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Coronary artery disease (CAD) is a pathological condition that is often fatal and is the main 

cause of death throughout the world. Early detection of this disease is very important to 

avoid severe complications such as heart attacks and sudden death. This study employs 

artificial intelligence, specifically deep learning via Convolutional Neural Networks 

(CNNs), to enhance CAD detection. While CNN architectures like ResNet50V2 and 

MobileNetV2 exhibit satisfactory performance individually, they possess distinct strengths 

and weaknesses. ResNet50V2 requires significant computing resources, hindering its 

scalability, while MobileNetV2 struggles with extracting complex features from medical 

images. Therefore, this research aims to combine the EfficientNetV2B0, ResNet50V2, and 

MobileNetV2 using transfer learning techniques to enhance CAD detection. The 

methodology involves leveraging pre-trained models and fine-tuning them on a coronary 

artery disease dataset. Modified models, particularly EfficientNetV2B0 and MobileNetV2, 

achieve high accuracies of 94% and 86%, respectively, while ResNet50V2 yields 72%. 

However, combining the models boosts accuracy to 95%, addressing individual model 

limitations. The concatenated model demonstrates superior predictive capabilities, with 

more accurate predictions and fewer errors than individual models.  
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1. INTRODUCTION

Coronary artery disease (CAD), also known as coronary 

atherosclerosis, is a pathological condition in which plaque 

deposits form in the arteries that supply blood to the heart 

muscle [1]. The plaque contains fat, calcium, cholesterol, and 

fibrin, a substance that causes blood clots [2]. Coronary artery 

disease is the most prevalent type of cardiovascular disease 

and the primary cause of death globally, responsible for 

around 17.9 million deaths annually [3]. This condition needs 

attention because it has a high risk of heart disease [4]. 

Early detection of coronary artery disease is becoming 

increasingly important to prevent serious complications such 

as heart attacks and sudden death. Timely and accurate 

detection methods can enable effective treatment, can save 

lives and improve the patient's quality of life. Developing 

detection methods with artificial intelligence could be crucial 

in highlighting the significance of early disease detection. 

Artificial intelligence technology has been extensively utilized 

across multiple sectors, such as health, agriculture, 

manufacturing, and education [5]. Deep learning techniques, 

which are a branch of artificial intelligence, have recently 

received much attention for solving various challenges, 

especially in the field of medical imaging [6]. Deep learning 

techniques are an advanced branch of computer vision that 

aims to perform a variety of tasks including image detection, 

recognition, natural language processing, and image analysis 

[7]. 

Convolution Neural Network (CNN) is an effective deep 

learning algorithm for understanding image content, with 

excellent performance in various tasks including segmentation, 

classification, detection, and image retrieval [8]. Two CNN 

architectures, namely ResNet50V2 and MobileNetV2, have 

been developed for disease detection with quite good detection 

performance [9, 10]. Both have been used widely in various 

cases and each has its advantages and disadvantages. 

ResNet50V2 is capable of training deep networks well [11]. 

but can suffer from the need for large computing resources. On 

the other hand, MobileNetV2, which focuses on optimizing 

memory usage and execution speed [12], has limitations in 

extracting complex features from medical images. 

Other research shows that combining different architectures 

can lead to more robust performance [13] and representation 

of complex medical images. The combination of the 

ResNet50V2 and MobileNetV2 architectures has been carried 

out to solve the problem of detecting the COVID-19 virus to 

obtain better performance than the performance of each 

architecture [14]. This combination uses a transfer learning 

technique, which is a technique where the training process 

uses a model that has been previously trained on certain data, 

which is generally called a pre-trained model. By utilizing 

transfer learning techniques, the resulting architecture can use 

knowledge gained from other medical image data, thereby 

enabling better adaptation to this coronary artery disease 
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dataset. Recent research has demonstrated the ability to 

transfer learning into medical imaging fields such as chest 

imaging [15], breast imaging [16], and retina imaging [17]. 

