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In recent years, the rapid development of computer applications for automatic classification 

of human emotions-based Electroencephalography (EEG) has significant attention from 

researchers. However, existing techniques have not adequately addressed the context-

information inherent in EEG signals. To address the issue, this research utilized an 

automated model for enhancing EEG-based emotion recognition. The Modified Tunicate 

Swarm Optimization Algorithm (MTSOA) improves EEG-based emotion recognition by 

enhancing context information management. It improves signal processing, resulting in 

more accurate emotional state detection. This overcomes fundamental difficulties and 

improves the algorithm efficacy in extracting relevant emotional data from EEG signals for 

more robust emotion detection systems. MTSOA is used for feature selection in emotion 

detection because of its capacity to navigate complex search spaces effectively. Because of 

its capacity to effectively explore parameter spaces, the Rat Swarm Optimization Algorithm 

(RSOA) is used in emotion recognition to choose hyperparameters. According to the results 

the suggested method better outcomes for arousal of 89.58%, and valence of 92.29% which 

was significantly higher than the ensemble median empirical mode decomposition 

(MEEMD), CNN with SVM, and Kernel matrix+DNN methods. 

Keywords: 

emotion recognition, empirical mode 

decomposition, long short-term memory 

network, rat swarm optimization algorithm, 

variational mode decomposition 

1. INTRODUCTION

Emotions play a crucial role in human life, impacting 

cognitive function, mental well-being, and decision-making 

[1]. They are deeply personal and influenced by numerous 

factors, including external stimuli, memories, experiences, 

personality, and mood [2]. Positive emotions can improve 

human behaviour, while negative emotions can undermine and 

diminish it. Particularly, intense negative emotions like 

depression can have deep detrimental effects on both physical 

and mental health [3]. Accurate identification and 

understanding of emotions hold immense potential and 

practical significance across various domains [4]. Emotion 

recognition has useful applications in psychology, healthcare, 

and human-computer interaction. Emotional states are 

analyzed in psychology to help understand and treat mental 

health disorders. It allows healthcare providers to monitor 

patient health and emotional responses. In human-computer 

interaction, it improves user experience by modifying 

interfaces to emotional inputs. Overall, emotion identification 

contributes to individualized therapies, enhanced mental 

health care, and more instinctive human-computer interactions, 

encouraging developments in various fields. While 

behavioural signals like facial expressions and speech are 

commonly utilized for affective computing, physiological 

signals offer incomparable advantages due to their spontaneity 

[5]. EEG signals characterize underlying brain activity by 

detecting the electrical patterns created by neurons. Emotional 

emotions alter brain activity, resulting in different EEG 

patterns while increasing beta and gamma frequencies are 

associated with higher emotional arousal, whereas enhanced 

alpha and theta rhythms are associated with decreased arousal. 

Analyzing these frequency shifts helps identify emotional 

states, making EEG a helpful tool for understanding and 

interpreting emotional experiences by recording the dynamic 

interplay of brain activity associated with distinct feelings. Its 

high temporal resolution allows for the study of cross-

frequency and neuronal oscillations coupling, which involves 

connections among diverse frequency bands [6]. Due to these 

capabilities, many affective computing researches approaches 

have shifted their focus towards analysing physiological 

signals [7]. Emotion recognition faces the challenge of 

accurately determining the true emotional context of stimuli 

during experiments through annotation or interpretation. 

Defining emotions precisely poses difficulties, making it 

complex to establish a clear ground truth for emotions. 

However, subjective ratings or self-reporting by test subjects 

during emotional trials have emerged as the most effective 

method to ascertain and interpret emotions in experiments [8, 

9]. While EEG-based recognition systems have made 

advances in recognizing emotions, limited efforts have been 

dedicated to artificially eliciting emotional states for improved 

accuracy in emotion recognition. By adopting a novel 

approach based on central nervous system signals, this method 

addresses the limitations of previous emotion recognition 

techniques, as these signals remain minimally influenced by 

the previously identified factors. By employing wavelet-based 

and statistical-based analyses of EEG signals, the technique 
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extracts feature and, when integrated with classification 

methods, has shown moderate success in identifying up to 

three, four, and five distinct emotions. Nevertheless, despite 

EEG's potential for emotion recognition, additional research 

was required to improve recognition rates of emotion 

mechanisms [10]. The contribution of this research is listed as 

follows: 

• In this research, Modified Tunicate Swarm Optimization 

Algorithm (MTSOA) is suggested for feature selection to 

improve emotion recognition accuracy. MTSOA optimizes the 

feature subset by adaptively selecting the relevant features, 

which increases the model's discriminatory strength. This 

increases the accuracy of emotion identification by evaluating 

the most informative components of the input data. 

• The DEAP database is the source of the collected EEG 

signals, then EMD and VMD filters was used to decompose 

the signal. These filters effectively remove noise and artifacts, 

ensuring that the EEG signals for further processing and 

classification. 

• A Bi-LSTM network was developed to classify human 

emotions as valence and arousal to enhance computational 

effectiveness and save time, for optimal hyper-parameters. 

The remainder of the article is organized as follows: Section 

2 presented the related research articles, while Section 3 

showed an example of how the suggested methodology of the 

study could be applied. The findings and conclusion of this 

thorough study are presented in Sections 4 and 5. 

