

Distributed K-means Clustering Using Topological Relationships

Zouaoui Guellil* , Nadir Mahammed , Nabil Keskes

LabRI-SBA Lab., Ecole Superieure en Informatique, Sidi Bel Abbes 22000, Algeria

Corresponding Author Email: z.guellil@esi-sba.dz

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290405

ABSTRACT

Received: 10 October 2023

Revised: 9 May 2024

Accepted: 30 May 2024

Available online: 21 August 2024

 Cluster analysis has been widely studied due to its importance and several methods have

been developed for this purpose. However, these methods are designed to process on

centralized data. In this paper, we present an asynchronous approach based on topological

relationship. The proposed approach unfolds on three steps: First, each site searches for

clusters (models) of its local data. Secondly, a central site proceeds to the analysis and

search for the partition of the whole (the global model). Finally, we proceed with the search

for the right number of groups of the global model. We note that each local data has their

own number of clusters and it can be different from the number of clusters in the entire data.

The experiments have clearly demonstrated the effectiveness of the proposed approach to

find the partition closest to that obtained on the data set from its subsets.

Keywords:

data mining, clustering, distributed k-means

algorithm, number of groups, topological

relations

1. INTRODUCTION

Data partitioning, also known as cluster analysis, is the

process of finding groups in data that are ideally characterised

by high internal similarity and significant differences between

groups [1]. Today, the rapid growth of acquisition and storage

technologies has led to an increase in the amount of data

available in various fields [2]. This data is often

geographically dispersed across different locations and can be

used to extract meaningful insights, dependencies or

correlations; traditional centralised clustering algorithms are

impractical due to data volume, processing capacity and

privacy concerns associated with data aggregation [3].

Distributed clustering algorithms address this by building

the overall model without requiring access to data from

different locations. Two architectures are used [4]:

synchronous, where all nodes build the global model together,

requiring extensive data exchange, with communication either

direct between pairs of nodes [5], circular between all nodes

[6], or following a hierarchical structure [7]. Asynchronous

methods, where each node builds a local model and sends it to

a central location to be combined into a global model [8]. This

method is more privacy friendly as only local models are

shared.

K-means [9, 10] is one of the most extensively studied and

widely used clustering algorithms, favoured for its conceptual

simplicity and computational efficiency for clustering large

datasets [11]. Numerous distributed variants of the k-means

algorithm have been proposed, they differ in the way they

communicate and combine the local results [12]. In order to

reduce communication between the different sites, a Peer-to-

Peer (P2P) architecture has been proposed by Datta et al. [13]

where each node of the network calculates the clusters of local

data, and exchanges the centroids with its neighbors. Each

neighbor recalculates its centroids, using its local data, and the

centroids obtained from its neighbors. However, no proof of

convergence nor indication on the speed of convergence of the

algorithm was provided.

Ng [14] proposed to perform a two-level classification. The

first one on the local data of each node, and the second on the

local partitions generated by the previous step by performing

another clustering of their centroids.

Jin et al. [15] proposed a distributed fast and exact k-means

clustering (DFEKM) that uses data sampling to improve

performance. Each site sends a sample of its data to a central

site where it is grouped using k-means method. After a

complete run through all data, the centers are calculated, and

the convergence is determined based on a metric called the

confidence radius estimated in the previous step. The

disadvantage of the proposed method is that the data set is

sampled, the results strongly depend on the samples drawn (its

size and content) and that in some cases, groups present in data

may not exist in the sample. The best sample is detailed by

Broder et al. [16].

In the study of Durut et al. [17], a master/slave architecture

is used to distribute the first step of k-means. On each iteration,

all nodes perform the assignment step and calculate partial

averages using their local data. Then they transmit the results

to a master node, which calculates the overall average and

outputs it to the other nodes. The same approach was used by

Benchara and Youssfi [18] on Cloud micro-services.

Qin et al. [19] proposed a distributed k-means which each

step is executed in distributed manner. The initial centroids are

chosen by collaborating all sites. After local data are affected

to the closest centroid iteratively, the average consensus

algorithm is used to calculate the new clusters and the

convergence is reached the centroids are unchanged.

The algorithm proposed by Kotary and Nanda [20] solve the

distributed clustering problem as a constrained optimization

using Lagrange multipliers. It aims to make uniform the

Ingénierie des Systèmes d’Information
Vol. 29, No. 4, August, 2024, pp. 1297-1304

Journal homepage: http://iieta.org/journals/isi

1297

https://orcid.org/0009-0008-2099-7326
https://orcid.org/0000-0001-7865-5937
https://orcid.org/0000-0003-2659-2721
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290405&domain=pdf

number of groups on all nodes by sharing the cluster centers

between neighbors. They assumed that the cluster centers are

very similar after convergence at each node. No proof of

convergence has been provided for the proposed method. The

solution may vary if the data is not uniformly distributed.

