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 The key innovation lies in the incorporation of an adaptive cluster sampling strategy and a 

randomized response model based on the Poisson distribution. This integration aims to 

overcome shortcomings inherent in conventional models, providing a more robust 

framework for research area. In this paper, an adaptive cluster sampling randomized 

response model with Poisson distribution using a randomized response strategy was 

proposed. The proposed cluster randomized response model has improved efficiency and a 

large gain in precision. Conditions were obtained under which the proposed model is more 

efficient than the existing models. To validate the effectiveness of our approach, numerical 

computations were conducted, offering concrete illustrations of the model's performance. 

The results underscore the significant gains in efficiency and precision achieved by the 

proposed adaptive cluster sampling randomized response model. 
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1. INTRODUCTION 

 

In the realm of statistical sampling techniques, adaptive 

cluster sampling (ACS) has emerged as a powerful tool for 

studying rare and clustered populations. Its ability to enhance 

sampling efficiency in the presence of spatially aggregated 

units makes it particularly valuable for ecological and 

environmental studies, public health research, and various 

social sciences. However, one of the key challenges in 

implementing ACS is the potential bias introduced by non-

responses and sensitive issues, which can undermine the 

reliability and validity of the collected data. To address these 

issues, this research proposes an innovative approach: the 

integration of a Poisson-distributed adaptive cluster sampling 

model with a randomized response strategy. 

Adaptive cluster sampling is designed to capitalize on the 

natural clustering of certain populations. When an initial 

random sample includes units that meet a specified criterion, 

additional units in the neighborhood are included, continuing 

until no more units meet the criterion. This process leads to an 

adaptive expansion of the sample size in areas where the 

population is clustered, thereby increasing the efficiency of the 

survey. Despite its advantages, ACS can be vulnerable to 

biases and inaccuracies arising from non-responses, 

particularly when dealing with sensitive attributes or behaviors 

that respondents might be reluctant to disclose. 

Adaptive cluster sampling is designed to capitalize on the 

natural clustering of certain populations. When an initial 

random sample includes units that meet a specified criterion, 

additional units in the neighborhood are included, continuing 

until no more units meet the criterion. This process leads to an 

adaptive expansion of the sample size in areas where the 

population is clustered, thereby increasing the efficiency of the 

survey. Despite its advantages, ACS can be vulnerable to 

biases and inaccuracies arising from non-responses, 

particularly when dealing with sensitive attributes or behaviors 

that respondents might be reluctant to disclose. 

Decades ago, research indicated that Warner [1] pioneered 

the development of the randomized response (RR) model. He 

applied this model to estimate proportions related to sensitive 

traits in humans, such as drug addiction and sexual orientation. 

However, the inclusion of unrelated questions in Warner's [1] 

model led Greenberg et al. [2] to introduce a modified 

approach known as the unrelated question randomized answer 

model. Since the introduction of Warner's randomized 

response model, it has garnered significant attention in the 

field of statistics. Various scholars, including authors of some 

studies [3-8], and others, have adopted and further developed 

the RR model. 

A proportionate allocation-based stratified RR approach 

was first put forth by Hong et al. [9]. A decade later, Kim and 

Warde [10] introduced a stratified RR approach with optimal 

allocation. A two-stage RR model, as an application of the 

approach by Kim and Warde [10], was adopted in the study by 

Kim and Warde [11]. A stratified RR model and baseline from 

another source [12] were also referenced in their study. An 

updated Bayesian version of the Mangat model [13] was 

proposed by Kim et al. [14]. To address privacy issues and 
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extend the model to stratified sampling, Kim and Warde [15] 

proposed a mixed randomized response model. In a stratified 

sample using the Poisson distribution, Lee et al. [16] expanded 

upon the research conducted by Land et al. [17]. Current 

research on the topic is referenced in [18-23]. 

The integration of RR into the Poisson-distributed ACS 

model involves modifying the traditional ACS procedure to 

incorporate randomized response mechanisms at various 

stages of the sampling process. This dual approach aims to 

maintain the strengths of both methods while mitigating their 

individual limitations. The expected outcome is a sampling 

methodology that is not only efficient in terms of resource 

allocation and data collection but also robust against biases 

induced by non-responses and sensitive issues. 

In the current study, we have proposed an adaptive cluster 

sampling randomized response model with Poisson 

distribution. This study aims to show that the proposed model 

is an improvement on the models existing in the literature.  

This research endeavors to bridge the gap between adaptive 

sampling techniques and respondent confidentiality, 

presenting a novel Poisson-distributed adaptive cluster 

sampling model enhanced by a randomized response strategy. 

