
Software Quality Measurement Analysis on Academic Information Systems

Dedi Setiadi1* , Tata Sumitra1 , Ahmad Karim2 , Ritzkal3

1 Informatics Management, Universitas Dirgantara Marsekal Suryadarma, Jakarta 13610, Indonesia
2 Management, Universitas Pembinaan Masyarakat Indonesia, Medan 20214, Indonesia
3 Informatics Engineering, Universitas Ibn Khaldun, Bogor 16161, Indonesia

Corresponding Author Email: dedi@unsurya.ac.id

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290418 ABSTRACT

Received: 13 July 2024

Revised: 26 July 2024

Accepted: 2 August 2024

Available online: 21 August 2024

Measurement, which can be done directly or indirectly, is the process of providing a

quantitative indication of the scope, quantity, dimension, capacity, or characteristics of a

process or product. Software may be measured directly in a number of ways, such as cost,

effort, amount of code lines, functionality, speed of execution, memory size,

documentation, number of inputs and outputs, and flaws in individual units. In contrast,

features like functionality, efficiency, dependability, and maintainability are measured by

indirect metrics like software quality. A metric is a quantitative measure of the degree of an

attribute of an object, system, or process that is produced by the gathering of data for

measurement. These metrics need to be gathered and converted into indicators in order to

assess the quality of the program. Metrics, or sets of metrics, known as indicators, give

management thorough information about a product and aid in process and product control.

A system is made up of several interrelated parts that work together to accomplish a certain

objective. These systems are broken down into more manageable subsystems that assist the

main system. This research seeks to examine how software quality is measured on Marshal

Suryadarma Aerospace University's Academic Information System. In addition to helping

university administration regulate and enhance the information systems in use, this research

is anticipated to offer a thorough grasp of the application of metrics and indicators in

assessing and enhancing the caliber of academic software.

Keywords:

software measurement, software quality,

software metrics, software indicators,

academic information system, quality

management

1. INTRODUCTION

Measurement quantifies a process or product's extent,

amount, size, capacity, or other characteristics. There are two

types of measurement: direct and indirect [1, 2]. Direct

measurement in software refers to tangible aspects such as

expenses, labor, number of functions, memory size,

documentation, inputs, outputs, lines of code, execution speed,

and defects. Indirect measurement, such as assessing software

quality, includes attributes like functionality, efficiency,

reliability, and maintainability [3-5]. The measurement

process begins with data collection, resulting in metrics-

quantitative measures of an attribute's degree for an item,

system, or process [6-8]. To evaluate software quality, these

metrics must be transformed into indicators. An indicator is a

statistic or a combination of metrics that provides

comprehensive information about a product, assisting

management in controlling the process and the resulting goods

[9-11].

System is a collection of two or more components that

constantly communicate and work together to achieve a

specific goal [12]. Systems typically function as smaller

subsystems that support larger, more complex systems [13, 14].

Effective systems require organization, structure, integration,

and clear objectives [15, 16]. Thus, the author feels obligated

to prepare a study under the heading "Analysis of Quality

Improvement of Software Systems in Academic Information

at Marsekal Suryadarma University."

While the methods for measuring software quality are

extensively described [17-19], there is a need for detailed case

studies to illustrate the practical application of these

techniques. This research aims to bridge this gap by

demonstrating the effectiveness of these measurement

methods through case studies, comparing their application

across different types of information systems within the

academic context. By doing so, it will provide a deeper

understanding of how these metrics and indicators can be used

to improve software quality and assist university management

in refining their information systems.

2. RESEARCH METHODS

The research method consists of several stages: data

collection, numeric computation (metrics), and numeric

computation (indicators) [20-22]. The results include data

collection on software, numerical computation calculations on

metrics, and numerical computation calculations with ISO

9126 quality indicators, which cover functional quality

indicators, reliability quality indicators, usability quality

indicators, efficiency quality indicators, maintainability

quality indicators, and portability quality indicators. Data

Ingénierie des Systèmes d’Information
Vol. 29, No. 4, August, 2024, pp. 1453-1460

Journal homepage: http://iieta.org/journals/isi

1453

https://orcid.org/0009-0000-1956-0671
https://orcid.org/0000-0002-2727-2917
https://orcid.org/0000-0003-2822-1246
https://orcid.org/0000-0002-6619-3402
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290418&domain=pdf

collection involves gathering information from various

sources, including academic databases, university records, and

user feedback. Ensuring data quality is paramount; thus, we

implement data validation techniques and cross-referencing

with multiple sources to confirm accuracy.