Xia et al. [21] used the differential privacy technology local

differential privacy (LDP) [22] in their distributed k-means

solution. At each iteration a central site broadcasts the

centroids to all the sites. The latter take care of the data

assignment step and send to the central site the perturbed data

according to the LDP principle and its membership group. The

site recalculates the new centroids until the convergence. This

solution is very greedy in term of communication because each

site sends all these data at each iteration.

Soliman et al. [3] presented an asynchronous decentralized

k-means clustering algorithm for independently and

identically distributed (IID) data, which is not the case (Non-

IID Data) as defined by Rodríguez-Barroso et al. [23]. The

process begins by generating local model by k-means and

iteratively share their result, at each node. The received local

models are clustered using k-means to find the centers to be

combined. Next, a weighted averaging is applied using the

estimated cardinalities by HyperLogLog counters.

In recent years, the integration of topology and geometry

opens up new perspectives for data mining and allows for

more reliable and richer results [24]. These approaches make

it possible to analyse complex data and create abstract

representations of all the characteristics of the data, which

makes it possible to reveal intrinsic structures that are not

easily identifiable with traditional statistical techniques [25].

The promising results from the application of these methods

across various domains, such as biology and image processing,

highlight their potential as powerful tools for data analysis [26].

In the present article, we propose an asynchronous approach

considering that distributed clustering is performed in three

stages. First, each site searches for the clusters (models) of its

local data and transmit them to a central site. Secondly, a

central site analyses and searches for the partition of the set

(the global model) based on the notion of the topological

relationship between the different components of the local

models.

Aggregation using topological relationships allows only

subgroups that share data to be merged, so clusters that are

included are merged first as they represent maximum data

sharing and overlap second, while disjoint subgroups are not

merged. distance-based methods do not allow this distinction,

especially in a distributed context. Finally, we search for the

right number of groups for the global model.

Privacy is ensured by the fact that there is no sharing of data

samples between nodes. Nodes process data locally and share

only relevant information, such as local models. The isolation

of data samples contributes to the confidentiality and privacy

of the information being processed. This is a significant

advantage over other distributed clustering methods that share

data across multiple nodes.

The paper is structured as follows: Section 2 presents some

preliminary notations necessary for the presentation and better

understanding of our work. The proposed approach is detailed

in Section 3, followed by a time complexity and convergence

analysis in Section 4. The experimental procedure is then

described in Section 5. Section 6 is dedicated to the evaluation

and discussion of the obtained experimental results. Finally,

some concluding remarks are given in Section 7.

2. PRELIMINARIES

In this section, we list some preliminary notations and

definitions frequently used in solving the addressed problem.

Each site 𝑆 has its own set of 𝑁𝑠 data denoted by 𝑋𝑠, which

are grouped using k-means in 𝑘𝑠 groups {𝐶1, 𝐶2, . . . 𝐶𝑘𝑠}. A

group 𝐶𝑖 is represented by a centroid (the average of these

members), it is characterized by the number of instances 𝑁𝑖

and the radius 𝑅𝑖 defined by:

1

S

i i

x Xi

C X
N

= (1)

()cardi iN C= (2)

()
1

,
i

i i

x Ci

R d x C
N

= (3)

The adopted reasoning is based on the topological

relationships between the different components of groups (i.e.

centroid). Topological relations define the most primitive

spatial relations that are allowed between entities, such as

disjoint, meet, overlap, and inside (inclusion) [27]. We are

interested in three situations: Inclusion, overlap and well

separated. We define for each situation an operation:

replacement, merging, and selection.

2.1 Replacement operation

The replacement operation aims to eliminate the

redundancy contained in the raw model. It’s possible that two

groups have exactly the same representatives (centroid) but

some groups can be covered by others and find themselves

eliminated (see Figure 1). So, a center 𝐶𝑖 only replaces 𝐶𝑗 if 𝐶𝑗

is included in 𝐶𝑖. Formally:

() ()

, ,

 if , or , nd

 a

i j i j

i j i i j j i j

C C C C C

d C C R d C C R R R

 (4)

Figure 1. The center j is covered by I

2.2 Merging operation

The merging operation consists in applying a hierarchical

grouping on the overlapping subgroups (see Figure 2). Two

groups overlap if:

1298

() () ()

()

, and ,

 and ,

i j i j i j i

i j j

d C C R R d C C R

d C C R

 +

 (5)

Following the merger of two subgroups, the new one is

created to replace them, its center is calculated by the weighted

average of their centers. Its radius must allow it to

cover/include the two subgroups from which it comes. As we

do not have access to global data, this radius is estimated

geometrically. We notice that the minimum diameter 𝐷 of the

group enveloping two overlapping groups is equal to the

difference between the sum of their diameters (𝐷1, 𝐷2) and the

size of the overlap zone 𝑂𝐿. Formally:

1 2 1 2OL 2* 2* OLD D D R R= + − = + − (6)

()1 2 1 2,L R R d C C= + − (7)

()()
()

1 2 1 2 1 2

1 2 1 2

2* 2* ,

,

D R R R R d C C

R R d C C

= + − + −

= + +
 (8)

()1 2 1 2,

2

R R d C C
R

+ +
= (9)

Figure 2. The overlap of two subgroups

2.3 Selection operation

When the replacement and the merging operations do not

allow to obtain the expected number of groups, we are in a

situation where the subgroups are neither in inclusion nor in

overlap, but they are well separated. In this case, we choose

the desired number of groups that maximize the inter-group

inertia.

