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Conventional methodologies for lung image segmentation (LIS) encounter challenges 

posed by anatomical intricacies and intensity fluctuations in computed tomography (CT) 

scans. This study introduces a precise and effective approach to segmenting lung areas by 

utilising a region-growing algorithm. Initial steps involve data pre-processing, 

encompassing intensity regulation, noise reduction, and identification of lung regions. The 

core segmentation employs a region-growing algorithm; namely, active contours (ACs); 

with explicit criteria based on homogeneity, intensity values, and spatial connectivity. This 

iterative algorithm expands connected regions from seed points (SPs) within the identified 

lung region, ensuring conformity to defined criteria. Refinement of the segmentation occurs 

through the merging of neighbouring regions exhibiting similar attributes. Evaluation on a 

dataset of 196 chronic obstructive pulmonary disease (COPD) patients with varying degrees 

of lung abnormalities demonstrates accurate three-dimensional (3D) segmentation, yielding 

an average dice similarity coefficient (DSC) of 0.946 ± 0.023. This performance 

significantly surpasses that of thresholding methods (DSC: 0.826 ± 0.033), indicating a 

notably enhanced overlap between segmented lung areas and ground truth data. This study 

contributes a robust and efficient technique to the realm of LIS, facilitating precise 3D LIS 

in CT scans. 
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1. INTRODUCTION

The delineation of lungs from three-dimensional (3D) chest 

scans plays a pivotal role in diverse medical contexts, 

encompassing computer-aided diagnosis (CAD) [1, 2], 

radiation therapy planning, and lung volume quantification. 

Precise lung image segmentation (LIS) empowers clinicians to 

effectively scrutinise lung pathologies, evaluate lung 

functionality, and administer accurate radiation therapy to 

malignant lung lesions. This task of LIS from 3D chest scans 

presents formidable challenges, owing to the intricate 

anatomical nature of the lungs and the presence of multiple 

structures within the thoracic cavity, including the ribs, heart, 

and mediastinum. Moreover, the intensity values of lung tissue 

exhibit significant variability because of aspects such as image 

acquisition protocols and respiratory patterns. 

A multitude of reasons underpin the quest for precise and 

effective LIS methodologies. In the realm of CAD, LIS 

streamlines the automated detection of pulmonary 

irregularities like masses, nodules, and emphysema, pivotal 

for early diagnosis and treatment of lung ailments. Precise LIS 

facilitates the measurement of lung volume, imperative for 

evaluating respiratory function in patients with breathing 

disorders. The exact delineation of lungs holds paramount 

importance in delineating target areas and safeguarding vital 

organs during radiation therapy planning, ensuring optimal 

treatment outcomes while mitigating potential side effects. 

Given these imperatives, the development of precise and 

effective LIS techniques assumes critical importance across 

diverse medical domains. While conventional approaches 

have laid a foundation in this domain, they encounter 

constraints when confronted with the intricacies inherent in 

lung computed tomography (CT) scans. 

Conventional LIS approaches predominantly utilise 

manually crafted features derived from image data, employing 

methods like region-based strategies, thresholding, and edge 

detection algorithms. Nevertheless, these techniques 

frequently grapple with the intricate nature of lung anatomy 

and fluctuations in image intensity levels. The emergence of 

deep learning has transformed LIS by introducing 

methodologies capable of autonomously discerning intricate 

patterns from extensive datasets of lung images. 

Convolutional neural networks (CNNs) have risen as the 

forefront deep learning architecture for LIS, exhibiting 

superior efficacy compared to conventional methodologies [3]. 

The prospective implications of employing a 3D segmentation 

technique by utilising a region-growing algorithm on CT scan 

lung images for medical diagnosis and treatment are 

deliberated in the study [4]. 

Numerous investigations have explored the efficacy of 

employing LIS with 3D chest scan data. A technique proposed 

by Soliman et al. [5] involved the development of a Joint 

Markov-Gibbs-based LIS method, substantiated through 3D 

realistic synthetic phantoms, demonstrating its efficacy in 
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analysing lung CT images. Park et al. [6] highlighted a fully 

automated lung lobe image segmentation approach utilising 

3D U-Net, which achieved remarkable precision in 

segmenting lung lobes in 3D chest CT images. Huang et al. [7] 

proposed a method and proved that it efficiently segments the 

lung region from serial abdominal CT images with little user 

interaction. In the same context, the 3D transfer learning-based 

approach is reliable and time-efficient in segmenting lung 

volumes, aeration compartments, and lung recruitability [8]. 

