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 Cluster analysis has been widely studied due to its importance and several methods have 

been developed for this purpose. However, these methods are designed to process on 

centralized data. In this paper, we present an asynchronous approach based on topological 

relationship. The proposed approach unfolds on three steps: First, each site searches for 

clusters (models) of its local data. Secondly, a central site proceeds to the analysis and 

search for the partition of the whole (the global model). Finally, we proceed with the search 

for the right number of groups of the global model. We note that each local data has their 

own number of clusters and it can be different from the number of clusters in the entire data. 

The experiments have clearly demonstrated the effectiveness of the proposed approach to 

find the partition closest to that obtained on the data set from its subsets. 
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1. INTRODUCTION 

 

Data partitioning, also known as cluster analysis, is the 

process of finding groups in data that are ideally characterised 

by high internal similarity and significant differences between 

groups [1]. Today, the rapid growth of acquisition and storage 

technologies has led to an increase in the amount of data 

available in various fields [2]. This data is often 

geographically dispersed across different locations and can be 

used to extract meaningful insights, dependencies or 

correlations; traditional centralised clustering algorithms are 

impractical due to data volume, processing capacity and 

privacy concerns associated with data aggregation [3]. 

Distributed clustering algorithms address this by building 

the overall model without requiring access to data from 

different locations. Two architectures are used [4]: 

synchronous, where all nodes build the global model together, 

requiring extensive data exchange, with communication either 

direct between pairs of nodes [5], circular between all nodes 

[6], or following a hierarchical structure [7]. Asynchronous 

methods, where each node builds a local model and sends it to 

a central location to be combined into a global model [8]. This 

method is more privacy friendly as only local models are 

shared. 

K-means [9, 10] is one of the most extensively studied and 

widely used clustering algorithms, favoured for its conceptual 

simplicity and computational efficiency for clustering large 

datasets [11]. Numerous distributed variants of the k-means 

algorithm have been proposed, they differ in the way they 

communicate and combine the local results [12]. In order to 

reduce communication between the different sites, a Peer-to-

Peer (P2P) architecture has been proposed by Datta et al. [13] 

where each node of the network calculates the clusters of local 

data, and exchanges the centroids with its neighbors. Each 

neighbor recalculates its centroids, using its local data, and the 

centroids obtained from its neighbors. However, no proof of 

convergence nor indication on the speed of convergence of the 

algorithm was provided. 

Ng [14] proposed to perform a two-level classification. The 

first one on the local data of each node, and the second on the 

local partitions generated by the previous step by performing 

another clustering of their centroids.  

Jin et al. [15] proposed a distributed fast and exact k-means 

clustering (DFEKM) that uses data sampling to improve 

performance. Each site sends a sample of its data to a central 

site where it is grouped using k-means method. After a 

complete run through all data, the centers are calculated, and 

the convergence is determined based on a metric called the 

confidence radius estimated in the previous step. The 

disadvantage of the proposed method is that the data set is 

sampled, the results strongly depend on the samples drawn (its 

size and content) and that in some cases, groups present in data 

may not exist in the sample. The best sample is detailed by 

Broder et al. [16].  

In the study of Durut et al. [17], a master/slave architecture 

is used to distribute the first step of k-means. On each iteration, 

all nodes perform the assignment step and calculate partial 

averages using their local data. Then they transmit the results 

to a master node, which calculates the overall average and 

outputs it to the other nodes. The same approach was used by 

Benchara and Youssfi [18] on Cloud micro-services.  

Qin et al. [19] proposed a distributed k-means which each 

step is executed in distributed manner. The initial centroids are 

chosen by collaborating all sites. After local data are affected 

to the closest centroid iteratively, the average consensus 

algorithm is used to calculate the new clusters and the 

convergence is reached the centroids are unchanged.  

The algorithm proposed by Kotary and Nanda [20] solve the 

distributed clustering problem as a constrained optimization 

using Lagrange multipliers. It aims to make uniform the 
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number of groups on all nodes by sharing the cluster centers 

between neighbors. They assumed that the cluster centers are 

very similar after convergence at each node. No proof of 

convergence has been provided for the proposed method. The 

solution may vary if the data is not uniformly distributed.  