Through theoretical development and empirical validation, we 

aim to demonstrate the efficacy of this integrated approach in 

yielding high-quality, reliable data from clustered and 

sensitive populations. This innovative methodology holds 

promise for advancing the field of statistical sampling and 

improving the outcomes of various research endeavors reliant 

on accurate and unbiased data. Applications of this 

methodology span a wide range of fields, including 

epidemiology, where it can be used to study the prevalence of 

rare diseases; environmental science, for assessing the 

distribution of endangered species; and social sciences, for 

investigating sensitive behaviors and attitudes. By enhancing 

the integrity of data collection in these areas, the proposed 

model can contribute to more informed decision-making and 

policy development. 

It is generally known that for adaptive cluster sampling 

design, if a given population is partitioned into N primary 

sample units containing N1, N2, …, Nn units. The procedure for 

two-stage sampling is done by (i) selecting a sample of size 𝑛 

from N using simple random sample (SRS) approach. (ii) In 

each selected primary sample units, a large sample mi unit is 

selected from the Ni units. The remaining primary sample units 

are selected adaptively based on the condition used in 

estimating parameter in the primary sample units. The interval, 

C within the interest parameter's range, shall provide the 

requirement for the further collection of the neighbouring units. 

We take into account all the units on the list that are seen in 

the structure due to the first pick of unit 𝑖. Such a group, which 

could combine several neighbourhoods, is known as a cluster 

when it appears in a survey. A network of primary sample 

units exists within such a cluster and has the property that 

choosing one of the network's main sample units would result 

in the inclusion of all other primary sample units in the 

network's sample. When the unrelated rare attribute is known 

with the probability of a “Yes” response is given: 
 

𝜙𝑖0 = [𝑃1𝑖𝛽𝑖𝑓 + 𝑃2𝑖𝛽𝑖𝑢][1 + 𝑃3𝑖𝑘𝑖/(𝑘𝑖 − 1)] (1) 

 

where, 𝜐𝑖0 = [𝑃1𝑖𝜐𝑖𝑓 + 𝑃2𝑖𝜐𝑖𝑢][1 + 𝑃3𝑖𝑘𝑖/(𝑘𝑖 − 1)]. 

Eq. (2) symbolizes the likelihood of cluster i being 

encompassed within the sample. 
 

𝛼𝑘 = 1 − ((
𝑁 − 𝑊𝑘

𝑛1
) (

𝑁
𝑛1

)⁄ ) (2) 

 

The probability of cluster 𝑖 being included in the sample is 

defined and specified using (SRS) without replacement.: 

 

𝛼𝑘 = 1 − (1 −
𝑊𝑘

𝑁
)

𝑛1
  

 

where, 𝑊𝑘 denote the numbers of unit 𝑘 on the network. 

Variance of an unbiased estimator: 

 

𝑉𝑎𝑟1 (
1

𝑁
∑

�̂�𝑘𝑓𝑗𝑘

𝛼𝑘

𝜏
𝑘=1 ) =

1

𝑁2
∑ ∑ 𝜐𝑗𝑓∗𝜐ℎ𝑓∗(𝑣𝑘𝑏 −

𝜉
ℎ=1

𝜉
𝑗−1

𝑣𝑘𝑣𝑏)/ (𝑣𝑘𝑣𝑘𝑣𝑘𝑏)  
(3) 

 

with 𝐸1 [
1

𝑁2
∑ 𝑚𝑘

1

𝛼𝑘
2 (

(𝑃1𝑘𝜐𝑘𝑓+𝑃2𝑘𝜐𝑘𝑢)

𝑃1𝑘
2 (1+𝑃3𝑘𝑘𝑘/(𝑘𝑘−1))

)𝜏
𝑘=1 ], 

and 

 

𝐸1𝑉𝑎𝑟2(�̂�𝑓𝐻𝑇) =
1

𝑁2
∑ 𝑚𝑘

𝜓𝑘

𝛼𝑘

𝑁
𝑘=1 . 

 

where, 

 

𝜓𝑘 = [
𝑃1𝑘𝜐𝑘𝑓+𝑃2𝑘𝜐𝑘𝑢

𝑃1𝑘
2 (1+𝑃3𝑘𝑘𝑘/(𝑘𝑘−1))

]  (4) 

 

The variance from unknown is as: 

 

( )
( )

( )

* *
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1

1
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k
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= =

=

 
− 

 =
 

+ 
 





 (5) 

 

with, 𝜙𝑘 = (𝑃1𝑘𝐻𝑘𝑇2𝑘 + 𝑇1𝑘𝑄𝑘𝑃2𝑘)𝜐𝑓 − (
𝑃2𝑘𝐻𝑘𝑇2𝑘

+𝑇2𝑘𝑄𝑘𝑃2𝑘
) 𝜐𝑏 −

2𝑇2𝑘𝑃2𝑘(𝑇1𝑘𝑃1𝑘𝜐𝑘𝑓 + 𝑇2𝑘𝑃2𝑘𝜐𝑘𝑢), 𝐻𝑘 =
𝑇2𝑘

1+𝑃3𝑘𝑘𝑘/(𝑘𝑘−1)
,  

and 

𝑄𝑘 =
𝑃2𝑘

𝑇1𝑘
2 (1+𝑃3𝑘𝑘𝑘/(𝑘𝑘−1))

. 