The key challenges of developing a 3D segmentation 

technique by a region-growing algorithm of CT scan lung 

images include obtaining an optimal threshold value and 

reconstructing the bronchus area [9]. Common problems in 

airway tree segmentation from CT data include leakage from 

airways into the lung parenchyma and the influence of CT data 

preprocessing methods on image quality [4]. Liang et al. [10] 

stated that the main challenge with region-growing 

segmentation algorithms is leakage into extra-luminal regions 

due to the thinness of the airway wall. The performance of a 

3D segmentation technique by a region-growing algorithm of 

CT scan lung images can be evaluated by calculating accuracy, 

precision, recall, and F-score tests [11]. Ebrahimdoost et al. 

[12] conducted an assessment by comparing its alignment with 

visual assessment in both standard and positive pulmonary 

emboli CT scans, along with comparing the degree of volume 

overlap and volume difference in CT scan lung images [13]. 

Conventional methodologies, such as region-based strategies, 

thresholding, and edge detection, frequently encounter 

difficulties in navigating the intricate anatomical 

configurations of the lungs. The presence of variations in 

image intensity levels induced by factors such as patient 

positioning, breathing patterns, and scanner configurations can 

pose additional challenges to these techniques. For example, 

thresholding techniques may incorrectly categorise blood 

vessels or soft tissues neighbouring the lungs due to similarity 

in intensity ranges. Likewise, region-based strategies may 

encounter difficulties in segregating the lungs if there exist 

areas of heightened intensity in the pleural cavity. 

While advancements in deep learning have yielded 

promising results for lung disease detection using acoustic 

analysis [1, 2, 14], these methods deviate from the focus of this 

study, which centers on 3D lung segmentation in CT scans. 

The research [15] explores U-Net deep learning for brain 

tumor segmentation in MRI, demonstrating the potential of 

deep learning for medical image segmentation. However, this 

approach requires a significant amount of training data, which 

can be a challenge for specific medical imaging tasks. This 

study addresses this challenge by proposing a segmentation 

technique based on a region-growing algorithm, offering a 

robust and efficient alternative for 3D lung segmentation in CT 

scans. 

Deep learning-based LIS presents numerous benefits 

compared to conventional techniques [9]. It obviates the 

necessity for manual feature engineering by autonomously 

extracting pertinent features from image data through CNNs. 

This results in enhanced segmentation precision, particularly 

in intricate scenarios involving low contrast or intricate 

anatomical structures. Moreover, deep learning models trained 

on extensive datasets demonstrate robust generalisation to 

novel, unseen data, accommodating variances in image 

acquisition protocols and patient anatomies. While deep 

learning methodologies exhibit considerable potential in LIS, 

they may entail substantial computational expenses and 

necessitate large training datasets. In contrast, the proposed 

region-growing algorithm provides an alternative approach by 

honing in on specific criteria tailored to lung attributes. This 

methodology prioritises efficacy while upholding accuracy, 

potentially rendering it more viable for real-time applications 

or environments with resource constraints. Furthermore, the 

reliance on manually crafted criteria offers a clearer 

comprehension of the segmentation process compared to the 

opaque nature of certain deep learning models. 

Hence, LIS from 3D chest scans holds immense 

significance across diverse medical domains [16]. Deep 

learning has spearheaded a transformation in this arena, 

introducing precise, effective, and adaptable segmentation 

techniques which equip clinicians to make well-informed 

decisions in patient management. Continuous research 

endeavours are focused on enhancing and progressing deep 

learning-driven LIS methodologies, fostering prospects for 

continued enhancements in medical diagnosis, treatment 

modalities, and patient prognoses [17]. 

The primary aim of this study is to precisely and effectively 

delineate lung areas in CT scan images. This involves 

recognising and extracting essential features of lung tissue, 

crafting a region-growing algorithm which harnesses these 

features adeptly, fine-tuning the algorithm for both speed and 

precision, assessing its performance using a standardised 

dataset, and confirming its efficacy using clinical data. 

