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In the context of competitive examinations, the number of items can be extremely high. In 

such situations, the item review process remains essential. It enables designers to consider 

the complexity and scope of the assessment by reviewing each item and distractor. 

Identifying redundancies becomes even more critical in this context, as the variety and 

quality of items are crucial to ensure a fair and equitable assessment of candidates' skills. 

This article aims to propose an artificial intelligence model specifically designed to 

efficiently detect and correct these redundancies in multiple-choice tests. By combining the 

human expertise in item review with the massive data processing capabilities of AI, we aim 

to improve the quality and reliability of competitive exams, while optimizing the time and 

resources required for their development. 
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1. INTRODUCTION

The increasing adoption of multiple-choice tests (MCTs) 

into examinations and educational competitions has 

significantly transformed the assessment of student learning. 

This evolution stems from the need to assess a large number 

of candidates while evaluating a diverse range of skills in an 

objective and efficient manner. However, this transition is not 

without its challenges, particularly when it comes to designing 

questions that are relevant and free from redundancy. 

In the context of competitive examinations, the number of 

items specified is often very high, sometimes reaching 100 to 

120 items, with four distractors for each. This abundance of 

items increases the risk of redundancy, which can compromise 

the validity and reliability of assessments. 

Faced with this challenge, competition organizers and 

educators have developed an emerging practice called "test 

pilot", in which test designers take the same test as the 

candidates to assess the quality of the questions. Despite this 

method of validation, there is still a risk that redundancies will 

escape the designers' vigilance, which could lead to challenges 

during the examination process. 

To address this issue, our research explores an innovative 

approach based on the use of deep learning techniques to 

detect and solve redundancy problems in MCTs. In this paper, 

we present an intelligent solution aimed at overcoming this 

problem by developing a specific tool capable of automatically 

analyzing and correcting redundancies in multiple-choice 

exams. In addition, we propose a detailed methodology and 

empirical results demonstrating the effectiveness of our 

approach, particularly in contexts requiring a large number of 

items, such as competitions and competitive exams. The 

experimental results of the study illustrate the effectiveness of 

the proposed model, highlighting its superior performance 

with a redundancy detection accuracy rate of 93%. 

2. BACKGROUND

2.1 Test development process 

The assessment test development process involves several 

crucial stages to ensure the creation of a valid and effective 

assessment [1-4]. Table 1 displays an overview of these steps. 

Each stage of the test development process plays a crucial 

role in ensuring that the assessment accurately measures the 

candidate's knowledge, skills, or abilities [5]. 

2.2 AI-based assessment: Integration into the development 

test process 

The development of assessment tests is a critical process in 

educational assessment. With the advent of artificial 

intelligence (AI), there are new opportunities to improve and 

optimize this process [6]. Integrating AI into each phase of 

assessment test development offers promising approaches and 

applications. For example, during the item creation phase, 

Natural Language Processing (NLP) techniques such as word 

embeddings (Word2Vec and GloVe) are used to create 

context-sensitive vector representations of words. Word2Vec 
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is a neural network model that learns distributed 

representations of words based on their context in a continuous 

vector space [7]. GloVe, on the other hand, constructs word 

embeddings based on global word co-occurrence statistics and 

factors in a co-occurrence matrix to generate embeddings that 

capture local and global semantic relationships [8]. BERT 

(Bidirectional Encoder Representations from Transformers) 

and GPT (Generative Pre-trained Transformer) are also used 

to automatically generate items from source texts by capturing 

semantic and contextual relationships between words [9, 10]. 

During the pilot testing phase, neural network-based 

recommender systems analyze participants' performance and 

recommend the most appropriate items. 

 

2.3 Deep learning models for text classification 

 

The use of deep learning models to detect redundancy in 

texts represents a significant advance in the field of Natural 

Language Processing (NLP [11]. These models exploit deep 

neural architectures to extract relevant features from text data, 

enabling them to identify similarities and repetitions within 

text content. Architectures commonly used for this task 

include recurrent neural networks (RNNs), convolutional 

neural networks (CNNs) and transformers. 

-RNNs: RNNs adapt to model sequential data, making them 

relevant for detecting repetitive patterns in texts. For example, 

an RNN model can be used to identify sentences or passages 

that are repeated throughout a document [12]. 

-CNNs: CNNs extract local features from text data. They 

can detect similarities between text passages by analyzing 

local patterns. For example, a CNN can be used to identify 

similar sentences in a set of documents [13]. 