Xia et al. [21] used the differential privacy technology local 

differential privacy (LDP) [22] in their distributed k-means 

solution. At each iteration a central site broadcasts the 

centroids to all the sites. The latter take care of the data 

assignment step and send to the central site the perturbed data 

according to the LDP principle and its membership group. The 

site recalculates the new centroids until the convergence. This 

solution is very greedy in term of communication because each 

site sends all these data at each iteration. 

Soliman et al. [3] presented an asynchronous decentralized 

k-means clustering algorithm for independently and 

identically distributed (IID) data, which is not the case (Non-

IID Data) as defined by Rodríguez-Barroso et al. [23]. The 

process begins by generating local model by k-means and 

iteratively share their result, at each node. The received local 

models are clustered using k-means to find the centers to be 

combined. Next, a weighted averaging is applied using the 

estimated cardinalities by HyperLogLog counters. 

In recent years, the integration of topology and geometry 

opens up new perspectives for data mining and allows for 

more reliable and richer results [24]. These approaches make 

it possible to analyse complex data and create abstract 

representations of all the characteristics of the data, which 

makes it possible to reveal intrinsic structures that are not 

easily identifiable with traditional statistical techniques [25]. 

The promising results from the application of these methods 

across various domains, such as biology and image processing, 

highlight their potential as powerful tools for data analysis [26]. 

In the present article, we propose an asynchronous approach 

considering that distributed clustering is performed in three 

stages. First, each site searches for the clusters (models) of its 

local data and transmit them to a central site. Secondly, a 

central site analyses and searches for the partition of the set 

(the global model) based on the notion of the topological 

relationship between the different components of the local 

models. 

Aggregation using topological relationships allows only 

subgroups that share data to be merged, so clusters that are 

included are merged first as they represent maximum data 

sharing and overlap second, while disjoint subgroups are not 

merged. distance-based methods do not allow this distinction, 

especially in a distributed context. Finally, we search for the 

right number of groups for the global model. 

Privacy is ensured by the fact that there is no sharing of data 

samples between nodes. Nodes process data locally and share 

only relevant information, such as local models. The isolation 

of data samples contributes to the confidentiality and privacy 

of the information being processed. This is a significant 

advantage over other distributed clustering methods that share 

data across multiple nodes. 

The paper is structured as follows: Section 2 presents some 

preliminary notations necessary for the presentation and better 

understanding of our work. The proposed approach is detailed 

in Section 3, followed by a time complexity and convergence 

analysis in Section 4. The experimental procedure is then 

described in Section 5. Section 6 is dedicated to the evaluation 

and discussion of the obtained experimental results. Finally, 

some concluding remarks are given in Section 7. 

 

2. PRELIMINARIES 

 

In this section, we list some preliminary notations and 

definitions frequently used in solving the addressed problem. 

Each site 𝑆 has its own set of 𝑁𝑠 data denoted by 𝑋𝑠, which 

are grouped using k-means in 𝑘𝑠  groups {𝐶1, 𝐶2, . . . 𝐶𝑘𝑠}. A 

group 𝐶𝑖  is represented by a centroid (the average of these 

members), it is characterized by the number of instances 𝑁𝑖 

and the radius 𝑅𝑖 defined by: 
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The adopted reasoning is based on the topological 

relationships between the different components of groups (i.e. 

centroid). Topological relations define the most primitive 

spatial relations that are allowed between entities, such as 

disjoint, meet, overlap, and inside (inclusion) [27]. We are 

interested in three situations: Inclusion, overlap and well 

separated. We define for each situation an operation: 

replacement, merging, and selection. 

