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Heterogeneous graphs are a data format for graphs that could define complicated and 

diverse real-world interactions by accommodating distinct sorts of nodes and edge types. 

Heterogeneous graphs organize varied medical data to help patients, therapies, drugs, and 

healthcare practitioners make informed decisions. Medical recommendation systems use 

them to represent and analyze complicated connections between healthcare data items. 

Heterogeneous graphs can potentially be constructed and analyzed using the Graph 

Attention Network (GAT). The purpose of this research is to tackle the issue of 

implementing a complicated and extremely diverse dataset, which consists of: Using the 

GATNet (Graph Attention Network) method, we will show how to perform two things: (1) 

Construct a model with several attributes and relationships using EMR (electronic medical 

record), and (2) Use that model in a disease prognostic prediction challenge. The initial 

graph database utilizes a graphical depiction of a patient's progression, showcasing a query 

of a predictive network that produces analytical findings of AUROC–0.75 and AUPRC–

0.17 which is 0.03% & 0.02% higher compared to the existing models. 
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1. INTRODUCTION

Applications such as social networks, recommendation 

systems, and knowledge graphs have all benefited from the 

increased use of graph-based data. The performance of 

programs that rely on graph-based data is adversely affected 

by the difficulty of detecting missing relationships between 

nodes. Faster access to a great amount of information has 

resulted from the growth of innovation and the broad 

availability of internet services. However, this has also led to 

an explosion in the amount of data available online, making it 

harder for people to zero down on relevant results. Several 

methods with less computational needs have evolved as a 

solution to this problem, making it simpler and quicker to get 

to the information we need.  

As a result, research and development into recommender 

systems has gained strength. The ideas of link prediction and 

heterogeneous graph creation are relevant when discussing 

knowledge graphs. Knowledge graphs are organized 

illustrations of information that include of things (nodes) and 

their connections (edges). These connections can vary in kind, 

and entities can possess diverse qualities. Constructing a 

heterogeneous graph and predicting links are two essential 

challenges in the study of a knowledge graph. 

The connection between these two notions is based on the 

idea that a well-designed diverse knowledge graph serves as 

the basis for accurate link prediction. Utilizing a complete and 

well-organized graph that encompasses entities and links from 

many domains enables the development of more precise and 

relevant link prediction models. The graph's heterogeneity, 

characterized by its varied entity and relationship types, is a 

valuable resource for forecasting novel connections or absent 

interactions among entities. 

The process of constructing a heterogeneous graph is 

fundamental for creating intricate knowledge graphs that 

consist of various entities and relationships. On the other hand, 

link prediction utilizes these graphs to make forecasts about 

potential or absent connections between entities, capitalizing 

on the organized information stored in the graph. 

In conventional electronic medical record (EMR) systems, 

data is structured and administered within relational database 

systems, whereby there exists no inherent linkage between the 

recorded data. In order to demonstrate, it is common practice 

in database design to establish relationships across various 

databases through the use of foreign keys. These foreign keys 

are often connected to a column within a table, indicating the 

connection between the data tables rather than the individual 

data pieces. In contrast, graph databases establish connections 

between data records in order to efficiently organize data 

attributes, with a particular emphasis on the interconnections 

between data pieces. Entities and links are employed in order 

to enhance space efficiency and provide expedited querying 

for extensive datasets in comparison to relational mapping. 

A link prediction is an issue that involves predicting a 

connection between two nodes based on the characteristics of 

those nodes. This problem is connected to research topics that 

are relevant to the study of the long-term state of the network. 

Each of the nodes in the system as well as any further 
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connections that have been identified. Utilizing a social 

network's historical data allows for the investigation of its 

current & possible future states and the prediction of the kinds 

of shifts and alterations that will take place within the latter. 

The purpose of link prediction is to find a set of missing or 

future ties between users by estimating the probability of 

presence (or development) for each of the non-existing 

network nodes. This can be done in order to complete the 

network [1]. If an edge does not already exist in a network, 

link prediction can help find it. To determine which nodes in a 

network, refer to the same person, entity resolution analyses 

the attributes of each node and the connections between them. 

Despite being separate tasks, link prediction and 

heterogeneous graph creation have similar objectives, such as 

describing and analyzing complicated relationships. The 

development of a heterogeneous graph serves as the 

fundamental basis for link prediction tasks inside a structured 

and linked system. This style facilitates the prediction of 

connections and interactions between diverse entities and node 

types. 

