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Attentive User Interface (AUI), especially vision-based AUI systems, is a highly developed 

area of study. Cameras play a crucial role in modeling AUI inputs to monitor and understand 

user attention during interaction. This enables the optimization of interaction tasks between 

humans and machines. Typically, AUI systems are designed for desktop computers, 

employing various detection methods based on computer vision. This research introduces 

the exploration of AUI input through a low-cost Raspberry Pi 4 embedded system a small-

sized system with limited voltage sources. This exploration serves as a reference for AUI 

design on embedded systems. The proposed AUI input design generating 8 AUI input 

categories. These include face detection, open or closed eye condition detection, and 

detection of forward, up, down, left, and right view directions. This study discusses three 

scenarios of AUI input modeling using various methods to identify the most effective design 

through Raspberry Pi 4. Based on experimental results and a series of tested tasks, Scenario 

3, based on Mediapipe, yielded the best results with an average FPS value of 10 and 100% 

accuracy for facial landmark detection, detection of open eye conditions, detection of 

forward, up, down, right, and left gaze directions at various detection reading angles. 
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1. INTRODUCTION

AUI is a user interface designed to enhance user attention 

capacity, allowing for the perception, modeling, and 

optimization of user attention status. This ensures optimal 

distribution of information processing resources between the 

user and the system across a range of interaction tasks [1-4]. 

Specifically, AUI monitors user behavior, models goals and 

interests, anticipates needs, provides information, and 

strategically optimizes communication between humans and 

machines using sensing, communication, augmentation, 

control, and human availability [4, 5]. 

In its evolution, AUI is linked with the Perceptual User 

Interface (PUI), which combines multimodal input, 

multimedia output, and human-like perceptual capabilities, 

facilitating natural interaction. The crux of AUI lies in the 

modeling of users and the conclusions drawn about them [5]. 

There are four main types of AUI, including (1) visual 

attention, (2) turn management, (3) interruption decision 

interfaces, and (4) visual detail management interfaces [1, 3]. 

AUI research has found application in various fields such as 

human-computer interaction (HCI), robot control, and other 

interaction systems [6-10], with the primary goal of 

maximizing natural interaction based on user attention.  

A prominent contemporary development in AUI systems is 

the vision-based or computer vision approach. This 

development is closely tied to advancements in vision-based 

sensor devices, utilizing camera devices to capture AUI input 

reflecting user behavior or visual attention. 

A prominent contemporary development in AUI systems is 

the vision-based or computer vision approach. This 

development is closely tied to advancements in vision-based 

sensor devices, utilizing camera devices to capture AUI input 

reflecting user behavior or visual attention [3, 5, 10]. Several 

previous studies have explored vision-based AUI systems, 

incorporating input from facial expressions and eye 

movements [4], eye tracking [11, 12], and eye gaze [13]. 

Additionally, recent studies have shown that the application of 

eye gaze-based AUI system input [14, 15] can monitor and 

understand user behavior and attention during interaction 

tasks. Consequently, the application of AUI can enhance user 

interaction with the system compared to interfaces that do not 

implement AUI. These systems are typically designed for 

desktop computers, often equipped with graphics processing 

units (GPU). However, for devices requiring smaller form 

factors and low-voltage, cost-effective sources, the use of 

desktop computers proves relatively inefficient. Thus, there is 

a need for experiments to design vision-based AUI inputs for 

alternative platforms, so that the application of AUI can be 

more widely applied as a system that can optimize interaction 

tasks.  

Referring to device considerations, this research proposes 

an experiment involving a vision-based AUI input design on 

the Raspberry Pi embedded system, distinguishing it from 

desktop computers. The Raspberry Pi is chosen for its 

multiprocessing capabilities, power, programmability with 
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open-source software, Linux operating system compatibility, 

low cost, low power consumption, portability, and compact 

size [16-19]. In addition, several studies explain that the 

Raspberry Pi supports computer vision-based systems and is 

considered very reliable [20, 21], so the exploration of AUI 

input through the Raspberry Pi needs to be done by combining 

different inputs.  

Compared to other studies [4, 11-15], this research proposes 

an exploration of AUI input design based on different input 

modalities, encompassing face landmark detection results, 

open and closed eye detection, and vision-based head 

movement detection. This design is intended for use as AUI 

input in the visual attention system design computer vision-

based. Therefore, the design experiment for AUI input based 

on vision for embedded Raspberry Pi systems must be 

conducted to ensure that it can support various systems that 

require small media, limited voltage sources, and low cost. 