 

 

2. THE PROPOSED MODEL 

 

The new model is a hybrid of randomised response model 

and adaptive two-stage cluster sampling, to estimate rare 

sensitive attributes. We provide estimation method for the 

mean of the population with a rare sensitive attribute (MNSA) 

using modified Horvitz-Thompson type estimator. We 

investigate the known and unknown conditions of a unique 

non-sensitive trait that is unrelated. In the second stage of 

sampling, we collect responses from the elementary units 

using the randomization method suggested by Singh and 

Tarray [24], as well as the recent work [25, 26]. 

 

2.1 When the rare attribute that is unrelated is known 

 

Participants are requested to engage with and encounter the 

randomization device without prior knowledge of whether the 

distinctive characteristic will be revealed or concealed, 

contingent upon the identification of the proportion of 

individuals possessing the unrelated rare attribute. 
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The respondents selected from the ith cluster would be given 

a deck of ki cards as the randomization mechanism and card 

picked has one of the questions to determine if the respondent 

has (i) rare sensitive attribute be “F” with probability P1i, (ii) 

rare unrelated attribute "U" with probability P2i, and (iii) Blank 

Card.  

The respondent must repeat the preceding steps without 

taking the card out if the statement (iii) is drawn. When the 

statement (iii) is drawn, he or she is compelled to report "No" 

at the second level. The suggested deck's total number of cards 

and the likelihood that "Yes" will be answered are both 

provided. 

 

𝜙𝑖0 = [𝑃1𝑖𝛽𝑖𝑓 + 𝑃2𝑖𝛽𝑖𝑢] + 𝑃2𝑖(1 − 𝛽𝑖𝑓) (6) 

 

Let’s assume that, 𝑚𝑖 → ∞, 𝑚𝑖𝜙𝑖0 = 𝜐𝑖0 > 0,  as 𝜙𝑖0 →
0, 𝑚𝑖𝛽𝑖𝑓 = 𝜐𝑖𝑓 > 0, 𝑎𝑠𝛽𝑖𝑓 → 0,  and 𝑚𝑖𝛽𝑖𝑢 = 𝜐𝑖𝑢 > 0, 𝑎𝑠 →

∞, 𝛽𝑖𝑢 → 0,  
where, 

 

𝜐𝑖0 = [𝑃1𝑖𝜐𝑖𝑓 + 𝑃2𝑖𝜐𝑖𝑢] + 𝑃2𝑖(1 − 𝜐𝑖𝑓) (7) 

 

𝑓(𝜐𝑖0) = ∏
𝑒−𝜐𝑖0𝜐𝑖0

𝑦𝑖𝑗

𝑦𝑖𝑗!

𝑚𝑖

𝑗=1

, 

Let 𝑌~𝑃𝑜𝑖𝑠 (
0i ) a random sample of 

im from the 

ith cluster. 𝐿(𝜐𝑖0) = 𝑒−𝑚𝑖𝜐𝑖0𝜐𝑖0
∑ 𝑦𝑖𝑗

𝑚𝑖
𝑗=1 ∏

1

𝑦𝑖𝑗!

𝑚𝑖
𝑗=1 , 

(8) 

 

where, Eq. (8) is the likelihood function. 

From Eq. (7) and Eq. (8), the MLE if  

 

�̂�𝑖𝑓 =
1

𝑃1𝑖
[

∑ 𝑦𝑖𝑗
𝑚𝑖
𝑗=1

𝑃2𝑖(1−𝜐𝑖𝑢)
− 𝑃2𝑖𝜐𝑖𝑢]  (9) 

 

To show that �̂�𝑖𝑓is unbiased parameter 𝜐𝑖𝑓, following Eq. (2) 

check [7, 25]. 

Theorem 1: The estimator �̂�𝑖𝑓  is an unbiased estimator of 

the parameter 𝜐𝑖𝑓.  

Proof: following Eq. (2) [24].  

If for any cluster, wk≠1, and indicator variable (IV)=0, it 

implies that the kth cluster was not chosen in the initial because 

it falls short of the requirement. So, jk=1. A the two-stage 

adaptive sampling strategy, a improved type of Horvitz-

Thompson estimator of MNSA in the population is 

represented as: 

 

�̂�𝐻𝑇 =
1

𝑁
∑

�̂�𝑘𝑓𝑗𝑘

𝛼𝑘

𝜏
𝑘=1   (10) 

 

The estimator �̂�𝐻𝑇  is computed as a weighted sum of the 

observed values, where the weights are inversely proportional 

to the inclusion probabilities, ensuring unbiased estimation of 

the population total.  