For numeric computation of metrics, we use specific

software tools such as MATLAB and Python for statistical

analysis and computation [23, 24]. Metrics are derived from

raw data and processed to quantify various attributes of the

software. For instance, the number of lines of code is measured

using code analysis tools like SonarQube, while execution

speed and memory usage are assessed using performance

profiling tools such as JProfiler and VisualVM [25, 26]. To

compute the quality indicators according to the ISO 9126

standard, we use specialized software tools like Quality

Modeler (QMOOD) and software quality assessment

frameworks. These tools facilitate the evaluation of functional,

reliability, usability, efficiency, maintainability, and

portability quality indicators [27, 28]. Each indicator is

calculated based on predefined metrics, and the results are

analyzed to provide comprehensive insights into the software's

quality [29, 30]. By elaborating on the software tools used,

sources of data, and methods for ensuring data quality, this

research aims to enhance the transparency and reproducibility

of the study. This detailed approach allows for a more precise

analysis of the software quality in the Academic Information

System at Marsekal Suryadarma University (Figure 1).

Figure 1. Research methods

2.1 Identification

Descriptive research follows much the same methods as

other types of research procedures. Variations may arise,

particularly when employing distinct analytical tools, such as

distinguishing between qualitative and quantitative research in

the given study. Generally speaking, though, descriptive

research follows these steps:

a) Choose a noteworthy issue that will be resolved using

descriptive techniques.

b) Define the issue precisely and set a limit.

c) Establish the goals and advantages of the study.

d) Look into relevant literature about the issue.

g) Establish the framework, as well as the research

questions and/or hypotheses.

f) Creating the study methodology, which entails selecting

the population, sample, sampling strategies, data gathering

tools, and data analysis.

g) Gather information, arrange it, and apply pertinent

statistical methods to evaluate it.

2.2 Design

The subjects in this study were a sample of Suryadarma

University Faculty of Industrial Technology (FTI) students

who had progressed through the even semester of the 2020-

2021 academic year. Specifically, the sample included

students from semesters 2, 4, 6, and 8. These students had

experienced a shift to distance learning due to the COVID-19

pandemic, which began about a year prior to the study. This

transition significantly altered the educational environment, as

students and faculty adapted to new methods of interaction and

instruction. The focus of this research is on the management

of Distance Learning (PJJ) between students and lecturers

within the FTI, with particular attention to the changes and

challenges encountered post-pandemic. The study aims to

assess both the direct and indirect impacts of this shift,

including how well the new online systems facilitated

communication, engagement, and overall educational

effectiveness. By examining these elements, the research seeks

to provide a comprehensive understanding of the effectiveness

and efficiency of distance learning practices and their

implications for future educational strategies in the context of

ongoing and post-pandemic conditions.

2.3 Implementation

The techniques used to collect data in this study are as

follows:

a. Prior observation

Here the researcher makes indirect observations through an

online questionnaire (google form) regarding the impact of

covid 19 on PJJ management in order to find out whether there

is an impact directly or indirectly experienced by students.

b. Interview

Conducting interviews with the academic department to

find out which students are active during PJJ. In this

unstructured interview, the author can have an initial picture

of PJJ management so far in his element.

c. Questionnaire

Questionnaires are often also known as questionnaires,

basically a questionnaire is a list of questions that must be

filled in by the person to be measured (respondent). With this

questionnaire, people can be known about their circumstances

/ personal data, experiences, knowledge attitudes or opinions,

and others. In terms of who answers, there are direct and

indirect (closed) questionnaires. In this study, researchers will

use a direct closed questionnaire, which consists of questions

with a number of answers as options, in other words, the

person subjected to the questionnaire must have the answers

provided in the questionnaire. Regarding the form of

questionnaire used is a multiple choice system. The reasons

the author uses a questionnaire are: a) Save energy. b) Save

costs because it does not require much equipment. c) Save time,

meaning that with a short time you can get a lot of data.

1454

2.4 Testing

Testing involves conducting observations, numerical

computations, and calculating ISO 9126 quality indicators to

determine the quality of software products. The ISO 9126

standard provides a comprehensive framework for evaluating

software quality, encompassing six key quality characteristics:

1. Functionality: Measures how well the software performs

its intended functions.

