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This study investigates the efficacy of resampling techniques in ECG classification, 

addressing the challenge of data imbalance in heartbeat classification. Utilizing the PTB 

Diagnostic ECG database, the research focuses on the application of various Synthetic 

Minority Over-sampling Technique (SMOTE) variations, including SMOTE Borderline, 

ADASYN, Tomek, and ENN, alongside three algorithms: CNN, Transformer, and LSTM. 

The dataset, encompassing 549 patient records from 290 subjects, was bifurcated into 

training and testing segments, classifying heartbeats into normal and abnormal categories. 

The novelty of this work lies in its combined deep-structured learning model that integrates 

CNN, Transformer, and LSTM, further enhanced by an ensemble of these algorithms with 

original SMOTE and its variants for dataset balancing. The research revealed that the 

proposed method significantly ameliorates the classification of heartbeats, effectively 

addressing the class imbalance issue prevalent in ECG data. The results demonstrated that 

the transformer network, in particular, excelled in recognizing temporal continuities and 

extracting deep-seated features from ECG signals, thereby enhancing the model's 

performance beyond the capabilities of basic models. Key results indicate that 

CNN+SMOTE Borderline achieves the highest testing accuracy at 99.36%, while 

CNN+SMOTE Tomek leads in precision with 99.89%. Transformers excel in recall with a 

perfect score of 100%. The research concludes that CNNs effectively distinguish normal 

from abnormal heartbeats, with the highest accuracy using CNN+SMOTE at 99.06%. 

However, the study also acknowledges limitations, such as the dataset's restricted scope, 

and suggests further research with a more diverse dataset. Overall, the study demonstrates 

the effectiveness of CNN in ECG arrhythmia classification, offering a foundation for more 

advanced automatic diagnostic systems in cardiology. 
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1. INTRODUCTION

Electrocardiograms (ECGs) play a pivotal role in modern 

healthcare, serving as a valuable non-invasive tool for 

clinicians and cardiology specialists. These graphical 

representations of the heart's electrical activity are widely used 

for monitoring heart function and diagnosing various cardiac 

conditions, which range from critical to non-critical. Given 

that cardiovascular diseases claim a significant portion of 

global deaths, the ECG stands out as a standard and effective 

technique in hospitals for detecting irregular cardiac rhythms. 

ECGs emerge as essential in identifying issues such as atrial 

fibrillation (AF) by reflecting the heart's electrical activity. 

The significance of this approach lies in the early diagnosis of 

arrhythmias, enabling timely and appropriate treatment. The 

long-term monitoring of cardiac electrical activity becomes 

imperative for the early detection of transient or uncommon 

arrhythmias. 

Millions of people worldwide are affected by 

cardiovascular diseases, which contribute to 30% of global 

deaths. Cardiac arrest, often resulting from heart arrhythmia, 

is a major concern [1]. The irregular pulse associated with 

arrhythmias necessitates regular monitoring to identify 

potentially life-threatening situations. The ECG considered 

the gold standard, employs electrodes on the skin to detect 

changes in the heart's electrical potential during its contraction 

and relaxation stages. 

The most commonly used solution for detecting 

arrhythmias is through recordings from an ECG device. This 

device displays the heart's electrical activity based on 

electrodes placed on the skin [2], and has become one of the 

most important tools in diagnosing heart disease [3]. However, 

various factors such as basic signal aberrations, external signal 

interference, and individual physical differences [4], can cause 

problems in classifying heart rate with ECG. Even in healthy 

individuals, differences in rhythm and morphology of the heart 

rate can be detected under certain circumstances [5]. There is 

a significant class imbalance problem in ECG heart rate 
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classification data, often caused by a limited number of rare 

classes. This imbalance can lead to a tendency for classifiers 

to select the majority class [6]. 

