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Computing meaningful correspondences for shapes undergoing non-rigid deformations is a 

fundamental task, challenging shape analysis community for many decades. The functional 

map framework has emerged as a powerful tool in this domain over the past decade due to 

its computational efficiency. Instead of tackling the combinatorial challenge of matching 

individual points across shapes, it focuses on constructing a linear mapping between the 

spaces of functions defined on these shapes. The map between function spaces is specified 

by a low-dimensional matrix obtained via suitably chosen basis functions that characterize 

the function space. This mapping can then be converted into a point-to-point 

correspondence between the shapes. The selection of an appropriate basis is a critical factor 

influencing the overall effectiveness and precision of the task. This survey explores various 

bases proposed to represent function spaces comprehensively within the realm of shape 

correspondence. Further insights into possible future directions are also provided. 
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1. INTRODUCTION

Advancements in 3D technology have made shape-based 

object recognition crucial, focusing on detailed geometric and 

topological information. These shapes exist independently of 

viewpoint, making shape analysis vital in computer vision, 

graphics, and geometry for understanding 3D shape properties 

and relationships that are essential for digital interaction. 

Shape analysis includes shape retrieval [1, 2], reconstructing 

the surface of shape from data points [3], meaningful 

segmentation [4], shape compression [5], and more.  

Shape correspondence is a fundamental task that refers to 

matching two (or more) shapes in order to produce meaningful 

mapping between various elements of shapes [6]. Shape 

correspondence is crucial as the initial step in various 

applications like shape registration [7], symmetry detection [8], 

statistical shape modeling [9, 10], shape morphing [11], 

transfer of any attribute like deformation [12], texture [13], 

segmentation labels [14], transferring the style of one shape 

group to another [15]. These applications underscore its 

importance in effectively understanding, manipulating, and 

interacting with 3D shapes leading to enhanced object 

recognition and retrieval along with improved user experience 

in augmented and virtual reality applications. In Figure 1, a 

sparse point-to-point correspondence map between two cat 

shapes from the TOSCA Dataset [16] is depicted, highlighting 

the matching of corresponding body parts, say ears in both 

shapes. Although the research community has made 

significant progress in shape correspondence, further efforts 

are needed to develop techniques that effectively handle 

complex, noisy, and incomplete data, which will enhance the 

robustness and flexibility of real-world applications. 

Shape matching methods are mainly designed and 

categorized based on how shapes deform. Rigid deformation 

preserves Euclidean distances between points on a shape, 

while non-rigid deformation does not. Non-rigid deformations 

offer more flexibility in modeling shapes but also increase the 

complexity of shape correspondence problems [16]. To handle 

such variability, non-rigid deformations have traditionally 

been constrained to isometry, which restricts shape 

deformation by preserving surface distances between points. 

Bending a sheet of paper, folding a piece of cloth or twisting a 

pipe are few examples of isometric deformation. In Figure 2, 

the kid shape is shown in various poses, achieved by bending 

his legs and arms, illustrating isometric deformations. While 

rigid shape matching has been well addressed with efficient 

algorithms [17], non-rigid shape matching continues to be a 

major research focus due to the complex challenges posed by 

elastic, topological, and structural variations in shapes [18]. 

Based on the underlying representation of the shape, various 

methods have been proposed to compute shape 

correspondences. The geometry of a 3D shape can be 

represented via point cloud, surfaces, skeletons or volumes 

[19]. Surfaces can have implicit representation as level sets or 

can have an explicit representation as polygonal mesh, 

encapsulating both geometric as well as topological 

information [20]. For instance, the alignment of point clouds 

is achieved via RANSAC algorithm [21], surfaces are matched 

by identifying the underlying deformation [22], matching of 

shape skeletons is addressed in the work by Biasotti et al. [23], 

etc. 

Shape correspondences can be computed directly through 

feature-based matching, iterative alignment with a few 

landmark points, or a hybrid approach that refines 

correspondences while searching for optimal alignment. 

