

Assign the tested vector to the category of the selected 

neighbor. 

End For 

End 

 

3.2.5 Performance evaluation 

Evaluating performance is crucial for determining the 

precision and efficacy of various models, thereby facilitating 

the selection of the most appropriate model for the given task. 

To assess the effectiveness of the E-KNN classifier on the 

dataset in question, we compute key performance indicators 

including accuracy, recall, precision, and F-measure. Also, we 

used error metrics such as MAE and RMSE for performance 

evaluation. To represent the projected classifier efficiency, it 

is compared with five other classifiers, namely, KNN, LR, RF, 

DT and SVM. To calculate the performance evaluation metrics, 

we used the confusion matrix presented in Table 3. 

 

Table 3. Confusion matrix 
 

 
Predicted 

Negative (0) Positive (1) 

Actual 
Negative (0) TN FP 

Positive (1) FN TP 
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True Positive (TP): refers to the count of instances 

accurately identified as positive. 

False Positive (FP): denotes the count of instances 

erroneously labeled as positive. 

True Negative (TN): signifies the count of instances 

correctly categorized as negative. 

False Negative (FN): indicates the count of instances 

mistakenly categorized as negative. 

Performance metrics can be measured from the values of 

TN, TP, FN and FP by the equations Eq. (6), Eq. (7), Eq. (8) 

and Eq. (9). The error metrics are calculated by the Eq. (10) 

and Eq. (11). 

Accuracy assesses the fraction of accurate forecasts 

generated by the model. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (6) 

 

Precision quantifies the ratio of correct positive predictions 

out of all positive predictions. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

 

Recall assesses the fraction of correct positive predictions 

out of all actual positives. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

F-measure is a combination of precision and recall that 

provides an overall measure of model performance. 

 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 

 

MAE is the average of the absolute differences between the 

actual (𝑦𝑖) and predicted values (�̂�𝑙). 
 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − �̂�𝑙|
𝑛
𝑖=1

𝑛
 (10) 

 

RMSE is computed by finding the square root of the 

average of the squared discrepancies between the predicted 

values (�̂�𝑙) and the actual values (𝑦𝑖)  
 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑙 − 𝑦𝑖)

2𝑛
𝑖=1

𝑛
 (11) 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

The proposed E-KNN classifier is compared to other 

algorithms cited previously based on the metrics discussed in 

subsection 3.2.5. Table 4 and Figures 13-16 show the 

performance results of the comparison of different classifiers. 

The introduction of weighted distance calculations and class 

distribution sensitivity in E-KNN has a direct and profound 

impact on its performance metrics. E-KNN achieves a high 

accuracy of 91.43%, significantly better than standard K-NN. 

This improvement is largely due to the weighted distance 

calculation which ensures that predictions are more influenced 

by neighbors that are closer and potentially more relevant, 

thereby reducing classification errors. The precision of E-

KNN at 94.12% and recall at 88.89% are indicative of the 

model's ability to correctly identify positive cases while 

minimizing false positives. The class distribution sensitivity 

plays a crucial role here, ensuring that minority classes are 

adequately represented in the decision-making process, thus 

improving the detection of true positives and reducing false 

negatives. The balanced F-measure of 91.43% reflects the 

model’s effectiveness in maintaining a harmonious balance 

between precision and recall, a crucial aspect in medical 

applications where both avoiding false negatives and 

minimizing false positives are important.  

 

Table 4. Evaluation of performance metrics 

 
Classifier/Metrics Accuracy (%) Recall (%) Precision (%) F-Measure (%) 

SVM 88.57 91.67 86.84 89.19 

LR 87.14 88.89 86.49 87.67 

DT 84.28 83.34 85.71 84.51 

RF 85.71 88.89 84.21 86.49 

K-NN 88.57 88.89 88.89 88.89 

E-KNN 91.43 88.89 94.12 91.43 

 

  
  

Figure 13. Accuracy comparison Figure 14. Recall comparison 
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Figure 15. Precision comparison Figure 16. F-measure comparison 
 

Table 5. Evaluation of error metrics 
 

Classifier/Metrics MAE RMSE 

SVM 0.11 0.34 

LR 0.13 0.38 

DT 0.16 0.40 

RF 0.14 0.38 

K-NN 0.11 0.34 

E-KNN 0.08 0.29 

 

Table 5 and Figures 17, 18 show the error metrics results 

comparison of E-KNN vs. different classifiers. We can see that 

the E-KNN MAE and RMSE are lower than the error metrics 

of other classifiers, which were 0.08, 0.29, respectively. These 

lower error rates prove the effectiveness of the weighted 

distance calculation in enhancing the overall predictive 

accuracy and consistency of the model, even in the presence 

of outliers or anomalous data. We conclude that the E-KNN 

has a higher capacity for reducing disparities between 

predictions and observations. 

The technical enhancements of E-KNN not only address the 

limitations of traditional K-NN but also significantly enhance 

its utility in clinical settings. The improvements in accuracy, 

precision, recall, and error metrics validate the effectiveness 

of the weighted distance calculation and class distribution 

sensitivity, highlighting E-KNN's superior capability to 

deliver reliable and accurate predictions in the early detection 

and treatment of CVD. 