Algorithm 1: Maximum separation

Input: Desired number of groups k, set of centroids

Output: Partition of k groups

1 // (first two group)

Search for (C1, C2) = argmax d (Ci,Cj)

2 while k is not reached do

3 Assign each centroid to the closest available groups

4 Select the one that has the greatest distance from its

closest group

5 Add this centroid to the selected groups

6 Increase k

7 End while;

The groups are chosen one by one (except for the first two

groups) as follows: The first two groups are the two farthest

subgroups. The other centers are drawn from the set of

subgroups where each one is assigned to the set of groups

already chosen. The subgroup which has the greatest distance

from its closest group will be part of the set of final groups.

The algorithm (1) illustrates the principle.

3. DISTRIBUTED DATA CLUSTERING

The proposed approach (see algorithm (2)) is based on an

asynchronous model that considers the distributed clustering

is achieved in two stages (plus one for the choice of the global

number of groups). First, each site realizes the search for the

local models of its local data (local partitions), at the end of

this step, we retain for each group 𝐶𝑖 two characteristics, the

number of instances 𝑁𝑖 and the radius 𝑅𝑖. These data (groups,

number of instances and radius) are sent to a central site that

analyzes and searches for the partition of the distributed data

(global model).

The union of the local partitions constitutes a first model of

the distributed data which the number of groups is equal to the

sum of the numbers of local groups (N_total = ∑𝑘𝑖). This raw

model is characterized by a large number of subgroups that are

gradually refined using the three operations mentioned

(replacement, fusion, and selection).

The refine algorithm proceeds to eliminate the redundancy

by replacing the included groups with those that cover them

until no inclusion relationship is found or the fixed number of

groups is reached. If the latter is not reached, we use the

merging operation where we merge the overlapping groups.

We start with the closest, if the number of groups is not

obtained, we choose the 𝑛 centers among the remainder that

increase the separability (the selection operation).

Therefore, the aggregation is performed in a hierarchical

way using a sophisticated strategy that prioritizes the merging

of subgroups based on their data sharing; similarity criteria are

also considered to guarantee an efficient merging. As a

consequence, subgroups with the highest degree of data

sharing (inclusion) and similarity are merged first, followed by

overlapping subgroups. Disjoint subgroups are not combined

since they are fundamentally distinct and unrelated groups.

Algorithm 2: Refine

Input: Desired number of groups k, set of centroids (local

partitions)

Output: Partition of k groups

1 while there are inclusions and k is not reached do

2 Replace groups included

3 while there are overlaps and k is not reached do

4 Merge the closest

5 if number of groups not reached then

6 Select the desired number of groups;

The third step is to determine the overall number of groups.

We generate partitions with the number of groups from 2 to

N_total (N_total is the sum of the numbers of local groups)

and ship them to the other sites where they are evaluated on

their local data. The best partition is the one with the best

quality indexes average.

The convergence of the algorithm is guaranteed by the

design of the algorithm itself. Since the number of subgroups

is limited, as well as the number of included and overlapping

relations, it is guaranteed that the algorithm will stop after a

1299

finite number of iterations, rather than running forever and

eventually converging to a solution.

4. TIME COMPLEXITY AND CONVERGENCE

The analysis of the time complexity of the Refine algorithm

requires a thorough examination of the computational costs

associated with each step.

The algorithm is divided into three main parts: The merging

of included groups, this phase is dominated by the search for

inclusions in the entire set of elements, which is conducted

comparing each pair of subgroups with a complexity of 𝑂(𝑁2).

The merging of overlapping groups, like the preceding step, is

dominated by the search for overlaps in the set of elements

present at this phase, which is (𝑁 − 𝑁𝑖𝑛𝑐), so its complexity is

𝑂((𝑁 − 𝑁𝑖𝑛𝑐)2). The last step consists of forming groups from

the remaining disjoint clusters (Ndisj disjoint clusters) with a

complexity of 𝑂(𝑁𝑑𝑖𝑠𝑗
2 + 𝑘 𝑁𝑑𝑖𝑠𝑗).