Furthermore, the accuracy of AUI input detection in real-time 

scenarios will be tested with the experiments conducted on the 

Raspberry Pi 4 embedded system. This is undertaken to assess 

and determine the optimal performance of the proposed AUI 

input via Raspberry Pi. Figure 1 illustrates the Raspberry Pi 4 

Model B utilized in this experiment. 

 

 
 

Figure 1. Raspberry Pi 4 Model B 

 

 

2. METHODS 

 

2.1 Hardware design 

 

To build and test the proposed AUI input system, various 

supporting hardware components are required, as illustrated in 

Table 1. The system design block diagram is depicted in 

Figure 2. 

 

Table 1. Hardware 

 
No. Hardware Specification 

1 
Raspberry Pi 

4 Model B 

Broadcom BCM2711, Quad core 

Cortex-A72 (ARM v8) 64-bit SoC @ 

1.5GHz, 4GB LPDDR4-3200 SDRAM 

2 Memory Card SanDisk Ultra Class 10 32 GB 

3 Monitor 23 inch 

4 Camera Webcam Logitech C525 

5 
Power 

Adapter 
5 Volt 3A 

6 
Mouse and 

Keyboard 
Type Wireless 

 

As depicted in Figure 2, the camera employed to capture 

visual attention is a C525 Logitech webcam. The Raspberry Pi 

4 Model B serves as a single-board computer (SBC), operating 

on the Raspbian 10 (Buster) operating system, with a 5-volt 3-

ampere voltage source. A 23-inch monitor functions as the 

display screen, while wireless keyboard and mouse are utilized 

as interface media for program creation, execution of 

algorithms, and cursor navigation on the Raspberry Pi. 

 

 
 

Figure 2. Hardware design 

 

2.2 System design 

 

The system in this research runs on the Raspberry Pi 4 

embedded system by developing algorithms and programs that 

extensively utilize the Python 3.7 programming language, 

OpenCV 4.1.0 library, Dlib machine learning (ML) library, 

and Mediapipe ML library. The OpenCV library is the most 

well-known computer vision library, which builds on 

algorithms that run in real-time, such as the Viola-Jones 

technique based on Haar fature-based cascade classifiers for 

object detection [22, 23]. Dlib is a cross-platform toolkit based 

on C++ programming that can be used as ML tools and for the 

creation of algorithms. Dlib includes several modules mainly 

focused on ML, deep learning, and image processing [24], 

while Mediapipe is a set of libraries, models, and methods 

trained using ML so that it can be used for face identification 

in images, facial landmark detection, body pose tracking, and 

object recognition [25, 26]. In its current development, the 

OpenCV library, Dlib ML library, and Mediapipe ML library 

are widely used as tools in designing computer vision-based 

systems [27-31].  

In this research, various methods employed in the design of 

facial landmark detection, open and closed eye condition 

detection, and head movement detection will be compared. 

These methods include face detection using Haar cascade 

classifiers and Dlib [32, 33], Dlib face landmark detection [34-

36], and Mediapipe face landmark detection [37, 38]. Facial 

landmark detection plays a crucial role in the design of this 

AUI input system. Therefore, a comparison between Dlib face 

landmark detection and Mediapipe face landmark detection 

will be conducted. This comparison is necessary as the number 

of facial landmark detections between Dlib and Mediapipe 

differs. Dlib-based landmark detection results in 68 face 

landmark detections, while Mediapipe landmark detection 

results in 468 face landmark detections. However, it is worth 

noting that the utilization of Dlib face landmarks requires prior 

face detection, which is different from Mediapipe-based facial 

landmark detection. Figure 3 illustrates the AUI input design 

consisting of facial landmark detection, eye open-close 

detection, and head movement detection. 

As depicted in Figure 3, there are 8 AUI inputs, each 
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assigned a detection code (a to h), indicating the outcome of 

the AUI input detection process. Facial landmark detection 

holds a significant role in the proposed design for AUI inputs. 

Two prominent methods of facial landmark detection, namely 

using Dlib and Mediapipe, are employed and tested due to 

their popularity in the field of computer vision. In this study, 

the outcomes of facial landmark detection serve as input 

information for AUI detection. Figure 4 illustrates facial 

landmark detection based on Dlib, while Figure 5 showcases 

facial landmark detection based on Mediapipe. 

 

 
 

Figure 3. Design of the AUI input 

 

 
 

Figure 4. Dlib based 68 landmarks [36] 

 

 
 

Figure 5. Mediapipe based 468 landmarks [38] 

Since the study involves the utilization, testing, and 

comparison of face landmark detection based on Dlib and 

Mediapipe as inputs for the AUI, the experiment has been 

categorized into several scenarios, including: 

Scenario 1: AUI input based on Dlib detection of 68 

landmarks ("shape_predictor_68_face_landmarks.dat") using 

Haar cascade Classifier for face detection. 

