
Exploring Attentive User Interface Input via Raspberry Pi, based on Face Landmark

Detection, Eye Open-Closed Detection and Head Movements Detection

Muhamad Yusvin Mustar1,2 , Rudy Hartanto1* , Paulus Insap Santosa1

1 Department of Electrical Engineering and Information Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
2 Department of Electrical Engineering, Universitas Muhammadiyah Yogyakarta, Yogyakarta 55183, Indonesia

Corresponding Author Email: rudy@ugm.ac.id

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290410 ABSTRACT

Received: 26 January 2024

Revised: 6 June 2024

Accepted: 30 July 2024

Available online: 21 August 2024

Attentive User Interface (AUI), especially vision-based AUI systems, is a highly developed

area of study. Cameras play a crucial role in modeling AUI inputs to monitor and understand

user attention during interaction. This enables the optimization of interaction tasks between

humans and machines. Typically, AUI systems are designed for desktop computers,

employing various detection methods based on computer vision. This research introduces

the exploration of AUI input through a low-cost Raspberry Pi 4 embedded system a small-

sized system with limited voltage sources. This exploration serves as a reference for AUI

design on embedded systems. The proposed AUI input design generating 8 AUI input

categories. These include face detection, open or closed eye condition detection, and

detection of forward, up, down, left, and right view directions. This study discusses three

scenarios of AUI input modeling using various methods to identify the most effective design

through Raspberry Pi 4. Based on experimental results and a series of tested tasks, Scenario

3, based on Mediapipe, yielded the best results with an average FPS value of 10 and 100%

accuracy for facial landmark detection, detection of open eye conditions, detection of

forward, up, down, right, and left gaze directions at various detection reading angles.

Keywords:

AUI, Raspberry Pi, face landmark detection,

eye open-closed detection, head movements

detection

1. INTRODUCTION

AUI is a user interface designed to enhance user attention

capacity, allowing for the perception, modeling, and

optimization of user attention status. This ensures optimal

distribution of information processing resources between the

user and the system across a range of interaction tasks [1-4].

Specifically, AUI monitors user behavior, models goals and

interests, anticipates needs, provides information, and

strategically optimizes communication between humans and

machines using sensing, communication, augmentation,

control, and human availability [4, 5].

In its evolution, AUI is linked with the Perceptual User

Interface (PUI), which combines multimodal input,

multimedia output, and human-like perceptual capabilities,

facilitating natural interaction. The crux of AUI lies in the

modeling of users and the conclusions drawn about them [5].

There are four main types of AUI, including (1) visual

attention, (2) turn management, (3) interruption decision

interfaces, and (4) visual detail management interfaces [1, 3].

AUI research has found application in various fields such as

human-computer interaction (HCI), robot control, and other

interaction systems [6-10], with the primary goal of

maximizing natural interaction based on user attention.

A prominent contemporary development in AUI systems is

the vision-based or computer vision approach. This

development is closely tied to advancements in vision-based

sensor devices, utilizing camera devices to capture AUI input

reflecting user behavior or visual attention.

A prominent contemporary development in AUI systems is

the vision-based or computer vision approach. This

development is closely tied to advancements in vision-based

sensor devices, utilizing camera devices to capture AUI input

reflecting user behavior or visual attention [3, 5, 10]. Several

previous studies have explored vision-based AUI systems,

incorporating input from facial expressions and eye

movements [4], eye tracking [11, 12], and eye gaze [13].

Additionally, recent studies have shown that the application of

eye gaze-based AUI system input [14, 15] can monitor and

understand user behavior and attention during interaction

tasks. Consequently, the application of AUI can enhance user

interaction with the system compared to interfaces that do not

implement AUI. These systems are typically designed for

desktop computers, often equipped with graphics processing

units (GPU). However, for devices requiring smaller form

factors and low-voltage, cost-effective sources, the use of

desktop computers proves relatively inefficient. Thus, there is

a need for experiments to design vision-based AUI inputs for

alternative platforms, so that the application of AUI can be

more widely applied as a system that can optimize interaction

tasks.

Referring to device considerations, this research proposes

an experiment involving a vision-based AUI input design on

the Raspberry Pi embedded system, distinguishing it from

desktop computers. The Raspberry Pi is chosen for its

multiprocessing capabilities, power, programmability with

Ingénierie des Systèmes d’Information
Vol. 29, No. 4, August, 2024, pp. 1343-1355

Journal homepage: http://iieta.org/journals/isi

1343

https://orcid.org/0009-0008-1126-5019
https://orcid.org/0000-0003-1126-2340
https://orcid.org/0000-0002-0581-2521
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290410&domain=pdf

open-source software, Linux operating system compatibility,

low cost, low power consumption, portability, and compact

size [16-19]. In addition, several studies explain that the

Raspberry Pi supports computer vision-based systems and is

considered very reliable [20, 21], so the exploration of AUI

input through the Raspberry Pi needs to be done by combining

different inputs.

Compared to other studies [4, 11-15], this research proposes

an exploration of AUI input design based on different input

modalities, encompassing face landmark detection results,

open and closed eye detection, and vision-based head

movement detection. This design is intended for use as AUI

input in the visual attention system design computer vision-

based. Therefore, the design experiment for AUI input based

on vision for embedded Raspberry Pi systems must be

conducted to ensure that it can support various systems that

require small media, limited voltage sources, and low cost.

Furthermore, the accuracy of AUI input detection in real-time

scenarios will be tested with the experiments conducted on the

Raspberry Pi 4 embedded system. This is undertaken to assess

and determine the optimal performance of the proposed AUI

input via Raspberry Pi. Figure 1 illustrates the Raspberry Pi 4

Model B utilized in this experiment.

Figure 1. Raspberry Pi 4 Model B

2. METHODS

2.1 Hardware design

To build and test the proposed AUI input system, various

supporting hardware components are required, as illustrated in

Table 1. The system design block diagram is depicted in

Figure 2.