Theorem 2: The estimator �̂�𝐻𝑇 of the MNSA 𝜐𝑓 is unbiased. 

Proof: consider 

 

𝐸1𝐸2(�̂�𝐻𝑇) = 𝐸1𝐸2 (
1

𝑁
∑

�̂�𝑘𝑓𝑗𝑘

𝛼𝑘

𝜏
𝑘=1 )  

 

where, E1 is the anticipated total number of first-round picks 

and E2 is the anticipated total number of second-round picks. 

𝐸1𝐸2(�̂�𝐻𝑇) = 𝐸1 (
1

𝑁
∑

�̂�𝑘𝑓𝑗𝑘

𝛼𝑘

𝜏
𝑘=1 )  (11) 

 

See Mansour (2021). 

 

𝐸1𝐸2(�̂�𝐻𝑇) = (
1

𝑁
∑ 𝜐𝑖𝑓

𝜏
𝑘=1 ) = 𝜐𝑓  (12) 

 

Theorem 3: The variance of the estimator �̂�𝑓𝐻𝑇 is: 

 

𝑉(�̂�𝐻𝑇) =
1

𝑁2 [∑ ∑ 𝜐𝑘𝑓∗𝜐𝑏𝑓∗(𝜐𝑘𝑏 − 𝜐𝑘𝜐𝑏)/(𝜐𝑘𝜐𝑏𝜐𝑘𝑏) +𝐾
𝑏=1

𝐾
𝑘=1

∑ 𝑚𝑘
𝜓𝑘

𝛼𝑘

𝑁
𝑘=1 ],  

where, 

 

𝜓𝑟𝑘 = [
𝑃1𝑘𝜐𝑘𝑓+𝑃2𝑘𝜐𝑘𝑢+𝑃2𝑘(1−𝜐𝑘𝑢)

𝑃1𝑘
2 𝜐𝑘𝑓−𝑃2𝑘

2 𝜐𝑘𝑢
]  (13) 

 

Proof. The detailed proof can be found in the study by 

Singh and Tarray [24]. The abridged proof is as follows:  

 

𝑉𝑎𝑟(�̂�𝐻𝑇) = 𝑉𝑎𝑟1𝐸2(�̂�𝐻𝑇) + 𝐸1𝑉𝑎𝑟2(�̂�𝐻𝑇)  (14) 

 

where, 𝑣𝑎𝑟1 − variance of the adaptive, and 𝑣𝑎𝑟2 − variance 

over the second stage 

The first term of (14) is: 

 

𝑉𝑎𝑟1𝐸2(�̂�𝐻𝑇) = 𝑉𝑎𝑟1𝐸2 (
1

𝑁
∑

�̂�𝑘𝑓𝑗𝑘

𝛼𝑘

𝜏
𝑘=1 ) =

𝑉𝑎𝑟1 (
1

𝑁
∑

�̂�𝑘𝑓𝑗𝑘

𝛼𝑘

𝜏
𝑘=1 )  

(15) 

 

Thus, 

 

𝑉𝑎𝑟1 (
1

𝑁
∑

�̂�𝑘𝑓𝑗𝑘

𝛼𝑘

𝜏
𝑘=1 ) =

1

𝑁2
∑ ∑ 𝜐𝑗𝑓∗𝜐ℎ𝑓∗ 𝑐𝑜𝑣( 𝑣𝑗 , 𝑣ℎ)/

𝜉
ℎ=1

𝜉
𝑗−1 (𝑣𝑗𝑣ℎ)  

𝑉𝑎𝑟1 (
1

𝑁
∑

�̂�𝑘𝑓𝑗𝑘

𝛼𝑘

𝜏
𝑘=1 ) =

1

𝑁2
∑ ∑ 𝜐𝑗𝑓∗𝜐ℎ𝑓∗(𝑣𝑗 , 𝑣ℎ)/

𝜉
ℎ=1

𝜉
𝑗−1 (𝑣𝑗𝑣ℎ)  

(16) 

 

Variance of an unbiased estimator: 

 

𝑉𝑎𝑟1 (
1

𝑁
∑

�̂�𝑘𝑓𝑗𝑘

𝛼𝑘

𝜏
𝑘=1 ) =

1

𝑁2
∑ ∑ 𝜐𝑗𝑓∗𝜐ℎ𝑓∗(𝑣𝑘𝑏 −

𝜉
ℎ=1

𝜉
𝑗−1

𝑣𝑘𝑣𝑏)/ (𝑣𝑘𝑣𝑘𝑣𝑘𝑏)  
(17) 

 

The second term of (14) is: 

 