Scenario 2: AUI input based on Dlib landmark detection 

using Dlib HOG (histogram of oriented gradients) for face 

detection. 

Scenario 3: AUI input based on Mediapipe detection of 468 

landmarks. 

Both Scenario 1 and Scenario 2 involve the detection of 68 

landmarks based on Dlib. However, in this context, the study 

aims to compare the impact or differences of using face 

detection methods, namely Haar cascade Classifier and Dlib, 

as the foundation for the 68 landmark detection. This is due to 

the fact that Dlib's 68 landmark detection relies on face 

detection. Additionally, each scenario undergoes AUI input 

testing as depicted in Figure 3. 

Upon successful landmark detection, the subsequent phase 

involves designing the AUI input for detecting open and 

closed eye conditions. For the eye condition detection, the 

researchers utilize the eye aspect ratio (EAR) method. This 

method calculates the height and width of the eye region [34, 

39, 40]. As illustrated in Figure 6 and Equation 1, the EAR 

method is chosen based on previous research demonstrating its 

success in detecting open and closed eye conditions, 

particularly in drowsiness applications [34, 41]. 

 

𝐸𝐴𝑅 =
∥ 𝑝2 − 𝑝6 ∥ +∥ 𝑝3 − 𝑝5 ∥

2 ∥ 𝑝1 − 𝑝4 ∥
 (1) 

 
As shown in Figure 6 and Eq. (1), the computation of the 

detected eye landmark region utilizes the eye aspect ratio 

(EAR), which calculates the ratio between the height and 

width of the eye region. The values P1 through P6 represent 

the locations of the detected eye landmark points. The EAR 
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tends to remain relatively constant when the eyes are open and 

approaches a value close to zero, allowing this method to be 

used for estimating open and closed eye conditions [34, 41]. 

In this study, the detection of eye conditions serves as input 

information for AUI in discerning open and closed eye states. 

Regarding head movement detection or monitoring, this 

experiment serves as the AUI input for view direction 

detection, encompassing detection of views to the right or 

forward, views to the right or left, and views up or down. Head 

movement monitoring contributes to the study of human 

behavior, enhancing our understanding of a person's attention, 

focus, and emotional state [42]. For head movement detection, 

the researchers employ the head pose estimation method, 

correlating the 2D facial landmark detection results with the 

3D face shape [43-45], based on the detection of landmark 

points on the face, as depicted in Figure 7. 

In this experiment, 2D landmark points are derived from 

landmark detection using Dlib and Mediapipe. The 3D face 

shape is expressed in world coordinates, with the ability to 

convert world coordinate points to camera coordinates. In 

camera coordinates, these points are projected onto the image 

plane using camera intrinsic parameters, including focal 

length, optical center, and radial distortion, as outlined in Eq. 

(2). Matrix A within the equation represents the camera matrix 

containing intrinsic parameters and key points, while matrix 

[R|t] signifies the joint rotation-translation matrix that 

transforms points from the 3D world coordinate system to the 

3D camera coordinate system [46]. 

 

𝑝𝑖 = 𝐴 [𝑅|𝑡]𝑃𝑖  (2) 

 

The head pose estimation at 2D-3D landmark points is 

conducted through the solvePnP (Perspective-n-Point) 

algorithm in the openCV function. SolvePnP is an algorithm 

that extracts rotation vectors and translation vectors using 

DLT (direct linear transform) and Levenberg-Marquardt 

optimization [46, 47]. Through solvePnP 2D-3D, head 

movement estimation is obtained, encompassing the roll, 

pitch, and yaw rotation axis values. However, the experiment 

primarily focuses on the pitch (vertical) rotation value, 

representing forward, up, and down views, and the yaw 

(horizontal) value, representing left and right views. This 

movement aligns with the head movement classification 

illustrated in Figure 8 [42]. 

As depicted in Figure 8, head movement classification 

serves as a reference for head movement detection, 

representing the direction of the view. In this experiment, it is 

utilized as the basis for determining head movement detection. 

The comprehensive design of the proposed Attentive User 

Interface (AUI) input, incorporating facial landmark detection, 

open and closed eye conditions, and head movement detection, 

is illustrated in the block diagram presented in Figure 9. 

