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 A skin lesion is any irregularity or alteration to the texture, color, or appearance of the skin. 
It arises from a number of skin illnesses, such as malignancies, autoimmune diseases, 
allergies, and infections. Early detection and precise diagnosis of skin lesions are crucial 
for effective treatment and management of these disorders. Dermatologists and other 
healthcare professionals have traditionally diagnosed skin lesions through visual inspection. 
However, using this approach might result in a delayed or incorrect diagnosis. Skin lesion 
categorization accuracy has significantly improved as a result of recent advancements in 
deep learning techniques. This study looks at the different deep learning techniques used to 
classify skin lesions. These include transfer learning (DenseNet201 and ResNet52V2) and 
Convolutional Neural Networks (CNNs). Our study's results show that test images have a 
91% accuracy rate, while training images have a 95% accuracy rate. 
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1. INTRODUCTION 
 

Skin cancer, is a disease that mainly affects men and women 
equally; however, it is somewhat more common in men. Skin 
cancer is responsible for 4% of cancer cases in women and 6% 
of cancer cases in men [1]. It is a major public health concern 
owing to its rising prevalence and potential severity. Factors 
leading to the growth in skin cancer cases are [2]: 

UV Exposure: Prolonged exposure to ultraviolet (UV) light 
from the sun or tanning beds increases the chance of 
developing all forms of skin cancer. 

Genetic Predisposition: People who have specific genetic 
conditions or a family history of skin cancer are more 
susceptible. 

Skin Type: Fair skinned, light-haired, and light-eyed 
individuals are more vulnerable to UV exposure and ensuing 
skin cancer. 

Immune Suppression: Those who have compromised 
immune systems—from diseases or medical procedures—are 
more vulnerable. 

Skin lesions refer to a wide range of disorders, ranging from 
harmless to cancerous, each having unique features and 
consequences for health. Benign lesions include melanocytic 
nevi, or moles, as they are more frequently called, which are 
mostly innocuous but may sometimes undergo a 
transformation into melanoma. Importantly, melanoma is a 
type of skin cancer that can be fatal and arises from 
melanocytes, which are cells that produce color [3]. Past 
sunburns and excessive sun exposure frequently contribute to 
its development. For effective melanoma treatment and better 
patient outcomes, early identification and diagnosis are 
essential. The information highlights how critical it is to raise 
awareness, practice prevention, and conduct routine skin 
exams in order to detect melanoma in its early stages, when it 

is most curable. Other benign lesions, like dermatofibromas 
and seborrheic keratoses, typically pose no significant risk, but 
their removal may occur if they begin to cause symptoms or 
for aesthetic reasons. Actinic keratoses are precancerous 
lesions that, if left untreated, may develop into squamous cell 
carcinoma (SCC). This emphasizes the need for early 
discovery and treatment. Basal cell carcinoma (BCC), is the 
most prevalent form of skin cancer in White communities, 
accounting for 75% of all skin malignancies. Typically, they 
appear in the head and neck region (w83%) [4]. Squamous cell 
carcinoma (SCC) The incidence of this type is lower than that 
of BCC. It grows in arid and rugged regions and between 
squamous cells. Nevertheless, it may manifest in specific 
regions of the epidermis that receive an increased amount of 
radiation. It may manifest as red patches. Similar to BCC, it 
has the potential to disseminate to other parts of the body; 
however, certain treatments have been identified to avert its 
progression [5]. Vascular lesions, such as angiomas and 
pyogenic granulomas, are noncancerous growths of blood 
vessels that often appear as red or purple patches on the skin 
[6]. 

The artificial neural network is utilized by deep learning to 
examine data in various categories and uncover patterns to 
learn from it. This type of learning is based on artificial neural 
network architecture, which they are built to emulate the 
structural design of the human brain. These convolutions, are 
in fact, layers that serve to identify and filter only pertinent 
information from the data [7]. 

Deep learning mainly uses artificial neural networks to 
analyze images of skin disease and detect skin cancer. It has 
great predictive ability in the diagnosis of skin cancer with a 
primary role in most malignant cancers [8]. Deep learning, in 
turn, is a basis of training of artificial neural networks with 
large data sets. 
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The challenges facing skin cancer diagnosis techniques are 
numerous, including the few annotated datasets and the need 
of significant processing power. Nevertheless, the 
effectiveness of deep learning relies on process development 
that has the potential to resolve these problems and improve 
the diagnostic precision of skin cancer. 