Various techniques are being employed to tackle the issue 

of class imbalance in ECG arrhythmia classification. Acharya 

et al. [7] employed a data-level approach by creating synthetic 

samples, thereby equalizing the dataset. This was achieved by 

altering the average Z-scores and standard deviations derived 

from the normalized original ECG signal. Rajesh and Dhuli [8] 

investigated various data-level strategies to address 

unbalanced ECG data, including random oversampling, 

random undersampling, SMOTE, and distribution-based 

sampling. Sellami and Hwang [9] introduced an algorithmic 

approach by adjusting the weights in loss functions for each 

class proportionally to their sample counts in each batch, 

aiming to rectify class imbalances. This study introduces a 

model for arrhythmia classification in ECG that utilizes the 

Convolutional Neural Network (CNN) for feature extraction 

and ensemble methods to address the issue of imbalanced data. 

Meanwhile, Kudithipudi et al. [10] focused on assessing the 

effectiveness of a hybrid resampling model that includes 

techniques like SMOTE, RUS, RUS+ROS, and 

RUS+SMOTE. 

Originally gaining popularity in natural language 

processing (NLP) [11], Transformers utilize attention 

mechanisms to detect long-term connections and uncover 

hidden information. With these capabilities, Transformers are 

well-suited for analyzing intricate patterns and relationships in 

time sequence data, thereby aiding in the identification and 

classification of arrhythmias in ECG data [12]. Che et al. [13] 

developed an ensemble method combining CNN and 

Transformer to extract temporal information from ECG 

signals. The experimental results demonstrated that this model 

achieved superior performance compared to the majority of 

basic standalone models. Furthermore, the results indicated 

that the Transformer network more effectively focuses on the 

temporal continuity of the data and adeptly captures its deep 

hidden features. The constraints within the model's 

architecture can enhance feature selection and effectively 

reduce the impact of data imbalance on the results. This model 

holds the potential to significantly assist cardiologists in 

diagnosing heart disease, thereby enhancing the overall 

efficiency of healthcare delivery. 

Resampling techniques provide a viable approach to 

address this issue by modifying the class ratio to achieve a 

balanced dataset. When combined with classification methods, 

these resampling strategies can significantly enhance the 

efficiency of ECG classification. Consequently, investigating 

and refining these methods is the primary focus of this 

research. 

This study aims to explore the effects of different 

resampling methods on ECG Classification, with a particular 

focus on, but not restricted to, the Synthetic Minority Over-

sampling Technique (SMOTE). To overcome data imbalance, 

we use the original SMOTE and several SMOTE variations, 

namely SMOTE Borderline, SMOTE ADASYN, SMOTE 

Tomek, and SMOTE ENN. For the three algorithms (CNN, 

Transformer, and LSTM), we apply various types of SMOTE. 

The dataset used is the PTB Dataset, divided into two parts: 

training data and testing data. In this study, we aim to balance 

the classes in the existing PTBDB dataset, grouping them into 

two categories: normal and abnormal. The abnormal class 

includes all classes that deviate from a normal heart rate [14]. 

The main contributions of this paper can be listed as follows: 

1) The dataset used for this work has been taken from

PTBDB, which contains a total of 549 patient records

from 290 subjects.

2) This work generated a new combined deep-structured

learning model based on CNN, Transformer, and

LSTM as a basic model, and an ensemble of CNN,

Transformer, and LSTM with original SMOTE and

some varieties of SMOTE for balancing the dataset.

3) This work contributes to evaluating the efficacy of

resampling methods in heartbeat classification.

4) The dataset is divided into two parts, namely training

and testing. The models were evaluated for their ability

to classify heartbeats into two classes (Normal and

Abnormal).

2. RELATED WORK

Diagnosis and management of cardiovascular diseases in 

modern healthcare often involve ECG analysis and 

classification. Meeting the challenges in manual ECG 

interpretation requires intensive training and extensive 

expertise. The slow and time-intensive nature of this process 

increases the risk of diagnostic inaccuracies. Additionally, 

interpretative variations among observers can lead to further 

complications. Consequently, there is a pressing need for 

reliable automated ECG analysis methods to overcome these 

challenges. The utilization of sophisticated algorithms and 

models holds the potential to not only improve diagnostic 

accuracy but also quickly detect abnormalities, guide 

treatment decisions, and positively impact patient outcomes. 