-Transformers: Transformers have revolutionized the field 

of NLP by introducing attention mechanisms. They can 

consider relationships between words across the whole text, 

making it easier to detect redundancy across long distances. 

For example, a transform model can be used to identify text 

passages that are repeated at different points in a document 

[14].   

These deep learning models offer different yet 

complementary approaches to detecting redundancy in texts, 

by analyzing word sequences, local features, and long-distance 

relationships between words [15, 16].  

In this paper, we have used LSTMs because they are 

efficient at detecting redundancies that depend on long-term 

dependencies present in the data. LSTMs, as an advanced 

variant of RNNs, are designed to better capture and retain 

relevant information over long sequences, which makes them 

suitable for complex tasks such as redundancy detection in 

multiple-choice questions with a large number of items and 

distractors. In comparison, CNNs are less efficient for this 

specific task due to their inability to perceive the global 

information needed to detect textual redundancy. While CNNs 

can traditionally deal with sequences of data, they are often 

ineffective at dealing with data characterized by long-term 

dependencies due to vanishing gradient problems, making 

them less suitable for detecting highly complex redundancies 

that require deep contextual understanding. Consequently, the 

use of LSTMs in our application is based on its efficient 

processing of long-term information and some of the strongest 

solutions in redundancy detection that can eventually improve 

test accuracy. 

Interest in the use of LSTMs in redundancy detection has 

grown considerably, stimulating research in this field. 

Researchers have explored various applications aimed at 

improving the accuracy and efficiency of this task. For 

example, LSTM models have been deployed for real-time 

detection of actions in human motion streams, based on 

sequences of 3D skeletal configurations [17]. These models 

outperformed traditional methods in terms of efficiency, 

enabling annotation at up to 10,000 frames per second. 

Similarly, LSTM classifiers were exploited to detect exploit 

kit traffic by analyzing the sequential structure of HTTP 

redirects, offering promising results in terms of accuracy and 

performance [18]. By optimizing the hyperparameters of the 

LSTM model, they obtained an F1 score of 0, demonstrating 

the effectiveness of their approach. 

In short, LSTMs continue to be an active research area for 

redundancy detection, and advances in this field open up new 

prospects for practical applications. 

 

Table 1. Test development process 

 
Stage Description 

Stage 1: 

Specifications 

This initial phase involves defining the 

purpose of the examination, identifying the 

target audience, delimiting the content areas 

to be covered, and determining the types of 

items to be included. 

Stage 2: Item 

edition 

Experienced editors develop questions or 

tasks according to the specifications defined 

in the previous phase. Items are rigorously 

reviewed and edited. 

Stage 3: Pilot 

test 

A preliminary version of the exam is 

administered to a small group of candidates to 

assess item performance and collect data for 

further analysis and improvement. 

Stage 4: 

Revision 

Based on feedback from pilot tests and expert 

assessments, items may be revised or 

modified to address any problems or concerns 

identified. 

Stage 5: Final 

test 

This phase involves the selection of items 

meeting predetermined criteria based on the 

results of the item analysis. The test is 

analyzed to ensure accuracy and consistency 

prior to administration. 

 

 

3. METHODS AND MATERIALS 

 

In this research, we introduce a novel approach designed to 

enhance test quality by identifying and removing redundancies 

in both items and distractors. The procedure for our proposed 

method is illustrated in Figure 1. 

To contribute to improving item quality by identifying and 

eliminating duplications, we initially developed a deep-

learning model using Python for detecting redundancy in items 

and distractors. This model was designed to identify duplicate 

items within an MCT, using a LSTM neural network, a 

specific variant of RNNs. LSTMs are particularly suited to 

capturing long-term dependencies in data sequences, making 

them an ideal choice for our redundancy detection task [19]. 

then, we have created a training dataset using MS Word. To 

optimize the quality of the information provided to the model, 

the items in this dataset are numbered from Q1 to Q1000, and 

each item is composed of 4 distractors A, B, C, and D. Finally, 

we used our model for 10 tests of 100 items each, to evaluate 

its effectiveness in detecting duplications and its practical 

application in a real assessment context. 
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Figure 1. Overview of LSTM model for detecting tests items & distractors redundancies 

 

To train our deep learning model, we employed a standard 

method of splitting data into training and testing sets. initially, 

we separated our training dataset, which comprises MCT 

questions and their corresponding distractors, into two parts:  

one for training the model and the other for validating the 

model. We allocated approximately 80% of the data for 

training and the remaining 20% for testing. This process is 

described in more detail in the next sections. 