Table 1. Hardware

No. Hardware Specification

1
Raspberry Pi

4 Model B

Broadcom BCM2711, Quad core

Cortex-A72 (ARM v8) 64-bit SoC @

1.5GHz, 4GB LPDDR4-3200 SDRAM

2 Memory Card SanDisk Ultra Class 10 32 GB

3 Monitor 23 inch

4 Camera Webcam Logitech C525

5
Power

Adapter
5 Volt 3A

6
Mouse and

Keyboard
Type Wireless

As depicted in Figure 2, the camera employed to capture

visual attention is a C525 Logitech webcam. The Raspberry Pi

4 Model B serves as a single-board computer (SBC), operating

on the Raspbian 10 (Buster) operating system, with a 5-volt 3-

ampere voltage source. A 23-inch monitor functions as the

display screen, while wireless keyboard and mouse are utilized

as interface media for program creation, execution of

algorithms, and cursor navigation on the Raspberry Pi.

Figure 2. Hardware design

2.2 System design

The system in this research runs on the Raspberry Pi 4

embedded system by developing algorithms and programs that

extensively utilize the Python 3.7 programming language,

OpenCV 4.1.0 library, Dlib machine learning (ML) library,

and Mediapipe ML library. The OpenCV library is the most

well-known computer vision library, which builds on

algorithms that run in real-time, such as the Viola-Jones

technique based on Haar fature-based cascade classifiers for

object detection [22, 23]. Dlib is a cross-platform toolkit based

on C++ programming that can be used as ML tools and for the

creation of algorithms. Dlib includes several modules mainly

focused on ML, deep learning, and image processing [24],

while Mediapipe is a set of libraries, models, and methods

trained using ML so that it can be used for face identification

in images, facial landmark detection, body pose tracking, and

object recognition [25, 26]. In its current development, the

OpenCV library, Dlib ML library, and Mediapipe ML library

are widely used as tools in designing computer vision-based

systems [27-31].

In this research, various methods employed in the design of

facial landmark detection, open and closed eye condition

detection, and head movement detection will be compared.

These methods include face detection using Haar cascade

classifiers and Dlib [32, 33], Dlib face landmark detection [34-

36], and Mediapipe face landmark detection [37, 38]. Facial

landmark detection plays a crucial role in the design of this

AUI input system. Therefore, a comparison between Dlib face

landmark detection and Mediapipe face landmark detection

will be conducted. This comparison is necessary as the number

of facial landmark detections between Dlib and Mediapipe

differs. Dlib-based landmark detection results in 68 face

landmark detections, while Mediapipe landmark detection

results in 468 face landmark detections. However, it is worth

noting that the utilization of Dlib face landmarks requires prior

face detection, which is different from Mediapipe-based facial

landmark detection. Figure 3 illustrates the AUI input design

consisting of facial landmark detection, eye open-close

detection, and head movement detection.

As depicted in Figure 3, there are 8 AUI inputs, each

1344

assigned a detection code (a to h), indicating the outcome of

the AUI input detection process. Facial landmark detection

holds a significant role in the proposed design for AUI inputs.

Two prominent methods of facial landmark detection, namely

using Dlib and Mediapipe, are employed and tested due to

their popularity in the field of computer vision. In this study,

the outcomes of facial landmark detection serve as input

information for AUI detection. Figure 4 illustrates facial

landmark detection based on Dlib, while Figure 5 showcases

facial landmark detection based on Mediapipe.

Figure 3. Design of the AUI input

Figure 4. Dlib based 68 landmarks [36]

Figure 5. Mediapipe based 468 landmarks [38]

Since the study involves the utilization, testing, and

comparison of face landmark detection based on Dlib and

Mediapipe as inputs for the AUI, the experiment has been

categorized into several scenarios, including:

Scenario 1: AUI input based on Dlib detection of 68

landmarks ("shape_predictor_68_face_landmarks.dat") using

Haar cascade Classifier for face detection.

Scenario 2: AUI input based on Dlib landmark detection

using Dlib HOG (histogram of oriented gradients) for face

detection.

Scenario 3: AUI input based on Mediapipe detection of 468

landmarks.

Both Scenario 1 and Scenario 2 involve the detection of 68

landmarks based on Dlib. However, in this context, the study

aims to compare the impact or differences of using face

detection methods, namely Haar cascade Classifier and Dlib,

as the foundation for the 68 landmark detection. This is due to

the fact that Dlib's 68 landmark detection relies on face

detection. Additionally, each scenario undergoes AUI input

testing as depicted in Figure 3.

Upon successful landmark detection, the subsequent phase

involves designing the AUI input for detecting open and

closed eye conditions. For the eye condition detection, the

researchers utilize the eye aspect ratio (EAR) method. This

method calculates the height and width of the eye region [34,

39, 40]. As illustrated in Figure 6 and Equation 1, the EAR

method is chosen based on previous research demonstrating its

success in detecting open and closed eye conditions,

particularly in drowsiness applications [34, 41].

𝐸𝐴𝑅 =
∥ 𝑝2 − 𝑝6 ∥ +∥ 𝑝3 − 𝑝5 ∥

2 ∥ 𝑝1 − 𝑝4 ∥
 (1)

As shown in Figure 6 and Eq. (1), the computation of the

detected eye landmark region utilizes the eye aspect ratio

(EAR), which calculates the ratio between the height and

width of the eye region. The values P1 through P6 represent

the locations of the detected eye landmark points. The EAR

1345

tends to remain relatively constant when the eyes are open and

approaches a value close to zero, allowing this method to be

used for estimating open and closed eye conditions [34, 41].

In this study, the detection of eye conditions serves as input

information for AUI in discerning open and closed eye states.

Regarding head movement detection or monitoring, this

experiment serves as the AUI input for view direction

detection, encompassing detection of views to the right or

forward, views to the right or left, and views up or down. Head

movement monitoring contributes to the study of human

behavior, enhancing our understanding of a person's attention,

focus, and emotional state [42]. For head movement detection,

the researchers employ the head pose estimation method,

correlating the 2D facial landmark detection results with the

3D face shape [43-45], based on the detection of landmark

points on the face, as depicted in Figure 7.

In this experiment, 2D landmark points are derived from

landmark detection using Dlib and Mediapipe. The 3D face

shape is expressed in world coordinates, with the ability to

convert world coordinate points to camera coordinates. In

camera coordinates, these points are projected onto the image

plane using camera intrinsic parameters, including focal

length, optical center, and radial distortion, as outlined in Eq.