Skin lesions are particularly interesting and useful in the 
context of CNNs to identify and classify the lesions [9]. 
Convolutional Neural Networks (CNNs) are a type of neural 
network that are specifically designed for image recognition 
tasks, and of course take advantage of hierarchial structure that 
are supposed to abstract important features from the images. 
CNN is a composition of many layers collaborate with each 
other in features extraction and classification. The beginning 
layers of the architecture of a neural network identify basic 
features of an image such as edges & corners, while the latest 
layers will pick-up more complex features. E.g. shapes, 
patterns. The last layer of the network outputs the 
classification result, that is, the type of skin lesion. This allows 
the network to learn increasingly complex representations of 
the input data as it goes through the layers of the network. 

CNNs are quite good at correctly categorizing skin 
lesions—more especially, they are very good at melanoma 
detection. Unfortunately, there are frequently few annotated 
datasets available in the dermatological sector, which poses a 
serious problem because CNNs need a sizable amount of 
labeled data to train [10]. 

The application of transfer learning in deep learning is a 
tactic meant to increase model performance on fewer datasets. 
By utilizing the knowledge gathered from previously trained 
models on larger datasets, this is accomplished. This way of 
classifying skin lesions uses CNN models that have already 
been trained on large datasets (ImageNet) to pull out important 
features from images of skin lesions. A smaller CNN model is 
then trained using these extracted features on a more compact 
series of dataset of skin lesions [11]. 

It has been demonstrated that transfer learning increases 
skin lesion categorization accuracy, especially when there is 
little labeled data available. However, the pre-trained model 
selection and the particular architecture of the smaller CNN 
can have a significant impact on the transfer learning 
performance. 

In spite of the fact that diagnostic technologies have seen 
some advancements, there are still several obstacles and 
constraints that remain in the area of skin lesion classification: 

Subjectivity and Variability in Visual Inspections: 
Conventional approaches to identifying skin lesions mainly 
depend on visual inspections conducted by dermatologists. 
The subjectivity and variability about the matter may yield 
inconsistent diagnoses, misdiagnoses and ultimately late-stage 
delayed treatment. 

Data Imbalance: The lack of an even distribution between 
benign lesion and malignant lesions, makes the varied 
appearance of skin lesions a real challenge. Such potential 
outcome could be adversely biased the functioning of a model. 

Inadequate Annotated Data: Datasets with high-quality 
annotated data are very important for the well-fitting of deep 
learning models. Provided these datasets house the necessary 
ground truth for supervised learning algorithms to correctly 
understand and classify various skin lesions. But the scarcity 
of available information makes it particularly difficult for the 
medical field to develop and validate reliable diagnosis models. 

In this paper, We investigate and conduct a thorough 
analysis of different deep learning algorithms for skin lesion 

detection, such as Convolutional Neural Networks and transfer 
learning models, like DenseNet201 and ResNet52V2. Our 
results demonstrate that the proposed models achieving 95% 
accuracy on training images and 91% accuracy on test image, 
pointing their ability to appear in classifying skin lesion types. 
This study aims to aid ongoing efforts to improve skin cancer 
detection and outcomes of patients with Artificial Intelligence 
technology. 

2. LITERATURE REVIEW

Skin cancer classification through image analysis has been
developed tremendously over time. In the quest to increase 
efficacy, the diagnostic method has been explored and 
evaluated in many ways. 

Gessert et al. [12]: “Skin Lesion Diagnosis using Ensembles, 
Unscaled Multi-Crop Evaluation and Loss Weighting”. They 
employed two built-in datasets for the purpose of their 
research, which are ISIC 2018 and HAM10000. Different 
models were experimented by the researchers, such as 
ResNet50, Densenet121, Densenet161, or Densenet169. 
Densenet121 achieved an accuracy of 88%, ResNet50 and 
Densenet161 both achieved 86%, and Densenet169 achieved 
85%. 

The article "Skin Lesion Classification Using Pre-Trained 
DenseNet201 Deep Neural Network" authored by Jasil and 
Ulagamuthalvi [13] present in the 3rd International 
Conference on Signal Processing and Communication, 2021. 
They reported good performance at skin lesion classification 
with DenseNet201 architecture. This work is showing how 
easily a pre-trained model can improve classification accuracy 
where they exhibit poor performance for detection of most 
classes of skin lesions. This model gives 77% of test accuracy 
and 95% of training accuracy. 