2. Reliability: Assesses the software's ability to maintain

performance under specified conditions.

3. Usability: Evaluates how easily users can learn and use

the software.

4. Efficiency: Examines the software's performance in terms

of resource usage.

5. Maintainability: Determines how easily the software can

be modified for corrections, improvements, or adaptation to

changes.

6. Portability: Assesses the software's ability to be

transferred from one environment to another.

Each of these characteristics is evaluated using specific

metrics. For example, functionality is assessed through

correctness, reliability through fault tolerance, usability

through learnability, efficiency through time behavior,

maintainability through analyzability, and portability through

adaptability. These metrics are processed into indicators that

provide comprehensive insights into the software's quality,

helping management in the control and improvement of the

system.

3. RESULT

A globally accepted benchmark for software quality is ISO

9126. Software product quality is defined by ISO 9126, along

with models, quality attributes, and related metrics that are

used to assess and determine software product quality.

Furthermore, management must also adhere to ISO standards.

An ISO standard certificate cannot be issued for the job if the

management does not adhere to the ISO standards. Six quality

criteria are included in the ISO 9126 list of quality factors.

Software testing is one way to evaluate the quality of

software, along with other metrics and techniques. ISO 9126

is a software quality benchmark developed by the International

Electrotechnical Commission (IEC) and the International

Organization for Standardization (ISO).

A globally accepted benchmark for software quality is ISO

9126. Software product quality is defined by ISO 9126, along

with related metrics, models, and quality attributes that are

used to assess and determine a software product's quality.

Furthermore, management must also adhere to ISO standards.

An ISO standard certificate cannot be issued for the job if the

management does not adhere to the ISO standards. Six quality

characteristics are included in the ISO 9126 list of quality

criteria. They are as follows:

Usability. The capacity of software to fulfil user

requirements and provide user satisfaction.

Dependability. The software's capacity to sustain a

particular degree of functionality (e.g., precision, consistency,

ease of use, and fault tolerance).

Practicality. Software should be easy to use, learn,

understand, and appealing to users.

Effectiveness. The software's capacity to provide acceptable

performance in relation to the quantity of resources consumed

in the given situation (e.g., storage efficiency).

Reliability. software capacity for modification. Corrections,

enhancements, or adjustments made in response to alterations

in the environment, specifications, and functional needs are

examples of modifications (ex: consistency).

Mobility. The software's capacity to change and adapt to

different environments (e.g., self-documentation, organization)

or specific uses.

The ISO 9126 model divides each software quality

characteristic into many qualities sub-characteristics, which

include:

(1) The functionality of ISO 9126.

(2) Dependability (ISO 9126).

(3) Usability (ISO 9126).

(4) The portability of ISO 9126.

3.1 Observation results

Based on the observations, the data as shown in Table 1 is

obtained.

3.2 Numeric computation calculation

The numeric computation of the metric is that the function-

oriented software metric is derived based on a functionality

measurement delivered by the application as a normalized

value. Since functionality cannot be measured directly, it must

be derived indirectly from other direct measurements. The

function-oriented metric created by Alan J. Albrecht (1979) is

called a function point. Currently, there are many variations on

how to calculate function points after this method was

developed and revised by the International Function Point

User Group (IFPUG) since 1986. However, in this research,

the author will focus on using the function point created by

Albrecth. Function points are derived using an empirical

relationship based on direct measurement of the software's

computable information domain and estimated software

complexity. Function points are calculated using a rating scale

as shown in Table 2.

3.3 Calculation of ISO 9126 quality indicators

After the data is collected, the next step is to look for ISO

9126 quality indicators, namely functionality, reliability,

usability, efficiency, maintainability, and portability.

3.3.1 Functionality

Functionality indicators can be derived from function points.

The function point calculation requires data in the form of user

input, user output, user requests, files, and external interfaces.

Each of these data must be assessed for complexity in general,

namely simple, medium or complex. With this data and

assessment, the function point calculation is as shown in Table

3.

3.3.2 Complexity modifier

The complexity modifier factor is obtained from the

assessment of the fourteen attributes contained in the software.

The fourteen attributes are used as factors to normalize the

function point calculation. The calculation of the function

point complexity variable factor is as shown in Table 4.