 

 

2. LITERATURE SURVEY 

 

Samal and Hashmi [11] proposed a feature extraction 

method in emotion recognition based on Ensemble Median 

Empirical Mode Decomposition for EEG signal decoding. In 

the study, EEG signals from 32 subjects sourced in the DEAP 

database were used to test the proposed approach. The EEG-

MEEMD technique indicated better accuracy in distinguishing 

between the low and high values of arousal and valence with 

the aid of an ensemble classifier with time, nonlinear 

characteristics, and frequency. The performance was poor, 

however, in situations of multiclass categorization. 

Pusarla et al. [12] proposed a novel Local Mean 

Decomposition (LMD) algorithm that efficiently decomposed 

EEG signals into product functions (PFs), allowing for the 

capturing of important nonlinear characteristics. Then, these 

PFs were parameterized by parameters of the Normal Inverse 

Gaussian distribution. The LMD-domain NIG pdf features 

extracted hold the emotion class-specific information from the 

raw EEG signals. The optimized Adaboost classifier further 

boosted the performance in classification by tuning its 

hyperparameters. This study contributes to a valuable and 

robust framework for emotion classification from EEG data, 

and hence enormously benefits the field.  

Ramzan and Dawn [13] constructed a hybrid neural network 

that integrated with temporal and spatial appearances of input 

signals to satisfactorily classify different emotions. Emotions 

such as HVLV, HALA, dominance, familiarity, and liking 

were represented through visualized data from the DEAP 

dataset, while emotions were classified as positive or negative 

in degree using the SEED dataset. Fusion of deep learning 

methods, LSTM-RNN and CNN, returned the best 

performance in emotion analysis using EEG signals. The 

results provided an exciting development in emotion 

classification and analysis using deep learning techniques for 

processing EEG signals in real time.  

Gao et al. [14] generated a feature extraction process using 

PSD, differential entropy, sample entropy, GoogleNet and 

Hjorth feature. Extracted features consisted of contextual and 

spatial information, which were further used to classify the 

human emotion through SVM. The performance of this model 

has been tested on the DEAP dataset; the results demonstrated 

better performance as compared to other classifiers. However, 

the suggested method requires further enhance by 

incorporating fuzzy logic techniques and optimization 

approaches into the ML models.  

Zali-Vargahan et al. [15] proposed an efficient method for 

emotion recognition across different subjects using multi-

channel EEG signals. The model used three fusion schemes to 

merge the information from various channels. Among these, 

the FaDFR scheme proved to be most accurate. The proposed 

approach combines time-frequency features of EEG channels 

with feature extraction by Inception-V3 CNN and SVM-based 

organization. The results show the potential of the approach to 

extract, with very high accuracy, emotional information from 

EEG signals, and thus it is applied to affective computing, 

human-computer interaction, and neuromarketing. 

The integration of a kernel matrix with DNNs was 

employed by Zhang et al. [16] for emotion recognition, 

effectively capturing the interrelation between multi-modal 

physiological EEG signals and achieving improved 

recognition results. The proposed fusion method demonstrated 

efficient capturing of relationships between these signals 

through the kernel function representation, leading to 

enhanced fusion performance. However, the assumption of 

strong independence posed challenges in capturing 

complementary relationships between different data types.  

Zong et al. [17] introduced FCAN-XGBoost, a novel EEG-

based emotion recognition method that enhances classification 

performance. This method incorporates FANet, which uses a 

channel attention mechanism to variably weigh features based 

on their importance, improving model accuracy. The approach 

achieves higher accuracy in emotion recognition while 

requiring fewer computational resources, as evidenced by 

reduced computation time and lower memory usage. However, 

the method's accuracy on the DREAMER dataset was 

comparatively lower than on the DEAP dataset, likely due to 

data availability issues. 

The TSOA improves multiclass classification performance 

by optimizing hyperparameter and model selection. Tunicate 

Swarm's adaptive search method allows it to efficiently 

traverse the hyperparameter space, improving the model's 

ability to handle multiclass scenarios. Its better exploration 

and exploitation balance results in enhanced classification 

accuracy, minimizing the constraints identified in existing 

approaches and demonstrates superior performance in 

complicated multiclass emotion recognition tasks. 

 

 

3. PROPOSED METHOD 

 

Increasing the accuracy of EEG signals based on emotion 

recognition is the aim of the proposed ITSOA.The process 

involved in various stages of classifying the emotions that are 

data collection, pre-processing, feature extraction, feature 

selection, Hyper parameter optimization and classification. 

The initial step involves acquiring data from a publicly 

available dataset, followed by a pre-processing phase to 

eliminate irrelevant or inappropriate features. Subsequently, a 
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feature selection process is applied to choose relevant and non-

redundant features. Furthermore, optimal hyper-parameters 

are selected by utilizing IRSOA. Finally, an efficient 

classification is conducted using a Bi-LSTM to achieve 

accurate predictions. The Flow diagram of the suggested 

method is illustrated in Figure 1. 

 

 
 

Figure 1. Flow diagram of the suggested method 

 

3.1 Data collection  

 

In this research, the raw data is obtained from publicly 

available dataset namely DEAP dataset [18]. The description 

of the mentioned dataset is mentioned as follows:  

The DEAP database comprises 40-channel EEG data 

collected from 32 individuals. It includes four emotional 

variables: arousal, valence, dominance, and liking, for this 

study, 40 EEG trials featuring 40 films were utilized, with 

scores ranging from 0 to 9. Each trial had a duration of 60 

seconds, and specifically, the second-half EEG trials were 

selected for analysis. The DEAP database contains EEG data 

from 32 channels during emotional stimulations for 32 

varience, with each session lasting 42 seconds. Emotional 

dimensions with rating scores in the range of 0-5 are 

considered low, while those in the range of 5-9 are considered 

high. It is a four-class classification problem because the 

emotions in the DEAP database are divided into four quadrants: 

low arousal high valence (LAHV) to relaxation, High Arousal 

Low Valence (HALV) to anger, High Arousal High Valence 

(HAHV) to happiness, and Low Arousal Low Valence (LALV) 

to sadness.  