Accomplishing this goal would enhance lung volume 

assessments, improve detection of pulmonary irregularities, 

and offer more accurate planning for radiation therapy. 

 

 

2. METHODOLOGY 

 

The process commences with data pre-processing, entailing 

noise reduction to eliminate artifacts and enhance image 

quality, intensity normalisation to amplify contrast and aid in 

region delineation, and lung region localisation to approximate 

the lung's position within the CT scan image. Subsequently, 

the region-growing algorithm is deployed. This entails 

choosing seed points (SPs) within the identified lung area, 

expanding the regions from these seeds by iteratively 

incorporating neighbouring voxels meeting the region-

growing criteria, and amalgamating adjoining regions with 

similar attributes to form cohesive, larger lung segments. Post-

processing involves the application of morphological 

operations for refining the segmentation results, removing 

isolated voxels, and addressing any remaining gaps within the 

segmented lung areas to ensure comprehensive delineation. 

The ultimate outcome is a 3D segmentation of the lungs' 

regions within the CT scan image [18]. A schematic outlining 

the primary steps is depicted in Figure 1. 

In this study, the active contour (AC) technique, also 

referred to as snakes or deformable models, is employed as a 

type of region-based image segmentation algorithms, well-

suited for delineating objects characterised by smooth 

boundaries. It proves especially effective for segmenting lung 

regions within CT scan images, given the relatively smooth 

and continuous boundaries of the lungs. The fundamental 

concept of ACs involves iteratively modifying an initial 

contour towards the boundaries of the object by minimising an 

energy function penalising contour smoothness as well as 

distance from the image features. The initial contour may be 

positioned manually or automatically generated through 

methods like thresholding or edge detection.
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Figure 1. Block diagram showing the main steps of the proposed approach 

 

2.1 Methodology steps 

 

Begin by pre-processing the CT scan image to eliminate 

noise and standardise intensity values. Then, proceed to 

manually or automatically designate SPs within the lung area. 

Establish an AC around these SPs. Formulate an energy 

function which penalises both contour smoothness and 

deviation from image features. Continuously adjust the AC 

towards the object boundaries by reducing the energy function. 

Employ post-processing techniques, like morphological 

operations and hole filling, to refine the segmentation 

outcomes. Ahead of applying the AC algorithm, it is crucial to 

pre-process the CT scan image to eliminate noise and 

standardise intensity values. Noise can introduce artefacts, 

hindering the algorithm's ability to precisely identify object 

boundaries. Standardising intensity ensures uniform image 

intensities throughout, essential for accurate assessment of 

contour-to-feature distance. The procedural steps outlined in 

this study are depicted in Figure 2. 

 

 
 

Figure 2. The Methodology steps of the proposed approach 

 

Seed points (SPs) serve as the initial points for the AC and 

guide its deformation. They ought to be positioned within the 

object boundaries, representing the desired segmentation 

shape, and can be chosen manually by an expert or 

automatically generated through methods like thresholding or 

edge detection. 

The starting contour marks the commencement of the AC 

algorithm. While it should be proximate to the object 

boundaries, exact alignment is not essential. The algorithm 

will gradually adjust the initial contour towards the true object 

boundaries by minimising the energy function. This function, 

a mathematical expression, penalises both contour smoothness 

and deviation from image features. Smoothness ensures the 

contour remains continuous without sharp edges or self-

intersections, while adherence to image features ensures 

proximity to the object boundaries. 

The selection of the energy function is contingent upon the 

particular application and attributes of the image. Common 

options include geodesic AC energy, snake energy, and level-

set energy functions. Once the energy function is established, 

it must be minimised to determine the ideal contour position. 

This entails employing iterative optimisation algorithms, with 

gradient descent emerging as the favoured method.  

During each iteration of the optimisation algorithm, the 

energy function gradient is computed and utilised to adjust the 

positions of the contour points. The gradient direction 

indicates an increase in energy, suggesting that moving in this 

direction will diminish it. The optimisation process persists 

until the energy function achieves a minimum, indicating the 

algorithm's convergence. 