When it comes to completing a knowledge graph, one of the 

most basic tasks is link prediction, which makes use of 

preexisting relationships to infer new ones and therefore 

construct a fuller knowledge graph. There is a plethora of 

proposed approaches for carrying out the link-prediction task, 

each of which makes use of a different representational 

strategy. In order to generate a more complete knowledge 

graph, link prediction is a crucial task in knowledge base 

completion that makes use of preexisting ties to infer new links. 

The link-prediction task has been approached in a variety of 

ways based on different representational methodologies [2-4]. 

On the basis of link similarity score propagation via stochastic 

process in networks with nodes properties, a link prediction 

technique is proposed. According to the similarity of the 

properties on the nodes connected by the link, the algorithm 

assigns an ability to bring to each network link. In addition to 

its importance in other fields, such as medication development 

and knowledge graph building, link prediction is an essential 

step in these endeavors as well. 

To model EMR as a heterogeneous bipartite network with 

attributes on nodes and edges, a new method is proposed. The 

latent relationships among the population may be thoroughly 

explored and analyzed using an efficient visualization, when 

combined with a focused-on patient’s graph technique. For the 

purpose of illustrating how effective our disease-predicting 

model is, we devised several applicable cascade link 

prediction tasks that were based on the GATNet algorithm. 

This approach demonstrates that the performance acquired 

from EMR supports a sufficient significance to anticipate the 

result of an event that occurs within the patients and advocates 

for overall healthcare. 

2. RELATED WORK

The entities and relations were comparatively diminutive, 

and augmenting the attributes of entities and relations is seen 

an imperative subsequent action. The assessment of the 

knowledge graph was rather uncomplicated and did not 

include a comparison examination of other graphs produced 

by the different methodologies. In addition, the utilization of 

knowledge graphs was initial, and there is room for enhancing 

the extent and profundity of knowledge graph applications in 

the field of recommendation [5]. The accuracy did not improve 

when the HGM embedding vector was concatenated with the 

diagnosis feature vectors, compared to when the raw lab test 

and diagnostic feature vectors were concatenated. This 

discovery suggests that the raw lab test feature vector contains 

distinct information that may be effectively utilized by CNN. 

Simultaneously, this discovery suggests that the patient vector 

incorporated in the HGM model may lose certain information 

from the original lab test feature when it is projected into a 

lower-dimensional latent space. To enhance the accuracy of 

mortality prediction, we want to conserve the information 

from various data points by combining all feature vectors [3, 

4]. Unlike previous link prediction methods, WLNM does not 

make assumptions about a specific link generation mechanism, 

such as common neighbours. Instead, it learns this mechanism 

directly from the graph [6-11]. Generating a medical 

knowledge graph or graph representations has been the subject 

of extensive research recently [12-14].  

A bipartite network database was created using electronic 

health records of patients with heart failure. The network 

analysis was conducted to examine the connections between 

patients and healthcare providers, and network statistics were 

calculated to show these interactions [15]. However, this study 

is flawed in its excessive time expenditure throughout the 

inquiry process. Additionally, the use of a detailed semantic 

knowledge network constructed from electronic medical 

records (EMR) for uncommon diseases highlighted the 

significance of partially automated schema creation in order to 

establish more detailed semantic connections [16]. Though 

this study demonstrated that the prediction job achieves 

superior performance when the entity types are specified, the 

assessment dataset had a limited range of relationship types 

due to the use of non-automatic labor-intensive methods.   In 

contrast, we developed an automated procedure for creating 

graphs that complements the demanding work. This process 

also addresses the problem of labelling various types of links 

and resolving memory storage concerns [17].  

In addition, the use of medical datasets to leverage valuable 

resources is becoming increasingly popular in personalized 

healthcare and predicting medicine applications, particularly 

in the context of graph neural networks. An instance of the 

heterogeneous similarity graph neural network was employed 

to examine health data based on temporal structural 

characteristics. This was achieved by creating numerous 

subgraphs and using them as input for prediction [18]. 

However, the techniques illustrated in this research are not 

well-suited to the characteristics of the EMR in network 

integrating. The EMR dataset possesses a distinctive structure 

whereby several types of datasets (such as medicine, 

laboratory, physical, visits, etc.) are linked together to depict 

the medical condition of patients. These datasets are also 

related through an anonymous key [19]. However, the graphs 

stated earlier utilize genomes, proteomics, molecular biology, 

or movie review datasets that do not necessarily rely on the 

connectivity between the nodes. As a result, a network is 

created where characteristics do not require any specific 

linkage. 