 

2.1 Replacement operation 

 

The replacement operation aims to eliminate the 

redundancy contained in the raw model. It’s possible that two 

groups have exactly the same representatives (centroid) but 

some groups can be covered by others and find themselves 

eliminated (see Figure 1). So, a center 𝐶𝑖 only replaces 𝐶𝑗 if 𝐶𝑗 

is included in 𝐶𝑖. Formally: 
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Figure 1. The center j is covered by I 

 

2.2 Merging operation 

 

The merging operation consists in applying a hierarchical 

grouping on the overlapping subgroups (see Figure 2). Two 

groups overlap if: 
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Following the merger of two subgroups, the new one is 

created to replace them, its center is calculated by the weighted 

average of their centers. Its radius must allow it to 

cover/include the two subgroups from which it comes. As we 

do not have access to global data, this radius is estimated 

geometrically. We notice that the minimum diameter 𝐷 of the 

group enveloping two overlapping groups is equal to the 

difference between the sum of their diameters (𝐷1, 𝐷2) and the 

size of the overlap zone 𝑂𝐿. Formally: 
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Figure 2. The overlap of two subgroups 

 

2.3 Selection operation  

 

When the replacement and the merging operations do not 

allow to obtain the expected number of groups, we are in a 

situation where the subgroups are neither in inclusion nor in 

overlap, but they are well separated. In this case, we choose 

the desired number of groups that maximize the inter-group 

inertia. 

 

Algorithm 1: Maximum separation 

Input: Desired number of groups k, set of centroids  

Output: Partition of k groups 

 

1 // (first two  group)  

Search for (C1, C2) = argmax d (Ci,Cj) 

2 while k is not reached do 

3  Assign each centroid to the closest available groups 

4  Select the one that has the greatest distance from its 

closest group 

5  Add this centroid to the selected groups 

6  Increase k 

7 End while; 

 

The groups are chosen one by one (except for the first two 

groups) as follows: The first two groups are the two farthest 

subgroups. The other centers are drawn from the set of 

subgroups where each one is assigned to the set of groups 

already chosen. The subgroup which has the greatest distance 

from its closest group will be part of the set of final groups. 

The algorithm (1) illustrates the principle. 

 

 

3. DISTRIBUTED DATA CLUSTERING  

 

The proposed approach (see algorithm (2)) is based on an 

asynchronous model that considers the distributed clustering 

is achieved in two stages (plus one for the choice of the global 

number of groups). First, each site realizes the search for the 

local models of its local data (local partitions), at the end of 

this step, we retain for each group 𝐶𝑖 two characteristics, the 

number of instances 𝑁𝑖 and the radius 𝑅𝑖. These data (groups, 

number of instances and radius) are sent to a central site that 

analyzes and searches for the partition of the distributed data 

(global model). 

The union of the local partitions constitutes a first model of 

the distributed data which the number of groups is equal to the 

sum of the numbers of local groups (N_total = ∑𝑘𝑖). This raw 

model is characterized by a large number of subgroups that are 

gradually refined using the three operations mentioned 

(replacement, fusion, and selection). 

The refine algorithm proceeds to eliminate the redundancy 

by replacing the included groups with those that cover them 

until no inclusion relationship is found or the fixed number of 

groups is reached. If the latter is not reached, we use the 

merging operation where we merge the overlapping groups. 

We start with the closest, if the number of groups is not 

obtained, we choose the 𝑛 centers among the remainder that 

increase the separability (the selection operation). 

Therefore, the aggregation is performed in a hierarchical 

way using a sophisticated strategy that prioritizes the merging 

of subgroups based on their data sharing; similarity criteria are 

also considered to guarantee an efficient merging. As a 

consequence, subgroups with the highest degree of data 

sharing (inclusion) and similarity are merged first, followed by 

overlapping subgroups. Disjoint subgroups are not combined 

since they are fundamentally distinct and unrelated groups. 

 

Algorithm 2: Refine 

Input:  Desired number of groups k, set of centroids (local 

partitions) 

Output:  Partition of k groups 

1 while there are inclusions and k is not reached do 

2  Replace groups included 

3 while there are overlaps and k is not reached do 

4  Merge the closest 

5 if  number of groups not reached then 

6  Select the desired number of groups; 

 

The third step is to determine the overall number of groups. 

We generate partitions with the number of groups from 2 to 

N_total (N_total is the sum of the numbers of local groups) 

and ship them to the other sites where they are evaluated on 

their local data. The best partition is the one with the best 

quality indexes average. 