Recent studies have concentrated on using neural networks 

for ECG feature extraction and classification. Research 

showcasing various ECG signal techniques in healthcare is 

proposed by Anbalagan et al. [15]. Both conventional and 

machine learning strategies have been employed by numerous 

researchers for detecting heart diseases through ECG signal 

analysis. The efficacy of these methods hinges on the precise 

identification of ECG signal elements like P-, Q-, R-, S-, T-

waveforms, QRS complex duration, R-peak, PR interval, and 

RR interval. These methods can also identify links between 

heart conditions and other body organs, such as the retina and 

brain, by analyzing ECGs, fundus images of the eye, and brain 

MRI scans. A comprehensive review of various ECG data and 

computational methods in applications such as morphological 

and rhythmic arrhythmia detection, signal quality evaluation, 

biometric recognition, respiratory rate determination, fetal 

ECG extraction, and monitoring physical and emotional states 

is presented in the study by Merdjanovska and Rashkovska [3]. 

In the study of Kunwar and Choudhary [16], the discussion 

focuses on using ECG features for stroke diagnosis, 

introducing a stacked ensemble model combining three 1-

dimensional CNN sub-models with a dense neural network 

(meta-learner) on top. This model is designed to classify stroke 

patients using ECG data with high precision, thereby reducing 

the time and expenses associated with gathering physiological 

information such as blood pressure, oxygen saturation, heart 

rate, medical history, and lifestyle factors like alcohol or 

tobacco use. The model, trained and tested with raw ECG 

signals, demonstrates a 99.7% accuracy rate in predicting 

strokes. 

The topic of ECG arrhythmia classification has been 

extensively explored, primarily focusing on categorizing 

arrhythmias into four types: Normal (N), Supraventricular 
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Ectopic (S), Ventricular Ectopic (V), and Fusion (F) beats. In 

this area, one approach utilizes a Deep Neural Network with 

data from the MIT-BIH Arrhythmia database. Essa and Xie 

[17] developed a bagging model combining CNN-LSTM and

RRHOS-LSTM, achieving an overall accuracy of 95.81%. For

the classification of ECG beats, Liu et al. [18] introduced the

wavelet scattering transform method, effectively categorizing

the four types of arrhythmias. They analyzed ECG heartbeats

through 8 time windows, finding that the fourth window, used

with KNN, yielded the highest accuracy at 99.3%. Research

has also extended to a 5-class classification of arrhythmias.

Seitanidis et al. [19] employed a 2D-Convolutional Neural

Network (CNN) with the MIT-BIH arrhythmia database,

classifying five types of arrhythmias (N, S, V, F, Q) with

95.3% accuracy. Jing et al. [20] demonstrated ECG heartbeat

classification using an enhanced CNN+ResNet-18 model,

reaching 96.5% accuracy with the MIT-BIH dataset. Elmir et

al. [21] introduced a method that transforms 1D time-

frequency vectors into 2D images using the Gramian Angular

Field transform, achieving a 97.47% accuracy rate.

Bhattacharyya et al. [22] implemented an ensemble of

Random Forest and SVM algorithms for classifying

arrhythmic heartbeats, attaining a 98.21% accuracy.

Additionally, Rahman et al. [23] utilized the transfer learning 

method AlexNet for ECG arrhythmia classification, recording 

a 98.38% accuracy. 

In the context of deep learning, the use of transformer 

models for classification and detection based on ECG images 

has been explored by several researchers. Zhou et al. [24] 

proposed a masked transformer method for ECG classification, 

using the Fuwai, PTB-XL, and PCinC datasets. They 

evaluated the prediction performance of their method on both 

private and public ECG datasets, with F1 scores for the Fuwai 

dataset at 76.5%, PTB-XL at 58.6%, and PCinC at 66.2%. 

Kilimci et al. [25] present heart disease detection using 

cutting-edge technologies called vision transformer models. 

The study employed three distinct vision transformers, namely 

Google-Vit, Swin, and BEiT. The results obtained accuracy of 

Google-Wit at 94.3%, Swin at 95.5%, and BeiT at 95.9%. On 

the other hand, Jayanthi and Devi [26] propose a unique 

ensemble deep structured learning model that integrates 

attention mechanisms, CNN, and Bi-LSTM, achieving 99% 

accuracy. 