Combining the aforementioned complexities results in a

total complexity of 𝑂(𝑁2 + (𝑁 − 𝑁𝑖𝑛𝑐)2 + 𝑁𝑑𝑖𝑠𝑗
2 + 𝐾 𝑁𝑑𝑖𝑠𝑗).

Since Ninc and Ndisj are subtotals of N, the dominant

complexity is still 𝑂(𝑁2). Regarding the small size of the

treated subgroups, the complexity is acceptable.

The convergence of the algorithm is guaranteed by the

design of the algorithm itself. Since the number of subgroups

is limited, as well as the number of included and overlapping

relations, it is guaranteed that the algorithm will stop after a

finite number of iterations, rather than running forever and

eventually converging to a solution.

5. EXPERIMENTATION

In experimental phase, we seek to determine the efficiency

of our approach to find the closest partition to the one obtained

with the dataset from its subsets. The datasets used in our

experiments come from the UCI Machine Learning Repository,

a widely used and publicly available collection of benchmark

datasets for machine learning research. We chose to use the

following datasets: High Time Resolution Universe (HTRU2)

[28] and Tamil Nadu Electricity Board hourly readings [29].

These datasets were obtained in their pre-processed form

provided by the repository. We also used the image shown in

Figure 3.

Figure 3. Tulip image divided into 4 and 16 delimited by

dotted lines

The HTRU2 is a dataset that describes a sample of candidate

pulsars, each one characterized by eight continuous variables

and one to designate the membership class. It contains 17898

instances distributed into two classes, 1639 known as true

pulsars and 16259 identified by human annotators as noise

caused by radio interference.

Tamil Nadu electricity board hourly readings represent the

electricity consumption collected in real time every hour in

residential, commercial, industrial and agricultural areas

around Thanjavur City. This dataset has five attributes (forkva,

forkw, type, sector and service). We chose to use three

attributes:

• For classification: Forkva and forkw attributes.

• For the label: Sector attribute (integer value from 0 to 4)

for the label.

These data are divided and distributed randomly over 2, 4,

8 and 16 sites (except the Tulip image dataset which is divided

into 4 and 16 sites). Each site uses k-means clustering for local

data clustering. We used an initialization algorithm based on

the misclassified instance [30]. The latter has the advantage of

ensuring the same expected results and to guarantee good

quality by initially maximizing the inter-class inertia

compared to a random initialization.

In order to determine the locally optimal number of groups

k, we varied k=2, ..., 16. For each value of k, we calculated the

silhouette index (Si) [31]. The appropriate number of groups

is the one that maximizes this value [32].

On the central site, the refine procedure is launched to

generate partitions where the number of groups varies from 2

to N_total. In order to determine the optimal partition, we

evaluated the generated partitions on each site. The evaluation

of the generated partitions is based on the same index of

quality silhouette and we used the Mean Square Error (MSE)

to compare partitions with the same number of groups

(compactness). Then, we compared the chosen partition with

the one obtained from the entire dataset to measure their

resemblance. For this purpose, we use F-measure [33], Jaccard

index [34] and variation of information (VI) [35].

6. RESULTS AND DISCUSSION

This section presents a summary of the obtained results. In

Section 6.1, we evaluated the different datasets and their

subsets in order to determine the optimal number of groups.

Then, we compared the generated partitions and those

obtained (with all datasets) in Section 6.2.

6.1 Individual clustering results

Table 1. Number of groups obtained on each dataset

Data set Tulip image HTRU2
Tamil

Nadu

Number of

groups

Global data 5 2 4

2 sites /

2 groups

for all

sites

4 groups

for all

sites

4 sites 6, 4, 7, 2

8 sites /

16 sites

3, 3, 2, 6, 4, 2,

3, 2, 3, 6, 4, 5,

3, 2, 4, 2

The number of groups that maximized the silhouette index

in each dataset is summarized in Table 1. Note that for HTRU2

and Tamil Nadu, the number of groups in the subsets (local

1300

data) is identical to that obtained in the entire data. This finding

can be explained by the diversity of the data in the subsets. The

case of the Tulip image dataset is a good testing scenario for

our approach, as the number of groups is different for each

subset, and even greater in some cases, than the number of the

overall dataset.

6.2 Evaluation of generated partitions

We compared the partitions produced by our approach in

the context of distributed clustering to those produced by a

global clustering on the entire dataset using internal index and

external index. The number of groups varies from 2 to N_total.

In the case of the Tamil Nadu dataset (see Figure 4), MSE

decreases each time the number of groups (2 to 4) is increased

to the optimal number (4). Performances are similar at this

level, then it continues to decrease for global clustering while

it does not vary as quickly for generated partitions.

Likewise, for the curves of the silhouette index (see Figure

5), they are similar before the optimal zone (number of groups

= 4) then differ beyond. We have the same phenomenon for

HTRU2 dataset results (in Figure 6) because the diversity of

local data which contains data that fit different groups in the

global dataset.