Shape alignment involves finding a geometric transformation 
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to make shapes congruent and is primarily used for 3D object 

reconstruction [24] and, more recently, for reconstructing 

landscapes through time-varying registration [25]. Directly 

manipulating shape geometry is computationally demanding, 

necessitating alternative methods. Various approaches to 

compute shape correspondences are surveyed in [19, 26]. 

 

 
 

Figure 1. Meaningful point-to-point correspondences for 

sparse points for Cat shapes from TOSCA dataset [16] 

 

 
 

Figure 2. Shapes from Kids Dataset subjected to isometric 

(or near-isometric) deformation depicting bending 

 

Functional maps introduced by Ovsjanikov et al. [27] has 

addressed this challenge by transforming the problem of 

directly computing point-to-point correspondences to 

efficiently computing a linear mapping between functional 

spaces, defined on shapes. The computed linear functional 

map can then be utilized to recover point-to-point 

correspondences between shapes. Characterization of 

functional spaces is facilitated by the use of basis functions. 

By limiting the number of basis functions, shapes can be 

efficiently represented and processed in a lowdimensional 

space defined by the selected set of restricted basis functions. 

The objective of this research work is to explore the 

following question within the context of functional maps for 

determining correspondences. How can different functional 

map bases be effectively used to represent and compute 

correspondences in non-rigidly deformed shapes, what 

properties and scenarios do they best address, and is there an 

optimal basis that provides a universal solution for various 

deformation complexities? 

 

1.1 Related work 

 

Functional maps, pioneered by Ovsjanikov et al. [27], 

revolutionized non-rigid shape correspondences. A 

SIGGRAPH Asia course [28] then distilled the essential 

mathematical principles, incorporating the latest 

advancements. These maps showcase adaptability across 

vector field analysis [29], fluid simulation [30], mesh 

quadrangulation [31], and other shape analysis tasks. Despite 

their widespread use, selecting an ideal basis function remains 

a challenging area, crucial for accurate correspondence 

determination. Over time, researchers have proposed various 

basis functions, each with distinct strengths and weaknesses, 

elaborated in Section 5. Recently, Cammarasana and Patan’e 

[32] discusses various basis functions but restricts its 

examination to only Laplacian based basis functions utilized 

for various shape analysis tasks. 

 

1.2 Scope 

 

This survey paper comprehensively addresses the diverse 

range of basis functions proposed and employed particularly 

for non-rigid shape correspondence till date. The underlying 

principles, limitations and practical implications involved in 

utilizing different basis functions is thoroughly discussed. 

Basis functions are analysed based on the properties they 

exhibit across parameters like orthogonality, compactness (i.e., 

the ability of a few basis functions to effectively capture 

necessary details for shape matching), consistency in handling 

isometric or non-isometric deformations across diverse shapes, 

the capacity to capture global aspects of shape or offer local 

support, and robustness against topological noise. These 

aspects and more are discussed in detail in Section 6. This 

paper seeks to serve as a comprehensive reference point for 

researchers, students, academicians and practitioners in shape 

matching, who want to stay updated on the latest 

advancements in this field, guiding them to the optimal basis 

functions for their specific needs. 

 

1.3 Organization 

 

The survey paper is organized as follows. Section 2 

formally introduces the problem of shape correspondence 

along with its diverse classifications. Various underlying 

representations of shapes are also provided. Section 3 

discusses multiple approaches suggested to solve the 

correspondence problem. Section 4 delves into the 

mathematical foundations of functional maps, incorporating 

latest developments. Section 5 thoroughly provides a detailed 

historical account of basis functions and presents their desired 

characteristics.  Section 6 provides the comparative analysis of 

basis functions highlighting in tabular form the properties 

fulfilled by each basis. Section 7 provides possible future 

directions for functional map bases with respect to non-rigid 

shape correspondence. Section 8 summarizes the work.   