Figure 2 shows an example of the obtained EEG signals. 

 

 
 

Figure 2. Sample acquired EEG signals 

 

3.2 Data pre-processing 

 

After the stage of data collection, the pre-processing was 

utilized to transform the data into a processed format without 

complexities. Prior to applying decomposition filters, EEG 

signals undergo pre-processing that includes noise filtering, 

re-referencing, and artefact removal. Empirical mode 

decomposition and variational mode decomposition are two 

preprocessing processes. These techniques improve the 

quality of EEG data, resulting in more accurate findings when 

utilizing decomposition filters for feature extraction in 

emotion detection algorithms. It involves EMD [19] and VMD 

[20] filters, the process of the proposed method is briefly 

outlined as follows. 

•Empirical mode decomposition 

After obtaining EEG signals from the DEAP database, 

researchers employ the EMD technique to effectively 

decompose the non-linear and non-static signals, thereby 

eliminating undesired noise and artifacts. The initial phase 

involves categorizing the collected EEG signals into multiple 

IMFs using the EMD method. Each IMF then functions as a 

sub-band gesture, facilitating the subsequent decomposition of 

the sub-strip signal. Eqs. (1) and (2) the mean value of both 

the lower and upper envelopes.  

 

𝑥(𝑡) = ∑ 𝐷𝑚(𝑡) + 𝑟𝑀(𝑡)

𝑀

𝑚=1

 (1) 
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where, 𝐷𝑚(𝑡) corresponds to the IMFs obtained through the 

EMD of the time-series EEG signal𝑥(𝑡). Where, 𝑥(𝑡) can be 

expressed as the sum of all the decomposed IMFs along with 

the residue. 

 

𝑚(𝑡) =
𝑒𝑚(𝑡) + 𝑒𝑙(𝑡)

2
 (2) 

 

where, 𝑒𝑚(𝑡)  represents the lower envelope and 𝑒𝑙(𝑡) 

represents the upper envelope, then 𝑚(𝑡)  represents lower 

envelope. Two crucial criteria must be satisfied during the 

decomposition process. Two main conditions are followed 

during each iteration of decomposition. The EMD model for 

sample-decomposed signal is depicted in Figure 3. 

•Variational mode decomposition 

VMD is a method of time-frequency decomposition.Its 

basic idea is to break down the original signal into individual 

modulations (IMFs) with different centre frequencies and 

bandwidths by iteratively solving the variational equation.  

VMD is particularly well-suited for processing nonlinear 

and non-stationary signals, offering clear advantages over 

EMD. It effectively addresses the mode aliasing issue 

encountered in EMD. The mathematical representation of the 

variational problem with constraints is depicted in Eq. (3): 

 

{𝑣𝑘}𝑚𝑖𝑛 ,

{𝜔𝑘} {∑ ‖𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑣𝑘(𝑡)] 𝑒−𝑗𝑤𝑘𝑡‖

2

2

𝑘 }

𝑠. 𝑡.  ∑ 𝑣𝑘 = 𝑓𝑘

 
(3) 

 

𝑣𝑘 = {𝑣1, … . 𝑣𝑘}  represents IMFs after VMD 

decomposition, K represents the number of IMFs, {𝜔𝑘} =
{𝜔1, … . 𝜔𝑘}  represents the centre frequency of each 

component. f is original input signal, j is an imaginary unit, 𝑡 

is the partial derivative of t,  represents the convolution,  (t) 

is the impact signal,  (t) are introduced into Eq. (3) to convert 

the constrained issue. (∑ ∑ )𝑘
𝑘=1𝑘:  represents the sum of all 

modes  is the balance stricture of data fidelity constraint, then 

the function expression in Eq. (4). 

 
({𝑣𝑘}, {𝜔𝑘}, 𝜆) 

= 𝛼 ∑ ‖𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑣𝑘(𝑡)] 𝑒−𝑗𝑤𝑘𝑡‖

2

2

𝑘
 

+ ‖𝑓(𝑡) − ∑ 𝑣𝑘(𝑡)
𝑘

‖
2

2

+ 〈𝜆(𝑡) ∑ 𝑣𝑘(𝑡)
𝑘

〉 

(4) 

 

To achieve the optimal solution of Eq. (4), is employed, 

enabling continuous informs 𝑣𝑘
𝑛+1, 𝜔𝑘

𝑛+1, 𝜆𝑘
𝑛+1  Through 

iterative processes, the irregular direction multiplier process is 

used to attain the "saddle point" of Eq. (5) 𝑣𝑘
𝑛+1 is: 

 

𝑣𝑘
𝑛+1 = arg min {𝛼 ‖𝜕𝑡 [(𝛿(𝑡) +

𝑗

𝜋𝑡
)

∗ 𝑣𝑘(𝑡)] 𝑒−𝑗𝑤𝑘𝑡‖
2

2

+ ‖𝑓(𝑡) − ∑ 𝑣𝑖(𝑡)
𝑖

+
𝜆(𝑡)

2
‖

2

2

} 

(5) 

 

where, 𝜔𝑘 = 𝜔𝑘
𝑛+1, ∑ 𝑣𝑖(𝑡) = ∑ 𝑣𝑖(𝑡)𝑛+1

𝑖≠𝑘𝑖 . 