(2). Matrix A within the equation represents the camera matrix

containing intrinsic parameters and key points, while matrix

[R|t] signifies the joint rotation-translation matrix that

transforms points from the 3D world coordinate system to the

3D camera coordinate system [46].

𝑝𝑖 = 𝐴 [𝑅|𝑡]𝑃𝑖 (2)

The head pose estimation at 2D-3D landmark points is

conducted through the solvePnP (Perspective-n-Point)

algorithm in the openCV function. SolvePnP is an algorithm

that extracts rotation vectors and translation vectors using

DLT (direct linear transform) and Levenberg-Marquardt

optimization [46, 47]. Through solvePnP 2D-3D, head

movement estimation is obtained, encompassing the roll,

pitch, and yaw rotation axis values. However, the experiment

primarily focuses on the pitch (vertical) rotation value,

representing forward, up, and down views, and the yaw

(horizontal) value, representing left and right views. This

movement aligns with the head movement classification

illustrated in Figure 8 [42].

As depicted in Figure 8, head movement classification

serves as a reference for head movement detection,

representing the direction of the view. In this experiment, it is

utilized as the basis for determining head movement detection.

The comprehensive design of the proposed Attentive User

Interface (AUI) input, incorporating facial landmark detection,

open and closed eye conditions, and head movement detection,

is illustrated in the block diagram presented in Figure 9.

As seen in Figure 9, there are 3 sections labeled A, B, and

C that consist of parts of the detection process. As previously

explained, face landmark detection is a very important initial

part in the process of designing this AUI input system because,

through the results of face landmark detection, eye open-close

detection and head movement detection can be modeled. On

the label of section “A”, there are three scenarios of face

landmark detection processes that have different methods, and

later each face landmark detection result in each scenario will

be continued in section “B”, namely eye open-close detection

and section “C” head movement detection. The purpose of

making these three scenarios is to test, know, and compare the

performance of each detection scenario when the AUI input

system is running on Raspberry Pi 4. Each detection process,

including face landmark detection, eye open-close detection,

and head movement detection, is programmed with the same

algorithm the difference lies only in the face landmark

detection method based on the three proposed scenarios. Later,

the design of this AUI input system resulted in three

application-based Python forms based on scenarios 1, 2, and

3.

Figure 6. Eye landmark indicators [34]

Figure 7. 3D landmarks vs 2D landmarks [44]

Figure 8. Classification of head movements [42]

1346

Figure 9. AUI input block diagram: A. Face landmark detection, B. Eye open-close detection, C. Head movement detection

3. PARTICIPANTS AND EXPERIMENT PROCEDURE

In this experiment, 15 participants were voluntarily invited

to assess the proposed AUI input system. The group consisted

of 13 men and 2 women, aged between 19 and 30 years

(M=22.67 years). Additionally, 5 participants wore glasses. It

is worth noting that the standard sample size for HCI research

is commonly 12 participants, or it aligns with similar previous

HCI research studies [48]. Therefore, the inclusion of 15

participants in this experiment was deemed appropriate for

testing the proposed AUI input system. Figure 10 presents an

overview of the participants involved in testing the AUI input

system.

Figure 10. Participants in the AUI input system testing

As depicted in Figure 10, participants will engage in testing

AUI input running on the Raspberry Pi 4. Based on the results

of the system design, there are three application-based Python

input AUIs that will be tested on participants. The three

applications have the functions of face landmark detection, eye

open-close detection, and head movement detection. It's just

that the three applications have differences in facial landmark

detection methods based on the three scenarios proposed. As

for the steps of this experimental testing procedure, they

include:

-In the first step, participants were asked to sit in front of a

monitor screen that had a webcam attached to it, with an

average distance of 70 cm between the participant and the

monitor.

-In the second step, when the participant was ready for

testing, the operator would run three application-based Python

input AUIs in turn. While running each application, the

participant was asked to follow several tasks as listed in Table

2.

-In the third step, each participant performed the test based

on the assigned task, observing several indicators as listed in

Table 3. In addition, several tools, including a protractor ruler

and a protractor application running on a smartphone, were

used to measure the detection angle of the AUI input system,

which was then recorded and evaluated. The first step to the

third step is alternately performed until the 15th participant.

After obtaining the AUI input test data from participants,

the next step is evaluation, with the aim of observing the

performance of the system when run on a Raspberry Pi 4 and

assessing the detection accuracy of the three proposed

scenarios. All AUI input detection outcomes were assessed

based on the prediction accuracy, as determined by the

following Eq. (3):

1347

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
× 100% (3)

Subsequently, the test results for each indicator and various

test tasks will be compared across the three proposed

scenarios. This comparative analysis aims to ascertain the

performance and accuracy of each AUI input detection.

Table 2. Participants' tasks during AUI input testing in the

three experimental scenarios

Task Description

Task 1

Involves facial landmark detection. Participants are

required to face the front of the monitor screen

(front), followed by moving their head up and down

(pitch) and left and right (yaw).

Task 2

Focuses on detecting open or closed eye conditions.

Participants face the front of the monitor screen

(front) and are then instructed to move their head up

and down (pitch) and left and right (yaw) for both

open and closed eye conditions.

Task 3

Pertains to the detection of head movements

influencing the direction of the view. Participants

face the front of the monitor screen (front) and are

then directed to move their head up and down

(pitch) and left and right (yaw).

Table 3. Detection indicator

Indicator Description

Face

landmark

detection

Assessment of the system's capability to detect

the user's facial landmarks as input information

for AUI, enabling the system to detect and

recognize the user's face

Eye open-

close

detection

Evaluation of the system's ability to detect the

user's eye condition as AUI input information,

facilitating the system's determination of whether

the user's eyes are open or closed

Head

movement

detection

Examination of the system's capability to detect

the user's head movement as input information

for AUI, allowing the system to ascertain the

direction of the user's view, whether it is

forward, up, down, left, or right

4. EXPERIMENT RESULT AND DISCUSSION

The presentation of the results for the tested AUI input

proposed through the Raspberry Pi 4 is illustrated in Figure 11.

It is evident that the three AUI input scenarios are functional,

as indicated by the detection codes representing various AUI

input indicators, so that scenarios 1, 2, and 3 can display the

AUI input detection result indicator with the participant facing

front or facing the monitor.