Indeed, local clustering is at the optimal range (4 groups in

Tamil and 2 in HTRU2). It can only produce a partition with a

number of groups less or equal to the optimal range which has

a similar quality to global clustering.

Figure 4. MSE according to the number of groups for Tamil

Nadu dataset

Figure 5. Silhouette index according to the number of groups

for Tamil Nadu dataset

Figure 6. MSE and silhouette index according to the number

of groups for HTRU2 dataset

Figure 7. MSE according to the number of groups for the

Tulip image

Figure 7 shows the MSE from the Tulip dataset results. The

generated partitions are less or equal to 3 groups and have a

lower quality (calculate the ratio) compared to the overall

partition. From the number of groups = 5, the different

partitions come together. MSE values are close except for the

partitions generated in 4 sites, which from 10 groups have

values greater than the others.

From Figure 8, the silhouette index is similar for the

different clustering at the optimal point (5 groups). Beyond

this point, the values displayed fluctuate until the value 10

where the global classification takes over with certain stability.

Tables 2 and 3 summarize the obtained results by evaluating

the global partition and the generated partitions with the

optimal number of groups on the full dataset.

We observe that the generated partitions are similar to those

obtained on the dataset with a small improvement:

• MSE from 0.107% to 3.081%

• Silhouette index from 0.001% to 1.585%.

1301

Table 2. Index quality in optimal range for HTRU (2 groups)

and Tamil Nadu (4 groups)

 HTRU2
 MSE Ratio Silhouette Ratio

H
T

R
U

2

Global 78.228 - 0.907980 -

2 Sites 78.145 0.107 0.907487 0.054

4 Sites 77.828 0.512 0.905870 0.232

8 Sites 76.898 1.701 0.900164 0.861

16 Sites 75.818 3.081 0.893588 1.585

T
a

m
il N

a
d

u

Global 0.1915 - 0.588989 -

2 Sites 0.1915 0% 0.589011 0.004

4 Sites 0.1915 0% 0.588992 0.001

8 Sites 0.1915 0% 0.588979 0.002

16 Sites 0.1915 0% 0.588962 0.005

Table 3. Index quality in optimal range for Tulip image (5

groups)

 Tulip image

MSE Ratio Silhouette Ratio

Global 42.1554 - 0.747445 -

4 Sites 37.5698 10.88 0.761358 1.86

16 Sites 35.7468 15.20 0.768436 2.81

Table 4. Average obtained silhouette index on the local data

 NBGR 2 Sites 4 Sites 8 Sites 16 Sites

H
T

R
U

2

2 0.906 0.905 0.896 0.891

3 0.582 0.862 0.835 0.594

4 0.572 0.856 0.827 0.59

5 - 0.579 0.573 0.582

6 - 0.579 -0.097 0.579

7 - -0.142 -0.09 0.577

8 - -0.091 -0.021 -0.159

9 - - -0.021 -0.07

10 - - -0.023 -0.041

T
a

m
il N

a
d

u

2 0.463 0.463 0.463 0.463

3 0.512 0.513 0.513 0.513

4 0.589 0.589 0.588 0.588

5 0.509 0.506 0.501 0.502

6 0.481 0.434 0.442 0.432

7 0.425 0.435 0.405 0.426

8 0.411 0.398 0.403 0.383

9 - 0.387 0.369 0.387

10 - 0.301 0.354 0.345

T
u

lip
 im

a
g

e
2 0.37 0.41

3 0.611 0.454

4 0.707 0.432

5 0.754 0.597

6 0.721 0.591

7 0.613 0.578

8 0.614 0.579

9 0.593 0.55

10 0.587 0.534

With Tulip image, overall, the quality of the generated

partitions is better than the one obtained on the whole dataset

(global clustering) with a significant improvement of MSE

from 10.88% to 15.20% as well as for silhouette index from

1.86% to 2.81%. The various results show an improvement

which can be explained by the fact of processing subsets of

data allowing the approach a better detection of the groups. It

reduces the influence of outliers (noise). Figure 4 confirms the

results shown in Table 4. In Figure 9, (a1) and (a2) provide

better separation of parts of images (i.e., green grass at the

bottom of the image).

In order to determine the globally optimal number of groups,

we evaluated the generated partitions on the local data of the

different sites, the one with the best average quality index is

chosen. This process is done automatically. Table 4 shows the

result of different evaluations by generated partitions in

different case. We observe that the best value of silhouette

index corresponds to the same number of groups in the global

data.

Figure 8. Silhouette index according to the number of groups

for the Tulip image

Figure 9. Clustering results using generated partitions: (a1) 4

sites, (a2) 16 sites (b) Original image and (c) Global

clustering

Table 5. Similarity measurement between global and

generated partition (Gen.)