Eq. (6) is subjected to Fourier transform to derive the 

frequency domain expressions of the IMF and the centre 

frequency, respectively. 

�̂�𝑘
𝑛+1(𝜔) =

𝑓(𝜔) − ∑ �̂�𝑖(𝜔) +
�̂�(𝜔)

2𝑖≠𝑘

1 + 2𝛼(𝜔 − 𝜔𝑘)2
 

(6) 

 

𝜔𝑘
𝑛+1 =

∫ 𝜔|�̂�𝑘(𝜔)|2𝑑𝜔
∞

0

∫ |�̂�𝑘(𝜔)|2𝑑𝜔
∞

0

 (7) 

 

In each iteration 𝑣𝑘
𝑛+1 is obtained through Wiener filtering 

of 𝑓(𝜔) minus the sum of all other 𝑓(𝜔) − ∑ �̂�𝑖(𝜔) ,𝑖≠𝑘 where 

i is not equal to k. The term 𝜔𝑘
𝑛+1  represents the centre 

frequency, and �̂�𝑘(𝜔) denotes the inverse Fourier transform. 

The real part of the result is represented as 𝑣𝑘(𝑡). EEG signals 

exhibit evident nonlinear and non-stationary characteristics, 

and the application of VMD proves beneficial in reducing their 

non-stationarity. The hybrid model for sample-decomposed 

signal was illustrated in Figure 4. 

 

3.3 Feature extraction 

 

The first pre-processing step yields the pre-processed output, 

which is subsequently used as input for the feature extraction 

stage that follows. The goal of extracted features is to help with 

analysis and learning algorithms in a variety of applications, 

including machine learning and pattern recognition, by 

identifying and selecting the most relevant and useful 

properties from raw data. The hybrid feature extraction 

method encompasses a diverse set of statistical techniques for 

extracting feature values from the processed signals. These 

techniques include, sample entropy, zero-cross rate, Hjorth 

activity, mean-curve-length, standard deviation, variance, 

Shannon entropy, normalized first difference, Hjorth 

complexity, auto-regressive model, mean Teager energy, 

Hjorth mobility and various band power measurements such 

as delta, beta, alpha and gamma. Additionally, the feature 

extraction involves the ratio of band power between alpha and 

beta frequencies, as well as minimum and maximum 

computations [21]. This hybrid feature extraction produces a 

significant feature length of 2676 in the context of two-

dimensional emotion prediction. It is further optimized to 1204 

useful features for both valence and arousal classes.  

The operation of this hybrid approach offers several 

advantages, including improved accuracy, reduced risk of 

overfitting, enhanced data visualization, and accelerated 

training process when integrated with Bi-LSTM networks. 

 

3.4 Feature selection 

 

The step of suggested feature selection receives the pre-

processed output, which is obtained from the feature extraction 

stage and fed as input. Because of its adaptive feature space 

exploration, TSOA performs better when it comes to feature 

selection for emotion categorization. In order to identify the 

most crucial attributes, TSOA carefully looks over feature 

subsets, striking a balance between exploration and 

exploitation. Its adaptability to alter the search approach 

guarantees the inclusion of discriminative features, enhancing 

the model's capacity to identify complex emotional patterns. 

By assessing the extraction of critical information from the 

input data, the dynamic nature of TSOA improves feature 

selection over prior methods, leading to more reliable and 

efficient models. It also demonstrated higher accuracy in 

emotion categorization. Below is a brief description of the 

feature selecting approaches procedure. 
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3.4.1 Tunicate swarm optimization algorithm 

Because it finds better optimal solutions than competing 

techniques, the new meta-heuristic optimization algorithm 

TSA is used in this work. TSA shows to be especially useful 

in solving practical engineering design issues. When living in 

aquatic settings, tunicates use two methods to find food: they 

use swarm intelligence, and they determine the best state to 

locate food in. 

(1) Search agents for avoiding conflicts 

Eqs. (8)-(10) establish the role of a search agent, which 

incorporates the 𝐴 , �⃗� , and �⃗⃗⃗� vectors in order to prevent 

disagreements between tunicates. 

 

𝐴 =
�⃗�

�⃗⃗⃗�
 (8) 

 

�⃗� = 𝑐2 + 𝑐3 − �⃗� (9) 

 

�⃗� = 2. 𝑐1 (10) 

 

Advection of water flow in the deep ocean is denoted by �⃗�, 

whereas �⃗� stands for gravity and �⃗⃗⃗� for social interactions. C1, 

C2, and C3 are random variables that fall inside the interval [0, 

1]. The estimation of �⃗⃗⃗� can be obtained using Eq. (11). 

 

�⃗⃗⃗� = [𝑃𝑚𝑖𝑛 + 𝑐1. (𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛)] (11) 

 

where, Pmin and Pmax are the minimum and maximum speeds 

correspondingly for social interface. It is essential to note that 

these values for Pmin and Pmax have been set at 1 and 4 

respectively. 

(2) Move to the best neighbor direction 

The motion of the tunicates according to Eq. (12) is in the 

direction of their best neighbour. 