Figure 11 provides insights into the functionality of the

system based on the proposed scenarios tested on the

participants. The AUI input indicators are displayed in the

upper left corner, presenting detection result codes in

alignment with the AUI input design depicted in the previous

Figure 3. The information in Figure 11 indicates "AUI: a, b, d"

with the following meanings:

-Code “a” provides information on detected facial

landmarks, enabling the detection of AUI input information

related to face detection and recognizing the user's face.

-Code “b” offers information on eye condition detection,

with the detection result indicating an open eye. Thus, the AUI

input system successfully detects information related to eye

condition.

-Code “d” furnishes details on head movement conditions

associated with the viewing direction. The result indicates

forward view detection, facilitating the AUI input system to

detect information on viewing direction.

Figure 11. AUI input results using Raspberry Pi 4

The monitoring results are observed through the Raspberry

Pi task manager when executing three AUI input system

scenarios. The primary focus of the monitoring process is

directed towards examining central processing unit (CPU)

usage and memory usage. This approach facilitates an

assessment of the performance of the proposed AUI input

system, as depicted in Table 4.

1348

Table 4. Raspberry Pi 4 task manager results

Testing Average Value of

CPU Usage (%)

Average Value of

Memory Usage (MB)

Scenario 1 82.4% 273.7 MB

Scenario 2 38.2% 266.9 MB

Scenario 3 42.6% 233.1 MB

Table 5. FPS comparison on tre AUI input scenarios

FPS

Testing

Average

FPS

Minimum FPS

Value

Maximum FPS

Value

Scenario 1 5 5 6

Scenario 2 3 3 4

Scenario 3 10 9 11

Based on Table 4, Scenario 1 of the AUI input system

exhibits the highest average CPU and memory usage values

when compared to Scenarios 2 and 3. Specifically, Scenario 2

demonstrates the lowest average CPU usage, while Scenario 3

shows the lowest memory usage among the proposed AUI

input system scenarios. In addition to task manager

monitoring, we also observed the frames per second (FPS)

values, as shown in Figure 12 and Table 5.

As shown in Figure 12 and Tables 5, based on the

experimental results, scenario 3 has the highest FPS value with

an average value of 10 FPS when running on Raspberry Pi 4,

while the minimum FPS value is 9 FPS and the maximum FPS

value is 11 FPS, so when compared to the FPS values of

scenarios 1 and 2, the FPS value of scenario 3 using the

Mediapipe-based facial landmark detection method is much

better. On the other hand, scenario 2 recorded the lowest FPS

value in this test, with an average value of 3 FPS, while the

FPS value of scenario 1 is in the middle with an average value

of 5 FPS. From the results of this test, it was found that

differences in facial landmark detection methods affect the

FPS value. Besides that, we found that the FPS value affects

the AUI input results in face landmark detection, eye open-

close detection, and head movement detection. Higher FPS

values correspond to faster AUI input detection results when

executed on a Raspberry Pi 4, while lower FPS values result

in slower or delayed AUI input detection. In addition to the

superiority FPS value, the average CPU and memory usage is

also quite low when running on the Raspberry Pi 4, so in terms

of FPS values and task manager results, scenario 3 is superior.

Regarding accuracy testing results, this experiment refers to

the tasks outlined in Table 2 and detection indicator in Table

3. Each task was tested in three scenarios in turn by the

participants, and the pitch and yaw detection angles are

measured based on head movements, as illustrated in Figure 8.

For pitch detection angles, representation includes front (0°),

up (0° to 80°) and down (0° to -80°), while yaw detection

angles represent front (0°), right (0° to 90°) and left (0° to -

90°). The AUI input test results for facial landmark detection

based on Task 1 in the pitch and yaw sections are presented in

Tables 6 and 7.

Figure 12. Real-time FPS readings on the Raspberry Pi 4

Table 6. AUI input results on face landmark detection based on task 1 on the pitch side

Testing

Pitch (vertical)

Accuracy (%)

Angle

Down Front Up

-80° -60° -30° 0° 30° 60° 80°

Scenario 1 0% 13% 100% 100% 100% 0% 0%

Scenario 2 0% 100% 100% 100% 100% 100% 0%

Scenario 3 100% 100% 100% 100% 100% 100% 100%

Table 7. AUI input results on face landmark detection based on task 1 in yaw side

Testing

Yaw (horizontal)

Accuracy (%)

Angle

Left Front Right

-90° -60° -30° 0° 30° 60° 90°

Scenario 1 0% 0% 100% 100% 100% 0% 0%

Scenario 2 0% 100% 100% 100% 100% 100% 0%

Scenario 3 100% 100% 100% 100% 100% 100% 100%

1349

As shown in Tables 6 and 7, when 15 participants performed

the test with the position facing the monitor screen (front), in

turn, scenarios 1, 2, and 3 demonstrated effective detection of

facial landmarks, each achieving an accuracy of 100%. This

proves that in the front-facing position, all the proposed

scenarios can work to display the face landmark detection

indicator as AUI input information related to face detection.

However, when testing moving the head up and down (pitch),

as well as testing moving the head right and left (yaw), there

are differences in facial landmark detection results. This test is

carried out in stages based on each detection angle accuracy

reading result, as listed in the table.

When 15 participants tested moving their heads up and

down (pitch) using scenario 1, the accuracy of detecting facial

landmarks was only optimal at a reading angle of 0° to 30° for

head movement up and 0° to -30° for head movement down,

so if the reading of head movement up exceeds an angle of 300

and head movement down exceeds an angle of -30°, the

accuracy of scenario 1 is not optimal for detection and cannot

even detect facial landmarks. While the accuracy results for

scenario 2 testing are better when compared to scenario 1,

when testing moving the head up and down based on scenario

2, the accuracy of detecting facial landmarks can be more

optimal at the reading angle of 0° to 60° for head movement

up and 0° to -60° for head movement down. In contrast to

testing the detection of facial landmarks using scenario 3,

scenario 3 is superior in detection accuracy when compared to

scenarios 1 and 2, because when 15 participants tested with

scenario 3, the accuracy of detecting facial landmarks could be

optimal at reading angles of 00 to 800 for head movements up

and 00 to -800 for head movements down, so there were no

facial landmark detection failures when participants tested

with scenario 3.