𝐸1𝑉𝑎𝑟2(�̂�𝑓𝐻𝑇) = 𝐸1𝑉𝑎𝑟2 (
1

𝑁
∑

�̂�𝑘𝑓𝑗𝑘

𝛼𝑘

𝜏
𝑘=1 )  

= 𝐸1 (
1

𝑁2
∑

𝑗𝑘𝑉𝑎𝑟2(�̂�𝑘𝑓)

𝛼𝑘
2

𝜏
𝑘=1 )  

�̂�𝑖𝑓 =
1

𝑃1𝑖
[

∑ 𝑦𝑖𝑗
𝑚𝑖
𝑗=1

𝑃2𝑖(1−𝜐𝑖𝑢)
− 𝑃2𝑖𝜐𝑖𝑢] 

 
= 𝐸1 [

1

𝑁2
∑

𝑗𝑘

𝛼𝑘
2 𝑉𝑎𝑟2 (

1

𝑃1𝑘
(

∑ 𝑦𝑖𝑗
𝑚𝑖
𝑗=1

𝑚𝑘𝑃2𝑖(1−𝜐𝑖𝑢)
− 𝑃2𝑖𝜐𝑖𝑢))𝜏

𝑘=1 ]  

= 𝐸1 [
1

𝑁2
∑

𝑗𝑘

𝛼𝑘
2 (

1

𝑃1𝑘
2 (

∑ 𝑉𝑎𝑟2(𝑦𝑘𝑗)
𝑚𝑘
𝑗=1

𝑚𝑘
2𝑃2𝑖(1−𝜐𝑖𝑢)

))𝜏
𝑘=1 ]  

= 𝐸1 [
1

𝑁2
∑

𝑗𝑘

𝛼𝑘
2 (

1

𝑃1𝑘
2 (

∑ 𝜐𝑘0
𝑚𝑘
𝑗=1

𝑚𝑘
2𝑃2𝑖(1−𝜐𝑖𝑢)2))𝜏

𝑘=1 ]  

= 𝐸1 [
1

𝑁2
∑

𝑗𝑘

𝛼𝑘
2 (

1

𝑃1𝑘
2 (

𝜐𝑘0

𝑚𝑘𝑃2𝑖(1−𝜐𝑖𝑢)2))𝜏
𝑘=1 ]  

(18) 
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= 𝐸1 [
1

𝑁2
∑

𝑗𝑘

𝛼𝑘
2 (

1

𝑃1𝑘
2 (

(𝑃1𝑘𝜐𝑘𝑓+𝑃2𝑘𝜐𝑘𝑢)𝑃2𝑖(1−𝜐𝑖𝑢)

𝑚𝑘𝑃2𝑖(1−𝜐𝑖𝑢)2 ))𝜏
𝑘=1 ]  

= 𝐸1 [
1

𝑁2
∑ 𝑚𝑘

1

𝛼𝑘
2 (

(𝑃1𝑘𝜐𝑘𝑓+𝑃2𝑘𝜐𝑘𝑢)

𝑃1𝑘
2 𝑃2𝑖(1−𝜐𝑖𝑢)

)𝜏
𝑘=1 ]  

 

𝐸1𝑉𝑎𝑟2(�̂�𝑓𝐻𝑇) =
1

𝑁2
∑ 𝑚𝑘

𝜓𝑘

𝛼𝑘

𝑁
𝑘=1   (19) 

 

where, 

 

𝜓𝑟𝑘 = [
𝑃1𝑘𝜐𝑘𝑓+𝑃2𝑘𝜐𝑘𝑢

𝑃1𝑘
2 𝑃2𝑖(1−𝜐𝑖𝑢)

]. 

 

The �̂�𝑓𝐻𝑇
 
in Eq. (13) earlier given was obtained by 

substituting the equation in (11) and (19) into (14). 

 

2.2 The case when unrelated rare non-sensitive attribute is 

unknown 

 

In the case of randomized response (RR) strategies 

combined with adaptive cluster sampling (ACS), the use of an 

unrelated rare non-sensitive attribute can play a crucial role in 

maintaining respondent confidentiality and enhancing the 

accuracy of data collection. Typically, RR techniques rely on 

respondents answering questions about sensitive attributes 

indirectly, often by referencing unrelated non-sensitive 

attributes to introduce randomness.  

Unknown rare non-sensitive attributes can lead to increased 

response bias, difficulty in designing the RR mechanism, 

complexity in data analysis, and increased operational 

challenges. Respondents may feel less secure about the 

confidentiality of their responses, potentially undermining the 

effectiveness of the RR strategy. Designing the RR mechanism 

requires precise probability distributions, which can be 

challenging when the attribute is unknown. Data analysis 

becomes more complex, potentially leading to biased or 

inaccurate conclusions. To address these challenges, 

innovative approaches include pre-survey piloting, statistical 

adjustment techniques, and adaptive RR mechanisms.  