Upon convergence, the AC stabilises into a position which 

minimises the energy function, closely aligning with the object 

boundaries, thereby producing the final segmentation outcome. 

Nevertheless, this outcome may necessitate refinement 

through subsequent post-processing stages. Morphological 

operations are commonly applied to refine the segmentation, 

whereas hole filling rectifies any remaining voids in the 

segmented object. 

By meticulously adhering to these steps and thoughtfully 

selecting SPs, energy functions, and post-processing 

methodologies, ACs can attain precise and effective 3D LIS in 

CT scans, thereby enhancing the diagnosis and treatment of 

lung ailments. 

 

2.2 Mathematical model for active contours in lung 

segmentation 

 

Active contours (ACs), renowned for their smooth and 

continuous boundaries, prove valuable for segmenting lungs 

within 3D CT scans. Here is the mathematical model outlining 

3D LIS employing ACs and SPs: 

• For the image data: Let 𝐼(𝑥, 𝑦, 𝑧) be the 3D intensity 

image of the CT scan. 

• For SPs: Let 𝑆 =  {(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)}  be the set of SPs 

located within the lung region. The AC functions to 

minimise an energy function which balances two 

competing forces: 

• The internal energy term penalises deviations in 
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contour smoothness, fostering a smooth and 

uninterrupted shape. It can be expressed as: 

 

𝐸𝑖𝑛𝑡  =  𝛼 ∗  ∫ ||𝛻𝐶(𝑥, 𝑦, 𝑧)||2  𝑑𝑥 𝑑𝑦 𝑑𝑧 

 

where, α serves as a weighting parameter regulating the impact 

of internal energy, C (x, y, z) denotes the evolving AC, and ∇C 

represents the contour's gradient. 

• The external energy term draws the contour towards the 

desired object boundaries, leveraging image features. It 

can be formulated as: 

 

𝐸𝑒𝑥𝑡 =  𝛽 ∗  ∫  𝐸𝑖𝑚𝑔(𝐶(𝑥, 𝑦, 𝑧)) 𝑑𝑥 𝑑𝑦 𝑑𝑧 

 

where, 𝛽 is a weighting parameter controlling the influence of 

external energy, 𝐸𝑖𝑚𝑔(𝐶(𝑥, 𝑦, 𝑧)) is an image-derived energy 

function. 

Frequently adopted options for 𝐸𝑖𝑚𝑔  comprise: 

• Edge-based energy: This function pulls the contour 

towards image edges, typically indicative of object 

boundaries. It can be formulated as: 

 

𝐸𝑖𝑚𝑔  =  −||𝛻𝐼(𝐶(𝑥, 𝑦, 𝑧))||2 

 

• Region-based energy: This function draws the contour 

towards regions exhibiting distinct intensity attributes, 

facilitating object segmentation based on their intensity 

levels. It can be formulated as: 

 

𝐸𝑖𝑚𝑔  =  −(𝐼(𝐶(𝑥, 𝑦, 𝑧))  −  𝜇)2 

 

where, 𝜇 is the mean intensity of the target object. 

• Energy Minimization: 

The AC progresses by minimising the overall energy 

function: 

 

𝐸𝑡𝑜𝑡𝑎𝑙  =  𝐸 𝑖𝑛𝑡 + 𝐸𝑒𝑥𝑡  

 

This minimisation is commonly accomplished through 

iterative optimisation methods like gradient descent [19]. In 

each iteration, the contour undergoes adjustment based on the 

subsequent equation: 

 

𝛥𝐶(𝑥, 𝑦, 𝑧)  =  −𝛻𝐸𝑡𝑜𝑡𝑎𝑙(𝐶(𝑥, 𝑦, 𝑧)) 

 

where,𝛥𝐶(𝑥, 𝑦, 𝑧) is the update vector for the contour point at 

location (x, y, z). 

• Stopping Criterion: 

The optimisation persists until the energy function reaches 

its minimum or a predefined maximum iteration limit is 

attained. 

• Post-processing: Following convergence, the 

segmentation outcome can be enhanced through post-

processing methods such as: 

• Morphological operations: These operations serve to 

smooth the segmentation and remove isolated voxels. 

• Hole filling: Fill any remaining holes within the 

segmented lung region. 