The proposed algorithm for CVD prediction, E-KNN, is 

compared with various studies recently proposed by 

researchers to contribute to diagnosing a CVD with precision, 

perfection, and efficiency such as [21, 22, 26, 27, 32, 33]. The 

results are given in Table 6 and Figure 19. 

The E-KNN ML model shows commendable performance 

when compared to models referenced in [21, 22, 26, 27, 32] 

across several critical metrics. Notably, E-KNN's accuracy of 

91.43% is superior to all the aforementioned models except for 

the CNN model [33], which slightly edges out E-KNN with an 

accuracy of 92.89%. Additionally, E-KNN's recall rate of 

88.89% is surpassed only by CNN's recall of 94%, indicating 

significant improvements over the other compared models. 

 

  
  

Figure 17. MAE error comparison Figure 18. RMSE error comparison 

 

Table 6. Performance comparison: E-KNN vs. prior research 

 
Research Work ML Model Accuracy (%) Recall (%) Precision (%) F-Measure (%) 

[21] RF 90.16 88.20 93.7 90.9 

[22] SVM 89.34 80.70 95.83 87.61 

[26] SMO 86.47 86.5 86.5 86.4 

[27] Hybrid model DT+RF 88 - - - 

[32] RF 88.10 78.95 93.75 85.71 

[33] CNN 92.89 94 94 94 

Proposed work E-KNN 91.43 88.89 94.12 91.43 

 

In terms of precision, E-KNN records a precision of 94.12%, 

slightly higher than the CNN's precision of 94%. This slight 

edge demonstrates E-KNN's effective minimization of false 

positives, crucial in medical applications where precise 

diagnostics are required. However, when examining the F-

measure, which combines both precision and recall to provide 

a balanced view of model performance, E-KNN's F-measure 

stands at 91.43%, slightly below the CNN's 94%. This 
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difference points to an area where E-KNN, despite its high 

precision, could improve in balancing detection of true 

positives while minimizing false positives as effectively as the 

CNN model. 

Despite E-KNN’s slightly lower F-measure, its overall 

performance remains impressive, particularly in terms of 

precision and its capability in the robust prediction of CVD. 

The E-KNN model thus significantly enhances the overall 

accuracy and reliability of the CVD prediction system, 

asserting its utility as a potent tool for clinical applications. 

 

 
 

Figure 19. Comparing accuracy: E-KNN vs. prior research 

 

 

5. CONCLUSION AND FUTURE WORK 

 

Cardiovascular diseases are a global healthcare challenge, 

and their accurate diagnosis is crucial. Any slight error in 

diagnosis can have severe consequences. Given the rising 

mortality rate from these diseases, there is a need to create an 

intelligent cardiac disease prediction system. This system 

would monitor patients' real-time physiological signals using 

wearable sensors.  

This study introduces a novel CVD prediction model based 

on an enhanced version of the K-NN algorithm, termed E-

KNN. The E-KNN algorithm builds upon the standard K-NN, 

a non-parametric classification method based on the majority 

vote of an observation's nearest neighbors. E-KNN addresses 

the shortcomings of K-NN in scenarios with unbalanced 

medical datasets, where minority class data may skew 

predictions. It enhances accuracy by incorporating a 

probability factor (P) that weights the contribution of each 

neighbor based on class density and prevalence. Additionally, 

it adjusts distances with a parameter (d) to ensure fair 

treatment of both majority and minority classes, refining the 

traditional majority voting approach. The effectiveness of the 

E-KNN model is evaluated and compared with several 

established models using K-NN, RF, DT, LR, and SVM. 

Another objective of this study is to establish an IoT 

platform equipped with biomedical sensors for gathering 

crucial medical data, including an Arduino board, a blood 

pressure sensor, a pulse sensor, and an ECG sensor. The data 

collected from these sensors are processed by the E-KNN-

based model to produce more precise predictions for CVD. 

The E-KNN algorithm achieved the highest accuracy of 

91.43%, outperforming SVM (88.57 %), LR (87.14 %), DT 

(84.28 %), RF (85.71 %), and KNN (88.57%). This indicates 

that E-KNN is more successful in correctly classifying patients 

with and without CVD. Examining the error metrics, E-KNN 

exhibited the lowest Mean Absolute Error of 0.08 and Root 

Mean Squared Error of 0.29, highlighting its superior 

performance in terms of prediction errors. 

In the future, the work could be improved by developing a 

mobile application based on the E-KNN algorithm. Testing the 

E-KNN on a larger dataset could enhance the accuracy and 

reliability of the results. Additionally, employing feature 

selection techniques to choose the most relevant attributes 

could boost the performance of the E-KNN for CVD 

prediction. Future research could also explore the use of E-

KNN in various fields, such as diabetes prediction, cancer 

detection, financial fraud identification, and consumer 

behavior analysis, providing valuable insights into the 

comparative effectiveness of E-KNN. 
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