 

3.1 Data preprocessing 

 

The data set used this study was collected from 10 MCTs 

from various disciplines, specifically designed for the 

recruitment exams of future teachers. Each test was 

meticulously reviewed to extract the questions and their 

associated four distractors, labeled A, B, C, and D. Each item 

in the dataset consisting of the question and its distractors, was 

systematically organized with consecutive numbering, 

facilitating efficient data management and subsequent 

analysis. This rigorous approach ensures that the dataset 

accurately reflects the types of questions posed in teacher 

recruitment exams, providing a solid foundation for analysis 

and development of the redundancy detection model. Figure 2 

display an extract of the dataset used in this study. 

 

3.2 LSTM algorithm  

 

In this study, we utilize the LSTM algorithm, which 

operates through four key components: memory cells, input 

gates, forget gates, and output gates. The input gate manages 

the selection of values to be updated. Following this, the forget 

gate filters out irrelevant information. The remaining data is 

then processed by the output gate, which generates the final 

output [20]. 

LSTM is engineered to retain information from previous 

cells, allowing it to uncover hidden layers within each cell. 

This approach involves classifying long-term data by 

leveraging storage in memory cells. 

 

3.3 Model description 

 

The procedure involves managing questions and distractors 

in a structured dataset. Initially, questions and distractors are 

extracted from a DOCX file and pre-processed using 

tokenization and padding to align the textual sequences. The 

model begins with an embedding layer that transforms each 

word into a dense vector of size 100, facilitating vector 

representation of the words. Next, an LSTM layer with 64 

units is used to capture the complex temporal dependencies in 

the text sequences, enabling the model to maintain and use 

long-term information. The output of the LSTM layer is fed 

into a Dense layer with sigmoid activation, suitable for binary 

classification that decides whether a question and a distractor 

are redundant (1) or not (0). The model is compiled with the 

Adam optimizer and the binary cross-entropy loss function, 

while evaluating accuracy as a metric. Trained on data 

prepared during 30 epochs with mini-lots of size 32, the model 

aims to learn to generalize and effectively predict redundancy 

in new questions and distractors. Once trained, the model is 

saved for future use, offering a robust solution for automatic 

semantic similarity analysis in multiple-choice questions and 

their options. 

 

3.4 Model implementation 

 

The model is implemented under the Python programming 

language, with the TensorFlow and Keras libraries for neural 

network development. TensorFlow is an open-source machine 

learning platform developed by Google, while Keras is a high-

level neural network API that facilitates efficient model 

building and training. 

For the initial processing of text data extracted from DOCX 

files, the library is used to read and extract document content. 

The tokenizer and 'pad_sequences' classes of the 

'tensorflow.keras.preprocessing.text' library are then used to 

tokenize and pad the text sequences. The LSTM model itself 

is built using Keras' Sequential class to define the sequential 

structure of the network layers. The embedding layer is 

implemented with Keras Embedding, followed by an LSTM 

layer. Next, a dense layer with sigmoid activation is added 

using Dense for binary classification of question-distractor 

pairs. For model optimization, the Adam optimizer is used 

with the binary cross-entropy loss function specified by 

binary_crossentropy in 'model.compile'. Finally, model 

performance is evaluated using the accuracy metric accuracy. 

The Python code shown above provides the implemented 

model (Figure 3).  

 

3.5 Training procedure 

 

The results displayed during training show an impressive 

progression of the LSTM model over the epochs. Right from 

the start, at epoch 3, the model shows an accuracy of 66.67% 

with a loss of 0.6826, indicating a moderate initial 

performance (Figure 4). 

This accuracy remains constant over the first few epochs, 

but from epoch 25 onwards, we see a clear improvement. 

Accuracy rises rapidly to 91.67% at epoch 26, then reaches a 

remarkable 100% accuracy from epoch 27 onwards, with a 

steadily decreasing loss to 0.1412 at epoch 30 (Figure 5).   
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Figure 2. Sample from dataset 

 

 
 

Figure 3. LSTM model construction 

 

 
 

Figure 4. Evolution of accuracy and loss from epoch 1 to 9 
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Figure 5. Evolution of accuracy and loss from epoch 26 to 30 

 

This trend suggests that the model is learning efficiently 

from the training data, adjusting its weights to perfectly match 

the labels provided. An accuracy of 100% indicates that the 

model is able to correctly predict redundancy between 

questions and distractors, which is a very promising result for 

its ability to generalize and perform well on new data. 