As seen in Figure 9, there are 3 sections labeled A, B, and 

C that consist of parts of the detection process. As previously 

explained, face landmark detection is a very important initial 

part in the process of designing this AUI input system because, 

through the results of face landmark detection, eye open-close 

detection and head movement detection can be modeled. On 

the label of section “A”, there are three scenarios of face 

landmark detection processes that have different methods, and 

later each face landmark detection result in each scenario will 

be continued in section “B”, namely eye open-close detection 

and section “C” head movement detection. The purpose of 

making these three scenarios is to test, know, and compare the 

performance of each detection scenario when the AUI input 

system is running on Raspberry Pi 4. Each detection process, 

including face landmark detection, eye open-close detection, 

and head movement detection, is programmed with the same 

algorithm the difference lies only in the face landmark 

detection method based on the three proposed scenarios. Later, 

the design of this AUI input system resulted in three 

application-based Python forms based on scenarios 1, 2, and 

3. 

 

 
 

Figure 6. Eye landmark indicators [34] 

 

 
 

Figure 7. 3D landmarks vs 2D landmarks [44] 

 

 
 

Figure 8. Classification of head movements [42] 
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Figure 9. AUI input block diagram: A. Face landmark detection, B. Eye open-close detection, C. Head movement detection 

 

 

3. PARTICIPANTS AND EXPERIMENT PROCEDURE 

 

In this experiment, 15 participants were voluntarily invited 

to assess the proposed AUI input system. The group consisted 

of 13 men and 2 women, aged between 19 and 30 years 

(M=22.67 years). Additionally, 5 participants wore glasses. It 

is worth noting that the standard sample size for HCI research 

is commonly 12 participants, or it aligns with similar previous 

HCI research studies [48]. Therefore, the inclusion of 15 

participants in this experiment was deemed appropriate for 

testing the proposed AUI input system. Figure 10 presents an 

overview of the participants involved in testing the AUI input 

system. 

 

 
 

Figure 10. Participants in the AUI input system testing 

As depicted in Figure 10, participants will engage in testing 

AUI input running on the Raspberry Pi 4. Based on the results 

of the system design, there are three application-based Python 

input AUIs that will be tested on participants. The three 

applications have the functions of face landmark detection, eye 

open-close detection, and head movement detection. It's just 

that the three applications have differences in facial landmark 

detection methods based on the three scenarios proposed. As 

for the steps of this experimental testing procedure, they 

include:  

-In the first step, participants were asked to sit in front of a 

monitor screen that had a webcam attached to it, with an 

average distance of 70 cm between the participant and the 

monitor. 

-In the second step, when the participant was ready for 

testing, the operator would run three application-based Python 

input AUIs in turn. While running each application, the 

participant was asked to follow several tasks as listed in Table 

2. 

-In the third step, each participant performed the test based 

on the assigned task, observing several indicators as listed in 

Table 3. In addition, several tools, including a protractor ruler 

and a protractor application running on a smartphone, were 

used to measure the detection angle of the AUI input system, 

which was then recorded and evaluated. The first step to the 

third step is alternately performed until the 15th participant.   

After obtaining the AUI input test data from participants, 

the next step is evaluation, with the aim of observing the 

performance of the system when run on a Raspberry Pi 4 and 

assessing the detection accuracy of the three proposed 

scenarios. All AUI input detection outcomes were assessed 

based on the prediction accuracy, as determined by the 

following Eq. (3): 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
× 100% (3) 

 

Subsequently, the test results for each indicator and various 

test tasks will be compared across the three proposed 

scenarios. This comparative analysis aims to ascertain the 

performance and accuracy of each AUI input detection. 

 

Table 2. Participants' tasks during AUI input testing in the 

three experimental scenarios 

 
Task Description 

Task 1 

Involves facial landmark detection. Participants are 

required to face the front of the monitor screen 

(front), followed by moving their head up and down 

(pitch) and left and right (yaw). 

Task 2 

Focuses on detecting open or closed eye conditions. 

Participants face the front of the monitor screen 

(front) and are then instructed to move their head up 

and down (pitch) and left and right (yaw) for both 

open and closed eye conditions. 

Task 3 

Pertains to the detection of head movements 

influencing the direction of the view. Participants 

face the front of the monitor screen (front) and are 

then directed to move their head up and down 

(pitch) and left and right (yaw). 

 

Table 3. Detection indicator 

 
Indicator Description 

Face 

landmark 

detection 

Assessment of the system's capability to detect 

the user's facial landmarks as input information 

for AUI, enabling the system to detect and 

recognize the user's face 

Eye open-

close 

detection 

Evaluation of the system's ability to detect the 

user's eye condition as AUI input information, 

facilitating the system's determination of whether 

the user's eyes are open or closed 

Head 

movement 

detection 

Examination of the system's capability to detect 

the user's head movement as input information 

for AUI, allowing the system to ascertain the 

direction of the user's view, whether it is 

forward, up, down, left, or right 

 

 

4. EXPERIMENT RESULT AND DISCUSSION 

 

The presentation of the results for the tested AUI input 

proposed through the Raspberry Pi 4 is illustrated in Figure 11. 