In this instance, we provide methods for integrating diverse 

medical entities and interactions in order to forecast a patient's 

outcome using a graph that is built only from the EMR 

information. Our primary contributions are. 

(i) This paper presents a novel method for developing a

heterogeneous bipartite graph model using electronic medical 

records (EMR) that includes attributes on both nodes and 

edges. 7By employing a powerful visualization technique, in 
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combination with a graph method that prioritizes the needs and 

preferences of patients, it becomes possible to thoroughly 

examine and analyze the hidden connections within the 

population. 

(ii) We utilized the GATNet algorithm to create practical

downstream link prediction tasks, showcasing the 

effectiveness of our disease forecasting model [20]. This 

framework demonstrates that the improvements in 

performance achieved through the use of EMR (electronic 

medical records) provide a significant level of accuracy in 

predicting patient outcomes and strongly supports the 

advancement of healthcare as a whole.  

In addition, we provided the approach for creating an EMR-

integrated graph database. The GATNet method was then used 

to implement the EMR-integrated graph model in network 

learning [21, 22]. In this research, we demonstrated the 

model's efficacy by illustrating the graph database architecture 

and displaying query results. By forecasting the occurrence of 

sickness depending on the efficiency of our implementation, 

this study sheds light on the choices made by doctors [23]. 

3. METHODS

Figure 1 provides a concise representation of the study 

methodology. The datasets are associated with the 

International Classification of illnesses, 10th Revision (ICD-

10) code of the topic and imported using comma-separated

value files. The files were initially processed using Python and

subsequently utilized for additional analysis with Neo4j and

the Stellar graph framework. The collection consists of records

for roughly 50,000 patients. There are more than 200,000

instances of medical contacts, which encompass hospital

admissions, outpatient visits, and emergency department visits.

The dataset comprises a range of features classified into

patient demographics, clinical data, drugs, diagnoses, and

procedures. The dataset utilised in this work is an extensive

and intricate repository of computerised medical records,

offering a thorough perspective on patients' medical

backgrounds. Advanced modelling tools, such as

heterogeneous graph attention networks, are required to

efficiently capture and utilise the complex interactions among

diverse data for predictive modelling. Our objective is to

enhance readers' comprehension of the study setting and the

difficulties associated with managing intricate data by

presenting a comprehensive dataset description. A comparison

between other methods and GATNet is given in Table 1.

Two distinct graph models were constructed in this work, 

each based on unique topologies and analytical objectives. The 

first graph was generated using Neo4j to integrate patient 

information into an EMR system. This allows for the efficient 

visualization of the patient's medical history and facilitates the 

retrieval of relevant data points through simple query input. 

The construction of our property graph involved the use of 

semantics mapping on superficial network embedding. The 

second graph was generated using the Stellar graph, and neural 

network predictions were conducted. 

Table 1. Comparison table for various methods with 

GATNet 

Method 

Adapting 

Heterogenei

ty 

Attention 

Mechanism 
Scalability 

Therapeuti

c emphasis 

GCN No No Moderate Low 

Graph 

SAGE 
Partial No High Low 

R-GCN Yes No Moderate Moderate 

HGNN Yes Limited Moderate Moderate 

GATNet Yes Yes High High 

3.1 Steps in constructing heterogeneous graph 

Determining the various node types that represent the 

entities or concepts in the dataset is the first stage in building 

a heterogeneous network. The diversity of the network is 

reflected in the many node types, which will be used as a 

starting point for further modelling. 

Next, it's crucial to define edge types, or the many possible 

connections between nodes, after the node types have been 

created. These connections between nodes in the dataset often 

have several meanings, showing the complexity of the 

relationships between them. Associations between friends, 

followers, or genres in a movie recommendation system are all 

instances of such linkages. 

An essential step, data collecting involves accumulating 

information from many resources such databases, application 

programming interfaces (APIs), and text files. The next step is 

data preparation, which includes activities like data cleansing, 

filtering, and transformation to bring the raw data into line 

with the intended network layout. The building of the 

heterogeneous graph entails the generation of nodes and edges. 

Each entity or notion is represented by a node, and each node 

has its own type and properties that are essential to its function. 

Relationships between nodes are represented by edges, which 

may have many edge kinds and other properties to capture 

subtle ties. 