 Partition VI Jaccard
F

Measure

H
T

R
U

2

2 sites

Global Gen. 0.0014 0.9999 0.9999

Gen. Label 0.5742 0.8032 0.8909

Global Label 0.5739 0.8033 0.8909

4 sites

Global Gen. 0.0195 0.9976 0.9988

Gen. Label 0.5806 0.8016 0.8899

Global Label 0.5739 0.8033 0.8909

8 sites

Global Gen. 0.0654 0.9892 0.9945

Gen. Label 0.6019 0.7951 0.8859

Global Label 0.5739 0.8033 0.8909

16 sites

Global Gen. 0.1128 0.9781 0.9889

Gen. Label 0.6293 0.7869 0.8807

Global Label 0.5739 0.8033 0.8909

T
a

m
il N

a
d

u

2 sites

Global Gen. 0.0321 0.9939 0.9969

Gen. Label 0.2281 0.3715 61.14

Global Label 0.2281 0.3715 61.14

4 sites

Global Gen. 0.031 0.9943 0.9971

Gen. Label 2.9142 0.2281 0.3715

Global Label 2.9142 0.2281 0.3715

8 sites

Global Gen. 0.027 0.995 0.9975

Gen. Label 2.9142 0.2281 0.3715

Global Label 2.9142 0.2281 0.3715

16 sites

Global Gen. 0.0397 0.9924 0.9962

Gen. Label 2.9142 0.2281 0.3715

Global Label 2.9142 0.2281 0.3715

1302

Table 5 shows a great similarity between the generated

partition and the global partition. By comparing the generated

partition with the global partition according to the labels, we

noticed that they have the same ability to detect groups, the

centralized approach is more efficient for groups detection, the

better it is for the distributed one. The results show that the

detection capacity is better for HRTU2 than for Tamil Nadu

dataset.

Finally, like any other research, this work also has some

limitations. The performance analysis of the proposed

approach focused only on finding the closest partition to the

one obtained on the dataset from its subsets and did not explore

the search for a partition with a fixed number of groups with

the same quality as clustering on the entire of the dataset.

Indeed, the number of groups is found automatically based on

the silhouette index for both local clustering or generated

partitions, setting a fixed number of groups for the global

partition (generated) sometimes leads to bad solutions (see

Figures 4 to 8), it is difficult to apply it on local sites due to

the nature and specificity of local data.

A key limitation of this method is that its goal is to find the

closest partition to that obtained on the full dataset from its

subsets, so its performance depends on the ability of k-means

to cluster the full dataset correctly. If k-means fails on the full

dataset, for any reasons, then even exploiting the topological

relationships between local groups the distributed approach

will fail to find a good global partition.

7. CONCLUSIONS

This paper presents a distributed clustering algorithm based

on k-means that employs a centralized architecture. The

algorithm exploits the topological relationships between local

groups (inclusion, overlapping, and disjoint) to generate a

global clustering, unlike traditional distance-based methods

that merge clusters based on proximity and can merge disjoint

clusters because they are closest. Such arbitrary merges can

severely compromise the resulting clusters.

The key contribution of the proposed approach is its ability

to identify the partition that is closest to the partition obtained

on the dataset from its subsets without relying on local data.

Furthermore, the optimal number of groups for the global

clustering is dynamically determined by evaluating the

generated solution on local data, taking into account the fact

that each local clustering may have a different optimal number

of groups. This was validated through experiments conducted

in various scenarios.

Nevertheless, the study also identified certain limitations.

The performance analysis was conducted with the objective of

identifying the partition that was most similar to the partition

obtained from the dataset's subsets. This analysis did not aim

to identify a partition with a fixed number of groups.

Consequently, when the predefined number of groups does not

correspond to the optimal number for the dataset, the

algorithm encounters difficulties in accurately capturing the

underlying data structure. Consequently, the partition

generated may not be as similar to the centralized as would be

optimal. This is due to the nature and specificity of the local

data, as illustrated in Figures 4 to 8.

In summary, this work presents a promising distributed

clustering algorithm that addresses key challenges in

knowledge discovery across distributed data sources. It does

so by leveraging topological relationships to prioritize

merging clusters that share data, while disjoint subgroups are

not merged. Further research is required to extend the

applicability of this approach to centroid-based clustering

algorithms.

REFERENCES

[1] Larose, D.T., Larose, C.D. (2014). Hierarchical and k-

means clustering. In: Discovering Knowledge in Data:

An Introduction to Data Mining. John Wiley & Sons, pp.