Although the ResNet50V2 and MobileNetV2 architectures 

show good performance, they have limitations in terms of the 

need for large computing resources and obstacles in extracting 

complex features. To overcome this limitation, this study aims 

to combine three architectures, namely ResNet50V2, 

MobileNetV2, and EfficientNetV2B0 to detect coronary 

artery disease with transfer learning techniques. The 

EfficientNetV2B0 architecture, which is an evolution of 

EfficientNetV1, is renowned for its efficiency in the use of 

computing resources [18]. The new finding from this research 

is the combination of three CNN architectures using transfer 

learning in the development of a coronary artery disease 

detection system. Thus, the combination of the ResNet50V2, 

MobileNetV2, and EfficientNetV2B0 architectures is 

expected to overcome the limitations of each model, resulting 

in a more efficient, responsive, and accurate coronary artery 

disease detection system. 
 

 

2. LITERATURE REVIEW 
 

This section provides a concise summary of recent research 

on coronary artery disease (CAD) detection using various 

approaches and Convolutional Neural Network (CNN) model 

architectures. There is research that proposes a method to 

detect coronary artery disease (CAD) and its types using 

Phonocardiogram (PCG) signature analysis, feature fusion, 

and a two-step classification strategy [19]. They collected 

PCG data with a low-cost stethoscope and processed it using 

iterative signal decomposition (EMD). Spectral and statistical 

features were extracted, and a two-stage classification 

framework was used to differentiate between healthy cases 

and CAD cases. The validation results show a high degree of 

accuracy, with average values of 88.0% for normal, 89.2% for 

DVCAD, 91.1% for SVCAD, and 85.3% for TVCAD after 10-

fold cross-validation. 

The use of Convolutional Neural Networks (CNN) such as 

VGG16, DenseNet121, InceptionV3, and ResNet50 was also 

used in a study to classify SPECT-MPI images to detect 

myocardial perfusion abnormalities related to coronary artery 

disease (CAD) [20]. These models were assessed based on 

accuracy, precision, recall and F1-score, with the best results 

achieved by VGG16 and InceptionV3, with the highest 

accuracy reaching 84.38%. This study shows the potential of 

using CNN models as a diagnostic aid for physicians in 

clinical practice to improve the reliability of SPECT-MPI test 

interpretation and CAD monitoring. 

In another study also discussed the importance of using CT 

angiography to detect coronary artery disease (CAD) and how 

machine learning (ML) can help improve diagnostic accuracy 

[21]. This study proposes a new method for detecting CAD 

with high accuracy and minimal processing time, with 

emphasis on efficient feature extraction and the use of 

Convolutional Neural Networks (CNN). Experimental 

analysis shows that the proposed method is superior in 

detecting CAD, with prediction accuracies of 99.2% and 

98.73% for two different datasets. The results validate that the 

suggested method can address the difficulties associated with 

analyzing cardiac CT scans and has the capacity to enhance 

CAD diagnosis and clinical management. Furthermore, there 

is research that introduces a novel approach for automatically 

detecting stenosis in X-ray Coronary Angiography (XCA) 

pictures. This approach utilizes pre-trained Convolutional 

Neural Networks (CNN) such as VGG16, ResNet50, and 

InceptionV3 through transfer learning [22]. This method relies 

on the utilization of network slicing and fine-tuning 

techniques. The analysis results show that VGG16, ResNet50, 

and InceptionV3, which have been pre-trained and adjusted in 

the initial layers, successfully outperform the reference CNN. 

Specifically, Inception-v3 provides the best stenosis detection 

with 95% accuracy, 93% precision, sensitivity, specificity, and 

F1-score of 98%, 92%, and 95%, respectively. Additionally, 

class activation maps were applied to identify regions of high 

interest in stenosis detection. 

The combined architecture was also implemented to 

investigate methods for enhancing the precision of breast 

cancer classification by employing a dependable framework 

that utilizes mammography as a scanning technique [23]. 

Through the development of three different CNN models, 

namely two with transfer learning and one completely from 

scratch, this research succeeded in reducing misclassification 

of lesions in mammography images. By using Bayesian 

optimization and data augmentation, these models can 

improve their accuracy. The results of the analysis show that 

these models can predict disease accurately with an accuracy 

level of 97.26% in binary cases and 99.13% in 

multiclassification cases. These findings show a significant 

improvement compared to previous research, showing an 

increase in multiclassification accuracy of 16%. 