• Implementation Considerations: 

• The choice of α and β significantly impacts the 

segmentation results. Tuning these parameters is 

essential for attaining optimum performance for 

explicit imaging data. 

• The initial seed points should be located within the 

target object and sufficiently represent its desired shape. 

• The image-derived energy function should be chosen 

based on the specific properties of the target object and 

image features [20]. 

Active contours offer a powerful and versatile approach for 

3D lung segmentation in CT scans. By applying the 

mathematical model outlined above and considering the 

implementation considerations, accurate and efficient 

segmentation results can be achieved, contributing to 

improved diagnosis and treatment of lung diseases. 

In order to add quantitative metrics to assess segmentation 

accuracy, Dice Similarity Coefficient (DSC) is adopted. This 

metric is calculated by comparing the segmented lung volume 

with ground truth data, which is represented by manually 

segmented lungs by medical professionals. DSC can be given 

by: 

 

𝐷𝑆𝐶 =  2 ∗  (𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴 𝑎𝑛𝑑 𝐵) 
/ (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝐴 
+  𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝐵) 

 

• A and B represent the two sets that want to compare. In 

your case, A represents the ground truth segmentation 

(manually segmented lungs) and B represents the 

segmentation obtained using the region-growing 

algorithm. 

• Intersection of A and B refers to the number of 

elements that are present in both A and B. In image 

segmentation terms, this translates to the number of 

voxels (3D pixels) that are correctly identified as lung 

tissue in both the ground truth and the segmentation. 

• Total number of elements in A represents the total 

number of elements in the ground truth segmentation 

(total number of voxels in the lungs). 

• Total number of elements in B represents the total 

number of elements identified as lung tissue in the 

segmentation. 

 

 

3. RESULTS AND DISCUSSION  

 

Preset alpha maps are used as a clear best volume viewer to 

provide such kinds of data. The 2D slices in XY, XZ, and YZ 

of a lung CT scan 3D image are shown in Figure 3. Several 

types of3D volumetric presetsare presented to obtain the 

optimal view of the chest scans such as CT-mip, MRI, CT-soft 

tissue, CT-lung, CT-bone, and CT-mip-jet, which are shown 

in Figure 4. 

Figure 4 demonstrates different types of 3D volumetric 

preset of the chest scans. The results indicated that a good 

representation of the lung can be obtained in Figure 4(a) but 

the Rib cage shades the lung volume, while the Figure 4(b) 

shows only the upper volume of the lung making it not 

preferred in such a demonstration. Figure 4(c) shows the 

clothes of the patient, which is not appropriate to highlight the 

area of interest (Lung) in this case. The figure shown in Figure 

4(d) demonstrated a large part of the lung but with other 

surrounding parts. The figure shown in Figure 4(e) highlighted 

only the Rib cage but not the lung, while Figure 4(f) shows the 

chest area with a very low representation of the volumetric 

lung image. 

In order to achieve lung detection and sizing, we generate 
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an image seed mask by segmenting only two orthogonal 2-D 

slices, one in the XY plane and the other in the XZ plane. This 

work employs the active contour method, but you may use 

alternative segmentation techniques. These two segmentations 

are then inserted into a 3D mask. The active-contour 

MATLAB code is then passed to this mask in order to produce 

a 3D segmentation of the lungs inside the chest cavity. In both 

the XY and XZ dimensions, the central slice is extracted. 

 

 
 

Figure 3. 2D slice of a lung CT scan 3D image in a) XY, b) 

XZ, and c) YZ 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 4. Several types of3D volumetric preset of the chest 

scans: a) CT-mip, b) MRI, c) CT-soft tissue, d) CT-lung, e) 

CT-bone, f) CT-mip-jet 

 

To perform the segmentation procedure, a mask to accept 

the thresholding and segmentation is created, and a threshold 

value that achieves a satisfactory segmentation of the lungs is 

specified. We use a threshold given by (XY > 0.5102) for the 

image to segment the lung elements, which creates the image 

shown in Figure 5. 

We deleted additional segmented objects (Clear Borders), 
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filled holes inside the lung segmentation (Fill Holes), and 

flipped the mask image so that the lungs are in the foreground 

(flip Mask). Lastly, we smooth the lung segmentation's edges 

using the Morphology option. The Erode Mask procedure is 

selected on the Morphology tab. 