 

�⃗⃗�𝐷 = |�⃗�𝑆 − 𝑟𝑎𝑛𝑑 . �⃗⃗�𝑝(𝑥)| (12) 

 

Here, rand is a random volume within the interval [0, 1], 

distance refers to the food source, tunicate is represented as 

�⃗⃗�𝐷, x is the optimum food source which is determined by �⃗�𝑆, 

and the location of the tunicate is expressed as �⃗⃗�𝑝(𝑥) 

transmitting towards best search agent. Eq. 13 gives the 

optimal position of the tunicate with respect to the food 

location. 

 

�⃗⃗�𝑝(𝑥) = [
�⃗�𝑆 + 𝐴. �⃗⃗�𝐷; 𝑖𝑓: 𝑟𝑎𝑛𝑑 ≥ 0.5

�⃗�𝑆 − 𝐴. �⃗⃗�𝐷;  𝑖𝑓: 𝑟𝑎𝑛𝑑 < 0.5
] (13) 

 

Finding the optimal solutions between the first two optima 

is the first step towards simulating tunicate features. The 

locations of additional search agents are then effective, 

accounting for the best tunicate's location. Eq. (14) can be 

utilized to estimate the tunicates' swarm characteristics. 

 

�⃗⃗�𝑝(�⃗� + 1) =
�⃗⃗�𝑝(𝑥) + �⃗⃗�𝑝(�⃗� + 1)

2 + 𝑐1

 (14) 

 

3.4.2 Modified tunicate swarm optimization algorithm 

An MTSOA is incorporated in the original 𝐴 , �⃗� , and �⃗⃗⃗� 

vectors to improve the global and local search capabilities of 

the standard TSA. By using these vectors, search agents can 

traverse the search space at random and facilitate conflict-free 

exploration. By modifying these vectors, it is possible to 

achieve better phases for exploration and exploitation. The 

reason MTSOA is used for feature selection in emotion 

detection is because it can navigate complex search spaces 

with ease.  

Through feature subset optimization, MTSOA chooses the 

most pertinent EEG signal elements to enhance model 

performance. Its efficiency and adaptability contribute to 

increased accuracy in emotion identification systems. 

However, because some differences become caught in local 

optima, finding the global optimum may be challenging, 

particularly in higher-dimensional and complex situations. 

This study enhances TSA's exploring capability in the ways 

that follow: 

(1) Improved exploration ability 

The study's initial values for the numerator and denominator 

are set to be low and high, respectively. This modification 

allows search agents to cover a wider area of the search field 

by allowing them to travel at a slower pace.  

Because the targets of this enhanced approach are local 

searches, striking a balance between exploration and 

exploitation is important. As the number of iterations increases, 

the values gradually decline to lower levels. By implementing 

these adjustments, the exploitation phase is enhanced and 

leads to more effective local explorations.  

The improved form of vector 𝐴 can be represented by Eq. 

(15). 

 

𝐴 =
2 − 4(𝑡/𝑡𝑚𝑎𝑥)

4 − 3(𝑡/𝑡𝑚𝑎𝑥)
 (15) 

 

where, the values for the current iteration and the maximum 

number of iterations are represented by t and tmax.  

Therefore, the result of the recommended feature selection 

is subjected to hyperparameter optimisation in order to 

enhance the accuracy of emotion recognition, as briefly 

described in the stage below. 

 

3.5 Hyper parameter optimization 

 

In order to increase the accuracy of emotion identification, 

the hyper parameter optimisation was improved utilising the 

RSOA after the suggested feature selection step. The RSOA is 

used in emotion recognition to choose hyperparameters due to 

its ability to efficiently search parameter spaces. Better 

accuracy and robustness are attained by the model's optimal 

configuration for emotion detection tasks, which is ensured by 

its adaptive nature and ability to find global optima. 

Hyperparameters regulate how machine learning models 

behave, affecting both their effectiveness and generalization. 

The parameter includes learning rate of 0.001 to 1, hidden 

units of 10 to 500, regularization strength of 0.01 to 0.1, batch 

size of 32 to 512, and activation functions of ReLU, sigmoid, 

respectively. A powerful metaheuristic optimisation method 

called RSOA was developed by observing how attacking and 

following rats behave. This method conducts hyperparameter 

optimisation by modelling the aggressive and follow-the-rat 

behaviour, which ultimately leads to improved performance 

[22]. Eq. (16) scientifically indicates that the search space is 

initialised by the RSOA.  

 

𝑥𝑖 = 𝑥𝑖 𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 × (𝑥𝑖 𝑚𝑎𝑥 − 𝑥𝑖 𝑚𝑖𝑛), 𝑖
= 1,2, … 𝑁 

(16) 
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In Eq. (17), 𝑥𝑖 𝑚𝑎𝑥and 𝑥𝑖 𝑚𝑖𝑛represent the upper and lower 

bounds respectively, of the ith variable, while N stands for the 

total number of agents. Through this aggressive process, 

therefore, the rat is scientifically shown in Eq. (17) to create 

updated positions of the rat. 

 

�⃗⃗�𝑖(𝑥 + 1) = |�⃗⃗�𝑟(𝑥) − �⃗⃗�| (17) 

 

In this context, 𝑃⃗⃗⃗⃗ 𝑖(𝑥 + 1) signifies the efficient locations of 

the 𝑖𝑡ℎrats, and �⃗⃗�𝑟(𝑥)denotes the best optimum resolution. The 

computation of the time �⃗⃗� is carried out using Eq. (18). 
 