The convergence of the algorithm is guaranteed by the 

design of the algorithm itself. Since the number of subgroups 

is limited, as well as the number of included and overlapping 

relations, it is guaranteed that the algorithm will stop after a 
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finite number of iterations, rather than running forever and 

eventually converging to a solution. 

 

 

4. TIME COMPLEXITY AND CONVERGENCE  

 

The analysis of the time complexity of the Refine algorithm 

requires a thorough examination of the computational costs 

associated with each step. 

The algorithm is divided into three main parts: The merging 

of included groups, this phase is dominated by the search for 

inclusions in the entire set of elements, which is conducted 

comparing each pair of subgroups with a complexity of 𝑂(𝑁2). 

The merging of overlapping groups, like the preceding step, is 

dominated by the search for overlaps in the set of elements 

present at this phase, which is (𝑁 − 𝑁𝑖𝑛𝑐), so its complexity is 

𝑂((𝑁 − 𝑁𝑖𝑛𝑐)2). The last step consists of forming groups from 

the remaining disjoint clusters (Ndisj disjoint clusters) with a 

complexity of 𝑂(𝑁𝑑𝑖𝑠𝑗
2  +  𝑘 𝑁𝑑𝑖𝑠𝑗). 

Combining the aforementioned complexities results in a 

total complexity of 𝑂(𝑁2 + (𝑁 − 𝑁𝑖𝑛𝑐)2 + 𝑁𝑑𝑖𝑠𝑗
2  +  𝐾 𝑁𝑑𝑖𝑠𝑗). 

Since Ninc and Ndisj are subtotals of N, the dominant 

complexity is still 𝑂(𝑁2). Regarding the small size of the 

treated subgroups, the complexity is acceptable. 

The convergence of the algorithm is guaranteed by the 

design of the algorithm itself. Since the number of subgroups 

is limited, as well as the number of included and overlapping 

relations, it is guaranteed that the algorithm will stop after a 

finite number of iterations, rather than running forever and 

eventually converging to a solution. 

 

 

5. EXPERIMENTATION  

 

In experimental phase, we seek to determine the efficiency 

of our approach to find the closest partition to the one obtained 

with the dataset from its subsets. The datasets used in our 

experiments come from the UCI Machine Learning Repository, 

a widely used and publicly available collection of benchmark 

datasets for machine learning research. We chose to use the 

following datasets: High Time Resolution Universe (HTRU2) 

[28] and Tamil Nadu Electricity Board hourly readings [29]. 

These datasets were obtained in their pre-processed form 

provided by the repository. We also used the image shown in 

Figure 3. 

 

 
 

Figure 3. Tulip image divided into 4 and 16 delimited by 

dotted lines 

The HTRU2 is a dataset that describes a sample of candidate 

pulsars, each one characterized by eight continuous variables 

and one to designate the membership class. It contains 17898 

instances distributed into two classes, 1639 known as true 

pulsars and 16259 identified by human annotators as noise 

caused by radio interference. 

Tamil Nadu electricity board hourly readings represent the 

electricity consumption collected in real time every hour in 

residential, commercial, industrial and agricultural areas 

around Thanjavur City. This dataset has five attributes (forkva, 

forkw, type, sector and service). We chose to use three 

attributes: 

• For classification: Forkva and forkw attributes. 

• For the label: Sector attribute (integer value from 0 to 4) 

for the label. 

These data are divided and distributed randomly over 2, 4, 

8 and 16 sites (except the Tulip image dataset which is divided 

into 4 and 16 sites). Each site uses k-means clustering for local 

data clustering. We used an initialization algorithm based on 

the misclassified instance [30]. The latter has the advantage of 

ensuring the same expected results and to guarantee good 

quality by initially maximizing the inter-class inertia 

compared to a random initialization. 

In order to determine the locally optimal number of groups 

k, we varied k=2, ..., 16. For each value of k, we calculated the 

silhouette index (Si) [31]. The appropriate number of groups 

is the one that maximizes this value [32]. 