209-227. https://doi.org/10.1002/9781118874059.ch10

[2] Kargupta, H., Han, J., Philip, S.Y., Motwani, R., Kumar,

V. (2008). High-Performance Distributed Data Mining.

In: Next Generation of Data Mining. CRC Press, New

York, pp. 152-168.

https://doi.org/10.1201/9781420085877

[3] Soliman, A., Girdzijauskas, S., Bouguelia, M.R.,

Pashami, S., Nowaczyk, S. (2020). Decentralized and

adaptive k-means clustering for non-iid data using

hyperloglog counters. In Advances in Knowledge

Discovery and Data Mining: 24th Pacific-Asia

Conference, PAKDD 2020, Singapore, pp. 343-355.

https://doi.org/10.1007/978-3-030-47426-3_27

[4] Laloux, J.F., Le-Khac, N.A., Kechadi, M.T. (2011).

Efficient distributed approach for density-based

clustering. In 2011 IEEE 20th International Workshops

on Enabling Technologies: Infrastructure for

Collaborative Enterprises, Paris, France, pp. 145-150.

https://doi.org/10.1109/WETICE.2011.27

[5] Forero, P.A., Cano, A., Giannakis, G.B. (2008).

Consensus-based distributed expectation-maximization

algorithm for density estimation and classification using

wireless sensor networks. In 2008 IEEE International

Conference on Acoustics, Speech and Signal Processing,

Las Vegas, NV, USA, pp. 1989-1992.

https://doi.org/10.1109/ICASSP.2008.4518028

[6] Weng, Y., Xiao, W., Xie, L. (2011). Diffusion-based EM

algorithm for distributed estimation of Gaussian mixtures

in wireless sensor networks. Sensors, 11(6): 6297-6316.

https://doi.org/10.3390/s110606297

[7] Bendechache, M., Kechadi, M.T. (2015). Distributed

clustering algorithm for spatial data mining. In 2015 2nd

IEEE International Conference on Spatial Data Mining

and Geographical Knowledge Services (ICSDM),

Fuzhou, China, pp. 60-65.

https://doi.org/10.1109/ICSDM.2015.7298026

[8] Januzaj, E., Kriegel, H.P., Pfeifle, M. (2003). Towards

effective and efficient distributed clustering. In

Workshop on Clustering Large Data Sets (ICDM2003),

60.

https://www.dbs.ifi.lmu.de/Publikationen/Papers/DBDC

.pdf.

[9] Macqueen, J. (1967). Some methods for classification

and analysis of multivariate observations. University of

California Press.

https://www.cs.cmu.edu/~bhiksha/courses/mlsp.fall201

0/class14/macqueen.pdf.

[10] Selmi, A.T.E., Zerarka, M.F., Cheriet, A. (2024).

Enhancing K-means clustering with post-redistribution.

Ingénierie des Systèmes d’Information, 29(2): 429-436.

https://doi.org/10.18280/isi.290204

[11] Tan, P.N., Steinbach, M., Kumar, V. (2018). Cluster

analysis: Basic concepts and algorithms. In Introduction

1303

to Data Mining, 2nd ed. Pearson Education, India, pp.

525-603.

https://www.pearsonhighered.com/assets/preface/0/1/3/

3/0133128903.pdf.

[12] Ahmed, M., Seraj, R., Islam, S.M.S. (2020). The k-

means algorithm: A comprehensive survey and

performance evaluation. Electronics, 9(8): 1295.

https://doi.org/10.3390/electronics9081295

[13] Datta, S., Giannella, C., Kargupta, H. (2008).

Approximate distributed k-means clustering over a peer-

to-peer network. IEEE Transactions on Knowledge and

Data Engineering, 21(10): 1372-1388.

https://doi.org/10.1109/TKDE.2008.222

[14] Ng, M.K. (2000). K-means-type algorithms on

distributed memory computer. International Journal of

High Speed Computing, 11(2): 75-91.

https://doi.org/10.1142/S0129053300000096

[15] Jin, R., Goswami, A., Agrawal, G. (2006). Fast and exact

out-of-core and distributed k-means clustering.

Knowledge and Information Systems, 10: 17-40.

https://doi.org/10.1007/s10115-005-0210-0

[16] Broder, A., Garcia-Pueyo, L., Josifovski, V.,

Vassilvitskii, S., Venkatesan, S. (2014). Scalable k-

means by ranked retrieval. In WSDM '14: Proceedings of

the 7th ACM International Conference on Web Search

and Data Mining, New York, USA, pp. 233-242.

https://doi.org/10.1145/2556195.2556260

[17] Durut, M., Patra, B., Rossi, F. (2012). A discussion on

parallelization schemes for stochastic vector quantization

algorithms. arXiv preprint arXiv:1205.2282.

https://doi.org/10.48550/arXiv.1205.2282

[18] Benchara, F.Z., Youssfi, M. (2021). A new scalable

distributed k-means algorithm based on Cloud micro-

services for High-performance computing. Parallel

Computing, 101: 102736.

https://doi.org/10.1016/j.parco.2020.102736

[19] Qin, J., Fu, W., Gao, H., Zheng, W.X. (2016). Distributed

k-means algorithm and fuzzy c-means algorithm for

sensor networks based on multiagent consensus theory.