In addition, combined architecture was implemented to 

detect cases of COVID-19, particularly in response to the 

significant global mortality rate [24]. Many deaths are caused 

by delays in disease identification. Therefore, this study aims 

to detect COVID-19 in chest X-ray images by employing deep 

learning neural networks, specifically Xception combined 

with ResNet152V2 and Xception with EfficientNet-B7. The 

proposed method combines two deep learning networks to 

detect COVID-19 from X-ray images. The results indicate that 

the average accuracy for detecting COVID-19 is 62% using 

Xception combined with EfficientNet-B7 and 60% when 

Xception is combined with ResNet152V2. However, the 

proposed combined architecture provides better results with 

increasing number of epochs and batch size, with an estimated 

accuracy increase of up to 99.7%. 

Researchers have conducted a literature review on disease 

detection, especially coronary artery disease, and no research 

has been found that combines the CNN architectures 

EfficientNetV2B0, ResNet50V2, and MobileNetV2 in this 

context. Although previous studies have provided valuable 

insights into this disease, none has specifically investigated the 

potential of incorporating this CNN architecture for coronary 

artery disease detection. Consequently, the presence of these 

gaps emphasizes the requirement for further and innovative 

investigation into the possible application of combining 

different CNN architectures in the context of detecting 

coronary artery disease. 
 
 

3. METHODOLOGY 
 

3.1 Dataset 

 

The dataset used to train the model consists of 5,959 image 

data that includes Coronary Computed Tomography 

Angiography (CCTA) images from 500 patients, with 18 

different views of straightened coronary arteries [25]. Images 

are categorized into two different groups, namely normal 
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which includes 50% of the image and abnormal which also 

includes 50% of the image. After that, the images are 

categorized into three distinct sets, training, validation, and 

testing. Table 1 presents the proportion of divisions from the 

dataset used. 

 

Table 1. Split dataset 

 
Class Train Valid Test 

Positive 1.996 50 493 
Negative 2.304 50 1.066 

Total 4.300 100 1.559 

 

To increase data diversity and reduce the possibility of 

overfitting, image augmentation techniques are applied to the 

training data after image preprocessing. Image preprocessing 

is done by resizing the image to 224×224 pixels, which is a 

standard size for many convolutional models such as CNNs. 

Images are converted to RGB format and normalized to ensure 

consistency in training. After that, image augmentation 

techniques are applied, including several transformations. 

Shear Range is used to apply a shear transformation to an 

image, emulating changes in perspective and viewing angle. 

Zoom Range is applied to simulate variations in camera 

distance by zooming in on the image, while the Horizontal Flip 

technique is used to flip the image horizontally, increasing 

viewing angle variations. All these techniques are 

implemented using to enable the dynamic creation of 

augmented images during the training process, enriching the 

training data, and helping the model generalize better. 

 

3.2 Tansfer learning 

 

Transfer learning is a widely used technique for developing 

deep learning network models for different tasks. In this 

technique, a model that has been pre-trained on a large data set 

for a particular task, or what is called a pre-trained layer, is 

then readjusted, or moved to another task. This process is 

carried out by leveraging the knowledge the model already has 

about general features of relevant data, which can then be 

applied to specific data sets and new tasks. In transfer learning, 

the first layer of a convolutional network is usually used to 

learn general features in an image, while the last layer of the 

network is learned for a specific classification task. Therefore, 

transfer learning allows models to leverage existing 

knowledge for new tasks without having to train from scratch. 

It is then refined to produce a solution that meets the needs of 

the given task [26]. 

By utilizing pre-trained layers from a model that has already 

been trained on the ImageNet dataset, can save the time and 

resources required to train the model from scratch. ImageNet 

is an extensive dataset comprising millions of images 

categorised into numerous classes, making it a widely used 

benchmark for training and assessing deep learning models in 

the field of image recognition [27]. This dataset includes a 

wide variety of objects and concepts, so models trained using 

this dataset can learn representations of very important and 

common features from images. These pre-trained layers serve 

as a robust base that enables the model to rapidly learn from 

the dataset and adjust the feature representation for the current 

task. During transfer learning implementation, these pre-

trained layers are often frozen. Therefore, the model can 

maintain existing understanding of general features while 

changing its representation to meet more specific goals. 

3.3 The proposed Concatenation Model based on transfer 

learning techniques 

 

In developing a combined model for the detection of 

coronary artery disease, researchers froze the initial blocks of 

3 transfer learning models, EfficientNetV2B0, ResNet50V2, 

and MobileNetV2. Freezing is performed to preserve the 

relevant basic features of the target dataset, while providing 

flexibility to adjust more specific features. 