3. RESEARCH METHOD

Figure 1. The proposed method 
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Each classification system requires a unique process and 

methodology. Figure 1 illustrates the structure and essential 

stages of the proposed approach for classifying the two 

heartbeat classes. The procedures were carried out using 

Python on a computer with NVIDIA Tesla T4 GPU with 16GB 

of VRAM. 

3.1 Experiment setup 

To conduct our training, we leverage Google Colab Pro, 

equipped with a single NVIDIA P100/T4 GPU with a capacity 

of up to 15GB and RAM reaching 8GB. The pre-trained 

language models utilized encompass basic models of CNN, 

Transformer, and LSTM. Furthermore, we apply five SMOTE 

models for the dataset imbalance process, namely SMOTE 

Original, SMOTE ADASYN, SMOTE Tomek, SMOTE 

Borderline, and SMOTE ENN. 

3.2 Data collection 

The Physikalisch Technische Bundesanstalt (PTB) 

Diagnostic ECG database was employed in this research to 

assess its efficacy as an openly accessible ECG database [27]. 

The dataset comprises 549 record sourced from 290 subject, 

with ages ranging from 17 to 87 and a mean age of 57.2. The 

participants, 209 were male with a mean age of 55.5, and 81 

were female with a mean age of 61.6. Ages were not 

documented for one female and 14 male subjects. 

In Figure 2, it can be seen that there are 2 types of 

arrhythmia, namely normal and abnormal. The total data 

distribution consists of 4045 normal data and 10505 abnormal 

data as seen in Figure 3, so there is an imbalanced amount of 

data. 

3.3 Pre-processing 

Electrocardiogram (ECG) recordings typically suffer from 

various types of noise, both low- and high-frequency, 

including baseline Wander (BW), power line interference, 

electromyography (EMG) noise, and electrode motion artefact 

noise. A variety of filters are available to eliminate these 

noises. Specifically, Baseline Wander (BW), a low-frequency 

artefact in ECG recordings, is primarily caused by the subject's 

activities, such as breathing and physical movement. In this 

investigation, a median filter with a width of 200 ms and 600 

ms was utilised [2]. This was done in accordance with the 

findings of earlier research. In the realm of digital filtering, the 

median filter is a non-linear approach that is employed to 

eliminate noise in signals and images while still keeping the 

important aspects of the signal or image. Following that, every 

recording was normalised to the amplitude range of [-1, +1 

respectively]. 

3.4 Data segmentation 

The segmentation process of ECG recordings is essential for 

standardizing the data length before it is input into the model. 

Given a sampling rate of 128Hz and an average cardiac cycle 

lasting 0.8 seconds, segments of 500 samples (equivalent to 

3.9 seconds) are deemed suitable, as most arrhythmias are 

detectable within this duration. This segmentation is 

conducted in an overlapping fashion, where the window slides 

across the recordings to create segments. Following 

segmentation, all ECG segments from both databases are 

amalgamated. However, segments pertaining to normal and 

atrial fibrillation classes were disproportionately large. To 

mitigate the effects of this imbalance, evaluation metrics 

during training and testing phases were adjusted to be 

inversely proportional to the size of each class. 

Figure 2. Types of arrhythmia normal and abnormal 

Figure 3. Imbalanced data distribution 

3.5 Resampling techniques 

To handle data imbalance problems, we propose using 5 

types of SMOTE techniques, namely SMOTE Original, 

BorderLine-SMOTE, ADASYN, SMOTE-Tomek and 

SMOTE-ENN. 

3.5.1 SMOTE (Synthetic minority oversampling) 

Oversampling continuous data for machine learning issues 

is a typical use of SMOTE, which involves the creation of false 

or synthetic data. Continuous data are being utilized by us 

because the model that is being used to build the sample is only 

able to accommodate continuous data. By adding a minority 

class that is not reproduced, the SMOTE method generates 
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fictional data that is based on the similarities in feature space 

that exist between existing minority classes. The introduction 

of the new instances serves to effectively shift the learner's 

bias, causing them to adopt a more general bias, but primarily 

for the class that is considered to be inside the minority. The 

k-nearest neighbor algorithm is used to calculate the new 

minority instances, which are then extrapolated and formed 

from the existing minority class imbalances. 