Al-Masni et al. [14] developed a classification model to 
detect skin lesions. This model employs two different deep 
learning architectures: ResNet-50 and DenseNet-201. They 
evaluated the model on ISIC 2016, ISIC 2017 and ISIC 2018 
datasets. For ISIC 2016, ResNet-50 yielded 79.95% accuracy 
and DenseNet-201 yielded 81.27% accuracy. ISIC 2017 
ResNet-50: 81.57% DenseNet-201: 73.44% Finally, both 
ResNet-50 and DenseNet-201 yielded higher rate of accuracy 
(89.28%, 88.70%) respectivly by using ISIC 2018 dataset. 

In 2020, Rahman and Ami [15] worked on classification of 
skin lesions using transfer learning techniques. He 
experimented with the above approach with the HAM10000 
dataset and the ResNet and DenseNet models. Results showed 
the effectiveness rate of ResNet 87% and dense net showed the 
high rate of 89%. Following that in 2021 a project lead by 
Rahman et al. [16], emphasized on multiclass Skin lesion 
classification. Ensemble learning has been incorporated which 
utilized the HAM and ISIC 2019 datasets. As previous paper, 
ResNest and DesensNet models were used. When testing on 
this dataset, ResNet could achieve an accuracy of 75%, while 
another deeper network, DenseNet performed much better 
reaching an accuracy of 84%. 

Kondaveeti and Edupuganti [17] used HAM10000 dataset, 
which consists of 10015 images that are unbalanced from 
seven different skin lesion categories. Transfer Learning was 
implemented by researchers on the pre-trained models like 
ResNet50, InceptionV3, MobileNet, and Xception and then 
added a specific layers to the classification model task. The 
class imbalance was handled using data augmentation and 
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class-weighted loss. ResNet50 was one of the most successful 
models on the dataset achieving 90% accuracy, 0.89 weighted 
average precision and a 0.90 recall. It is proven by the research, 
that using pre-trained model highly predictable the 
classification accuracy despite very few of data which can be 
conventional for clinical decision support in dermatology. The 
researchers believe that this study provides evidence that the 
combination of deep learning and medical imaging could 
improve diagnostic process to prevent unneeded biopsies and 
improve patient outcomes. 

Jasil and Ulagamuthalvi [18] employed transfer learning to 
examine deep learning techniques to classify skin lesions. 
They performed all experiments using three pre-trained 
models (Inception V3, VGG16, and VGG19) on the ISIC 2018 
dataset that contains 2487 training images and 604 test images 
in seven classes of skin lesion. Their per-processing method 
included resizing and centering the image and then data 
augmentation for the creation of more training images. Pre-
trained models were fine-tuned by replacing the final layers 
with softmax layers for skin lesion classification. Results 
found that test accuracy of VGG16 was the best (77%) and 
VGG19 (76%) was next best while Inception V3 (74%) was 
the lowest in test accuracy. Evaluation of the models were 
done by accuracy, precision, recall, and F1-score, and 
classification performance of each class was measured with 
confusion matrices. 

3. METHODOLOGY

3.1 HAM10000 dataset 

The HAM10000 [19] is a large dataset of skin lesions 
acquired for a scientific research purpose from the Department 
of Dermatology at the Medical University, Vienna. It consists 
of 10,015 dermoscopic images categorized into seven different 
groups showing pigmented skin lesions: 

(1) (AKIEC) Actinic keratosis / Bowen's disease. the lesion
is a non-malignant tumor, but that may evolve into a malignant 
disease (squamous cell carcinoma). 

(2) Malignant - (BCC) Basal cell carcinoma.
(3) Non-malignant – (BKL) keratosis Lesion.
(4) Benign – (DF) Dermatofibroma.
(5) Malignant – (MEL) Melanoma.
(6) Benign (non-cancerous) - (NV) Nevi Melanocytic.
(7) (VASC) Vascular lesions: can be either Malignant or

Non-malignant lesion. 
Figure 1 shows several representative images of skin lesions. 

The collection consists of images with varying resolutions. 
Because to resolution variability, categorization of skin lesions 
becomes challanging task. 

3.2 Pre-process methodology 

To improve the quality of images and ensure their 
compatibility with the requirements of neural networks used 
in classification and pattern recognition. The dataset is 
organized into six folders and known as class names. Because 
the raw dataset is highly imbalanced, data balancing was 
performed using down sampling method. The dataset is then 
divided into two sets: 20% for testing and 80% for training. 
The training and test sets were then subjected to image 
preparation methods, which included image normalization the 
augmentation. Figure 2. illustrate the main phases of 

preprocessing method. 