It is evident that the three AUI input scenarios are functional, 

as indicated by the detection codes representing various AUI 

input indicators, so that scenarios 1, 2, and 3 can display the 

AUI input detection result indicator with the participant facing 

front or facing the monitor. 

Figure 11 provides insights into the functionality of the 

system based on the proposed scenarios tested on the 

participants. The AUI input indicators are displayed in the 

upper left corner, presenting detection result codes in 

alignment with the AUI input design depicted in the previous 

Figure 3. The information in Figure 11 indicates "AUI: a, b, d" 

with the following meanings: 

-Code “a” provides information on detected facial 

landmarks, enabling the detection of AUI input information 

related to face detection and recognizing the user's face. 

-Code “b” offers information on eye condition detection, 

with the detection result indicating an open eye. Thus, the AUI 

input system successfully detects information related to eye 

condition. 

-Code “d” furnishes details on head movement conditions 

associated with the viewing direction. The result indicates 

forward view detection, facilitating the AUI input system to 

detect information on viewing direction. 

 

 
 

Figure 11. AUI input results using Raspberry Pi 4 

 

The monitoring results are observed through the Raspberry 

Pi task manager when executing three AUI input system 

scenarios. The primary focus of the monitoring process is 

directed towards examining central processing unit (CPU) 

usage and memory usage. This approach facilitates an 

assessment of the performance of the proposed AUI input 

system, as depicted in Table 4. 
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Table 4. Raspberry Pi 4 task manager results 

 
Testing Average Value of 

CPU Usage (%) 

Average Value of 

Memory Usage (MB) 

Scenario 1 82.4% 273.7 MB 

Scenario 2 38.2% 266.9 MB 

Scenario 3 42.6% 233.1 MB 

 

Table 5. FPS comparison on tre AUI input scenarios 

 
FPS 

Testing 

Average 

FPS 

Minimum FPS 

Value 

Maximum FPS 

Value 

Scenario 1 5 5 6 

Scenario 2 3 3 4 

Scenario 3 10 9 11 

 

Based on Table 4, Scenario 1 of the AUI input system 

exhibits the highest average CPU and memory usage values 

when compared to Scenarios 2 and 3. Specifically, Scenario 2 

demonstrates the lowest average CPU usage, while Scenario 3 

shows the lowest memory usage among the proposed AUI 

input system scenarios. In addition to task manager 

monitoring, we also observed the frames per second (FPS) 

values, as shown in Figure 12 and Table 5. 

As shown in Figure 12 and Tables 5, based on the 

experimental results, scenario 3 has the highest FPS value with 

an average value of 10 FPS when running on Raspberry Pi 4, 

while the minimum FPS value is 9 FPS and the maximum FPS 

value is 11 FPS, so when compared to the FPS values of 

scenarios 1 and 2, the FPS value of scenario 3 using the 

Mediapipe-based facial landmark detection method is much 

better. On the other hand, scenario 2 recorded the lowest FPS 

value in this test, with an average value of 3 FPS, while the 

FPS value of scenario 1 is in the middle with an average value 

of 5 FPS. From the results of this test, it was found that 

differences in facial landmark detection methods affect the 

FPS value. Besides that, we found that the FPS value affects 

the AUI input results in face landmark detection, eye open-

close detection, and head movement detection. Higher FPS 

values correspond to faster AUI input detection results when 

executed on a Raspberry Pi 4, while lower FPS values result 

in slower or delayed AUI input detection. In addition to the 

superiority FPS value, the average CPU and memory usage is 

also quite low when running on the Raspberry Pi 4, so in terms 

of FPS values and task manager results, scenario 3 is superior. 

Regarding accuracy testing results, this experiment refers to 

the tasks outlined in Table 2 and detection indicator in Table 

3. Each task was tested in three scenarios in turn by the 

participants, and the pitch and yaw detection angles are 

measured based on head movements, as illustrated in Figure 8. 

For pitch detection angles, representation includes front (0°), 

up (0° to 80°) and down (0° to -80°), while yaw detection 

angles represent front (0°), right (0° to 90°) and left (0° to -

90°). The AUI input test results for facial landmark detection 

based on Task 1 in the pitch and yaw sections are presented in 

Tables 6 and 7. 