�⃗⃗� = 𝐴 × �⃗⃗�𝑖(𝑥) + 𝐶 × (�⃗⃗�𝑟(𝑥) − �⃗⃗�𝑖(𝑥)) (18) 

 

In this instance, �⃗⃗�𝑖(𝑥)  denotes the position of the ith rat, 

whereas the matrices A and C are found by consuming Eqs. 

(19) and (20), respectively. 
 

𝐴 = 𝑅 − 𝑥 × (
𝑅

𝐼𝑡𝑒𝑟𝑚𝑎𝑥

) , 𝑥 = 1,2,3, … . . 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 (19) 

 

𝐶 = 2 × 𝑟𝑎𝑛𝑑 (20) 
 

In the RSOA, 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 described the maximum volume of 

iterations, 𝑥  denotes the current iteration, 𝑅  represents a 

random amount within the range [1, 5], and 𝐶  indicates a 

random amounts within the range [0, 2]. N-dimensional vector 

𝑋 is scientifically represented in Eq. (21). 
 

𝑋 = (𝑥1, 𝑥2, … . 𝑥𝑁) (21) 

 

where, 𝑥𝑖𝜖[𝑥𝑖𝑚𝑖𝑛 , 𝑥𝑖𝑚𝑎𝑥] , and the opposed point of 𝑥𝑖  is 

characterized as �̅�𝑖 and it is revealed in Eq. (22). 
 

�̅�𝑖 = (𝑥𝑖𝑚𝑎𝑥 , 𝑥𝑖𝑚𝑖𝑛) − 𝑥𝑖 , 𝑖 = 1,2, … . , 𝑁 (22) 
 

Conversely, to enhance the search exploration in the ITSOA 

at each iteration, the best resolution is substituted with a new 

resolution based on Eq. (23). 

 

𝑥𝑤𝑜𝑟𝑠𝑡 = {
𝑟𝑎𝑛𝑑1 × �⃗⃗�𝑟(𝑥), 𝑖𝑓 𝑟𝑎𝑛𝑑3 ≤ 0.5

(𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑚𝑖𝑛) − 𝑥𝑖 , 𝑖𝑓 𝑟𝑎𝑛𝑑3 > 0.5
 (23) 

 

In this context, 𝑟𝑎𝑛𝑑1, 𝑟𝑎𝑛𝑑2, and 𝑟𝑎𝑛𝑑3represent random 

records within the range of 0 to 1, and 𝑥𝑤𝑜𝑟𝑠𝑡  indicates the 

resolution with a high value by applying these concepts, the 

hyper parameter optimization outcomes are improved as the 

vector locations of the least hierarchical rats are exchanged 

with the finest results attained distant, denoted as �⃗⃗�𝑟(𝑥), in 

each group. 
 

3.6 Classification using Bi-LSTM 
 

Using the DEAP dataset, the Bi-LSTM is run after the hyper 

parameter optimisation stage to increase the accuracy of 

emotion categorization. Because it can identify temporal 

correlations in emotional sequences and both past and future 

contextual information, the Bi-LSTM is crucial for classifying 

emotions. One of its advantages is that it can manage 

bidirectional dependencies, which makes it possible to 

understand emotional expression more accurately. Bi-LSTM 

is selected because of its ability to describe intricate temporal 

patterns. It performs better than alternative techniques by 

effectively capturing long-range relationships, enhancing the 

precision of emotion classification models for a more complex 

and contextually sensitive emotional content interpretation. 

An effective deep learning model for classifying emotions is 

called Bi-LSTM [23]. The bidirectional feature improves the 

model's comprehension of context by allowing it to take into 

account information from the past as well as the future. Bi-

LSTM uses text inputs to represent the emotional context of 

the text in classifying the emotions. This is a popular choice 

for classifying tasks related to emotion in natural language 

processing, due to the ability to gather context and sequence 

information that furthers our understanding of a multitude of 

applications of human emotions and sentiment. 

The structure of a Bi-LSTM is shown in Figure 5. 

 

 
 

Figure 3. Sample-decomposed EEG signal of EMD model 

[24] 

 

 

 
 

Figure 4. EMD+VMD technique for sample-decomposed 

EEG signal [24] 

 

 
 

Figure 5. Structure of a Bi-LSTM architecture 
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A forward calculation with an RNN in positive direction, 

notationally represented by A1→A2…→At, proceeds. At time 

t, the input is the sequential data xt, and the output is the A(t-1) 

of the time before. In other parts, a reverse calculation that runs 

in the opposite way has a direct RNN in positive direction, 

symbolically noted again as A1→A2…→At. The input at time 

t is again sequential data xt, and the output is now the A(t+1). 

 

 
4. EXPERIMENTAL ANALYSIS 

 

This section evaluates the proposal's outcomes in order to 

provide conclusions based on the emotion classification. The 

outcome section has subsections for performance analysis and 

comparison analysis. 

Performance analysis Also presented is the evaluation of the 

efficiency of the suggested strategy using the DEAP dataset. 

The effectiveness of the suggested strategy is compared with 

other approaches documented in the literature for a 

comparative study. 

The estimation metrics include accuracy, precision, 

sensitivity, specificity, and f-measure, which are obtained by 

utilizing Eqs. (24)-(28) given below: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100  (24) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
× 100  (25) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100  (26) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100  (27) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
× 100  (28) 

 

where, TP, FP, TN, and FN represent False Positive, True 

Positive, False Negative, and True Negative respectively. 
 