Similar to the test of moving the head right and left (yaw)

as shown in Table 6, the accuracy of detecting facial

landmarks using scenario 3 is superior when compared to

scenario 1 and scenario 2, the accuracy of detecting facial

landmarks can be optimized up to a reading angle of 0° to 90°

for right head movements and 0° to -90° for left head

movements, and there were no facial landmark detection

failures when 15 participants moved their heads left and right

when testing using scenario 3. Therefore, based on Task 1

experiments, AUI input using scenario 3 exhibits superior face

landmark detection (Mediapipe based) compared to scenarios

1 and 2, as illustrated in Figure 13. This figure provides an

example of a sample comparison of scenarios 1, 2, and 3 at a

detection angle of -900 yaw, indicating that scenarios 1 and 2

fail to detect the AUI input on the side of the -900 yaw

detection angle, while scenario 3 can still detect the AUI input.

In testing the accuracy of eye condition detection, the test

stages are not much different from testing face landmark

detection. When participants are asked to move their heads up

and down (pitch) and move their heads right and left (yaw),

we observe the results of open eye condition detection and

closed eye condition detection as described in task 2. The EAR

method applied to detect eye conditions was tested in scenarios

1, 2, and 3. The test results show that the accuracy of open eye

condition detection in scenario 3 is superior when compared

to scenarios 1 and 2, when participants move their heads up

and down and move their heads right and left, as shown in

Tables 8 and 9.

As for the results of testing the detection of closed eye

conditions, scenarios 1, 2, and 3 have the same accuracy value

when the participant moves the head up and down and moves

the head right and left, as seen in Tables 10 and 11, so that

when the head movement up exceeds the angle of 300 and the

head movement down exceeds the angle -300, as well as the

right head movement exceeding the angle 300 and the left head

movement exceeding the angle -300, the system cannot detect

closed eye conditions.

The use of the EAR method and participant testing enable

the classification of open and closed eye conditions. By setting

the EAR threshold value to 0.25, a detection result indicating

a closed eye condition is established if the EAR value is ≤ 0.25,

whereas an open eye condition is indicated if the EAR value is

≥ 0.25, as shown in Figure 14. Additionally, despite the

presence of five participants wearing glasses, experimental

results indicate that this factor does not impact the accuracy of

eye condition detection. The system is thus proposed to

reliably detect both open and closed eye conditions as AUI

input, even when participants are wearing glasses.

Table 8. AUI input results on open eye condition detection based on task 2 on the pitch side

Testing

Pitch (vertical)

Accuracy (%)

Angle

Down Front Up

-90° -60° -30° 0° 30° 60° 90°

Scenario 1 0% 0% 100% 100% 100% 0% 0%

Scenario 2 0% 0% 100% 100% 100% 0% 0%

Scenario 3 100% 100% 100% 100% 100% 100% 100%

Table 9. AUI input results on open eye condition detection based on task 2 in yaw side

Testing

Yaw (horizontal)

Accuracy (%)

Angle

Left Front Right

-90° -60° -30° 0° 30° 60° 90°

Scenario 1 0% 0% 100% 100% 100% 0% 0%

Scenario 2 0% 100% 100% 100% 100% 100% 0%

Scenario 3 100% 100% 100% 100% 100% 100% 100%

1350

Table 10. AUI input results on closed eye condition detection based on task 2 on the pitch side

Testing

Pitch (vertical)

Accuracy (%)

Angle

Down Front Up

-90° -60° -30° 0° 30° 60° 90°

Scenario 1 0% 0% 100% 100% 100% 0% 0%

Scenario 2 0% 0% 100% 100% 100% 0% 0%

Scenario 3 0% 0% 100% 100% 100% 0% 0%

Table 11. AUI input results on closed eye condition detection based on task 2 in yaw side

Testing Yaw (horizontal)

Accuracy (%)

Angle

Left Front Right

-90° -60° -30° 0° 30° 60° 90°

Scenario 1 0% 0% 100% 100% 100% 0% 0%

Scenario 2 0% 0% 100% 100% 100% 0% 0%

Scenario 3 0% 0% 100% 100% 100% 0% 0%

Figure 13. An example of scenario 1, 2 and 3 comparison at -900 yaw detection angle

Concerning AUI input testing for head movement detection,

representing the direction of view encompassing forward,

upward, and downward views (pitch), as well as left and right

views (yaw), it is observed that scenario 3 outperforms

scenarios 1 and 2. This is evident in Tables 12 and 13, which

present the results of participant testing for Task 3, aligning

with the results obtained from Task 1 testing on face landmark

detection testing on face landmark detection testing.

The use of the 2D-3D head pose estimation method and

analyzing pitch and yaw rotation axis values, the researchers

successfully classified head movements as AUI input for view

direction detection, especially by using scenario 3. The

researchers defined front view direction detection when both

the pitch and yaw rotation axis values were ≤ 15 and ≥ -15. For

upward viewing direction detection, they considered pitch axis

values ≥ 15, while downward viewing direction detection was

defined for pitch values ≤ -15. Similarly, leftward viewing

direction detection was designated for yaw values ≥ 15, and

rightward viewing direction detection for yaw values ≤ -15.

Figure 15 illustrates one of the sample head movement

detection results, representing the detection of view direction

as an AUI input.

From the experiment results, all three proposed scenarios

proved capable of detecting viewing direction as AUI input.

Although the scenarios varied in accuracy, scenario 3

demonstrated superior performance in reading head

1351

movements as the direction of view in pitch and yaw angle

readings, so that Mediapipe-based facial landmark detection

with scenario 3 has the advantage in every test that has been

done.