 

 
 

Figure 12. Real-time FPS readings on the Raspberry Pi 4 

 

Table 6. AUI input results on face landmark detection based on task 1 on the pitch side 

 

Testing 

Pitch (vertical) 

Accuracy (%) 

Angle 

Down Front Up 

-80° -60° -30° 0° 30° 60° 80° 

Scenario 1 0% 13% 100% 100% 100% 0% 0% 

Scenario 2 0% 100% 100% 100% 100% 100% 0% 

Scenario 3 100% 100% 100% 100% 100% 100% 100% 

 

Table 7. AUI input results on face landmark detection based on task 1 in yaw side 

 

Testing 

Yaw (horizontal) 

Accuracy (%) 

Angle 

Left Front Right 

-90° -60° -30° 0° 30° 60° 90° 

Scenario 1 0% 0% 100% 100% 100% 0% 0% 

Scenario 2 0% 100% 100% 100% 100% 100% 0% 

Scenario 3 100% 100% 100% 100% 100% 100% 100% 
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As shown in Tables 6 and 7, when 15 participants performed 

the test with the position facing the monitor screen (front), in 

turn, scenarios 1, 2, and 3 demonstrated effective detection of 

facial landmarks, each achieving an accuracy of 100%. This 

proves that in the front-facing position, all the proposed 

scenarios can work to display the face landmark detection 

indicator as AUI input information related to face detection. 

However, when testing moving the head up and down (pitch), 

as well as testing moving the head right and left (yaw), there 

are differences in facial landmark detection results. This test is 

carried out in stages based on each detection angle accuracy 

reading result, as listed in the table. 

When 15 participants tested moving their heads up and 

down (pitch) using scenario 1, the accuracy of detecting facial 

landmarks was only optimal at a reading angle of 0° to 30° for 

head movement up and 0° to -30° for head movement down, 

so if the reading of head movement up exceeds an angle of 300 

and head movement down exceeds an angle of -30°, the 

accuracy of scenario 1 is not optimal for detection and cannot 

even detect facial landmarks. While the accuracy results for 

scenario 2 testing are better when compared to scenario 1, 

when testing moving the head up and down based on scenario 

2, the accuracy of detecting facial landmarks can be more 

optimal at the reading angle of 0° to 60° for head movement 

up and 0° to -60° for head movement down. In contrast to 

testing the detection of facial landmarks using scenario 3, 

scenario 3 is superior in detection accuracy when compared to 

scenarios 1 and 2, because when 15 participants tested with 

scenario 3, the accuracy of detecting facial landmarks could be 

optimal at reading angles of 00 to 800 for head movements up 

and 00 to -800 for head movements down, so there were no 

facial landmark detection failures when participants tested 

with scenario 3.  

Similar to the test of moving the head right and left (yaw) 

as shown in Table 6, the accuracy of detecting facial 

landmarks using scenario 3 is superior when compared to 

scenario 1 and scenario 2, the accuracy of detecting facial 

landmarks can be optimized up to a reading angle of 0° to 90° 

for right head movements and 0° to -90° for left head 

movements, and there were no facial landmark detection 

failures when 15 participants moved their heads left and right 

when testing using scenario 3. Therefore, based on Task 1 

experiments, AUI input using scenario 3 exhibits superior face 

landmark detection (Mediapipe based) compared to scenarios 

1 and 2, as illustrated in Figure 13. This figure provides an 

example of a sample comparison of scenarios 1, 2, and 3 at a 

detection angle of -900 yaw, indicating that scenarios 1 and 2 

fail to detect the AUI input on the side of the -900 yaw 

detection angle, while scenario 3 can still detect the AUI input. 

In testing the accuracy of eye condition detection, the test 

stages are not much different from testing face landmark 

detection. When participants are asked to move their heads up 

and down (pitch) and move their heads right and left (yaw), 

we observe the results of open eye condition detection and 

closed eye condition detection as described in task 2. The EAR 

method applied to detect eye conditions was tested in scenarios 

1, 2, and 3. The test results show that the accuracy of open eye 

condition detection in scenario 3 is superior when compared 

to scenarios 1 and 2, when participants move their heads up 

and down and move their heads right and left, as shown in 

Tables 8 and 9. 

As for the results of testing the detection of closed eye 

conditions, scenarios 1, 2, and 3 have the same accuracy value 

when the participant moves the head up and down and moves 

the head right and left, as seen in Tables 10 and 11, so that 

when the head movement up exceeds the angle of 300 and the 

head movement down exceeds the angle -300, as well as the 

right head movement exceeding the angle 300 and the left head 

movement exceeding the angle -300, the system cannot detect 

closed eye conditions. 

The use of the EAR method and participant testing enable 

the classification of open and closed eye conditions. By setting 

the EAR threshold value to 0.25, a detection result indicating 

a closed eye condition is established if the EAR value is ≤ 0.25, 

whereas an open eye condition is indicated if the EAR value is 

≥ 0.25, as shown in Figure 14. Additionally, despite the 

presence of five participants wearing glasses, experimental 

results indicate that this factor does not impact the accuracy of 

eye condition detection. The system is thus proposed to 

reliably detect both open and closed eye conditions as AUI 

input, even when participants are wearing glasses. 