Figure 1. Sample photos from the dataset 

Preprocessing of HAM10000 dataset images was applied in 
the following steps 

First, resizing images to fixed dimensions is a crucial step 
to feed the neural network. All images in the dataset were 
resized to 224×224 pixels, which is the optimal size for many 
pre-trained neural networks such as ResNet and DenseNet. 
This change ensures that all images enter the network with the 
same dimensions, reducing the complexity of the learning 
process and increasing training efficiency [20]. 

Second, image balancing: The dataset is highly imbalanced, 
with the (Melanocytic nevi) class representing the majority of 
the images (31.2%), and the other classes having much fewer 
samples (akiec: 6.8%, bcc: 10.7%, bkl: 22.8%, df: 2.4%, mel: 
23.1%, vasc: 3.0%) shown in Figure 3. The images are of 
various sizes and resolutions, and they were acquired from a 
range of sources and conditions, resulting in variability in 
terms of lighting, focus, and quality. 

To address class imbalance in datasets, one way is to 
resample the training dataset randomly. Undersampling entails 
removing instances from the majority class, and oversampling 
[21] entails copying examples from the minority class. Three
phases made up the oversampling technique utilized in this
study:

1) First, a subset of the HAM10000 dataset that contains
only the "Melanocytic nevi" class is created. 

2) The subset is then randomly sampled to reduce the
number of samples in the "Melanocytic nevi" class to 1500. 

3) Next, the remaining classes in the HAM10000 dataset are
oversampled to balance the number of samples across all 
classes. This can be achieved using techniques such as random 
oversampling, which involves randomly duplicating samples 
from the minority classes until the number of samples in all 
classes is equal. The result is shown in Figure 4. 
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Figure 2. Preprocessing phases 
 

 
 

Figure 3. Database before balancing 
 

Third, normalizing (adjusting the pixel values to range from 
0 to 1): adjusting is done by dividing the value of each pixel 
by 255 (the maximum pixel value in grayscale images or color 
images). This uniform range makes it easier for the neural 
network to process images better and ensures the stability of 
the input values [22, 23]. 

Fourth: image augmentation: When the number of images 
has decreased due to the use of image balancing, a technique 
is used to increase the diversity of images available to train 
deep learning models without actually collecting new images. 
This was achieved by applying different transformations to the 
HAM10000 dataset images, such as rotating, zooming in and 

out, flipping horizontally and vertically [24]. 
By performing these four steps: Image Resizing, Image 

Balancing, Pixel Scale Adjustment, and, Image Augmentation 
which speeds up the neural network's training process and 
contributes to improve the model’s performance and 
increasing the classification accuracy. 

 

 
 

Figure 4. Database after balancing 
 
3.3 DenseNet201 
 

DenseNet201 is a Convolutional Neural Network 
architecture that was introduced in 2018 as an extension to the 
original DenseNet architecture. DenseNet201 gets its name 
from the sum of 201 layers that it contains [25]. 

DenseNet201, like the original DenseNet architecture, 
makes use of a densely connected network structure in which 
all layers above it provide input to the layer below it, 
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encouraging feature reuse and lowering the number of 
parameters. 

By adding bottleneck layers this reduces the computing cost 
of the network. They use 1x1 convolutions to reduce the 
number of input channels before the main convolution 
operation is performed. They then use another1x1 convolution 
to go back to the original output channels. Meaning, the 
network works faster and more efficient and needs to learn 
fewer parameters during the convolution process. 

Moreover, DenseNet201 utilizes feature concatenation 
which concatenates feature maps from numerous layers before 
they proceed to the next layer. This is because the network has 
higher precision and a better feature acceptance mode for low-
level and high-level features. 

Overall, still DenseNet121 is the best deep learning 
framework for image classification tasks. It has high use in 
computer vision mainly used is in medical image analysis. 

3.4 ResNet152V2 

Is a type of deep Convolutional Neural Network structure. 
It has shown great success in the field of image classification, 
such as the classification of skin lesions. This is an extension 
of the ResNet family of architecture which used residual 
blocks to train deeper networks to prevent vanishing gradient 
problem [26]. 

ResNet152V2 is composed of 152 layers, most of which are 
convolutional [27]. The model contains four stages in its 
architecture, with the count of residual blocks being different 
throughout them. First stage 7 residual layers, second stage 35 
residual layers, third stage 8 residual layers, final stage 3 
residual blocks. 