4.1 Experimental setup 
 

In this research, an Intel Core i7 processor and 16 GB of 

RAM are configured in MATLAB R2020b to simulate the 

performance of the proposed ITSOA network. In this paper, 

different measures, like specificity, sensitivity, f1-score, 

precision, and classificatory accuracy, have been used to 

analyze the performance of the suggested ITSOA network. 
 

4.2 Performance analysis of actual features for DEAP 

dataset 
 

The performance of the suggested ITSOA on the DEAP 

dataset is assessed in this section. As indicated in Tables 1 and 

2, the results are compared with a variety of classifiers, such 

as random forest, Deep Neural Network (DNN), Multi-

Support Vector Machines (MSVM), and Generative 

Adversarial Network (GAN). The DEAP dataset is used to 

assess the trial results for many classifications, including 

arousal and valence. 

 

Table 1. Performance analysis of actual features for arousal 

 
Method Sensitivity (%) Accuracy (%) F1_score (%) Specificity (%) Precision (%) 

RF 84.67 80.13 83.76 83.92 82.86 

GAN 80.87 82.76 80.86 79.28 80.84 

DNN 81.97 80.00 80.05 83.99 90.00 

MSVM 69.74 68.44 69.29 69.07 68.85 

Bi-LSTM 86.99 83.54 84.45 84.10 82.05 

 

Table 2. Performance analysis of actual features for valence 

 
Classifiers Accuracy (%) Sensitivity (%) Specificity (%) F1_score (%) Precision (%) 

RF 82.81 80.01 79.60 81.56 83.16 

GAN 81.67 80.24 81.49 81.31 82.40 

DNN 79.45 79.78 78.11 79.25 78.73 

MSVM 82.29 79.37 80.68 79.88 80.38 

Bi-LSTM 86.25 86.92 87.91 86.11 85.31 

 

Table 3. Performance analysis of optimized features for arousal 

 
Classifiers Accuracy (%) Sensitivity (%) Specificity (%) F1_score (%) Precision (%) 

RF 82.71 80.83 85.63 82.17 83.54 

GAN 82.80 81.62 85.71 82.20 82.79 

DNN 81.80 81.62 82.71 82.20 82.79 

MSVM 76.87 72.50 72.50 75.99 79.83 

Bi-LSTM 89.58 88.83 86.25 89.10 89.38 

 

Table 4. Performance analysis of optimized features for valence 

 
Classifiers Accuracy (%) Sensitivity (%) Specificity (%) F1_score (%) Precision (%) 

RF 85.54 83.58 84.58 83.37 83.16 

GAN 90.83 90.96 90.58 92.06 93.20 

DNN 86.67 85.11 84.11 85.52 85.95 

MSVM 82.29 81.37 80.68 80.88 80.38 

Bi-LSTM 92.29 92.07 93.41 93.49 94.95 
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According to the Tables 1 and 2, it showed when compared 

to existing methods the suggested method achieved better 

outcomes accuracy of 83.54% in arousal and 86.25% in 

valence respectively. Extensive experimental outcomes 

demonstrate that the suggested ITSOA network efficiently 

minimizes data loss and achieves high recognition accuracy in 

two-level emotion classification. 

 

4.3 Performance analysis of optimized features for DEAP 

dataset 

 

Selected traits or qualities of a system or procedure that 

have been enhanced or adjusted to attain optimal effectiveness 

and performance are referred to be optimized features. 

Additionally, Tables 3 and 4 present the experimental results 

for various classes, including arousal and valence, utilizing the 

DEAP dataset. 

From the Tables 3 and 4, it showed when compared to 

existing methods the suggested method achieved better 

outcomes accuracy of 89.58% in arousal and 92.29% in 

valence respectively. The experimental outcomes described 

the efficiency of the suggested ITSOA network in minimizing 

information loss and analysing recognition accuracy in two-

level emotion classification. 

 

4.4 Performance analysis of feature selection techniques 

for DEAP dataset 

 

The outcomes are compared with various feature selection 

optimization methods, including Manta Ray Foraging 

Optimization (MRFO), Multi-parameter Optimization (MPO), 

and Whale Optimization Algorithm (WOA), as presented in 

Table 5 and Table 6. The experiment results are computed for 

different categories, such as valence and arousal, within the 

DEAP dataset. 

 

Table 5. Performance analysis of feature selection methods for arousal 

 
Methods Accuracy (%) Sensitivity (%) Specificity (%) F1_score (%) Precision (%) 

MRFO 81.75 82.77 84.81 82.13 81.51 

MPO 82.39 83.30 84.33 83.15 83.00 

WOA 73.53 74.95 72.60 73.28 71.68 

Proposed 89.58 88.83 86.25 89.10 89.38 

 

Table 6. Performance analysis of feature selection optimization for valence 

 

Methods Accuracy (%) Sensitivity (%) Specificity (%) F1_score (%) Precision (%) 

MRFO 84.21 84.07 85.01 84.93 85.81 

MPO 80.58 79.94 81.12 79.78 79.63 

WOA 81.83 83.03 81.89 83.36 83.68 

Proposed 92.29 92.07 93.41 93.49 94.95 

 

  
  

Figure 6. Graphical representation of suggested method for 

arousal 

Figure 7. Graphical representation of suggested method for 

valence 

 

Table 7. Performance analysis of optimization techniques for arousal 

 
Methods Sensitivity (%) F1_score (%) Accuracy (%) Specificity (%) Precision (%) 