Figure 14. One of the sample readout graphs of open and closed eye condition detection via the EAR method

Figure 15. One of the sample head movement detection results representing view direction detection as AUI input

Table 12. AUI input results on head movement detection representing the view direction based on task 3 on the pitch side

Testing

Pitch (vertical)

Accuracy (%)

Angle

-80° -60° -30° 0° (Front) 30° 60° 80°

Scenario 1 0% 0% 100% 100% 100% 0% 0%

Scenario 2 0% 100% 100% 100% 100% 100% 0%

Scenario 3 100% 100% 100% 100% 100% 100% 100%

1352

Table 13. AUI input results on head movement detection representing the view direction based on task 3 on the yaw side

Testing

Yaw (horizontal)

Accuracy (%)

Angle

-90° -60° -30° 0° (Front) 30° 60° 90°

Scenario 1 0% 0% 100% 100% 100% 0% 0%

Scenario 2 0% 100% 100% 100% 100% 100% 0%

Scenario 3 100% 100% 100% 100% 100% 100% 100%

The exploration of AUI input through the Raspberry Pi 4

covering facial landmark detection, eye opening and closing

detection, and head movement detection yielded 8 functional

AUI inputs aligned with indicators and predefined tasks. The

performance of the Raspberry Pi 4 embedded system exhibited

variations based on the employed methods and scenarios.

Notably, the test results highlighted that the AUI input system

in scenario 3 (Mediapipe-based) outperformed scenarios 1 and

2 in terms of both performance and accuracy. Therefore, the

exploration of AUI input through Raspberry Pi 4 with scenario

3 can serve as a reference for designing AUI in diverse forms

of interaction, particularly to support the visual attention

system design in computer vision-based systems.

Based on the conducted experiments, although the

Raspberry Pi 4 embedded system can support input AUI

computer vision-based systems, several experiments are

needed to obtain a method that can work optimally on the

Raspberry Pi, as has been done in this study, so as to obtain

the best performance of the system. In addition, the results of

this study prove that the AUI system using Raspberry Pi has

the advantage of designing a visual attention-based AUI

system that can support various systems with small media,

limited voltage sources, and low cost. This is crucial for

utilizing it as a parameter for user interface design in various

forms of interaction, including HCI, HRI, and various other

interaction systems. Because, in 2024, the price of the

Raspberry Pi 4 from $35 [49], it can be a consideration besides

using desktop computers. However, it cannot be denied that

desktop computers have a larger CPU and memory when

compared to the Raspberry Pi, especially desktop computers

equipped with GPU.

5. CONCLUSION

This research successfully explored AUI input through the

Raspberry Pi 4 Model B, based on face landmark detection as

AUI input information for face detection, eye condition

detection as AUI input information for open or closed eye

condition detection, and head movement detection as AUI

input information for forward, up, down, right, and left gaze

direction detection, so as to produce 8 computer vision-based

AUI inputs.

In this experiment, we modeled three AUI input scenarios

based on several methods with the aim of obtaining the most

optimal AUI input system running on a Raspberry Pi. Based

on the test results, the three proposed scenarios can work to

detect AUI input according to the indicators and tasks that

have been determined, but there are differences in

performance and accuracy values in each scenario, where the

test results involving 15 participants show that the AUI input

system in scenario 3 (Mediapipe-based) is superior to

scenarios 1 and 2, This shows that the development of the AUI

input system through Raspberry Pi 4 using scenario 3 is able

to produce the best performance with an average FPS value of

10 FPS with an average CPU usage of 42.6% and an average

memory usage of 233.1 MB, with a detection accuracy value

of 100% for facial landmark detection, detection of open eye

conditions, detection of forward, up, down, right, and left gaze

directions at various detection reading angles.

The use of Raspberry Pi as a computer vision-based system

has proven to be capable and reliable for the development of

vision-based AUI. The findings of this research can be a

reference for the development of AUI, especially in the visual

attention system, which allows the system to monitor and

know the behavior or condition of the user's attention when

performing interaction tasks based on 8 AUI inputs that have

been proposed, so we believe this research can be utilized to

support the user's attention capacity in various interaction

tasks, such as HCI, HRI, and various other interaction tasks,

especially based on embedded systems. In addition, the use of

Raspberry Pi with open source software, low cost, low power

consumption, portability, and small size can be an alternative

to the use of desktop computers.

During testing, the limitations of this research are only

influenced by light intensity, a lack of light can affect the

detection results using a webcam. Because the use of a

webcam camera can work well when the light needed is

sufficient, we had time to measure the light intensity, where

the system can work well in light conditions above 20 Lux, if

the light is below the value of 20 Lux, the system cannot work

optimally in detecting.

Future research on the development of AUI inputs using the

Raspberry Pi 4 embedded system can be expanded based on

various other inputs that support vision-based interaction

tasks, such as facial expression detection, hand gesture

detection, and human pose detection.

REFERENCE

[1] Vertegaal, R. (2003). Attentive user interfaces.

Communications of the ACM, 46(3): 30-33.

https://doi.org/10.1145/636772.636794

[2] Vertegaal, R., Shell, J.S., Chen, D., Mamuji, A. (2006).

Designing for augmented attention: Towards a

framework for attentive user interfaces. Computers in

Human Behavior, 22(4): 771-789.

https://doi.org/10.1016/j.chb.2005.12.012

[3] Vertegaal, R., Shell, J.S. (2008). Attentive user

interfaces: The surveillance and sousveillance of gaze-

aware objects. Social Science Information, 47(3): 275-

298. https://doi.org/10.1177/0539018408092574

[4] Singh, G., Bermúdez i Badia, S., Ventura, R., Silva, J.L.

(2018). Physiologically attentive user interface for robot

teleoperation: Real time emotional state estimation and

interface modification using physiology, facial

expressions and eye movements. In 11th International

Joint Conference on Biomedical Engineering Systems

and Technologies, pp. 294-302.

1353

https://doi.org/10.5220/0006733002940302

[5] Maglio, P.P., Matlock, T., Campbell, C.S., Zhai, S.,

Smith, B.A. (2000). Gaze and speech in attentive user

interfaces. In Advances in Multimodal Interfaces—ICMI

2000: Third International Conference Beijing, China, pp.

1-7. https://doi.org/10.1007/3-540-40063-X_1

[6] Bulling, A. (2016). Pervasive attentive user interfaces.

Computer, 49(1): 94-98.

https://doi.org/10.1109/MC.2016.32

[7] Xu, P., Sugano, Y., Bulling, A. (2016, May). Spatio-

temporal modeling and prediction of visual attention in

graphical user interfaces. In Proceedings of the 2016 CHI

Conference on Human Factors in Computing Systems,

San Jose California USA, pp. 3299-3310.

https://doi.org/10.1145/2858036.2858479

[8] Castellanos-Cruz, J.L., Gómez-Medina, M.F., Tavakoli,

M., Pilarski, P.M., Adams, K. (2019). Comparison of

attentive and explicit eye gaze interfaces for controlling

haptic guidance of a robotic controller. Journal of

Medical Robotics Research, 4(3-4): 1950005.

https://doi.org/10.1142/S2424905X19500053

[9] Tavares, A., Silva, J.L., Ventura, R. (2023).