Each respondent is asked twice for a response in order to 

estimate the MNSA. While the unrelated, unusual, harmless 

trait is unidentified. These randomization tools are made up of 

decks of cards and cards that are comparable, as explained in 

Section 2.1. The initial randomization device based on the ith 

cluster's respondents asks them to respond "yes" or "no" at 

start. We follow the procedure outlined in section 2.1.  

Using a second randomization system consisting of the 

outlined statements with probabilities T1i, T2i, and T3i instead 

of P1i, P2i, and P3i, the respondents chosen from the ith cluster 

are required to answer the same questions. Responders in the 

ith cluster have "yes" responses with the following 

probabilities: 

 

1 1 2 2 (1 )i i if i iu i iuP P P    = + + −    (20) 

 

and 

 

2 1 2 2 (1 )i i if i iu i iuT T T    = + + −    (21) 

 

If 𝑚𝑖 → ∞, 𝜙𝑖1 → ∞,  and 𝜙𝑖2 → 0 , 𝑚𝑖𝜙𝑖1 = 𝜐𝑖1 > 0,
 
and 

𝑚𝑖𝜙𝑖2 = 𝜐𝑖2 > 0,
 
as 𝛽𝑖𝑢 → 0

 
where 𝑚𝑖𝛽𝑖𝑢 = 𝜐𝑖𝑢 > 0,

 
and 

𝑚𝑖𝛽𝑖𝑓 = 𝜐𝑖𝑓 > 0. Subsequently, (20) and (21) 𝑚𝑖𝛽𝑖𝑢 = 𝜐𝑖𝑢 >

0.  

where, 

 

1 1 2 2 (1 )i i if i iu i iuP P P    = + + −    (22) 

 

and 

 

2 1 2 2 (1 )i i if i iu i iuT T T    = + + −    (23) 

 

Simplifying (16) and (17) results in 

 
1

𝑚𝑖
∑ 𝑦𝑖1𝑗

𝑚𝑖
𝑗=1 = [𝑃1𝑖�̂�𝑖𝑓 + 𝑃2𝑖 �̂�𝑖𝑢] + 𝑃2𝑖(1 − 𝛽𝑖𝑢)  (24) 

 
1

𝑚𝑖
∑ 𝑦𝑖2𝑗

𝑚𝑖
𝑗=1 = [𝑇1𝑖�̂�𝑖𝑓 + 𝑇2𝑖 �̂�𝑖𝑢] + 𝑇2𝑖(1 − 𝛽𝑖𝑢)  (25) 

 

Solving Eq (24) and Eq (25), we then have the estimators of 

𝜐𝑖𝑓 and 𝜐𝑖𝑢 to be: 

 

�̂�𝑖𝑓2 =
1

𝑚𝑖(𝑇2𝑖𝑃1𝑖+𝑇1𝑖𝑃2𝑖)
(

𝑇2𝑖 ∑ 𝑦𝑖1𝑗
𝑚𝑖
𝑗=1

𝑃2𝑖(1−𝛽𝑖𝑢)
−

𝑃2𝑖 ∑ 𝑦𝑖2𝑗
𝑚𝑖
𝑗=1

𝑇2𝑖(1−𝛽𝑖𝑢)
)  (26) 

 

where, 𝑇2𝑖𝑃1𝑖 ≠ 𝑇1𝑖𝑃2𝑖. 

 

�̂�𝑖𝑢2 =
1

𝑚𝑖(𝑇1𝑖𝑃2𝑖+𝑇2𝑖𝑃1𝑖)
(

𝑇1𝑖 ∑ 𝑦𝑖1𝑗
𝑚𝑖
𝑗=1

𝑃2𝑖(1−𝛽𝑖𝑢)
−

𝑃1𝑖 ∑ 𝑦𝑖2𝑗
𝑚𝑖
𝑗=1

𝑇2𝑖(1−𝛽𝑖𝑢)
)  (27) 

 

where, 𝑇2𝑖𝑃1𝑖 ≠ 𝑇1𝑖𝑃2𝑖. 

The computation of the estimator for the population mean 

of the overall count of individuals with a rare and sensitive trait 

is subsequently carried out using the designated method. 

 

�̂�𝐻𝑇2 = (
1

𝑁
∑

�̂�𝑘𝑓2𝑗𝑘

𝛼𝑘

𝜏
𝑘=1 )  (28) 

 

Theorem 4: The estimator or �̂�𝑓𝐻𝑇2 of the MNSA attribute 

is unbiased. 

Proof. 

Since Ẹ(𝐸1) = Ẹ(𝐸2) we conclude that 𝐸(�̂�𝑓𝐻𝑇2) = 𝜐𝑓 . 

where, E1, and E2 are the expected total number of first and 

second -stage selections receptively and Ẹ(∙)  is the 

expectation.  