After freezing the initial blocks, modifications were made 

mainly by adding additional layers to each model. The added 

layers include Conv2D, Maxpooling2D, Flatten, and some 

Dense layers as seen in Table 2. The addition of these layers 

aims to enhance the model's capacity to effectively address the 

challenge of detecting coronary artery disease, by allowing the 

model to extract more complex or specific features. 

Researchers designed a proposed Concatenation Model for 

the detection of coronary artery disease with input dimensions 

of 224×224. This model uses three modified models, with 

similar input dimensions. The structure of this model is shown 

in Figure 1 and the detailed parameters for each layer in the 

architecture are shown in Table 2 to provide a better 

understanding of our proposed model. 

Utilizing a combination of multiple neural network 

architectures, such as EfficientNetV2B0, ResNet50V2, and 

MobileNetV2, can enhance the accuracy of classification tasks 

by leveraging the distinctive capabilities of each model. This 

approach involves training and merging multiple models to 

address the same problem. The primary benefit of this 

approach lies in the fact that the combination of models 

typically yields superior performance compared to using a 

single model. This is attributed to the reduction in model 

variance and the enhancement of generalization. By 

combining EfficientNetV2B0, ResNet50V2, and 

MobileNetV2, it can leverage the diverse strengths of 

EfficientNetV2B0's efficiency, ResNet50V2's deep handling, 

and MobileNetV2's lightweight architecture. Different 

architectures learn different feature representations. 

EfficientNetV2B0 can capture efficient and broad features, 

ResNet50V2 can capture deep and complex features, and 

MobileNetV2 can efficiently capture light and essential 

features. Combining these diverse feature representations can 

lead to a richer and more comprehensive understanding of the 

data, thereby improving classification performance. Each 

model may have different error patterns. By combining them, 

the final prediction can be more robust because errors from 

one model can be compensated for by the other, reducing the 

overall error. 

 

3.4 Hyperparameters selection 

 

In this study, we meticulously chose the following 

hyperparameters based on preliminary experiments and 

literature review. The Adam optimizer was used with a default 

learning rate of 0.0001 due to its capacity to achieve a 

favorable equilibrium between training speed and stability. 

This enables the model to efficiently converge. A batch size of 

16 was selected, determined to be optimal for our dataset and 

hardware capabilities, providing a balance between memory 

efficiency and the model's capacity to generalize from the 

training data. The model was trained for 25 epochs, a number 

chosen based on early stopping criteria observed during 

preliminary runs, where it was noted that the model's 

performance plateaued around this epoch count. The Adam 
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optimizer was selected due to its capacity to dynamically 

adjust the learning rate during training, resulting in faster 

convergence and enhanced performance. Finally, a binary 

cross entropy loss function is used, as it is well suited for 

binary classification tasks like this case, which aim to 

differentiate between normal and abnormal coronary artery 

conditions. 

 

3.5 Performance evaluation 

 

Evaluation metrics are crucial tools for quantifying the 

effectiveness of classifiers. There are various evaluation 

metrics that are used to gauge the efficacy of classifier models. 

One of the fundamental tools used for this purpose is the 

confusion matrix, a technique widely used in machine learning 

[28]. The confusion matrix provides a numerical 

representation of classification accuracy and contains 

information regarding the actual classes and predictions 

produced by the classifier. It consists of two dimensions 

namely actual and predicted class, with each row representing 

an example of the actual class and each column depicting the 

predicted class status. In the confusion matrix, the four main 

metrics used are True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN). 

 

 
 

Figure 1. Proposed Concatenation Model 

 

Table 2. Details of the proposed Concatenation Model 

 
Layer Parameters Layer Parameters Layer Parameters 

Efficientnetv2-b0 5,919,312 resnet50v2 23,564,800 mobilenetv2 2,257,984 

Conv2D 1,311,744 Conv2D 2,098,176 Conv2D 1,311,744 

Maxpooling2D 0 Maxpooling2D 0 Maxpooling2D 0 

Flatten 0 Flatten 0 Flatten 0 

Dense 9,438,208 Dense 9,438,208 Dense 9,438,208 

Dense_1 524,800 Dense_1 524,800 Dense_1 524,800 

Dense_2 131,328 Dense_2 131,328 Dense_2 131,328 

Concatenate Layer Output Shape Parameters 

Proposed_Model 768 0 

Concatenate_Dense 1 769 

 

 

4. RESULT AND DISCUSSION 

 

In this section, the researcher will present the experimental 

results obtained from this research. Researchers will look at 

key performance metrics of the proposed model, illustrating 

experimental findings through graphs and in-depth analysis. 