Figure 1. Overall process for graph construction includes the graph schema representation for the database 
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Graphs can be represented with the help of certain graph 

libraries or frameworks, which improves the graph's storage 

and management. NetworkX, Neo4j, and Gephi are three well-

known programmers with specialized features for different 

purposes [24]. A wide range of graph analytics operations, 

such as node categorization, connection prediction, 

community discovery, and more, may be built upon the 

generated heterogeneous graph. Tools for visualizing data help 

us make sense of the network of links, illuminating hidden 

patterns and insights. Regular maintenance and updates, 

including the inclusion of new data and the removal of old 

information, are necessary to keep the graph up-to-date and 

accurate. 

In inference, the development of heterogeneous graphs is a 

vital step for the modelling of complex, heterogeneous data in 

a wide variety of fields. It provides a versatile and context-

aware method of data representation and analysis, allowing 

analysts and researchers to extract useful insights and 

information from complex datasets. 

(1) Identify Node Types: Figure out what kinds of nodes

will be included in your medical recommendation network. 

Patients, medical problems, therapies, healthcare providers, 

and pharmaceuticals are all examples of possible node types 

in this context. The recommendation system requires that 

different types of nodes each stand for unique entities or ideas. 

(2) Define Edge Types: Identify the different kinds of

connections that may be made, or "edges," between nodes. 

Patient-doctor linkages, patient-treatment ties, drug-condition 

ties, and more are all possible edge types for a medical 

recommendation system. Each type of edge should capture a 

different facet of the medical data. 

(3) Data Collection: Collect information from a wide range

of places, such as patient files, medical databases, clinical trial 

data, and electronic health records (EHRs). Patients' medical 

histories, diagnoses, treatments, and drugs are all examples of 

what should be included in this data. 

(4) Data Preprocessing: To verify that the data can be used

to generate graphs, you will need to prepare and clean it. Data 

cleansing, duplication detection, and format conversion to 

make the information suitable for graph modelling are all tasks 

that may be required. 

(5) Node and Edge creation: Make a node for each item the

system is meant to propose. Types of nodes can be assigned to 

define their functions. Nodes representing people, medical 

problems, and therapies, for instance, would each have a 

specific type. Create links (or edges) between nodes to show 

connections. Relationships between nodes in a network should 

be represented by edges with names like "treated by," 

"diagnosed with," and "prescribed." 

(6) Graph Representation: Create the heterogeneous graph

using a graph library or framework that allows for different 

types of nodes and edges. Verify that the graph can 

accommodate different sorts of nodes and edges. 

(7) Attribute Assignment: Give labels to nodes and labels to

edges. Examples of patient characteristics include age, gender, 

and medical history; examples of therapy characteristics 

include efficacy and potential for adverse effects. These details 

improve the graph and aid in making suggestions. 

(8) Integration of External Knowledge: Integrating external

medical information sources into the graph, such as medical 

ontologies, medication databases, or clinical guidelines, can 

help to improve its quality. Because of this, the precision of 

the suggestions may be improved. 

(9) Recommendation Model Integration: Incorporate

methods of machine learning or recommendation that make 

use of the heterogeneous graph. These models can make use 

of the graph structure and the characteristics in order to give 

patients with personalized medicinal suggestions. 

(10) Evaluation and Validation: Execute an analysis of the

performance of the recommendation system making use of the 

necessary metrics and validation methods. Make sure that the 

suggestions are in line with the medical guidelines and that 

they offer helpful insights to both patients and the 

professionals who care for them. 

(11) Continual Updates: To keep the recommendation

system up to date and relevant, you will need to maintain the 

heterogeneous graph and frequently update it with fresh data, 

therapies, and medical knowledge. 

Constructing a heterogeneous graph for a medical 

recommendation system is a complicated but necessary task. 

If beneficial, this can result in more precise and individualized 

suggestions for medical care, which will eventually be of value 

to both patients and healthcare professionals [25]. 

3.2 Link prediction in bipartite network 

In order to anticipate the connection, a network is defined 

as a graph. The information inside the network is depicted 

using nodes, while the connections between them are depicted 

using links. Predictions are made about the future of 

unconnected linkages between pairs of nodes. A score is 

computed for every pair of nodes that are probable to be linked. 

As the estimated score between two nodes increases, the 

likelihood of a future connection between those nodes also 

increases. Bipartite networks have nodes spread over two 

distinct clusters. Links exist solely between nodes located in 

distinct clusters. There is a lack of connections between nodes 

within the same cluster. Several societal networks in our 

surroundings have a bipartite network topology [26].  