The variance of the estimator �̂�𝑓𝐻𝑇2 is: 

 

𝑉(�̂�𝐻𝑇2) =

1

𝑁2 [∑ ∑
𝜐𝑘𝑓∗𝜐𝑏𝑓∗(𝜐𝑘𝑏 − 𝜐𝑘𝜐𝑏)/(𝜐𝑘𝜐𝑏𝜐𝑘𝑏)

+ ∑ 𝑚𝑘
𝜙𝑘

𝛼𝑘

𝑁
𝑘=1

𝐾
𝑏=1

𝐾
𝑘=1 ],  

(29) 

 

This equation represents the variance 𝑉(�̂�𝐻𝑇2)  of the 

Horvitz-Thompson estimator (HT2) for a Poisson-distributed 

adaptive cluster sampling model. The first term inside the 

brackets involves double summation over clusters, accounting 

for interactions between pairs of clusters 𝑘 and 𝑏. The second 

term sums over all clusters, adjusting for specific sampling 

parameters 𝑚𝑘, 𝜙𝑘 and 𝛼𝑘. 

 

𝐻𝑘 =
𝑇2𝑘

𝑃2𝑖(1−𝛽𝑖𝑢)
, 

 

𝑄𝑘 =
𝑃2𝑘

𝑇2𝑖(1 − 𝛽𝑖𝑢)
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These equations define two parameters, 𝐻𝑘   and 𝑄𝑘 , used in 

the adaptive cluster sampling model. Here, 𝑇2𝑘 and 𝑃2𝑘 

rrepresents specific values related to cluster 𝑘, while 𝑃2𝑖 and 

𝑇2𝑖 are reference values for another index 𝑖 . The term (1 −
𝛽𝑖𝑢)  adjusts for a factor 𝛽𝑖𝑢 influencing the relationship 

between clusters and the overall sample.

 

 

3. APPLICATIONS 

 

In this section the existing model and the proposed models 

were used for estimation and compared in Table 1 and Table 

2 respectively. The comparison consists of six clusters. From 

each cluster, a sizable random sample was collected, and the 

MNSA was calculated. The estimated - parameters of which 

are {1,0,1,0,3,5}. Each unit (whether there are one or two) 

includes both adjacent units. n1=2 is the starting sample size. 

There are (6
2
) = 15 potential samples with a chance of 1/15 

using the adaptive design, where the initial sample is chosen 

by SRS without replacement. Considering the population from 

[19], Table 1 shows the produced observations together with 

the values of every estimator. The condition is indicated by 

𝜐𝑘𝑓∗ < 1,𝜐𝑏 + 𝜐𝑘 = 1, 𝜐𝑏𝑓∗ + 𝜐𝑘𝑏 = 1.
  

3.1 Empirical study 

 

The variances of the population mean were calculated using 

the estimators specified in Eqs (4) and (13). These variances 

provide insight into the precision and reliability of the 

population mean estimates derived from the sampling models. 

For clarity and ease of comparison, the results of these 

calculations have been organized and presented in Table 1. 

The tabulated variances serve as a critical component in 

assessing the effectiveness of the proposed sampling models 

and their respective estimators in capturing the true population 

parameters. 

From the above Table 1, 𝜓𝑘  and 𝜓𝑟𝑘  were obtained from 

the Eqs (4) and (13). 

The variances of population mean were obtained based on 

the estimators stated Eqs. (5) and (14) is tabulated in Table 2 

as follows: 

From the above Table 2 for different values 𝜐𝑘𝑓∗ , 𝜐𝑏𝑓∗ , 

𝜐𝑘𝑏 ,𝜐𝑘  and 𝜐𝑏  we have obtained the values of 𝜓𝑘  and 𝜓𝑟𝑘 . 

From Eqs. (5) and (14) were obtained variances of existing 

model and proposed model, the variance 𝑉(�̂�𝐻𝑇)  under 

proposed model is less than the variance 𝑉(�̂�𝑓𝐻𝑇) of existing 

model. Which results gain in efficiency. Hence our proposed 

model works well as compared to existing literature. 