On the central site, the refine procedure is launched to 

generate partitions where the number of groups varies from 2 

to N_total. In order to determine the optimal partition, we 

evaluated the generated partitions on each site. The evaluation 

of the generated partitions is based on the same index of 

quality silhouette and we used the Mean Square Error (MSE) 

to compare partitions with the same number of groups 

(compactness). Then, we compared the chosen partition with 

the one obtained from the entire dataset to measure their 

resemblance. For this purpose, we use F-measure [33], Jaccard 

index [34] and variation of information (VI) [35]. 

 

 

6. RESULTS AND DISCUSSION  

 

This section presents a summary of the obtained results. In 

Section 6.1, we evaluated the different datasets and their 

subsets in order to determine the optimal number of groups. 

Then, we compared the generated partitions and those 

obtained (with all datasets) in Section 6.2. 

 

6.1 Individual clustering results 

 

Table 1. Number of groups obtained on each dataset 

 

Data set Tulip image HTRU2 
Tamil 

Nadu 

Number of 

groups 

Global data 5 2 4 

2 sites / 

2 groups 

for all 

sites 

4 groups 

for all 

sites 

4 sites 6, 4, 7, 2 

8 sites / 

16 sites 

3, 3, 2, 6, 4, 2, 

3, 2, 3, 6, 4, 5, 

3, 2, 4, 2 

 

The number of groups that maximized the silhouette index 

in each dataset is summarized in Table 1. Note that for HTRU2 

and Tamil Nadu, the number of groups in the subsets (local 

1300



 

data) is identical to that obtained in the entire data. This finding 

can be explained by the diversity of the data in the subsets. The 

case of the Tulip image dataset is a good testing scenario for 

our approach, as the number of groups is different for each 

subset, and even greater in some cases, than the number of the 

overall dataset. 

 

6.2 Evaluation of generated partitions 

 

We compared the partitions produced by our approach in 

the context of distributed clustering to those produced by a 

global clustering on the entire dataset using internal index and 

external index. The number of groups varies from 2 to N_total. 

In the case of the Tamil Nadu dataset (see Figure 4), MSE 

decreases each time the number of groups (2 to 4) is increased 

to the optimal number (4). Performances are similar at this 

level, then it continues to decrease for global clustering while 

it does not vary as quickly for generated partitions. 

Likewise, for the curves of the silhouette index (see Figure 

5), they are similar before the optimal zone (number of groups 

= 4) then differ beyond. We have the same phenomenon for 

HTRU2 dataset results (in Figure 6) because the diversity of 

local data which contains data that fit different groups in the 

global dataset. 

Indeed, local clustering is at the optimal range (4 groups in 

Tamil and 2 in HTRU2). It can only produce a partition with a 

number of groups less or equal to the optimal range which has 

a similar quality to global clustering. 

 

 
 

Figure 4. MSE according to the number of groups for Tamil 

Nadu dataset 

 

 
 

Figure 5. Silhouette index according to the number of groups 

for Tamil Nadu dataset 

 
 

Figure 6. MSE and silhouette index according to the number 

of groups for HTRU2 dataset 

 

 
 

Figure 7. MSE according to the number of groups for the 

Tulip image 

 

Figure 7 shows the MSE from the Tulip dataset results. The 

generated partitions are less or equal to 3 groups and have a 

lower quality (calculate the ratio) compared to the overall 

partition. From the number of groups = 5, the different 

partitions come together. MSE values are close except for the 

partitions generated in 4 sites, which from 10 groups have 

values greater than the others. 

From Figure 8, the silhouette index is similar for the 

different clustering at the optimal point (5 groups). Beyond 

this point, the values displayed fluctuate until the value 10 

where the global classification takes over with certain stability. 

Tables 2 and 3 summarize the obtained results by evaluating 

the global partition and the generated partitions with the 

optimal number of groups on the full dataset. 