1455

Table 1. Observation results

Data Name Item Total

User Input

Student data entry

8

KRS entry

Lecturer entry

Class entry

Lecture schedule entry

Grade entry

Financial data entry

User Output

Class schedule

8

Semester grades

Grade transcript

EDOM assessment

Test schedule

Final exam schedule

Lecture teaching material

Student finance

User Request

Consultation with PA

soden

10

Consultation with KaProdi

Online survey

Check bank bills

Change password

Tool menu

Information board menu

Log out button

Profile button

Help desk menu

File

Course material data

6

Lecture schedule

User data

Lecturer data

Student data

Student financial data

External Interface TCP/IP 1

Current Program

Module

SKS program

3 SKS plus

Active bank billing

Replaced Module Application migration 1

Deleted Module 0

Programming

Language

PHP
2

Delphi

Failure

Data Name

User Input

Patch update

5

Student data search

Print learning results

Lecturer data search

Course change

Table 2. Numeric computation and functional indicators

Param.

Measurement
Total Simple Average Complex Total

J. User Input 8 X 3 24

J. User Output 8 X 4 32

J. User

Inquiry
10 X 5 50

J. Files 6 X 10 60

J. External

Interface
1 X 6 6

Total 172

Unknown: Total=172

∑ 𝐹𝑖 = 30 (1)

The formula for finding function points is as follows:

FP=Total Number × (0,65 + 0,01 ∑ 𝐹𝑖) (2)

𝐹𝑃 = 172 × (0.65 + (0.01 × 30))

𝐹𝑃 = 163.4

𝐹𝑃𝑀𝑎𝑥 = 1.35 × 𝑇𝑜𝑡𝑎𝑙
𝐹𝑃𝑀𝑎𝑥 = 1.35 × 163.4

𝐹𝑃𝑀𝑎𝑥 = 220.59

where, FP = Function Point; FPMax = Function Point

Maximum; Total Sum = Total value of the information domain;

∑Fi = Sum of complexity adjustment prices.

Table 3. ISO 9126- Functionality

SUB – Characteristics

Steak
Description

Suitability

The ability of the software to

provide a set of functions that

appropriate for specific tasks and

user goals.

Accuracy

Software capabilities in providing

precise results and correct

according to the needs.

Security

Software capabilities to prevent

unwanted access, facing intruders

(hacker) as well as authorization in

the modification of data.

Interopabillity

The ability of the software to

interact with one or more specific

system.

Compilance

Software capabilities in meeting

standards and needs in accordance

with applicable regulations.

Table 4. Complexity modifier

No. Variable Factors Nilai

1 Backup and recovery 0 1 2 3 4 5

2 Data communication 0 1 2 3 4 5

3 Data processing distribution 0 1 2 3 4 5

4 Performance 0 1 2 3 4 5

5 Operational configuration 0 1 2 3 4 5

6 On-line entry 0 1 2 3 4 5

7 On-line data change (on-line update) 0 1 2 3 4 5

8 Data transaction rate 0 1 2 3 4 5

9 User efficiency 0 1 2 3 4 5

10 Processing complexity 0 1 2 3 4 5

11 Processing complexity 0 1 2 3 4 5

12 Conversion and installation 0 1 2 3 4 5

13 Doubling of installation 0 1 2 3 4 5

14 Facilitate change 0 1 2 3 4 5

 30

Table 5. ISO 9126- Reliability

SUB-Characteristics Steak Description

Maturity

The ability of software to

avoid failure as a result of

from errors in the software.

Fault Tolerance

The ability of the software to

maintain its performance if a

software error occurred.

Recoverability

Software ability to rebuild

performance levels when a

system failure occurs,

including data and network

connections.

Based on function points and maximum function points, the

level of achievement of SIAKAD software functionality is as

1456

follows:

Unknown: 𝐹𝑃 = 163.4

𝐹𝑃𝑀𝑎𝑥 = 220.59

Functionality =
FP

FPMax

Functionality =
FP

FPMax
= 0.7410

(3)

So, the SIAKAD software functionality value is 0.7410.

3.3.3 Reliability

Software reliability indicators are obtained from the rate of

failure occurrence (ROCOF) metric. To calculate ROCOF, the

variables function point (FP), and number of failures (Failure)

are needed (Table 5).