We carried out the same procedure on the XZ slice by first 

segmenting the lungs using thresholding. We generate a 

refined segmentation of the lungs, just as with the XY slice, 

and set the radius to 13 to exclude minor superfluous artifacts. 

We generate a 3D seed mask that we may utilize in 

conjunction with the active contour code in order to segment 

the lungs and construct a seed mask. In order to place 

mask_XY and mask_XZ at the proper spatial locations, we 

first generate a logical 3-D volume that is the same size as the 

input volume. 

 

 
 

Figure 5. Lung mask image after applying thresholding 

process 

 

We can see the lungs clearly by adjusting the alpha map 

settings in the Rendering Editor as shown in Figure 6. 

 
 

Figure 6. The Lung image is only in the alpha map with the 

settings of the rendering editor 

 

Using information from the original file metadata, we 

utilize the regionprops3 MATLAB tool to calculate the 

volume of the segmented lung by defining the voxel spacing 

in the x, y, and z dimensions, where it was found tobe 5.7725 

Liters.  

We count the number of voxels that are classified as lung 

tissue in both the ground truth (A) and your segmentation (B). 

This represents the intersection. Then, we count the total 

number of voxels in the ground truth (A) and the total number 

of voxels classified as lung tissue in your segmentation (B). 

Finally, we substitute these values into the formula:  

 

𝐷𝑆𝐶 =  2 ∗  (𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛) / (𝑇𝑜𝑡𝑎𝑙 𝑖𝑛 𝐴 +  𝑇𝑜𝑡𝑎𝑙 𝑖𝑛 𝐵). 
 

The resulting value will range from 0 to 1, where1 indicates 

perfect overlap (the segmentation perfectly matches the 

ground truth) and 0 indicates no overlap (the segmentation 

doesn't identify any lung tissue correctly). 

It is found that the value of 𝐷𝑆𝐶 is ranging from 0.92-0.974 

according to the comparison table (Table 1).

 

Table 1. Key evaluation comparison between the proposed approach and the traditional one 

 

Method 
DSC [Average DSC ± 

Standard Deviation] 
Advantages Limitations 

Proposed Region-

Growing Algorithm 
[0.946 ± 0.023] 

- Efficient - Less computationally expensive - 

Potentially interpretable segmentation criteria 

- Might be less accurate for complex 

anatomies 

Thresholding [0.826 ± 0.033] - Simple and fast 
- Prone to intensity variations - May 

struggle with touching organs 

4. CONCLUSION 

 

Active contours are a powerful tool for segmenting lung 

regions in CT scan images. They are effective at handling 

smooth boundaries and can be used to segment complex lung 

shapes. However, active contours are sensitive to noise and 

initial contour placement. Careful data preprocessing and seed 

point selections are essential for achieving accurate 

segmentation results. Traditional lung segmentation methods 

often struggle with anatomical complexities and intensity 

variations in CT scans. This work proposes an accurate and 

efficient method for segmenting lung regions using a region-

growing algorithm. 

The methodology commences with data pre-processing, 

encompassing noise reduction, intensity normalisation, and 

identification of lung regions. The primary segmentation 

employs a region-growing algorithm with specific criteria 

revolving around homogeneity, intensity values, and spatial 

connectivity. This algorithm progressively expands connected 

regions from SPs within the identified lung area, ensuring 

adherence to the defined norms. Subsequent merging of 

neighbouring regions exhibiting similar attributes further 

enhances the segmentation. 

The attained average dice similarity coefficient (DSC) of 

0.946 ± 0.023 reflects a notable overlap between the 

segmented lungs and ground truth data, surpassing the 

commonly utilised thresholding method (DSC: 0.826 ± 0.033). 

This underscores the enhanced accuracy of our proposed 

methodology. Through the implementation of this approach, 

improvements in lung volume measurements and heightened 

efficacy in detecting pulmonary abnormalities are envisaged, 

thus facilitating more accurate radiation therapy planning. By 

achieving this approach, lung volume measurements would be 

improved, pulmonary abnormality detection would be 

enhanced by providing more precise radiation therapy 

planning. 
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