Each block is composed of two or three convolutional layers 
followed by ReLU activations and batch normalization. The 
network can learn residual functions that can be used to 
modify the input features by adding the output of the 
convolutional layers to the input of the residual block. The 
residual blocks also include skip connections, which enable 
gradient flow through the network during backpropagation and 
prevent the vanishing gradient problem. 

ResNet152V2 has global average pooling in addition to 
convolutional layers and residual blocks. This decreases the 
spatial dimensions of the feature maps to one value per feature 
map. After that, a fully connected layer processes the 
generated feature vector to provide the output that is needed to 
complete the classification task. 

ResNet152V2 has been shown to be highly effective in skin 
lesion classification, achieving high accuracy on various 
datasets including the HAM10000 dataset. 

3.5 Metrics 

Figure 5. Confusion matrix [28, 29] 

Figure 5 illustrates confusion matrix which is utilized to 
valuate binary classification models by representing True (1) 
or False (0) for the actual classes and Positive (1) or Negative 
(0) for the resulting or predicted classes.

True Positive (TP): The predictive model precisely
estimates the positive class. 

False Positive (FP): The predictive model inaccurately 
predicts the positive class (also called a Type II error). 

True Negative (TN): The predictive model accurately 
predicts the negative class. 

False Negative (FN): The predictive model inaccurately 
estimated the negative class (also called a Type II error) [30]. 

Several important measurements may be derived from the 
confusion matrix to assess the classification model's 
performance: 

Accuracy: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

(1) 

Accuracy is the percentage of accurately predicted cases 
(both positive and negative) out of all instances. 

Precision (Positive Predictive Value): 

𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

(2) 

Precision refers to the fraction of genuine positive 
predictions among all positive predictions produced by the 
model. 

Recall (Sensitivity or True Positive Rate): 

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

(3) 

Recall calculates the fraction of genuine positive cases 
among all actual positive instances. 

Specificity (True Negative Rate): 

𝑆𝑆𝑆𝑆𝑃𝑃𝐴𝐴𝑃𝑃𝑆𝑆𝑃𝑃𝐴𝐴𝑃𝑃𝑆𝑆𝐴𝐴 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

(4) 

Specificity refers to the fraction of real negative cases 
among all actual negative instances. 

F1 Score: 

𝐹𝐹1 𝑆𝑆𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 = 2 × 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

(5) 

The F1 score is the combined mean of precision and recall, 
resulting in a balance of the two measurements. 

Receiver Operating Characteristic (ROC) Curve: 
The ROC curve shows how a binary classifier's diagnostic 

performance changes when the discrimination threshold is 
adjusted. It compares the actual positive rate (sensitivity or 
recall) with the false positive rate (1-specificity). 

3.6 Proposed model 

The proposed model to classify skin lesions involved 
several key steps as it shown in Figure 6. In order to match the 
input picture dimensions for the selected models, Densenet201 
and ResNet152V2, a preprocessing step was utilized to scale 
the images to a consistent size of 224 × 224 pixels. 
Oversampling was used to address the issue of class imbalance 
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in the HAM10000 dataset. To equalize the distribution of 
samples across all classes, more members of the minority class 
have to be created. 

Using the preprocessed and oversampled HAM10000 
dataset, the Densenet201 model was used in the study's initial 
phase, and it produced an accuracy of 88%. Using a pre-
trained Densenet121 model—which attained an accuracy of 
86%—was the second phase. Using a pre-trained 
Resnet152V2 model, the third stage resulted in an accuracy 
rate of 88%. 

To further improve accuracy, a combined analysis of the 
output from the top-performing models was done. 

In order to optimize the performance of the suggested model, 
the outputs of the Densenet201 and Resnet152V2 models were 
integrated by combining them, and then the following layers 
were added: 

1. The Global Average Pooling Layer processes the 
averages across the whole spatial dimension of the feature 
maps after receiving the combined model outputs. As a result, 
a global feature vector is produced, which highlights the 
salient characteristics of the input image. 

2. The addition of the dense layer, which has 256 neurons 
and a ReLU activation function, enables the network to learn 
more intricate features from the input data. 

3. Dropout 0.2: During training, this layer arbitrarily 
removes 20% of the activations from the preceding dense layer. 
This regularization method aids in avoiding overfitting. 

4. Dense layer (64, activation='relu'): This layer adds 
another dense layer with 64 neurons and applies the ReLU 
activation function. This further allows the network to learn 
more complex features of the input data. 