Diketahui: FP=163.4

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = 5

ROCOF=
𝐹𝑎𝑖𝑙𝑢𝑟𝑒

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡

ROCOF=
5

163,4
= 0.0305

(4)

Reliability can be derived using the following formula:

Reliability = 1– 𝑅𝑂𝐶𝑂𝐹

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1– 0.0305

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.969

(5)

Thus, the reliability of SIAKAD is 0.969. A value of 0.969

indicates that in 1,000 operations, it is estimated that the

software of the SIAKAT application is able to work correctly

for 969 times. In other words, in 1000 operations the

application has been estimated to fail 31 times.

3.3.4 Usability

The software usability indicator is obtained from the speed

of operation metric. The more the speed of operation

approaches a value of 0, indicating that the usability is

increasing. Conversely, the more the speed of operation

approaches a value of 1, the more the usability decreases

(Table 6).

Table 6. ISO 9126- Usability

SUB – Characteristics Description

Understandability
Software capabilities in ease to

understand.

Learnability
Software capabilities in ease to

learn.

Operability
Software capabilities in ease to

operated.

Attractiveness
The ability of software to

attracts users.

Unknown: Function Point(FP)=163.4

𝑈𝑠𝑒𝑟 𝐼𝑛𝑝𝑢𝑡 = 8

𝑈𝑠𝑒𝑟 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 = 10

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑈𝑠𝑒𝑟 𝐼𝑛𝑝𝑢𝑡+𝑈𝑠𝑒𝑟 𝑅𝑒𝑞𝑢𝑒𝑠𝑡

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
8+10

163,4
= 0.4895

𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

= 1 − 0,4895 = 0.5105

(6)

3.3.5 Efficiency

Efficiency is related to performance, resources required,

and savings gained from product use. To obtain efficiency

indicators, several variables are needed to calculate them.

These variables are total benefits, total costs, and effort

required to build the software (Table 7).

Table 7. ISO 9126- Efficiency

SUB – Characteristics TIK Description

Time Behavior

Software capabilities in

providing response and time

appropriate processing when

performing its functions.

Resource Behavior

Software capabilities in using

resources it has when

performing the specified

function.

Metric Approximation

Known: 𝐹𝑃 = 163.4

𝐸 = −13.39 + 0.0545 𝐹𝑃

𝐸 = −13.39 + (0.0545 × 163.4)

𝐸 = 4.4847 𝑝𝑒𝑟𝑠𝑜𝑛 − 𝑚𝑜𝑛𝑡ℎ

(7)

3.3.6 Maintenance

In software, the more changes that occur in the software

indicate that maintenance will be more difficult to do. To find

the value of maintainability, the metric used is the Software

Maturity Index (SMI) metric. The more SMI approaches the

value of 1, the more stable the product will be. Conversely, the

more SMI moves away from the value of 1, the more unstable

the product will be. The variables needed to find the SMI value

are the current number of modules (MT), the number of added

modules (Fa), the number of modules that have changed (Fc),

and the number of modules that have been deleted since the

initial design (Fd) (Table 8).

Table 8. ISO 9126- Maintainability

SUB – Characteristics K Description

Analyzability

Software capabillities in

diagnosing deficiencies or

causes or failure.

Changeability
The ability of the software to

be modified certain.

Stability

The ability of the software to

minimize the unpredictable

effects of software

modification.

Testability

Software capability to be

modified and validated other

software.

Unknown: MT=3

𝐹𝑎 = 0

𝐹𝑐 = 0

𝐹𝑑 = 0

𝑆𝑀𝐼 =
𝑀𝑇−(𝐹𝑎+𝐹𝑐+𝐹𝑑)

𝑀𝑇
=

3−(0+0+0)

3
=

3

3
= 1

(8)

A maintenance indicator of 1 indicates that out of every 3

program modules, there is 1 module that is expected to be

stable so that it does not require significant changes at

1457

maintenance time and 2 other modules that are expected to

undergo changes at the maintenance stage.

3.3.7 Portability

After obtaining the six ISO 9126 quality indicators, namely

functionality, reliability, usability, efficiency, maintainability,

and portability, the last step is to generalize. The

generalization in question is an overall assessment of the

achievement of the quality of the SIAKAD system software

the number of added modules (Fa), the number of modules that

have changed (Fc), and the number of modules that have been

deleted since the initial design (Fd) shown in Table 9.