The quantity of over sampling that is necessary is used to 

determine the random selection of the neighbors from the k-

NN. A more equitable distribution of classes is achieved 

through the incorporation of these instances of the minority 

class that were formed synthetically. It has been observed that 

although SMOTE appears to function effectively with low-

dimensional data, its efficiency in the case of high-

dimensional data is less striking. This is something that has 

been considered. This is because SMOTE is unable to handle 

the bias in the majority class for the classifier when the data is 

high dimensional. This is the reason why this is the case. 

Another disadvantage of the SMOTE algorithm is that it tends 

to generalize the minority class space to an excessive degree. 

When it comes to oversampling approaches, SMOTE has been 

utilized in a manner that is comparable to that of the Random 

Oversampling method. 

 

3.5.2 Borderline-SMOTE 

Both Borderline-SMOTE1 and Borderline-SMOTE2 are 

extensions of the Borderline-SMOTE approach, which, as its 

name suggests, is derived from the SMOTE technique. 

However, the approach merely over-samples the minority 

examples that are located close to the borderline and their 

closest neighbors who are also members of the same class. 

Both the positive closest neighbors and the negative nearest 

neighbors are utilized by borderline-SMOTE2, which is the 

primary distinction between the two versions. 

Borderline-SMOTE is a variation of conventional SMOTE 

that does not generate synthetic examples for noisy instances. 

Instead, it focuses its efforts near the borderline, which in turn 

assists the decision function in developing more effective 

boundaries between classes. Additionally, it has been observed 

that borderline-SMOTE performs better than SMOTE in terms 

of performance. 

 

3.5.3 ADASYN (Adaptive synthetic sampling) 

A weighted distribution is utilized by ADASYN sampling 

for the purpose of determining the level of difficulty of 

learning for various minority class instances. Although 

ADASYN is similarly based on SMOTE, in contrast to 

borderline-SMOTE, ADASYN generates various synthetic 

samples for the minority class based on its distribution. This is 

in contrast to borderline-SMOTE, which only accounts for 

borderline situations. To add insult to injury, SMOTE ensures 

that every minority instance has an equal opportunity to be 

chosen, whereas in ADASYN, the selection procedure is 

determined by the distribution of minority classes. 

Utilizing the k-nearest neighbor technique, the synthetic 

samples are generated by utilizing the majority of the nearest 

neighbors. As a result of the fact that this method does not 

identify noisy cases, it leaves the dataset open to the possibility 

of having values that are considered to be outliers. The results 

of previous studies have shown that there is an improvement 

in accuracy for both the majority class and the minority class, 

and this development does not make one class more accurate 

than another. 

3.5.4 SMOTE-TOMEK 

The SMOTE-Tomek algorithm is a hybrid that combines 

the SMOTE algorithm with the undersampling Tomek link. 

Tomek link is a method for cleaning data that can be used to 

eliminate the majority class that was overlapping with the 

minority class. 

 

3.5.5 SMOTE-ENN (Edited nearest neighbour) 

The SMOTE-ENN is a hybrid that mixes oversampling and 

undersampling, just like the SMOTE-Tomek combination. 

While the SMOTE was responsible for the oversampling, the 

ENN was in charge of the undersampling. Within the original 

dataset as well as the sample result dataset, the Edited Nearest 

Neighbour is a method that may be utilized to eliminate 

majority class samples in cases where the nearest class 

minority samples incorrectly classify it. It will eliminate the 

majority class that was incorrectly classified near to the border; 

this will take place. 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

(e) 

(f) 