The majority of link prediction algorithms are designed for 

networks with a single mode. Consequently, conventional link 

prediction techniques are not suitable for direct use in bipartite 

networks. In order to forecast links in bipartite social networks, 

it is common practice to convert these networks into single-

mode social networks. Common methods to find the link 

prediction are given below: 

3.3 Jaccard coefficient 

The Jaccard coefficient is a normalized version of the 

common neighborhood measure. One of the common 

neighbours of the pair of nodes a and b is selected randomly 

from the collection of neighbours. There are multiple nodes. 

This metric increases as the number of similar neighbours 

increases. 

The equation is shown below: 

( ) ( ) ( ) ( ) ( )( ), /) (J a b ґ a ґ b ґ a ґ b=   (1) 

3.4 Preferential attachment (P) 

The likelihood of one of the endpoints of a future 

connection being made in the network being a is directly 

related to the quantity of neighboring nodes connected to node 

a. Nodes that have a higher number of neighbours are more

prone to establishing additional connections. Newman states

that the likelihood of collaboration between a and b in a
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cooperative network is directly related to the number of 

collaborations involving a and b. 

Below is the mathematical equation: 

( ) ( ) ( ),  . P a b ґ a ґ b= (2) 

3.5 Common neighbors (C) 

It is a metric that operates on the idea that the likelihood of 

two nodes becoming linked in the future is directly related to 

the quantity of neighbors they have. The likelihood of a 

connection being established between two nodes increases as 

the number of common nodes they share increases. Due to its 

simplicity, it is one of the most commonly employed measures 

in the field of link prediction. The mathematical equation is 

shown below: 

( ) ( ) ( )| |,C a b ґ a ґ b=  (3) 

Deep Neural Networks have been utilised in link prediction, 

with techniques like KBAT and CapsE demonstrating 

impressive performance. However, their effectiveness varied 

when applied to different benchmarks. A study conducted by 

revealed that the observed behaviour was a result of an 

inadequate assessment process, and the performance of these 

assessment process, and the performance of these models 

declined once the underlying biases were addressed. 

According to their analysis, shallow Knowledge Graph 

Embedding (KGE) models such as TransE, RotatE, ComplEx, 

and QuatE demonstrate consistent performance across many 

assessment methods. 

A community-aware high-order proximity may be used to 

optimise node embedding in an intriguing family of 

methodologies called community embeddings. An example of 

such a model is vGraph, which is a probabilistic generative 

model that jointly learns community membership and node 

representation. ComE+ is an alternative method for 

embedding communities that can address situations when the 

number of communities is uncertain. Nevertheless, these 

techniques primarily concentrate on generating node and 

community embeddings by considering intra-group 

connections for clustering and node classification purposes, 

rather than for predicting links. 

4. PROPOSED MODEL

Nodes in the graph represent entities, and edges reflect 

interactions between them; the Graph Attention Network 

(GATNet) is a neural network architecture tailored to 

processing such graph-structured data. GATNet makes use of 

attention techniques to gather data from nearby nodes 

efficiently. Table 2 provides the detailed pseudo code used to 

experiment and Figure 2. Represents the procedure to 

construct the GATNet algorithm used for the training purpose. 

Adam optimizer with learning rate of 0.005 is used. Cross 

entropy classification is utilized to calculate the loss function 

with the batch size of 128 for 200 epochs is used for the 

implementation process. The early stopping technique is 

implemented with a patience of 10 epochs, using the validation 

loss as a criterion to avoid overfitting. 

Table 2. Pseudo-code outlining the GATNet training method 

1 
Set the initial values of the GATNet parameters as follows: 

weights W and attention coefficients a. 

2 Iterate through each epoch from 1 to num epochs. 

3 Randomise the sequence of the training data 

4 Iterate over each batch B in the training data. 

5 Calculate the node embeddings H: 

6 hm = LeakyReLU((X * wi) ⊕ (a_1 * [X * W_1])) 

7 hn = LeakyReLU((hm * wj) ⊕ (a_2 * [hm * wj])) 

8 deploy dropout in hn 

9 Calculate the logits Z by applying the softmax function on hn 

10 
Calculate the loss L by employing cross-entropy loss with 

the labels Y. 

11 
Utilise the Adam optimizer to backpropagate and alter the 

parameters (w, a). 