 

Table 8. AUI input results on open eye condition detection based on task 2 on the pitch side 

 

Testing 

Pitch (vertical) 

Accuracy (%) 

Angle 

Down Front Up 

-90° -60° -30° 0° 30° 60° 90° 

Scenario 1 0% 0% 100% 100% 100% 0% 0% 

Scenario 2 0% 0% 100% 100% 100% 0% 0% 

Scenario 3 100% 100% 100% 100% 100% 100% 100% 

 

Table 9. AUI input results on open eye condition detection based on task 2 in yaw side 

 

Testing 

Yaw (horizontal) 

Accuracy (%) 

Angle 

Left Front Right 

-90° -60° -30° 0° 30° 60° 90° 

Scenario 1 0% 0% 100% 100% 100% 0% 0% 

Scenario 2 0% 100% 100% 100% 100% 100% 0% 

Scenario 3 100% 100% 100% 100% 100% 100% 100% 
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Table 10. AUI input results on closed eye condition detection based on task 2 on the pitch side 

 

Testing 

Pitch (vertical) 

Accuracy (%) 

Angle 

Down Front Up 

-90° -60° -30° 0° 30° 60° 90° 

Scenario 1 0% 0% 100% 100% 100% 0% 0% 

Scenario 2 0% 0% 100% 100% 100% 0% 0% 

Scenario 3 0% 0% 100% 100% 100% 0% 0% 

 

Table 11. AUI input results on closed eye condition detection based on task 2 in yaw side 

 
Testing Yaw (horizontal) 

Accuracy (%) 

Angle 

Left Front Right 

-90° -60° -30° 0° 30° 60° 90° 

Scenario 1 0% 0% 100% 100% 100% 0% 0% 

Scenario 2 0% 0% 100% 100% 100% 0% 0% 

Scenario 3 0% 0% 100% 100% 100% 0% 0% 

 

 
 

Figure 13. An example of scenario 1, 2 and 3 comparison at -900 yaw detection angle 

 

Concerning AUI input testing for head movement detection, 

representing the direction of view encompassing forward, 

upward, and downward views (pitch), as well as left and right 

views (yaw), it is observed that scenario 3 outperforms 

scenarios 1 and 2. This is evident in Tables 12 and 13, which 

present the results of participant testing for Task 3, aligning 

with the results obtained from Task 1 testing on face landmark 

detection testing on face landmark detection testing.  

The use of the 2D-3D head pose estimation method and 

analyzing pitch and yaw rotation axis values, the researchers 

successfully classified head movements as AUI input for view 

direction detection, especially by using scenario 3. The 

researchers defined front view direction detection when both 

the pitch and yaw rotation axis values were ≤ 15 and ≥ -15. For 

upward viewing direction detection, they considered pitch axis 

values ≥ 15, while downward viewing direction detection was 

defined for pitch values ≤ -15. Similarly, leftward viewing 

direction detection was designated for yaw values ≥ 15, and 

rightward viewing direction detection for yaw values ≤ -15. 

Figure 15 illustrates one of the sample head movement 

detection results, representing the detection of view direction 

as an AUI input. 

From the experiment results, all three proposed scenarios 

proved capable of detecting viewing direction as AUI input. 

Although the scenarios varied in accuracy, scenario 3 

demonstrated superior performance in reading head 
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movements as the direction of view in pitch and yaw angle 

readings, so that Mediapipe-based facial landmark detection 

with scenario 3 has the advantage in every test that has been 

done. 

 

 
 

Figure 14. One of the sample readout graphs of open and closed eye condition detection via the EAR method 

 

 
 

Figure 15. One of the sample head movement detection results representing view direction detection as AUI input 

 

Table 12. AUI input results on head movement detection representing the view direction based on task 3 on the pitch side 

 

Testing 

Pitch (vertical) 

Accuracy (%) 

Angle 

-80° -60° -30° 0° (Front) 30° 60° 80° 

Scenario 1 0% 0% 100% 100% 100% 0% 0% 

Scenario 2 0% 100% 100% 100% 100% 100% 0% 

Scenario 3 100% 100% 100% 100% 100% 100% 100% 
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Table 13. AUI input results on head movement detection representing the view direction based on task 3 on the yaw side 

 

Testing 

Yaw (horizontal) 

Accuracy (%) 

Angle 

-90° -60° -30° 0° (Front) 30° 60° 90° 

Scenario 1 0% 0% 100% 100% 100% 0% 0% 

Scenario 2 0% 100% 100% 100% 100% 100% 0% 

Scenario 3 100% 100% 100% 100% 100% 100% 100% 

 

The exploration of AUI input through the Raspberry Pi 4 

covering facial landmark detection, eye opening and closing 

detection, and head movement detection yielded 8 functional 

AUI inputs aligned with indicators and predefined tasks. The 

performance of the Raspberry Pi 4 embedded system exhibited 

variations based on the employed methods and scenarios. 