The Table 10 lists different characteristics related to the

quality of a software application, in this case, an SIAKAD

application. Each characteristic has a value assigned to it.

Here's a detailed explanation of each term: Functionality

(Value: 0.74): This measures how well the software performs

its intended functions. A value of 0.74 indicates a certain level

of functionality provided by the software. Reliability (Value:

0.96): This measures the software’s ability to consistently

perform its functions without failure. A value of 0.96 suggests

high reliability. Usability (Value: 0.51): This measures how

easy and user-friendly the software is. A value of 0.51 implies

that usability could be improved. Efficiency (Value: 0.4): This

measures how well the software utilizes resources (like

memory and processing power) while performing its tasks. A

value of 0.4 indicates that efficiency might need enhancement.

Maintainability (Value: 1): This measures how easy it is to

maintain and update the software. A value of 1 is the highest

among the listed characteristics, indicating that the software is

quite maintainable. Portability (Value: 2): This measures how

easily the software can be transferred from one environment

to another. A value of 2 suggests that portability is a strong

point of the software.

Table 9. ISO 9126- Portability

SUB – Characteristics

Steak
Description

Adaptability
The ability of software to be adapted

to the environment different.

Instalability
The ability of the software to be

installed in an environment different.

Coexistence

The ability of the software to the

coexist with the device other software

in one environment by sharing

resources.

Replacementy
The ability of the software to be used

as a substitute other software.

Table 10. Portability

No. Characteristics of Value

1 Functionality 0.74

2 Reliability 0.96

3 Usability 0.51

4 Efficiency 0.4

5 Maintainability 1

6 Portability 2

Total quality 5.61

Total Quality (5.61): This is the sum of all the values

assigned to the characteristics listed above.

Unknown: Maximum Quality= 6

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡 = 5.61
(9)

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡 =

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑄𝑢𝑎𝑙𝑖𝑡𝑦
 × 100%

=
5.61

6
× 100% = 93.5

4. CONCLUSIONS

A measurement is necessary to ascertain the quality of a

software application. Standards, tools, and variables are used

in quality measurement. The SIAKAD application software

attained a quality of 93.5% through measurements utilizing

metrics and ISO 9126 criteria. Dependability, with a value of

0.9888, is the greatest quality attribute of the SIAKAD

application; efficiency, with a value of 0.4, is the lowest. The

study reveals that the measurements of some metrics are

directly correlated with software quality, whereas others are

negatively correlated. Metrics such as the Software Maturity

Index (SMI), function points, and portability show a strong

correlation with software quality. To normalize data from

negatively correlated metrics, the number 1 is subtracted from

these values.

The research findings indicate that, with a quality

attainment of 93.5%, the SIAKAD application is viable for

implementation. However, the administration retains the

authority to decide whether to utilize this program or seek

alternatives. This study successfully achieved its aim of

determining the degree of software quality attainment using

the function-oriented metric approach and ISO 9126 quality

criteria.

Summary of Research Findings: 1) Overall Quality

Attainment: The SIAKAD application achieved an overall

quality score of 93.5%, indicating high software quality. 2)

Dependability: With a score of 0.9888, dependability emerged

as the highest quality attribute, highlighting the software's

robustness and reliability. 3) Efficiency: Efficiency scored the

lowest at 0.4, suggesting areas for improvement in resource

usage and performance optimization. 4) Correlation of Metrics:

The study found a direct correlation between certain metrics

(e.g., SMI, function points, portability) and software quality,

while others showed a negative correlation.

Prospects for Future Work: 1) Detailed Analysis of

Efficiency: Future research should focus on in-depth analysis

and improvement strategies for the efficiency attribute, as it

scored the lowest. 2) Broader Metric Evaluation: Expanding

the range of metrics evaluated to include more diverse and

comprehensive indicators of software quality. 3) Comparative

Studies: Conducting comparative studies with other academic

information systems to benchmark SIAKAD's performance

and identify best practices. 4) Longitudinal Studies:

Implementing longitudinal studies to monitor the SIAKAD

application's quality over time and assess the impact of

continuous improvement efforts.

By addressing these areas, future research can build on the

findings of this study and contribute to the ongoing

enhancement of academic information systems' quality.