5. The second Dropout layer randomly drops out 20% of the 
activations from the previous Dense layer during training. 

6. The final output layer of the model, the Dense layer with 
7 neurons, is included, one for each class in the dataset. Over 
the classes, a probability distribution is produced using the 
softmax activation function. For the input image, the predicted 
class is determined by selecting the class with the highest 
probability. 

We used the categorical cross-entropy loss and the Adam 
optimizer for training the model. The model was trained for 60 
epochs with the batch size of 64. The model was checkpointed 
with the best model weights based on validation loss. In order 
to prevent overfitting and increase the variability of the 
training data, image augmentation like (rotation, zoom of the 
images, changing the width and heigh shift range, flipping) 
were used randomly to train the images during the training. 
Lastly, a series of metrics, including the F1-score, Precision, 
Recall, AUC-ROC, and Classification Accuracy, were used to 
evaluate the performance of the recommended model on the 
test set. 
 
4. RESULTS AND DISSCUTION  
 

In general, results come from a validation dataset, which are 
20% of all images in the HAM10000 dataset, well shuffled. 
The dataset used consists of a large sample of all images from 
seven different types of cancer skin. The models, 
DenseNet201 and ResNet152V2 were trained on a local GPU 
(NVIDIA GEFORCE GTX 1070), and were implemented 
through the Keras library to achieve the observed accuracies. 

They compared the models on a number of criteria, with 
accuracy being reported as the primary metric. The accuracy 
is the percentage of the testing dataset that has been rightly 

classified out of all occurrences. In this case, DenseNet201 
detected 88% of the skin lesions correctly and had an accuracy 
of 88% on the testing dataset. Similarly, ResNet152V2 also 
gained a similar level of performance to DenseNet201, with 
accuracy of 88. 

Serval criteria was uesed to evaluate how the models 
performed, accuracy is being as the primary metric. The 
accuracy is the percentage of the testing dataset that has been 
rightly classified out of all occurrences.  DenseNet201 
detected 88% of the skin lesions correctly and had an accuracy 
of 88% on the testing dataset. Similarly, ResNet152V2 also 
gained a similar level of performance to DenseNet201, with 
accuracy of 88. 

DenseNet201 and ResNet152V2 were combined to form 
DenseNet201-ResNet152V2, which reported a significant 
improvement in accuracy. This mixture of the two models 
means that we can leverage the unique attributes and 
properties that each architecture has learned. This highest 
accuracy of 91% is better than the individual performance of 
DenseNet201 and ResNet152V2. It is useful for getting the 
counts of true positive, true negative, false positive, and false 
negative predictions for each class given a confusion matrix 
which also show how the model is classifying images of 
different classes. 
 
4.1 Confusion matrix of models’ comparison 
 

Figures 7-9 show detailed statistics in the confusion matrix 
relating to how well the DenseNet201, ResNet152V2, and the 
combined DenseNet201-ResNet152V2 models performed at 
classifying skin lesion images of the different types of skin 
lesion; it can be seen that the three models can well distinguish 
among the skin lesions. This section compares the models 
which shed light on the respective strengths and weakness of 
each model. 

DF and VASC display perfect true positive rates for all three 
models, showing the robustness of lesions detection. The 
combined model shows improvement in true positive rates for 
BCC (281), Melanoma (225), Nevus (256), AK (285), and 
BKL (255) compared to the individual models. 

DenseNet201 has fewer misclassifications overall 
compared to ResNet152V2, especially for Melanoma and 
Nevus. ResNet152V2 shows higher misclassification rates for 
Nevus and Melanoma, indicating difficulty in distinguishing 
these classes. In most cases (BCC, Melanoma, Nevus, and 
AK), the misclassifications are reduced by combining 
DenseNet201 and ResNet152V2, showing the advantages on 
combining features from the both architectures.  

BCC (Basal Cell Carcinoma): The composite model has the 
utmost true positives and the least number of misdetections out 
of the three. 

Melanoma: True positive rate is better and number of false 
positives is less for the combined model as compared to 
DenseNet201 as well as ResNet152V2, thus the combined 
model achieves better detection accuracy. 

Nevus: The combined model offers an optimal trade-off 
between the true positive rate and the misclassification, and 
provides a better performance than the individual models. 

AK (Actinic Keratosis): This combined model displays the 
highest true positive rate along with fewest number of 
misclassifications, which denotes the best performance of the 
model. 

The multiple skin lesion types confusion matrices show 
improved classification when combining DenseNet201 and 

1534



ResNet152V2. Our combined model performs with better 
sensitivity and less misclassifications overall, especially for 
difficult classes such as Melanoma and Nevus. The 
improvements provide an illustrative example of the benefit of 

using strengths of different models to improve the 
performance in accurate and reliable skin lesion classification 
in clinical use.