Figure 4. Scatter plot of the original and various SMOTE 

variants 

SMOTE Original involves selecting minority samples, 

determining their nearest neighbors, and creating new data 

points between these samples and their neighbors. SMOTE 

Tomek uses interpolation to estimate values between two or 

more data points to generate synthetic samples. SMOTE 

Borderline focuses on minority and majority samples close to 

the decision boundary to create new data points. SMOTE 

Adaptive Synthetic Sampling (ADASYN) identifies minority 

samples that are difficult to classify correctly, assigns weights 

to these samples, and generates synthetic samples around these 

challenging cases to improve classification. Finally, SMOTE 

Edited Nearest Neighbors (ENN) first applies standard 

SMOTE, followed by ENN, which cleans the dataset by 

removing samples that might cause misclassification, 

specifically deleting majority data points if their neighbors 

have different class labels. From the provided scatter plot in 

Figure 4, it can be seen how the distribution of data resulting 

from synthetic sampling varies based on different SMOTE 

approaches. These differences in data distribution occur 

because the methods used by various types of SMOTE differ 

in how they create synthetic samples. 

3.6 Classification 

In this research, we used 3 deep learning classification 

models, including CNN (Convolutional Neural Network), 

LSTM (Long Short-Term Memory) and Transformer. 

3.6.1 Convolutional neural network (CNN) 

Many applications rely on Convolutional Neural Networks 

(CNNs) for signal processing, picture identification, pixel data, 

and NLP. By employing stacked trainable tiny filters known 

as kernels, they excel at recognizing spatial hierarchies or 

patterns. In order to diagnose arrhythmias, these kernels may 

successfully extract local information from the context of 

electrocardiogram (ECG) data, such as the duration and shape 

of chestbeats. Whereas 2D CNNs handle ECG data in pictures 

or other two-dimensional formats, 1D CNNs use kernels in the 

time dimension when dealing with raw ECG data. Some 

examples of such transformations are beat-to-beat correlations, 

gray-level co-occurrence matrices, and distance distribution 

matrices obtained from entropy calculations. A better method 

of detecting arrhythmias in ECG readings is to use 

convolutional neural networks (CNNs), which can learn and 

extract useful features automatically from raw ECG signals. 

Computer network algorithms (CNNs) are able to distinguish 

between healthy and unhealthy cardiac rhythms by identifying 

unique wave patterns. Nevertheless, CNNs may struggle to 

handle long sequences due to their restricted receptive field 

size. Hence, they risk missing out on important information on 

long-term dependencies that is necessary for deciphering ECG 

signals. 

3.6.2 Long short-term memory (LSTM) 

The Long Short-Term Memory Network (LSTM), a 

specialized variant of Recurrent Neural Networks (RNNs), is 

particularly adept at processing sequential data. One of its key 

characteristics is its remarkable ability to retain information 

over extended periods. LSTMs are distinctively equipped with 

memory cells for data storage, complemented by gates that 

regulate the flow of data into and out of these cells. These gates 

are instrumental in greatly facilitating the handling of ECG 

data, which often features critical information over long time 

frames, thus enabling LSTMs to effectively learn and recall 

longer sequences. In contrast to standard RNNs, which often 

encounter the vanishing gradient problem, the specialized 

features of LSTMs effectively help mitigate this issue. Since 

ECG signals are examples of temporal data sequences, this 

property of LSTMs makes them ideal for applications 

requiring learning from such sequences. In order to train an 

LSTM to identify and classify arrhythmias, it is necessary to 

first transform the ECG signal into sequential data segments. 

In each section, you can see a time series of recorded electrical 

heart activities. 

In order to learn and simulate the interdependencies 

between these heartbeats, the LSTM is fed time-series data 

consisting of sequential cardiac cycles. An important tool for 

automated identification of ECG cardiac arrhythmias, the 

LSTM can identify and classify arrhythmia patterns based on 
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this learned information. Despite possessing more advanced 

features, LSTMs incur higher computing costs compared to 

simpler models such as RNNs or MLPs. Particularly when 

dealing with large ECG datasets, it can be difficult to satisfy 

this higher processing demand. Arrhythmias can be more 

accurately and efficiently identified and categorized with 

LSTMs than with traditional methods because of their 

exceptional ability to learn from sequential data. 

 

3.6.3 Transformer 

Transformers are a powerful architecture for deep learning 

models that were initially introduced for use in NLP but have 

subsequently demonstrated potential in other domains as well. 