The parameters for model training in this study have been 

carefully determined to ensure optimal performance. The 

ReLU (Rectified Linear Unit) activation function is used in 

hidden layers 1 to 3 for all modified models, including in the 

proposed model. ReLU was chosen for its efficiency in neural 

networks and its ability to prevent slow training problems. In 

the output layer, a Sigmoid activation function is selected for 

all models, generating positive class probabilities in binary 

classification problems. Optimization was performed using 

Adam, a commonly used optimizer due to its high 

convergence speed and adaptability to learning rate. The 

learning rate chosen was 0.0001, which is within the range 

commonly used in neural network training. The batch size is 

set at 16, affecting the speed and stability of model training. 

The loss function employed is binary cross-entropy, which is 

appropriate for binary classification problems by measuring 

the difference between the model's predicted probability 

distribution and the target probability distribution. 

Researchers carried out the training process on all the modified 

trained models and the proposed combined models, namely 

EfficientNetV2B0, ResNet50V2, and MobileNetV2, using 25 

epochs and the same parameter settings. 

 

4.1 Training results and analysis of all modified CNN 

models based on transfer learning techniques 

 

To illustrate the model training performance, the accuracy 

graph and loss functions of each modified CNN model will be 

presented in Figures 2-4. 
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Figure 2. Accuracy and loss curves of modified pre-trained EfficientNetV2B0 model 

 

 
 

Figure 3. Accuracy and loss curves of modified pre-trained ResNet50V2 model 

 

 
 

Figure 4. Accuracy and loss curves of modified pre-trained MobileNetV2 model 
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Figure 5. Accuracy and loss curves for the proposed Concatenation Model 

 

Table 3. Model performance evaluation 

 
Model Class Precision Specificity Recall F1-Score Accuracy 

EfficientNetV2B0 

Model 

Negative 95% 95% 95% 95% 
94% 

Positive 90% 90% 90% 90% 

ResNet50V2 Model 
Negative 89% 67% 67% 77% 

72% 
Positive 54% 83% 83% 65% 

MobileNetV2 Model 
Negative 83% 99% 99% 90% 

86% 
Positive 97% 56% 56% 71% 

Proposed Model 
Negative 96% 96% 96% 96% 

95% 
Positive 91% 92% 92% 91% 

 

From the training process that has been carried out, the 

modified EfficientNetV2B0 model shows extraordinary 

performance, managing to achieve an impressive accuracy of 

94%. This high accuracy shows the model's ability to 

recognize and learn complex patterns in the dataset. With a 

total of 17,325,649 parameters, consisting of 17,206,737 

trainable parameters and 118,912 non-trainable parameters, 

this model shows its capacity to utilize parameters efficiently 

for accurate classification. The success of the 

EfficientNetV2B0 model highlights the suitability of this 

architecture for tasks requiring high precision and sensitivity 

to complex features. 

In contrast to the EfficientNetV2B0 model, the modified 

ResNet50V2 model shows lower accuracy of 72% during 

training. Even though it has many parameters, namely 

35,757,569, consisting of 35,486,209 trainable parameters and 

271,360 non-trainable parameters, this model performs quite 

well on CAD datasets. The modified MobileNetV2 model 

showed good performance, achieving an accuracy of 86% 

during training. Even though it has a smaller number of 

parameters, namely 13,664,321, consisting of 13,625,601 

trainable parameters and 38,720 non-trainable parameters, this 

model shows efficient classification capabilities. This shows 

that the MobileNetV2 architecture, with its lightweight design 

and efficient parameter utilization, can effectively learn and 

generalize from datasets. The relatively high accuracy of this 

model confirms its suitability where high computational 

efficiency and performance are desired. 

 

4.2 Training results and analysis of the proposed 

Concatenation Model 

 

The results and analysis of the combined model show that 

the proposed architecture, which combines the modified 

EfficientNetV2B0, ResNet50 V2, and MobileNetV2 models, 

has a total of 66,747,537 parameters. Of this number, 

66,323,153 parameters are trainable, while 424,384 other 

parameters are non-trainable. This model succeeded in 

achieving an accuracy level of 95%, showing better 

performance in predicting classification on a dataset used with 

input images of the same size, namely 224×224. This 

illustrates the effectiveness of the combined model in utilizing 

the strengths and advantages of each model. used, thus 

producing more accurate and reliable prediction results.  