REFERENCES

[1] Arfan, A. (2010). Implementation of quality

measurement in software using lines of code (LOC) and

function point (FP) methods. Department of Computer

Science. Thesis. University of North Sumatra.

1458

https://repositori.usu.ac.id/handle/123456789/76200,

accessed on Jun. 5, 2023

[2] Hariyanto, B. (2004). Object oriented system

engineering. Informatics, Bandung. ISBN: 978-623-

8385-50-8.

https://repository.dinus.ac.id/docs/ajar/REKAYASA_SI

STEM_BERORIENTASI_OBJEK-_RINGKASAN.pdf,

accessed on May. 15, 2012.

[3] ISO/IEC 9126. (1991). Information technology-software

product evaluation-quality characteristics and guidelines

for their use. International Organization for

Standardization.

https://cdn.standards.iteh.ai/samples/22749/d293dbe1fe

a54b3e853dfc5a07549390/ISO-IEC-9126-1-2001.pdf.

[4] Longstreet, D. (2002). Function Point Analysis Training

Course.

https://sun.aei.polsl.pl/~jfrancik/lectures/download/ozpi

/fpt.pdf, accessed on Jul. 5, 2011.

[5] Nazir, M. (2005). Metode Penelitian. Ghalia Indonesia,

Bogor. ISBN: 979-450-173-5.

https://elibrary.bsi.ac.id/readbook/207604/metode-

penelitian, accessed on Jul. 5, 2011.

[6] Batra, R.C. (1984). Recent advances in non-linear

computational mechanics. Engineering Analysis, 1(1):

64. https://doi.org/10.1016/0264-682x(84)90024-8

[7] Ritzkal, S., Syaiful, S. (2020). The application of

academic information system measurement software

with iso standardization. In Proceedings of the

International Conference on Industrial Engineering and

Operations Management.

[8] Simamarta, J. (2010). Software Engineering. Andi,

Yogyakarta. ISBN: 9792913475 & 9789792913477.

https://books.google.co.id/books/about/Rekayasa_Peran

gkat_Lunak.html?id=QP1BjG_VIsoC&redir_esc=y.

[9] Sommerville, I. (2007). Software Engineering. 8th ed.

Pearson Education Limited, Harlow.

https://fita.vnua.edu.vn/wp-

content/uploads/2013/06/Software-Engineering-By-Ian-

Sommerville-8th-Edition.pdf, accessed on May. 15,

2021.

[10] Meilich, A., Rickels, M. (1999). 1 an application of

Object Oriented Systems Engineering (OOSE) to an

army command and control system: A new approach to

integration of system and software requirements and

design. In INCOSE International Symposium, 9(1):

1005-1016. https://doi.org/10.1002/j.2334-

5837.1999.tb00268.x

[11] Clausen, H.D., Hofmann, A., Pawlitzek, G. H. (1992).

Integration of different system engineering methods

using an object-oriented model. Acm Sigplan Oops

Messenger, 4(2): 179-181.

https://doi.org/10.1145/157710.157748

[12] Amalia, R., Wijaya, A. (2018). Evaluasi kepuasan

penggunasistem informasi akademik perguruan tinggi

menggunakan standar ISO 9126. Jurnal Ilmiah Matrik,

20(2): 147-156.

https://doi.org/10.33557/jurnalmatrik.v20i2.117

[13] Dwi, L., Siti, R., Umi, L.Y. (2017). Compilation and

testing of operability metrics for academic information

systems based on ISO 25010. Lesmideyarti.

https://doi.org/10.35585/inspir.v7i2.2442

[14] Aswati, S., Ramadhan, M.S., Firmansyah, A.U., Anwar,

K. (2017). Analysis study of rapid application

development model in information system development.

Matrix Journal.

https://journal.universitasbumigora.ac.id/index.php/matr

ik/article/view/10, accessed on May. 20, 2019.

[15] Putra, I.H., Ismanto, S.U., Runiawati, N. (2022).

Efektivitas sistem informasi manajemen daerah barang

milik daerah (Simda Bmd) pada pemerintah daerah kota

bandung. JANE-Jurnal Administrasi Negara, 14(1): 238-

255.