IEEE Transactions on Cybernetics, 47(3): 772-783.

https://doi.org/10.1109/TCYB.2016.2526683

[20] Kotary, D.K., Nanda, S.J. (2019). Automatic

determination of K in distributed K-means clustering.

Procedia Computer Science, 165: 556-564.

https://doi.org/10.1016/j.procs.2020.01.050

[21] Xia, C., Hua, J., Tong, W., Zhong, S. (2020). Distributed

K-Means clustering guaranteeing local differential

privacy. Computers & Security, 90: 101699.

https://doi.org/10.1016/j.cose.2019.101699

[22] Kasiviswanathan, S.P., Lee, H.K., Nissim, K.,

Raskhodnikova, S., Smith, A. (2011). What can we learn

privately? SIAM Journal on Computing, 40(3): 793-826.

https://doi.org/10.1137/090756090

[23] Rodríguez-Barroso, N., Stipcich, G., Jiménez-López, D.,

Ruiz-Millán, J.A., Martínez-Cámara, E., González-Seco,

G., Luzón, M.V., Veganzones, M.A., Herrera, F. (2020).

Federated learning and differential privacy: Software

tools analysis, the Sherpa. ai FL framework and

methodological guidelines for preserving data privacy.

Information Fusion, 64: 270-292.

https://doi.org/10.1016/j.inffus.2020.07.009

[24] Snášel, V., Nowaková, J., Xhafa, F., Barolli, L. (2017).

Geometrical and topological approaches to Big Data.

Future Generation Computer Systems, 67: 286-296.

https://doi.org/10.1016/j.future.2016.06.005

[25] Alomari, H.W., Al-Badarneh, A.F., Al-Alaj, A.,

Khamaiseh, S.Y. (2023). Enhanced approach for

agglomerative clustering using topological relations.

IEEE Access, 11: 21945-21967.

https://doi.org/10.1109/ACCESS.2023.3252374

[26] Almgren, K., Kim, M., Lee, J. (2017). Mining social

media data using topological data analysis. In 2017 IEEE

International Conference on Information Reuse and

Integration (IRI), San Diego, CA, USA, pp. 144-153.

https://doi.org/10.1109/IRI.2017.41

[27] Felice, P.D., Clementini, E. (2009). Topological

Relationships. In: LIU, L., ÖZSU, M.T. (eds)

Encyclopedia of Database Systems. Springer, Boston,

MA. https://doi.org/10.1007/978-0-387-39940-9_432

[28] Robert, L. (2016). High Time Resolution Universe

Survey South (HTRU2). Figshare.

https://doi.org/10.6084/m9.figshare.3080389.v1

[29] Kalyani, K. (2013). Tamilnadu electricity board hourly

readings. UCI Machine Learning Repository.

https://doi.org/10.24432/C5KP4K

[30] Guellil, Z., Zaoui, L. (2009). Proposition d’une Solution

au Problème d’Initialisation Cas du K-means. In

Proceedings of the 2nd Conférence Internationale sur

l’Informatique et ses Applications (CIIA’09), CEUR

Workshop Proceedings, Saida, Algeria, p. 547.

http://ceur-ws.org/Vol-547/37.pdf.

[31] Rousseeuw, P.J. (1987). Silhouettes: A graphical aid to

the interpretation and validation of cluster analysis.

Journal of Computational and Applied Mathematics, 20:

53-65. https://doi.org/10.1016/0377-0427(87)90125-7

[32] Pollard, K.S., Van Der Laan, M.J. (2002). A Method to

Identify Significant Clusters in Gene Expression Data. In

U.C. Berkeley Division of Biostatistics Working Paper

Series. Berkeley Electronic Press: Berkeley, pp. 107.

https://biostats.bepress.com/ucbbiostat/paper107.

[33] Zhang, E., Zhang, Y. (2009). F-Measure. In: LIU, L.,

ÖZSU, M.T. (eds) Encyclopedia of Database Systems.

Springer, Boston, MA, pp. 50.

https://doi.org/10.1007/978-0-387-39940-9_483

[34] Leskovec, J., Rajaraman, A., Ullman, J.D. (2020).

Chapter 3. Finding similar items. In Mining of Massive

Data Sets, 3rd ed. Cambridge University Press, pp. 76-

77. http://infolab.stanford.edu/~ullman/mmds/ch3.pdf.

[35] Meilă, M. (2003). Comparing clusterings by the variation

of information. In Learning Theory and Kernel Machines:

16th Annual Conference on Learning Theory and 7th

Kernel Workshop, COLT/Kernel 2003, Washington, DC,

USA. Springer, Berlin, Heidelberg, pp. 173-187.

https://doi.org/10.1007/978-3-540-45167-9_14

1304