Physiologically attentive user interface for improved

robot teleoperation. In Proceedings of the 28th

International Conference on Intelligent User Interfaces,

Sydney, Australia, pp. 776-789.

https://doi.org/10.1145/3581641.3584084

[10] Zhang, X., Sugano, Y., Bulling, A. (2019). Evaluation of

appearance-based methods and implications for gaze-

based applications. In Proceedings of the 2019 CHI

Conference on Human Factors in Computing Systems,

Glasgow, Scotland, UK, pp. 1-13.

https://doi.org/10.1145/3290605.3300646

[11] Tonsen, M., Steil, J., Sugano, Y., Bulling, A. (2017).

Invisibleeye: Mobile eye tracking using multiple low-

resolution cameras and learning-based gaze estimation.

Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies, 1(3): 106.

https://doi.org/10.1145/3130971

[12] Hummel, D., Toreini, P., Maedche, A. (2018). Improving

digital nudging using attentive user interfaces: Theory

development and experiment design. In 13th

International Conference on Design Science Research in

Information Systems and Technology, Chennai, India.

[13] Cruz, J.L.C. (2019). Development of an attentive user

interface for controlling a telerobotic haptic system to

support play in children with physical disabilities.

Doctoral dissertation, University of Alberta.

https://doi.org/10.7939/r3-qz5z-q284

[14] Castellanos-Cruz, J.L., Gómez-Medina, M.F., Tavakoli,

M., Pilarski, P., Adams, K.D. (2022). Preliminary testing

of eye gaze interfaces for controlling a haptic system

intended to support play in children with physical

impairments: Attentive versus explicit interfaces. Journal

of Rehabilitation and Assistive Technologies

Engineering, 9: 20556683221079694.

https://doi.org/10.1177/20556683221079694

[15] Shen, H., Asiry, O., Babar, M.A., Bednarz, T. (2023).

Evaluating the efficacy of using a novel gaze-based

attentive user interface to extend ADHD children’s

attention span. International Journal of Human-

Computer Studies, 169: 102927.

https://doi.org/10.1016/j.ijhcs.2022.102927

[16] Mo, R., Shaout, A. (2016). Portable facial recognition

jukebox using fisherfaces (FRJ). International Journal of

Advanced Computer Science and Applications, 7(3): 9-

14. https://doi.org/10.14569/IJACSA.2016.070302

[17] Aliff, M., Hanisah, N.F., Ashroff, M. S., Hassan, S.,

Nurr, S.F., Sani, N.S. (2022). Development of

underwater pipe crack detection system for low-cost

underwater vehicle using Raspberry Pi and canny edge

detection method. International Journal of Advanced

Computer Science and Applications, 13(11): 456-464.

https://doi.org/10.14569/IJACSA.2022.0131152

[18] Jolles, J.W. (2021). Broad-scale applications of the

Raspberry Pi: A review and guide for biologists.

Methods in Ecology and Evolution, 12(9): 1562-1579.

https://doi.org/10.1111/2041-210X.13652

[19] Molloy, D. (2016). Exploring Raspberry Pi: Interfacing

to the Real World with Embedded Linux. John Wiley &

Sons.

[20] Abdulhamid, M., Odondi, O., Muaayed, A.R. (2020).

Computer vision based on Raspberry Pi system. Applied

Computer Science, 16(4): 85-102.

https://doi.org/10.23743/acs-2020-31

[21] Seelam, V., kumar Penugonda, A., Kalyan, B.P., Priya,

M.B., Prakash, M.D. (2021). Smart attendance using

deep learning and computer vision. Materials Today:

Proceedings, 46: 4091-4094.

https://doi.org/10.1016/j.matpr.2021.02.625

[22] Lashkov, I., Kashevnik, A., Shilov, N., Parfenov, V.,

Shabaev, A. (2019). Driver dangerous state detection

based on OpenCV & Dlib libraries using mobile video

processing. In 2019 IEEE International Conference on

Computational Science and Engineering (CSE) and IEEE

International Conference on Embedded and Ubiquitous

Computing (EUC), New York, NY, USA, pp. 74-79.

https://doi.org/10.1109/CSE/EUC.2019.00024

[23] Kumar, A., Chaudhary, S., Sangal, S., Dhama, R. (2022).

Face detection and recognition using OpenCV.

International Journal of Computer Applications,

184(11): 23-32. https://doi.org/10.5120/ijca2022922085

[24] Shen, K., Ramli, R., Chuah, J.H., Chai, G.M.T. (2023).

Driver fatigue detection using opencv and Dlib library.

In 2023 IEEE Asia-Pacific Conference on Computer

Science and Data Engineering, Nadi, Fiji, pp. 1-6.

https://doi.org/10.1109/CSDE59766.2023.10487775

[25] Savin, A.V., Sablina, V.A., Nikiforov, M.B. (2021).

Comparison of facial landmark detection methods for

micro-expressions analysis. In 2021 10th Mediterranean

Conference on Embedded Computing (MECO), Budva,

Montenegro, pp. 1-4.

https://doi.org/10.1109/MECO52532.2021.9460191

[26] Suherman, S., Suhendra, A., Ernastuti, E. (2023).

Method development through landmark point extraction

for gesture classification with computer vision and

MediaPipe. TEM Journal, 12(3): 1677-1686.

https://doi.org/10.18421/TEM123-49

[27] Boyko, N., Basystiuk, O., Shakhovska, N. (2018).

Performance evaluation and comparison of software for

face recognition, based on Dlib and opencv library. In

2018 IEEE Second International Conference on Data

Stream Mining & Processing (DSMP), Lviv, Ukraine,

pp. 478-482.

https://doi.org/10.1109/DSMP.2018.8478556

[28] Reza, M.A.N., Hamidi, E.A.Z., Ismail, N., Effendi, M.