Figure 5 shows the accuracy and loss curves of the 

combined model combining EfficientNetV2B0, ResNet50 V2, 

and the modified MobileNetV2. This curve visually represents 

the performance of the combined model during the training 

process, with accuracy and loss values displayed for each 

epoch on the training and validation data. 

 

4.3 Test results of all modified CNN models and proposed 

Concatenation Model 

 

Testing was carried out using a confusion matrix to visually 

represent the model's performance in data classification. From 

the test results, in the EfficientNetV2B0 model, there were 

1,016 accurate predictions for the negative class and 443 for 

the positive class, with 50 incorrect predictions for each class. 

ResNet50V2 shows 719 correct predictions for the negative 

class and 408 for the positive class, and 347 and 85 incorrect 

predictions, respectively. MobileNetV2 produced 1,057 

accurate predictions for the negative class and 278 for the 

positive class, with 9 and 215 incorrect predictions, 

respectively. The combined model produced 1,023 correct 

predictions for the negative class and 452 for the positive class, 
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with 43 and 41 incorrect predictions, respectively. 

Based on the confusion matrix, the combined model was 

shown to outperform the separate models in terms of accuracy 

and error reduction, resulting in more precise predictions. This 

improvement is seen in the increased accuracy of forecasts and 

the decreased number of errors. Table 3 presents the 

performance assessment of several models used for the 

categorization job. The assessed models consist of 

EfficientNetV2B0, ResNet50V2, MobileNetV2, and a novel 

model that combines these architectures. The table presents a 

comparison of important performance measures, including 

Precision, Specificity, Recall, F1-Score, and Accuracy, for 

both the negative and positive classes. These metrics provide 

a thorough summary of the efficacy of each model in 

accurately recognizing both groups. The combined model 

regularly outperformed the separate models in all criteria, 

demonstrating its greater capacity to handle the categorization 

job. 

EfficientNetV2B0 demonstrated strong performance across 

all metrics, with precision, specificity, recall, and F1-score of 

95% for the negative class and 90% for the positive class, 

respectively, resulting in an overall accuracy of 94%. Most 

likely, the efficient scaling method of this model contributes 

to balanced performance and good feature representation. 

ResNet50V2 shows poor performance in the negative class 

with recall and specificity of only 67%, and precision of 89%, 

resulting in an F1-score of 77%. For the positive class, 

precision reached 54%, specificity and recall each 83%, with 

an F1-score of 65%, and overall accuracy of 72%. This 

indicates difficulty in detecting negative samples, which may 

be caused by overfitting or a model architecture that is not 

suitable for this task without further optimization. 

MobileNetV2 shows significant imbalance between classes. In 

the negative class, precision is 83%, specificity and recall are 

99% each, with an F1-score of 90%. However, in the positive 

class, precision reached 97%, specificity and recall were only 

56%, resulting in an F1-score of 71%, and overall accuracy of 

86%. This imbalance suggests a possible bias towards negative 

samples. The proposed combined model shows the best 

performance with precision, specificity, recall, and F1-score 

of 96% for the negative class, and 91%-92% for the positive 

class, respectively, as well as an overall accuracy of 95%. This 

shows that the ensemble approach effectively leverages the 

strengths of each model, resulting in balanced and superior 

performance. 

EfficientNetV2B0 leverages combined scaling to balance 

network depth, width, and resolution, resulting in good overall 

performance. ResNet50V2 with deep residual learning helps 

in training very deep networks but may suffer if not optimized 

for this specific task. MobileNetV2 is designed for mobile 

devices with depth-separable convolution, efficiently reducing 

parameters but may not capture complex features such as 

deeper networks. The combined model leverages the strengths 

of the above architectures to create an ensemble that excels in 

feature extraction and representation. Optimization strategies 

for EfficientNetV2B0 may involve techniques such as learning 

rate heating and decay, dropouts, and batch normalization. 

ResNet50V2 may require special adjustments to the dataset to 

avoid overfitting and balance class performance. 