 

 
 

Figure 6. Structure of the suggested model 
 

  
  

Figure 7. DenseNet201 confusion matrix Figure 8. ResNet152V2 confusion matrix 
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Figure 9. DenseNet201- ResNet152V2 confusion matrix 
 
4.2 Evaluation of training and validation performance 
 

Figure 10 demonstrate the testing and training accuracy 
curve over 60 epochs. During the Initial Training Phase (0 - 10 
epochs), training accuracy and testing accuracy starts 
increasing rapidly which illustrates learning happens 
efficiently. There will be slight fluctuations in testing accuracy 
as the model trains. In the middle training phase (10-20 
epochs), training accuracy improves and stabilizes around the 
20th epoch. Validation accuracy also stabilizes, slightly lower 
than training accuracy, indicating good generalization without 
significant overfitting. In the later training phase (20-60 
epochs), Training accuracy plateaus above 0.9, showing the 
model has learned the patterns well. Validation accuracy 
remains around 0.9, closely aligning with training accuracy, 
suggesting strong generalization and minimal overfitting. 

 

 
 

Figure 10. Validation ACC and Training ACC performance 
of (DenseNet201-ResNet152V2) model 

 
Figure 11 illustrates the training and validation loss curves 

over 60 epochs. In the initial training phase (0-10 epochs), 
Both training and validation loss decrease rapidly, reflecting 
effective learning and error reduction. Slight fluctuations in 
validation loss are expected as the model fine-tunes its 
parameters. In the middle training phase (10-20 epochs), 
Training loss continues to decline and stabilizes around the 

20th epoch. Validation loss also decreases but remains slightly 
higher than training loss, indicating a small generalization 
error. In the later training phase (20-60 epochs), training loss 
plateaus at a low value, showing minimized error on the 
training set. Validation loss remains stable and consistently 
higher than training loss, indicating good generalization and 
minimal overfitting. 

The training and validation metrics demonstrate that the 
model is well-trained, with effective learning and minimal 
overfitting. The early convergence and stability of accuracy 
and loss curves suggest that the model efficiently captures the 
data's patterns, making it robust for practical applications in 
skin lesion classification. The close alignment of training and 
validation accuracy, along with stable validation loss, 
indicates good generalization to unseen data with minimal 
overfitting. 

 

 
 

Figure 11. Validation loss and Training loss performance of 
(DenseNet201-ResNet152V2) model 

 
4.3 Evaluation of model performance 
 

This section evaluates several deep learning models and 
how they perform on different datasets. It emphasizes the 
impact of model architecture and transfer learning on 
classification accuracy. Table 1 provides a comparison 
between our proposed approach and existing models. 

The accuracy of ResNet models exhibits significant 
variation, ranging from 75% to 90%. This suggests that the 
dataset and implementation specifics heavily influence their 
performance. In research that used transfer learning, ResNet50 
demonstrated its resilience by achieving a peak accuracy of 
90%. This indicates that the model's pre-trained weights were 
effectively fine-tuned for individual datasets. The different 
levels of accuracy (79.95%, 81.57%, and 89.28%) seen in 
ResNet-50 tests show how dataset properties and 
preprocessing methods can affect how well the model works. 

DenseNet models provide robust and consistent 
performance, with DenseNet121 obtaining an accuracy of 
88%, DenseNet161 achieving 86%, and DenseNet169 
achieving 85%. In a prior study, the DenseNet201 model 
demonstrated a significant variation in performance, with a 
training set accuracy of 95% and a test set accuracy of 77%. 
This disparity indicates the possibility of overfitting, whereby 
the model exhibits remarkable performance on the training. 

Xception demonstrates a competitive accuracy of 84%, 
positioning it as a feasible option but somewhat lower than the 
high-performing DenseNet and ResNet models. 

InceptionV3 has varying performance, achieving 
accuracies of 85% and 74%. This means that applying it to a 
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variety of datasets compromises its consistency or necessitates 
further fine-tuning. 

MobileNet achieves a commendable accuracy of 87%, 
making it highly suitable for applications that need efficient 
and lightweight models. 

Compared to more modern and deep networks like 
DenseNet and ResNet, VGG16 and VGG19 show lower 
accuracies of 77% and 76%, respectively. 