R., Mulyana, E., Shalannanda, W. (2021). Design a

landmark facial-based drowsiness detection using Dlib

1354

and Opencv for four-wheeled vehicle drivers. In 2021

15th International Conference on Telecommunication

Systems, Services, and Applications, Bali, Indonesia, pp.

1-5. https://doi.org/10.1109/TSSA52866.2021.9768278

[29] Kesharwani, H., Mallick, T., Gupta, A., Raj, G. (2022).

Automated attendance system using computer vision. In

2022 Second International Conference on Computer

Science, Engineering and Applications, Gunupur, India,

pp. 1-5.

https://doi.org/10.1109/ICCSEA54677.2022.9936266

[30] Heakl, A., Youssef, F., Parque, V., Gomaa, W. (2024).

DroneVis: Versatile computer vision library for drones.

arXiv preprint arXiv:2406.00447.

https://doi.org/10.48550/arXiv.2406.00447

[31] Li, L., Huang, H., Zeng, S., Cao, H., Zheng, R., Lin, S.

(2022). AI body detection and teaching system based on

Mediapipe machine learning platform and OpenCV

computer vision library. Learning & Education, 10(8):

183-184. https://doi.org/10.18282/l-e.v10i8.3115

[32] Choi, C. H., Kim, J., Hyun, J., Kim, Y., Moon, B. (2022).

Face detection using haar cascade classifiers based on

vertical component calibration. Human-centric

Computing and Information Sciences, 12: 11.

https://doi.org/10.22967/HCIS.2022.12.011

[33] Jadhav, A., Lone, S., Matey, S., Madamwar, T., Jakhete,

S. (2021). Survey on face detection algorithms.

International Journal of Innovative Science and Research

Technology, 6(2): 291-297.

[34] Soukupova T., Cech, J. (2016). Real-time eye blink

detection using facial landmarks. In 21st Computer

Vision Winter Workshop, Rimske Toplice, Slovenia.

https://vision.fe.uni-

lj.si/cvww2016/proceedings/papers/05.pdf.

[35] Wassef, E., Abd El Munim, H.E., Hammad, S.,

Ghoneima, M. (2021). Robust Real-time head pose

estimation for 10 Watt SBC. International Journal of

Advanced Computer Science and Applications, 12(7):

578-585.

https://doi.org/10.14569/IJACSA.2021.0120766

[36] Golob, O. (2022). Analysis of face detection, face

landmarking, and face recognition performance with

masked face images. arXiv preprint arXiv:2207.06478.

https://doi.org/10.48550/arXiv.2207.06478

[37] Lugaresi, C., Tang, J., Nash, H., et al. (2019). Mediapipe:

A framework for perceiving and processing reality. In

Third Workshop on Computer Vision for AR/VR at

IEEE Computer Vision and Pattern Recognition

(CVPR).

[38] Thaman, B., Cao, T., Caporusso, N. (2022). Face mask

detection using Mediapipe facemesh. In 2022 45th

Jubilee International Convention on Information,

Communication and Electronic Technology (MIPRO),

Opatija, Croatia, pp. 378-382.

https://doi.org/10.23919/MIPRO55190.2022.9803531

[39] Băiașu, A.M., Dumitrescu, C. (2021). Contributions to

driver fatigue detection based on eye-tracking.

International Journal of Circuits, Systems and Signal

Processing, 15: 1.

https://doi.org/10.46300/9106.2021.15.1

[40] Ngasri, M.A., Isa, I.S., Sulaiman, S.N., Soh, Z.H.C.

(2019). Automated stand-alone video-based microsleep

detection system by using EAR technique. In 2019 9th

IEEE International Conference on Control System,

Computing and Engineering (ICCSCE), Penang,

Malaysia, pp. 78-83.

https://doi.org/10.1109/ICCSCE47578.2019.9068566

[41] Maior, C.B.S., das Chagas Moura, M.J., Santana, J.M.

M., Lins, I.D. (2020). Real-time classification for

autonomous drowsiness detection using eye aspect ratio.

Expert Systems with Applications, 158: 113505.

https://doi.org/10.1016/j.eswa.2020.113505

[42] Jiang, Y., Sadeqi, A., Miller, E.L., Sonkusale, S. (2021).

Head motion classification using thread-based sensor and

machine learning algorithm. Scientific Reports, 11(1):

2646. https://doi.org/10.1038/s41598-021-81284-7

[43] Mallick, S. (2016). Head pose estimation using OpenCV

and Dlib. https://learnopencv.com/head-pose-

estimation-using-opencv-and-Dlib/.

[44] Bailey, W. (2020). Pose estimation using OpenCV facial

detection and tracking, CPSC 6820 Sprin.

http://andrewd.ces.clemson.edu/courses/cpsc482/spring

20/projects/reports/jwb4.pdf.

[45] Hosamani, A., Phirke, M. (2020). Real-time head pose

estimation based on face geometry. In Proceedings of the

5th International Conference on Multimedia and Image

Processing, Nanjing, China, pp. 38-42.

https://doi.org/10.1145/3381271.3381296

[46] Reinoso, L.L.R., López, F.L.G., Gutiérrez, J.C., Bressan,

G., Ruggiero, W.V. (2020). Real-time head pose

estimation with SVM model for frontal face

classification. In IADIS International Conference

Sustainability, Technology and Education, pp. 63-67.

https://doi.org/10.33965/its_ste2020_202001C008

[47] Jeong, M., Kim, D., Park, S., Paik, J. (2022). Drowsy

status monitoring system based on face feature analysis.

In 2022 International Conference on Electronics,

Information, and Communication (ICEIC), Jeju, Korea,

Republic of, pp. 1-4.

https://doi.org/10.1109/ICEIC54506.2022.9748269

[48] MacKenzie, I.S. (2012). Human-Computer Interaction:

An Empirical Research Perspective. Morgan Kaufmann

Publishers Inc.

[49] Buy Raspberry Pi 4 Model B Raspberry Pi.

https://www.raspberrypi.com/products/raspberry-pi-4-

model-b/.

NOMENCLATURE

AUI Attentive User Interface

HCI Human-Computer Interaction

GPU Graphics Processing Units

HRI Human-Robot Interaction

SBC Single-Board Computer

EAR Eye Aspect Ratio

DLT Direct Linear Transform

FPS Frames Per Second

CPU Central Processing Unit

1355