They use self-attention techniques to better grasp contextual 

information and long-term dependencies. When it comes to 

electrocardiogram (ECG) data, transformers with attention 

mechanisms can learn intricate patterns and relationships 

within time-series data, allowing them to detect and classify 

arrhythmias. The transformer model learns to decipher ECG 

signals by treating them as a series of data points, allowing it 

to react to important parts of the signal and capture 

relationships in time. This quality enables the model to 

simultaneously evaluate regional and worldwide trends. 

Because they demand a lot of processing and could require 

different hyperparameters, such as attention heads and model 

sizes, to change, transformers aren't as user-friendly as other 

models. The transformer model improves the detection and 

classification of cardiac arrhythmias by making advantage of 

its capacity to analyze and comprehend sequential data. 

 

 

4. RESULTS 

 

The analysis compares the performance metrics of CNN, 

Transformer, and LSTM classifiers, using the PTBDB dataset, 

which has an imbalanced class distribution. This imbalance 

makes accuracy an inadequate sole measure for evaluating the 

best learning algorithm since it might only reflect the correct 

classification of the predominant class while misclassifying 

rarer ones. Hence, assessing precision, recall, and accuracy 

collectively is more effective for evaluating sampling 

techniques.  

Key findings from Table 1 and Figure 5 show that 

CNN+SMOTE Borderline tops the list in terms of testing 

accuracy, achieving 99.36%, closely followed by the standard 

CNN with 98.74%. CNN and CNN+SMOTE ADASYN have 

almost identical training accuracies at 99.67%. Table 1 reveal 

that CNN+SMOTE Tomek leads in precision with a 

remarkable 99.89%, and LSTM+SMOTE Borderline trails 

closely at 99.49%, comparable to CNN+SMOTE Borderline 

and LSTM+SMOTE Original. Regarding recall, Transformers, 

whether combined with any SMOTE variant or not, 

outperform other methods with a perfect score of 100%. 

CNN+SMOTE ADASYN follows closely, with a slight 

difference of 0.0013, resulting in 99.87%. 

Based on Table 1, which shows the accuracy results for 

training with three models-CNN, Transformer, and LSTM-the 

average accuracy for the CNN model is 99.58%, for the 

Transformer model is 71.96%, and for the LSTM model is 

98.19%. Thus, it can be concluded that the average 

performance of the CNN model combined with various 

SMOTE variants is significantly better compared to the other 

models. 

Figure 6 clearly demonstrates that among the algorithms, 

LSTM has the shortest training time. However, when it comes 

to testing time, several models exhibit comparable times of 

0.6850 seconds. These include CNN+SMOTE Original, 

CNN+SMOTE Borderline, CNN+SMOTE ADASYN, 

CNN+SMOTE ENN, Transformer+SMOTE, 

Transformer+SMOTE Borderline, Transformer+SMOTE 

Tomek, and Transformer+SMOTE ENN. While the SMOTE 

technique enhances the efficacy of fundamental classifiers like 

CNN, Transformer, and LSTM, it requires substantial training 

time. This is primarily due to the creation of synthetic samples 

for the minority classes, which significantly adds to the total 

computational time. 

 

Table 1. Results of classification 

(PTBDB dataset) 

 

Model Training_Acc Testing_Acc Pre Rec Loss 
Training-

Time (s) 

Testing-

Time (s) 