PSO 82.28 81.18 80.57 84.01 80.12 

SSA 75.30 74.37 77.39 74.33 73.45 

FOA 74.86 73.12 73.45 72.55 71.47 

Proposed 88.83 89.10 89.58 86.25 89.38 

 

Table 8. Performance analysis of hyper parameter optimization for valence 

 
Methods Sensitivity (%) F1_score (%) Accuracy (%) Specificity (%) Precision (%) 

PSO 82.50 83.92 82.32 85.93 85.38 

SSA 80.69 80.07 81.54 81.31 79.46 

FOA 84.60 84.51 81.18 80.44 84.43 

Proposed 92.07 93.49 92.29 93.41 94.95 
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According to the Table 5 and 6, it showed when compared 

to existing methods the suggested method achieved better 

outcomes accuracy of 89.58% in arousal and 92.29% in 

valence respectively. The graphical representation of the 

suggested feature selection optimization method was 

illustrated in the Figure 6 and Figure 7 respectively. 

 

4.5 Performance analysis of different optimization 

techniques for DEAP dataset 

 

In this section, the simulation outcomes of the suggested 

ITSOA are tested on the DEAP dataset. By viewing Table 7 

and Table 8, the suggested method was compared with various 

hyper parameter optimizations like, Particle Swarm 

Optimization (PSO), Salp Swarm Algorithm (SSA) and Forest 

Optimization Algorithm (FOA). Here, the experimental 

outcomes are assessed for distinct classes such as arousal and 

valence using DEAP dataset was demonstrated in Table 7 and 

Table 8. 

From the outcomes presented in Table 7 and Table 8, the 

suggested method outperformed existing approaches, 

achieving an accuracy of 89.58% in arousal and 92.29% in 

valence. The extensive experimental results highlight the 

effectiveness of the suggested ITSOA network in minimizing 

information loss and analysing recognition accuracy in two-

level emotion classification. 

 

4.6 Comparative analysis 

 

Comparing data to find patterns and distinctions for 

insightful analysis or decision-making is known as 

comparative analysis. This subsection evaluates the 

performance of the categorization strategy against the existing 

approaches indicated in related studies. Table 9 presents the 

findings from the assessment of the suggested methodology 

for the DEAP dataset. The graphical representation of the 

suggested method with various algorithms is showed in Figure 

5. 

 

Table 9. Comparative analysis with various algorithms for 

the proposed approach 

 

Models Classification Accuracy (%) 

Arousal Valence 

MEEMD [11] 78.00 74.03 

CNN with SVM [14] 80.52 75.22 

Kernel matrix + DNN [16] 64.50 63.10 

ITSOA-Bi-LSTM network 89.58 92.29 

 

In terms of arousal and valence prediction, MTSOA fared 

better than MEEMD, CNN+SVM, and Kernel matrix with 

DNN. Outperforming alternative methods, MTSOA's adaptive 

feature selection and effective parameter adjustment 

contributed to improved performance. This indicates that it can 

effectively capture the emotional states, which suggests that it 

could be used as an optimisation method for emotion 

classification issues. Because of its adaptive feature selection 

and ideal parameter tuning, MTSOA outperforms MEEMD, 

CNN with SVM, and Kernel matrix+DNN in the emotion 

classification domain, producing a more accurate 

representation of emotional patterns. MEEMD may lack 

adaptability, CNN with SVM was struggle with dynamic 

feature selection, and Kernel matrix with DNN have difficulty 

capturing complex emotional aspects. However, MTSOA's 

effectiveness to initial fields and dataset characteristics has 

limitations. In the near future, ITSOA network will be tested 

on other datasets, e-learner emotion classification, and 

enhancing recognition tasks. Table 9 and Figure 8 demonstrate 

that the proposed classification approach outperformed other 

methods in overall performance metrics. The accuracy 

achieved by the proposed approach for arousal is 89.58%, and 

valence is 92.29% significantly higher than the Ensemble 

Median Empirical Mode Decomposition (MEEMD) of 

78.00% and 74.03%, CNN with SVM of 80.52% and 75.22%, 

and Kernel matrix +DNN of 64.50% and 63.10% respectively. 

 

 
 

Figure 8. A graphical representation of the suggested 

ITSOA-Bi-LSTM network with existing models 

 

 

5. CONCLUSION 

 

This research presents a novel ITSOA network for efficient 

EEG-based emotion classification, aiming to address the 

challenging task of classifying emotions based on EEG signals 

in recent decades. The DEAP dataset is utilized to locate and 

classify human emotions. Then, for pre-processing EMD and 

VMD, are employed to remove noise from EEG signals, 

allowing for the retrieval of the most informative details. 

According to the results, this research demonstrates the 

efficiency of MTSOA in emotion classification, exceeding 

conventional approaches. Key findings include adaptive 

feature selection and optimal parameter tuning, which 

contribute to improved accuracy. The significance in TSOA's 

potential impact on emotion categorization, which offers a 

robust and reliable optimization strategy. Consequently, the 

model's performance is enhanced by this research, offering 

important insights for numerous applications. The results 

showed that the recommended technique outperformed the 

MEEMD, CNN with SVM, and Kernel matrix with DNN 

methods in terms of arousal (89.58%) and valence (92.29%), 

respectively. The proposed ITSOA network will be tested for 

e-learner's emotion classification on other datasets in 

subsequent research.  
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