 

3.6 Testing procedure 

 

Once the model had been trained, we tested it on the test 

dataset. This dataset contains questions and distractors that 

were not used during training, allowing us to assess the 

model's ability to generalize to new data. We ran the questions 

and distractors from the test set through the model and 

evaluated its performance by measuring its ability to detect 

duplications. 

Data splitting involves dividing the dataset into two distinct 

subsets: training data and testing data. Specifically, 80% of the 

dataset is allocated for training purposes, where it is used to 

develop and train the classification model. The remaining 20% 

is designated as testing data, which is employed to assess the 

model's performance and generalizability. This separation 

ensures that the model is trained on one portion of the data and 

its effectiveness is evaluated on an independent portion, 

providing a robust measure of its accuracy and reliability. 

 

3.7 Evaluation procedure 

 

The purpose of model evaluation is to measure its 

performance in distinguishing between redundant and non-

redundant items in the data set, which constitutes a binary 

classification. To assess this performance, several metrics are 

used, of which the confusion matrix is the most commonly 

used. 

The confusion matrix includes parameters such as True 

Positives (TP), True Negatives (TN), False Positives (FP) and 

False Negatives (FN). From these parameters, several 

evaluation metrics are derived, including accuracy, precision, 

recall, and the F1 score, as detailed below: 

Accuracy: it measures the ratio of correct predictions to the 

total number of predictions, offering an overall view of the 

model’s ability to classify both positive and negative 

instances. Although it indicates how often the model's 

predictions are correct, accuracy may be less meaningful in 

situations with class imbalance, where classes are not evenly 

distributed. 

Precision: it evaluates the accuracy of positive predictions 

by dividing the number of true positives by the total number 

of positive. 

Recall: It assesses the model's capacity to detect all positive 

class instances. 

F1-Score: it represents the harmonic mean of precision and 

recall and is commonly employed in situations with 

imbalanced classes. 

We have used the Scikit-learn libraries to calculate these 

metrics with a view to evaluating the performance of our 

neural network model. The results are present-ed in the 

following section. 

 

 
4. RESULTS AND DISCUSSION  

 

 
 

Figure 6. Script for calculating metrics 
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Figure 7. Classification report 

 

The model’s evaluation involves several critical metrics that 

provide a deep insight into its performance. The confusion 

matrix offers a comprehensive summary of both correct and 

incorrect predictions, reflecting the model’s proficiency in 

differentiating between accurate and erroneous classifications. 

To calculate these metrics, a Python script was developed 

using the 'sklearn. metrics' library, as illustrated in Figure 6. 

The results provided by this script are shown in Figure 7. 

The results show that the classification model performs 

remarkably well, with high accuracies for both classes (90% 

for non-redundant distractors and 96% for redundant 

distractors), as well as high recall (95% for non-redundant 

distractors and 92% for redundant distractors), demonstrating 

its ability to correctly identify the actual occurrences of each 

class. The F1-Scores, which combine precision and recall, are 

also high (93% for non-redundant distractors and 94% for 

redundant distractors), highlighting good harmony in the 

model's ability to predict accurately. With an overall accuracy 

of 93%, the model consistently predicts the class of 

observations correctly in the majority of cases. In conclusion, 

these results confirm that the classification model is effective 

and accurate in predicting classes on this specific dataset. 

 

 

5. LIMITATIONS AND FURTHER WORK  

 

Although this study revealed significant results on the 

model's ability to detect items and distractor redundancy, 

several limitations were identified. Firstly, the limited sample 

size. Indeed, the limited number of questions may restrict the 

generalizability of the results obtained. In addition, it should 

be noted that this research was conducted within a single 

discipline and that the questions were written in French. 

Consequently, the results obtained may be specific to this field 

of study and may not apply to other languages and subjects. 

To address this limitation, we will expand the experimental 

sample to other subjects and use a larger sample size, which 

may enhance the generalizability of the findings. These 

improvements would contribute to strengthening the 

robustness and applicability of AI-based assessment 

frameworks in various educational and professional contexts. 

 

 

6. CONCLUSIONS 

 

In conclusion, the article explored the innovative 

application of artificial intelligence models to improve the 

quality of assessment tests, focusing on the detection of 

redundancies in items and distractors. By integrating these 

models into the test development process, designers can not 

only speed up the piloting process, but also guarantee greater 

validity and reliability of assessments. This approach also 

frees up valuable time and resources by automating tasks that 

were previously tedious and prone to human error. Ultimately, 

the integration of AI into test development marks a significant 

evolution, paving the way for more efficient and accurate 

methods of assessing learners' knowledge and skills.  
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