We observe that the generated partitions are similar to those 

obtained on the dataset with a small improvement: 

• MSE from 0.107% to 3.081% 

• Silhouette index from 0.001% to 1.585%. 
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Table 2. Index quality in optimal range for HTRU (2 groups) 

and Tamil Nadu (4 groups) 

 
  HTRU2 
  MSE Ratio Silhouette Ratio 

H
T

R
U

2
 

Global 78.228 - 0.907980 - 

2 Sites 78.145 0.107 0.907487 0.054 

4 Sites 77.828 0.512 0.905870 0.232 

8 Sites 76.898 1.701 0.900164 0.861 

16 Sites 75.818 3.081 0.893588 1.585 

T
a

m
il N

a
d

u
 

Global 0.1915 - 0.588989 - 

2 Sites 0.1915 0% 0.589011 0.004 

4 Sites 0.1915 0% 0.588992 0.001 

8 Sites 0.1915 0% 0.588979 0.002 

16 Sites 0.1915 0% 0.588962 0.005 

 

Table 3. Index quality in optimal range for Tulip image (5 

groups) 

 

 
 Tulip image 

MSE Ratio Silhouette Ratio 

Global 42.1554 - 0.747445 - 

4 Sites 37.5698 10.88 0.761358 1.86 

16 Sites 35.7468 15.20 0.768436 2.81 

 

Table 4. Average obtained silhouette index on the local data 

 
 NBGR 2 Sites 4 Sites 8 Sites 16 Sites 

H
T

R
U

2
 

2 0.906 0.905 0.896 0.891 

3 0.582 0.862 0.835 0.594 

4 0.572 0.856 0.827 0.59 

5 - 0.579 0.573 0.582 

6 - 0.579 -0.097 0.579 

7 - -0.142 -0.09 0.577 

8 - -0.091 -0.021 -0.159 

9 - - -0.021 -0.07 

10 - - -0.023 -0.041 

T
a

m
il N

a
d

u
 

2 0.463 0.463 0.463 0.463 

3 0.512 0.513 0.513 0.513 

4 0.589 0.589 0.588 0.588 

5 0.509 0.506 0.501 0.502 

6 0.481 0.434 0.442 0.432 

7 0.425 0.435 0.405 0.426 

8 0.411 0.398 0.403 0.383 

9 - 0.387 0.369 0.387 

10 - 0.301 0.354 0.345 

T
u

lip
 im

a
g

e 
2   0.37   0.41 

3   0.611   0.454 

4   0.707   0.432 

5   0.754   0.597 

6   0.721   0.591 

7   0.613   0.578 

8   0.614   0.579 

9   0.593   0.55 

10   0.587   0.534 

 

With Tulip image, overall, the quality of the generated 

partitions is better than the one obtained on the whole dataset 

(global clustering) with a significant improvement of MSE 

from 10.88% to 15.20% as well as for silhouette index from 

1.86% to 2.81%. The various results show an improvement 

which can be explained by the fact of processing subsets of 

data allowing the approach a better detection of the groups. It 

reduces the influence of outliers (noise). Figure 4 confirms the 

results shown in Table 4. In Figure 9, (a1) and (a2) provide 

better separation of parts of images (i.e., green grass at the 

bottom of the image). 

In order to determine the globally optimal number of groups, 

we evaluated the generated partitions on the local data of the 

different sites, the one with the best average quality index is 

chosen. This process is done automatically. Table 4 shows the 

result of different evaluations by generated partitions in 

different case. We observe that the best value of silhouette 

index corresponds to the same number of groups in the global 

data. 

 

 
 

Figure 8. Silhouette index according to the number of groups 

for the Tulip image 

 

 
 

Figure 9. Clustering results using generated partitions: (a1) 4 

sites, (a2) 16 sites (b) Original image and (c) Global 

clustering 

 

Table 5. Similarity measurement between global and 

generated partition (Gen.) 