 

Table 1. Observation result and the estimator values 

 

Networks  𝝊𝒌𝒇∗ 𝝊𝒃𝒇∗ 𝝊𝒌𝒃 𝝊𝒌 𝝊𝒃 𝝍𝒌 𝝍𝒓𝒌 

1,0 0.3 0.7 0.3 0.3 0.7 0.888 0.81 

1,1 0.4 0.8 0.2 0.2 0.8 1.008 1.26 

1,0 0.5 0.9 0.1 0.1 0.9 1.128 1.71 

1,3;0.5 0.4 0.6 0.4 0.4 0.6 0.768 1.08 

1,5;3,0 0.4 0.4 0.5 0.5 0.5 0.528 0.99 

0,1 0.8 0.8 0.1 0.1 0.9 1.008 2.79 

0,0 0.9 0.9 0.1 0.9 0.8 1.128 3.15 

0,3;0.5 0.7 0.7 0.2 0.2 0.8 0.888 2.34 

0,5;3 0.5 0.5 0.4 0.4 0.6 0.648 1.44 

1,0 0.6 0.6 0.3 0.3 0.7 0.768 1.89 

1,3;0,5 0.5 0.5 0.5 0.5 0.5 0.648 1.35 

1,5;0,3 0.6 0.4 0.6 0.6 0.4 0.528 1.62 

0,3;5 0.7 0.3 0.7 0.7 0.3 0.408 1.89 

0,5;3 0.9 0.3 0.6 0.6 0.4 0.408 2.7 

3,5;0 0.8 0.2 0.7 0.7 0.3 0.288 2.25 

Mean 0.631579 0.478947 0.478947 0.521053 0.515789 0.631579 0.478947 

 

Table 2. The variance of existing and the proposed estimator and relative precision 

 

𝝊𝒌𝒇∗ 𝝊𝒃𝒇∗ 𝝊𝒌𝒃 𝝊𝒌 𝝊𝒃 𝝍𝒌 𝝍𝒓𝒌 𝑽(�̂�𝒇𝑯𝑻)Existing 𝑽(�̂�𝑯𝑻)Proposed Efficiency 

0.3 0.7 0.3 0.3 0.7 0.888 0.81 267.18 227.82 117.27 

0.4 0.8 0.2 0.2 0.8 1.008 1.26 261.52 188.29 138.89 

0.5 0.9 0.1 0.1 0.9 1.128 1.71 257.07 169.56 151.60 

0.4 0.6 0.4 0.4 0.6 0.768 1.08 411.9 219.68 187.50 

0.4 0.4 0.5 0.5 0.5 0.528 0.99 649.09 239.65 270.84 

0.8 0.8 0.1 0.1 0.9 1.008 2.79 444.58 160.60 276.82 

0.9 0.9 0.1 0.9 0.8 1.128 3.15 444.06 159.01 279.25 

0.7 0.7 0.2 0.2 0.8 0.888 2.34 474.99 168.96 281.11 

0.5 0.5 0.4 0.4 0.6 0.648 1.44 569.56 201.36 282.84 

0.6 0.6 0.3 0.3 0.7 0.768 1.89 514.89 181.31 283.97 

0.5 0.5 0.5 0.5 0.5 0.648 1.35 610.25 214.7 284.10 

0.6 0.4 0.6 0.6 0.4 0.528 1.62 898.74 211.54 424.85 

0.7 0.3 0.7 0.7 0.3 0.408 1.89 1356.9 209.22 648.54 

0.9 0.3 0.6 0.6 0.4 0.408 2.7 1550.78 185.50 835.99 

0.8 0.2 0.7 0.7 0.3 0.288 2.25 2105.43 199.19 1056.95 

0.8 0.2 0.8 0.8 0.2 0.288 2.16 2197.00 207.52 1058.65 

0.6 0.1 0.9 0.9 0.1 0.168 1.35 3295.66 254.08 1297.07 

0.7 0.1 0.8 0.8 0.2 0.168 1.8 3452.47 219.79 1570.80 

0.9 0.1 0.9 0.9 0.1 0.168 2.43 4237.33 206.45 2052.42 
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4. CONCLUSIONS 

 

This research endeavors to bridge the gap between adaptive 

sampling techniques and respondent confidentiality, 

presenting a novel Poisson-distributed adaptive cluster 

sampling model enhanced by a randomized response strategy. 

Through theoretical development and empirical validation, we 

aim to demonstrate the efficacy of this integrated approach in 

yielding high-quality, reliable data from clustered and 

sensitive populations. 

In conclusion, the utilization of cluster sampling and the 

randomized response technique, coupled with the introduction 

of the adaptive cluster sampling randomized response model 

featuring a Poisson distribution, has brought forth valuable 

insights into estimating the prevalence of sensitive groups 

within the population. The demonstrated lower variance in the 

proposed model not only signifies increased efficiency but 

also highlights its potential for more accurate estimations. this 

study employed cluster sampling and the randomized response 

technique to gauge the proportion of the population associated 

with a sensitive group. Introducing the adaptive cluster 

sampling randomized response model with a Poisson 

distribution proved to be a significant advancement. The 

results showcased that this proposed model exhibited lower 

variance, indicating greater efficiency compared to existing 

models. Notably, the study demonstrated the superiority of the 

proposed model over its counterparts, marking a substantial 

contribution to the field. This innovative methodology holds 

promise for advancing the field of statistical sampling and 

improving the outcomes of various research endeavors reliant 

on accurate and unbiased data. 
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