12 Evaluate the model using the validation set 

13 For patient epochs, if validation loss is unchanged, then 

14 End training. 

15 Return-trained GATNet model 

Figure 2. Procedure to construct and deploy Graph Attention Network (GATNet) 
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4.1 Representing the input data 

Considering a graph, 

( , )g v e= (4) 

where v are nodes and e are edges. Every vertex ui is the 

feature vector associated with vi at the outset, this can be a 

representation with encryption or an embedded representation. 

4.2 Transforming the features of the nodes 

To create the first representations of the nodes, a linear 

transformation is applied to each one. 

( )o

i o iT w u= (5) 

𝑤𝑜 is the weight of the matrix.

4.3 Utilizing the attention mechanism 

To determine attention coefficients for each node's 

neighbors, GATNet makes use of attention mechanisms. 

To calculate the attention coefficient 𝑒𝑚𝑛  between the

nodes 𝑣𝑚 and 𝑣𝑛 using the attention mechanism.

 ( )LeakyReLu T

mn m ne a wh wh= ‖ (6) 

𝑎 is the shared attention mechanism. 

|| represents the concatenation. 

LeakyReLu is the activation function of a leaky rectified 

linear unit. 

4.4 Normalizing the coefficient using optimization 

technique 

To the calculated attention coefficients, apply a SoftMax 

operation 𝑒𝑚𝑛 over each node's neighboring nodes 𝑣𝑖:

( )

( )( )
exp

exp
i

mn

mn

mk

k N

e
a

e


=
 (7) 

𝑁𝑖 denotes the set of neighbors of node 𝑣𝑖.

4.5 Aggregating the neighbor information 

Construct a novel representation for each node by 

aggregating neighbour node characteristics using the attention 

coefficients: 

( 1) ( ) ( )

i

j j j

i mn l

l N

r a w h+



 
=   

 
 (8) 

ℎ𝑙
(𝑗)

 represents the node 𝑣𝑖 at layer 𝑙.

𝑤(𝑗) weight matrix for layer 𝑙.
𝜎 is an activation function like LeakyReLU. 

5. RESULT AND DISCUSSION

Generating the result and training the data: The final node 

models acquired through the equations [4-8] after numerous 

layers of aggregating and manipulation can be utilized for 

node categorization or other downstream activities. Training 

the GATNet using an appropriate loss function (for 

classification tasks, such as cross-entropy loss) then optimize 

the model parameters with gradient-based optimization 

methods such as stochastic gradient descent (SGD) or Adam. 

Table 3 provides the comparison data of the existing and 

proposed model which is depicted as a graph in Figure 3. 

Case Study 1: 

Warfarin and antibiotics can interact with one other. 

Hypothesis: GATNet effectively forecasts a probable 

interaction between Warfarin (an anticoagulant) and specific 

antibiotics. 

Medical Implication: This interaction may result in a higher 

likelihood of bleeding. Early detection enables the adjustment 

of dosage or the prescription of alternative antibiotics, so 

reducing the occurrence of severe bleeding issues. 

Case Study 2: 

Effect of Statins and Grapefruit Juice Interaction. 

Hypothesis: GATNet detects the correlation between 

Statins (medications that reduce cholesterol levels) and 

grapefruit juice. 

Medical Implication: This combination can heighten the 

likelihood of muscle poisoning. Notifying healthcare 

providers allows them to provide nutritional guidance to 

patients, reducing the danger. 

(a) 

(b) 

Figure 3. Performance evaluation of AUPRC 
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Table 3. Model performance comparison for baseline models 

and GATNet 

Model AUROC AUPRC 

ANN 0.64(0.63,0.70) 0.11(0.09,0.12) 

RF 0.67(0.63,0.70) 0.11(0.09,0.12) 

HinSAGE 0.72(0.71,0.74) 0.15(0.14,0.16) 

GATNet 0.75(0.73,0.78) 0.17(0.15,0.18) 

6. CONCLUSION

This paper describes the initial exploration of 

heterogeneous graph structure learning for GATNet. We 

provide an approach that simultaneously learns the 

heterogeneous graph structure and the GATNet parameters to 

achieve the prediction target. In particular, by leveraging the 

intricate relationships among diverse networks, we build and 

combine feature similarity, feature propagation, and semantic 

graphs to acquire an ideal heterogeneous graph structure for 

classification. In addition, this study utilized the mechanics of 

the graph attention network to develop a more advantageous 

framework in comparison to the prior baseline technique. We 

have done comprehensive experiments, which involve node 

categorization and model analysis, to illustrate the efficiency 

of the suggested framework. 
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