[16] Hermanto, A., Supangat, S., Mandita, F. (2017). Evaluasi

usabilitas layanan sistem informasi akademik

berdasarkan kombinasi servqual dan webqual studi kasus:

SIAKAD politeknik XYZ. Journal of Information

Systems Engineering and Business Intelligence, 3(1): 33.

https://doi.org/10.20473/jisebi.3.1.33-39

[17] Anwar, M.A.H., Kurniawan, Y. (2019). Dokumentasi

software testing berstandar IEEE 829-2008 untuk sistem

informasi terintegrasi universitas. Kurawal, 2(2): 118-

125. https://doi.org/10.33479/kurawal.v2i2.261

[18] Saputera, S.A., Sunardi, D., Syafrizal, A., Samsidi, P.

(2020). Evaluasi sistem informasi akademik

menggunakan metode mccall. Journal of

Technopreneurship and Information System, 3(2): 38-45.

https://doi.org/10.36085/jtis.v3i2.878

[19] Aditya, A., Purwiantono, F.E. (2020). Penyusunan

kerangka konseptual pengukuran kualitas sistem

informasi akademik di kampus STIKI malang

berdasarkan standart ISO 9126. Ilmu Komputer, 7(5):

979-984. https://doi.org/10.25126/jtiik.2020711513

[20] Buchholz, G., Engel, J., Märtin, C., Propp, S. (2007).

Model-based usability evaluation-evaluation of tool

support. Lecture Notes in Computer Science, 4550:

1043-1052. https://doi.org/10.1007/978-3-540-73105-

4_114.

[21] Alturki, R., Gay, V. (2017). Usability testing of fitness

mobile application: Case study aded surat app.

International Journal of Computer Science and

Information Technology, 9(5): 105-125.

https://doi.org/10.5121/ijcsit.2017.9509

[22] Hayuni, S., Hidayah, M., Rahman, M.A., Welnof, S.

(2021). Sistem informasi penerimaan mahasiswa baru di

universitas dharmawangsa. Journal of Software

Engineering, Computer Science & Information

Technology, 2(1): 135-138.

https://doi.org/10.46576/syntax.v2i1.1328

[23] Jordan, G.A., Ballance, R.H. (1983). A microcomputer-

based annual ring measurement system. The Forestry

Chronicle, 59(1): 21-25.

https://doi.org/10.5558/tfc59021-1

[24] Marcus, A., Poshyvanyk, D. (2005). The conceptual

cohesion of classes. In 21st IEEE International

Conference on Software Maintenance (ICSM'05),

Budapest, Hungary, pp. 133-142.

https://doi.org/10.1109/ICSM.2005.89

[25] Prasad, L., Nagar, A. (2009). Experimental analysis of

different metrics (object-oriented and structural) of

software. In 2009 First International Conference on

Computational Intelligence, Communication Systems

and Networks, Indore, India, pp. 235-240.

https://doi.org/10.1109/CICSYN.2009.22

[26] Srinivasan, K.P., Devi, T. (2014). Software metrics

validation methodologies in software engineering.

International Journal of Software Engineering &

Applications, 5(6): 87.

https://doi.org/10.5121/ijsea.2014.5606

1459

[27] Fountas, S., Carli, G., Sørensen, C.G., Tsiropoulos, Z.,

Cavalaris, C., Vatsanidou, A., Liakos, B., Canavari, M.,

Wiebensohn, J., Tisserye, B.A. (2015). Farm

management information systems: Current situation and

future perspectives. Computers and electronics in

Agriculture, 115: 40-50.

https://doi.org/10.1016/j.compag.2015.05.011

[28] Masrek, M.N., Gaskin, J.E. (2016). Assessing users

satisfaction with web digital library: The case of

Universiti Teknologi MARA. The International Journal

of Information and Learning Technology, 33(1): 36-56.

https://doi.org/10.1108/IJILT-06-2015-0019

[29] Rohayani, H., Gaol, F.L., Soewito, B., Warnars, H.L.H.S.

(2017). Estimated measurement quality software on

structural model academic system with function point

analysis. In 2017 International Conference on Applied

Computer and Communication Technologies (ComCom),

Jakarta, Indonesia, pp. 1-5.

https://doi.org/10.1109/COMCOM.2017.8167085

[30] Saputri, N.A.O., Alvin, A. (2020). Measurement of user

satisfaction level in the bina darma information systems

study program portal using end user computing

satisfaction method. Journal of Information Systems and

Informatics, 2(1): 154-162.

https://doi.org/10.33557/journalisi.v2i1.43

1460