Combining models generally allows for greater accuracy. 
The ensemble of DenseNet201 and ResNet152V2 
demonstrated this by achieving 91% accuracy. That implies 
even better overall performance can be achieved by combining 
the strengths and overcoming the weaknesses from several 
architectures. Combining the  ResNet and DenseNet models 
implies that both architectures enhance each other, which may 
compensate for any shortcomings in the individual models and 
make the classification task more accurate. 

Table 1. Comparing the suggested model with the literature 

Reference Used dataset Model Accuracy 

[12] HAM1000 +
ISIC 2018

ResNet50 
Densenet121 
Densenet161 
Densenet169 

86 
88 
86 
85 

[14] 

ISIC 2016 ResNet-50 
DenseNet-201 

79.95 
81.27 

ISIC 2017 ResNet-50 
DenseNet-201 

81.57 
73.44 

ISIC 2018 ResNet-50 
DenseNet-201 

89.28 
88.70 

[13] ISIC 2018 DenseNet201 
95% of training 
set 77% of test 

set 

[15] HAM10000 ResNet 
DenseNet 

87 
89 

[16] HAM + ISIC
2019 

ResNet 
DenseNet 

75 
84 

[17] HAM10000

Xception 
InceptionV3 
MobileNet 
ResNet50 

84 
85 
87 
90 

[18] ISIC 2018
Inception V3 

VGG19 
VGG16 

74 
76 
77 

Our work HAM10000 

DenseNet201 
ResNet152V2 
DenseNet201- 
ResNet152V2 

88 
88 
91 

4.4 Innovative points and future research 

The proposed skin lesion classification model has novel 
characteristics including the native image resizing to 224 × 
224 as a sole preprocessing step, an oversampling strategy to 
handle class imbalance, and a sequential use of Densenet201, 
Densenet121 and Resnet152V2 models for the different 
capture the advantages of different feature extraction models. 
To increase the classification accuracy and robustness, we 
ensemble the DenseNet201 and ResNet152V2 outputs in the 
model with an ensemble operation. Moreover, using the pre-
trained model illustrates the potential of transfer learning in 
improving diagnostic performance with limited annotated data. 

To counteract data being unbalanced and insufficient, it 
might actually be more interesting for future work to study 
state-of-the-art techniques using data augmentation such as 
Generative Adversarial Networks (GANs). In addition, while 

imagery on its own is effective for identifying skin lesions, not 
all available information is captured. Other digital data, such 
as age, sex, community, and medical history might serve to 
improve model accuracy. The additional data would provide 
more context to perhaps reveal patterns or variations not 
otherwise visually obvious. In addition, hybrid models using 
multimodal data with deep learning in collaboration with other 
machine learning algorithms may enhance the diagnosis 
accuracy and overall in-depth view of categorical 
classification of skin lesion. The greatest challenge in building 
competent models is the lack of rich and full data thanks to 
which to train such models, so future research needs to focus 
on collecting data from different ages, sexes, group and 
settings to make sure the models can be certified to perform in 
all situations. Another critical aspect when developing a 
machine learning tool is the quality of the images as well as of 
the supporting data to create reliable and trustworthy training 
models. 

5. CONCLUSIONS

In summary, Convolutional Neural Networks (CNNs) and
transfer learning are powerful deep learning techniques that 
have demonstrated promise of accurate skin lesion 
classification. Each of these approaches has its own benefits 
and disadvantages but in speed and accuracy, they have 
already outpaced traditional methods for skin lesion 
classification. As deep learning continues to evolve, the ability 
to accurately and efficiently classify skin lesions should see 
significant improvement. 

However, we need much more research to overcome 
challenges associated with deep learning in dermatology, for 
example the lack of labelled datasets and the high 
computational infrastructure needed. For greater depth and 
context, we believe that future work should focus on 
increasing the complexity of CNNs and transfer learning 
architectures, increasing the volume and quality of labeled 
datasets, and developing more user-friendly and interpretable 
solutions for dermatologists and other healthcare workers. 

Customized to this learning style, deep learning models can 
be a game-changer transforming the domain of dermatology, 
harnessing superior classification accuracy and faster pace of 
diagnosing skin lesions. Deep learning provides a rich field of 
study in regard to detect skin cancer and treatments. 

Limitations and Challenges: 
All deep learning techniques have their own issues and 

challenges. Dermatology Domain has an Issue with the 
requirement of large volumes of labeled data for training CNN 
The interesting architecture from the smaller CNN and the 
choice of pre-trained model can significantly be the deal 
breaker on transfer learning. Additionally, both approaches 
can be slow and require strong computing resources. 
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