CNN 99.67 98.74 99.00 99.00 5.54 324.4847 0.8220 

CNN+SMOTE 99.44 82.18 97.00 77.00 18.37 323.8969 0.6850 

CNN+SMOTE BorderLine 99.52 99.36 99.46 99.56 2.38 324.4254 0.6850 

CNN+SMOTE ADASYN 99.67 97.41 96.65 99.87 9.62 323.9536 0.6850 

CNN+SMOTE Tomek 99.61 92.44 99.89 89.63 27.88 323.8904 0.8220 

CNN+SMOTE ENN 99.55 91.00 96.00 92.00 31.51 304.1692 0.6850 

Transformer 71.96 72.19 72.19 100 56.52 384.7857 0.8220 

Transformer+SMOTE 71.96 72.19 72.19 100 56.41 308.7765 0.6850 

Transformer+ SMOTE BorderLine 71.96 72.19 72.19 100 56.31 327.0823 0.6850 

Transformer+ SMOTE ADASYN 71.96 72.19 72.19 100 56.46 384.5038 0.9590 

Transformer+ SMOTE Tomek 71.96 72.19 72.19 100 57.09 384.0783 0.6850 

Transformer+ SMOTE ENN 71.96 72.19 72.19 100 56.71 326.3452 0.6850 

LSTM 98.09 97.32 98.65 97.62 8.67 136.7435 1.1830 

LSTM+SMOTE 98.33 97.42 99.46 96.95 7.29 295.1641 1.2740 

LSTM+ SMOTE BorderLine 97.96 94.47 99.49 92.81 17.04 202.925 1.2740 

LSTM+ SMOTE ADASYN 97.30 95.02 99.24 93.81 13.99 255,304 1.4560 

LSTM+ SMOTE Tomek 98.87 97.94 99.42 97.72 7.03 322.0792 1.3650 

LSTM+ SMOTE ENN 98.59 93.75 97.43 93.81 21.64 230.6548 1.5470 
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Figure 5. Various resampling techniques' training and testing accuracy 

Figure 6. Impact of varying resampling models on computational time 
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Figure 7. Confusion matrix of PTBDB dataset 

Figure 7 shown the values of true negative (TN) and false 

negative (FN) are 0, this can provide some insights about the 

classification model and the data used. If TN=0, it means there 

are no negative cases correctly predicted as negative by the 

model; all negative cases are predicted as positive (false 

positive). This can indicate that the model is highly biased 

towards the positive class, the data used may be imbalanced 

with very few or no negative cases, or the model might be 

overfitting or underfitting. If FN=0, it means there are no 

positive cases actually predicted as negative by the model; all 

positive cases are correctly predicted (true positive). This can 

suggest that the model is very effective at detecting positive 

cases, the data used may have very clear and easily 

recognizable patterns for the positive class, or the model has 

high sensitivity. If both TN and FN are 0, this implies that the 

model predicts all cases as positive without any negative 

predictions, indicating a complete bias towards the positive 

class and an inability to recognize or predict negative cases. In 

a confusion matrix with TN=0 and FN=0, the matrix would 

show predictions as follows: for positive cases, true positive 

(TP) and no predicted negatives (0); for negative cases, false 

positive (FP) and no predicted negatives (0). The implications 

are that accuracy might still be high if the number of positive 

cases (TP+FN) is much higher than the number of negative 

cases (TN+FP), precision will depend on the ratio of TP to 

TP+FP, and recall will be very high (1 or 100%) because FN=0, 

meaning all positive cases are correctly predicted. This 

condition usually indicates that the model is imbalanced and 

may not be well optimized. It is important to re-evaluate the 

data used, the class balance, and the model training techniques 

to ensure more accurate and reliable performance. 

5. CONCLUSION

The goal of this experimental study is to investigate 

different resampling techniques to address the issue of class 

imbalance in ECG Classification using the PTBDB dataset. 

The study found that CNN effectively distinguishes between 

normal and abnormal heartbeats, such as those with 

arrhythmias or other rhythm disorders, outperforming 

traditional classification methods. The highest accuracy, 

99.36%, was achieved on the PTBDB dataset using CNN 

combined with SMOTE Borderline. This technology allows 

electrocardiogram signals to be interpreted more efficiently 

and accurately by medical professionals. However, the 

research also identified several limitations. One significant 

limitation is that it only involves a limited dataset in the 

category of certain abnormal heartbeats. Consequently, the 

application of CNN for heart rate classification needs further 

development and validation with a broader and more diverse 

dataset. Overall, this study demonstrates that CNN is an 

effective and reliable tool for classifying heart rates using 

electrocardiogram signals. Looking ahead, this research can 

serve as a foundation for developing more complex automatic 

systems for detecting and diagnosing heart disease. 
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