MobileNetV2 may require optimization techniques to balance 

high specificity and recall in the negative class and improve 

performance in the positive class. Likelihood combined 

models use voting or weighted averaging mechanisms to 

combine predictions, increasing robustness and 

generalizability. Error analysis shows that EfficientNetV2B0 

has a low error rate, ResNet50V2 has a high error rate 

especially in the negative class, MobileNetV2 shows the need 

for class rebalancing during training, and the combined model 

successfully reduces errors with the ensemble approach. 

Images can be detected best when they have clear features 

and high contrast. Such coronary angiography images showing 

large plaques or obvious obstruction tend to be identified 

accurately by the model. This is due to the model's ability to 

recognize and analyze the complex details of the image. The 

combination of different architectures allows the model to 

better handle different aspects of the image, improving 

detection accuracy. Conversely, images that fail to be detected 

often have low quality, such as weak contrast, noise, or 

artifacts that obscure important details of the image. Images 

with small plaques or poorly defined lesions can be 

challenging because the features may not be prominent enough 

or may be distorted. The model may struggle in this case if one 

of the architectures cannot deal with noise or has difficulty 

distinguishing less obvious features. 

Table 3 shows that although each model has its own 

strengths and weaknesses, the proposed concatenated model 

effectively combines these strengths to achieve superior 

performance. The proposed model shows great potential for 

clinical applications such as early detection and screening, 

clinical decision support, as well as continuous monitoring via 

wearable devices and telemedicine services. In routine health 

check-ups, this model can detect CAD early, especially in 

high-risk populations. High accuracy and specificity enable 

the model to be used in mobile health applications for early 

assessment of CAD in remote areas. As a decision support tool, 

this model can assist clinicians in patient evaluation and 

provide second opinions, increasing diagnostic accuracy. 

Integration of the model into wearable devices enables real-

time monitoring of heart health, providing early warning of 

abnormal conditions. In telemedicine, this model supports 

remote diagnosis and monitoring, improving access to care. 

However, challenges remain, including the varying quality and 

variability of clinical data, as well as the need for appropriate 

data pre-processing to maintain accuracy. This concatenated 

model produced balanced precision, recall, specificity, and F1 

scores across both classes, as well as the highest overall 

accuracy. This concatenated model also has high specificity, 

showing its ability to identify the negative class effectively, 

while still maintaining a good level of sensitivity in classifying 

the positive class. 

Previous studies using the same dataset and ResNet 

architecture achieved a positive predictive value of 90.48% 

and a negative predictive value of 95.6% [29]. In comparison, 

the proposed combined model achieves a positive predictive 

value of 91% and a negative predictive value of 96%, 

demonstrating a slight improvement in both metrics. This 

further underscores the effectiveness of the combined 

approach in enhancing prediction accuracy. 

 

 

5. CONCLUSIONS 

 

From this study, it can be concluded that the modified 

models, especially the EfficientNetV2B0 and MobileNetV2 

models, have exceptional performance in classifying coronary 

artery disease from coronary angiography images. With 

accuracies of 94% and 86% respectively, these models can be 

relied upon to aid in the diagnosis of coronary artery disease. 
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Even though ResNet50V2 has lower accuracy compared to 

EfficientNetV2B0 and MobileNetV2, this model still makes a 

significant contribution to the classification process with an 

accuracy of 72%. In some cases, combination with other 

models can improve overall system performance. Combining 

the EfficientNetV2B0, ResNet50V2, and MobileNetV2 

models significantly improves accuracy to 95%, indicating 

that the combined model approach allows different models to 

complement each other and overcome the weaknesses of each 

individual model. The combined model successfully produced 

more accurate predictions, with more correct predictions and 

fewer incorrect predictions compared to the individually 

modified models. This shows how model integration can 

improve performance in coronary artery disease classification. 

Overall, this work shows that modified CNN models and 

combined model techniques have significant potential in 

aiding the diagnosis of coronary artery disease through the 

analysis of coronary angiography pictures. With good 

performance and adequate balance of evaluation metrics, these 

models can be valuable tools for medical practitioners in the 

detection and treatment of coronary artery disease. As a next 

step, it is recommended to conduct further research that 

focuses on external validation of the models developed using 

larger and more representative datasets. This step will help 

ensure the generalizability of the results and the reliability of 

the model over a diverse set of clinical cases. 
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