Notably, the test results highlighted that the AUI input system 

in scenario 3 (Mediapipe-based) outperformed scenarios 1 and 

2 in terms of both performance and accuracy. Therefore, the 

exploration of AUI input through Raspberry Pi 4 with scenario 

3 can serve as a reference for designing AUI in diverse forms 

of interaction, particularly to support the visual attention 

system design in computer vision-based systems.  

Based on the conducted experiments, although the 

Raspberry Pi 4 embedded system can support input AUI 

computer vision-based systems, several experiments are 

needed to obtain a method that can work optimally on the 

Raspberry Pi, as has been done in this study, so as to obtain 

the best performance of the system. In addition, the results of 

this study prove that the AUI system using Raspberry Pi has 

the advantage of designing a visual attention-based AUI 

system that can support various systems with small media, 

limited voltage sources, and low cost. This is crucial for 

utilizing it as a parameter for user interface design in various 

forms of interaction, including HCI, HRI, and various other 

interaction systems. Because, in 2024, the price of the 

Raspberry Pi 4 from $35 [49], it can be a consideration besides 

using desktop computers. However, it cannot be denied that 

desktop computers have a larger CPU and memory when 

compared to the Raspberry Pi, especially desktop computers 

equipped with GPU. 

 

 

5. CONCLUSION 

 

This research successfully explored AUI input through the 

Raspberry Pi 4 Model B, based on face landmark detection as 

AUI input information for face detection, eye condition 

detection as AUI input information for open or closed eye 

condition detection, and head movement detection as AUI 

input information for forward, up, down, right, and left gaze 

direction detection, so as to produce 8 computer vision-based 

AUI inputs.  

In this experiment, we modeled three AUI input scenarios 

based on several methods with the aim of obtaining the most 

optimal AUI input system running on a Raspberry Pi. Based 

on the test results, the three proposed scenarios can work to 

detect AUI input according to the indicators and tasks that 

have been determined, but there are differences in 

performance and accuracy values in each scenario, where the 

test results involving 15 participants show that the AUI input 

system in scenario 3 (Mediapipe-based) is superior to 

scenarios 1 and 2, This shows that the development of the AUI 

input system through Raspberry Pi 4 using scenario 3 is able 

to produce the best performance with an average FPS value of 

10 FPS with an average CPU usage of 42.6% and an average 

memory usage of 233.1 MB, with a detection accuracy value 

of 100% for facial landmark detection, detection of open eye 

conditions, detection of forward, up, down, right, and left gaze 

directions at various detection reading angles. 

The use of Raspberry Pi as a computer vision-based system 

has proven to be capable and reliable for the development of 

vision-based AUI. The findings of this research can be a 

reference for the development of AUI, especially in the visual 

attention system, which allows the system to monitor and 

know the behavior or condition of the user's attention when 

performing interaction tasks based on 8 AUI inputs that have 

been proposed, so we believe this research can be utilized to 

support the user's attention capacity in various interaction 

tasks, such as HCI, HRI, and various other interaction tasks, 

especially based on embedded systems. In addition, the use of 

Raspberry Pi with open source software, low cost, low power 

consumption, portability, and small size can be an alternative 

to the use of desktop computers. 

During testing, the limitations of this research are only 

influenced by light intensity, a lack of light can affect the 

detection results using a webcam. Because the use of a 

webcam camera can work well when the light needed is 

sufficient, we had time to measure the light intensity, where 

the system can work well in light conditions above 20 Lux, if 

the light is below the value of 20 Lux, the system cannot work 

optimally in detecting. 

Future research on the development of AUI inputs using the 

Raspberry Pi 4 embedded system can be expanded based on 

various other inputs that support vision-based interaction 

tasks, such as facial expression detection, hand gesture 

detection, and human pose detection. 
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NOMENCLATURE 

 

AUI Attentive User Interface 

HCI Human-Computer Interaction 

GPU Graphics Processing Units 

HRI Human-Robot Interaction 

SBC Single-Board Computer 

EAR Eye Aspect Ratio 

DLT  Direct Linear Transform 

FPS Frames Per Second 

CPU Central Processing Unit 
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