 

  Partition VI Jaccard 
F 

Measure 

H
T

R
U

2
 

2 sites 

Global Gen. 0.0014 0.9999 0.9999 

Gen. Label 0.5742 0.8032 0.8909 

Global Label 0.5739 0.8033 0.8909 

4 sites 

Global Gen. 0.0195 0.9976 0.9988 

Gen. Label 0.5806 0.8016 0.8899 

Global Label 0.5739 0.8033 0.8909 

8 sites 

Global Gen. 0.0654 0.9892 0.9945 

Gen. Label 0.6019 0.7951 0.8859 

Global Label 0.5739 0.8033 0.8909 

16 sites 

Global Gen. 0.1128 0.9781 0.9889 

Gen. Label 0.6293 0.7869 0.8807 

Global Label 0.5739 0.8033 0.8909 

T
a

m
il N

a
d

u
 

2 sites 

Global Gen. 0.0321 0.9939 0.9969 

Gen. Label 0.2281 0.3715 61.14 

Global Label 0.2281 0.3715 61.14 

4 sites 

Global Gen. 0.031 0.9943 0.9971 

Gen. Label 2.9142 0.2281 0.3715 

Global Label 2.9142 0.2281 0.3715 

8 sites 

Global Gen. 0.027 0.995 0.9975 

Gen. Label 2.9142 0.2281 0.3715 

Global Label 2.9142 0.2281 0.3715 

16 sites 

Global Gen. 0.0397 0.9924 0.9962 

Gen. Label 2.9142 0.2281 0.3715 

Global Label 2.9142 0.2281 0.3715 
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Table 5 shows a great similarity between the generated 

partition and the global partition. By comparing the generated 

partition with the global partition according to the labels, we 

noticed that they have the same ability to detect groups, the 

centralized approach is more efficient for groups detection, the 

better it is for the distributed one. The results show that the 

detection capacity is better for HRTU2 than for Tamil Nadu 

dataset. 

Finally, like any other research, this work also has some 

limitations. The performance analysis of the proposed 

approach focused only on finding the closest partition to the 

one obtained on the dataset from its subsets and did not explore 

the search for a partition with a fixed number of groups with 

the same quality as clustering on the entire of the dataset. 

Indeed, the number of groups is found automatically based on 

the silhouette index for both local clustering or generated 

partitions, setting a fixed number of groups for the global 

partition (generated) sometimes leads to bad solutions (see 

Figures 4 to 8), it is difficult to apply it on local sites due to 

the nature and specificity of local data. 

A key limitation of this method is that its goal is to find the 

closest partition to that obtained on the full dataset from its 

subsets, so its performance depends on the ability of k-means 

to cluster the full dataset correctly. If k-means fails on the full 

dataset, for any reasons, then even exploiting the topological 

relationships between local groups the distributed approach 

will fail to find a good global partition. 

 

 

7. CONCLUSIONS 

 

This paper presents a distributed clustering algorithm based 

on k-means that employs a centralized architecture. The 

algorithm exploits the topological relationships between local 

groups (inclusion, overlapping, and disjoint) to generate a 

global clustering, unlike traditional distance-based methods 

that merge clusters based on proximity and can merge disjoint 

clusters because they are closest. Such arbitrary merges can 

severely compromise the resulting clusters. 

The key contribution of the proposed approach is its ability 

to identify the partition that is closest to the partition obtained 

on the dataset from its subsets without relying on local data. 

Furthermore, the optimal number of groups for the global 

clustering is dynamically determined by evaluating the 

generated solution on local data, taking into account the fact 

that each local clustering may have a different optimal number 

of groups. This was validated through experiments conducted 

in various scenarios. 

Nevertheless, the study also identified certain limitations. 

The performance analysis was conducted with the objective of 

identifying the partition that was most similar to the partition 

obtained from the dataset's subsets. This analysis did not aim 

to identify a partition with a fixed number of groups. 

Consequently, when the predefined number of groups does not 

correspond to the optimal number for the dataset, the 

algorithm encounters difficulties in accurately capturing the 

underlying data structure. Consequently, the partition 

generated may not be as similar to the centralized as would be 

optimal. This is due to the nature and specificity of the local 

data, as illustrated in Figures 4 to 8. 

In summary, this work presents a promising distributed 

clustering algorithm that addresses key challenges in 

knowledge discovery across distributed data sources. It does 

so by leveraging topological relationships to prioritize 

merging clusters that share data, while disjoint subgroups are 

not merged. Further research is required to extend the 

applicability of this approach to centroid-based clustering 

algorithms. 
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