 

1.4 Notations 

 

Following notations are used in this paper. 𝑆  and 𝑋  are 

continuous and discrete representations of the surface of a 

shape respectively. 𝜂  is point-to-point map between shapes, 

while 𝜂𝐹  is the functional representation of 𝜂 . Continuous 

version of Laplace-Beltrami Operator is specified as ∆𝑋.  

𝑊𝑋 represents cotangent-weight matrix and 𝐷𝑋  is a lumped 

mass matrix for shape 𝑋. ICP means Iterative Closest Point. 

LBO means Laplace-Beltrami Operator. CQHB stands for 

Coupled-quasi Harmonic basis. CMM is Compressed 

Manifold Modes. LMH means Localized Manifold Harmonics. 

HO is Hamiltonian Operator. CMH means Coordinate 
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Manifold Harmonics. LAB is Landmark Adapted Basis 

functions. 

 

1.5 Datasets 

 

This study employs TOSCA Dataset [16], KIDS Dataset 

[33], SHREC 2010 [34] and SHREC 2019 Datasets [35]. 

 

 

2. OVERVIEW 

 

2.1 Shapes 

 

Kendall [36] described a shape as all the geometrical 

information that remains when location, scale, and rotational 

effects are filtered out from an object. However, this definition 

only considers Euclidean distances and doesn't handle shapes 

undergoing non-rigid deformations. In computer graphics, 

various techniques, such as Constructive Solid Geometry 

(CSG), Voxel Representation, and Boundary Representation 

(B-rep), etc. are employed to describe shapes. Among these, 

B-rep is preferred due to its superior flexibility and efficiency 

in compactly representing shapes [37]. In geometry processing, 

shapes are characterized as the 2D surfaces defining the 

boundaries of tangible 3D objects. Varied shape 

representations are categorized into the continuous and 

discrete as follows: 

 

2.1.1 Continuous shape representations 

Surface of a shape can be defined as an orientable 

continuous 2D-manifold embedded in ℝ3  [20]. 

Mathematically, continuous surfaces ( 𝒮)  can be specified 

either by a parametric representation or by an implicit 

representation. Parametric surfaces are vector function f: Ω →
 𝒮 mapping a parameter domain Ω ϵ ℝ2 onto a surface 𝒮 ϵ ℝ3. 
Spline and subdivision surfaces [38] are examples of 

parametric representations of shape. Implicit (or volumetric) 

representation is the zero set of a scalar-valued function 

𝑆: ℝ3 → ℝ  i.e. 𝑆 = {𝑥 ϵ ℝ3 | 𝑆(𝑥) = 0}. Signed-distance 

fields [39] and level sets [40] describe implicit representations 

of surfaces. For complex shapes, a single function 

approximating the entire surface is impractical. Instead, a 

piecewise approach is used, approximating the surface locally 

with global tolerances. Triangles or quadrangles are used for 

parametric surfaces, while hexahedral (voxels) or tetrahedral 

cells represent implicit surfaces in a piecewise manner.  

 

2.1.2 Discrete shape representations 

Surface of a shape can be defined as an orientable 

continuous 2D-manifold For computation, a polygon mesh 

and point cloud are the discrete representations of a shape (see 

Figure 3). A 2D polygon mesh 𝑀 = (𝑉, 𝐸, 𝐹) embedded in 3D 

is a collection of vertices 𝑉 , edges 𝐸  and faces 𝐹 , 

approximating the smooth surface with a piece-wise linear 

mapping containing both geometric and topological 

information of the shape. Each vertex 𝑣𝑖  𝜖 𝑉   is a 3D 

coordinate (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) in ambient space. Mesh faces are usually 

convex polygons of various shapes (triangles, quadrilaterals, 

etc.) with shared edges limited to two faces per edge. 

Triangular meshes are preferred due to hardware optimization 

and efficiency. A polyhedral mesh is similar but includes 

volumetric cells. Point clouds represent shapes with only 

vertices in ℝ3, lacking connectivity information [41]. Levoy 

and Whitted [42] proposed to use point clouds for enhanced 

efficiency in displaying landscape scenes due to increasing 

visual complexity. 

 

 
 

Figure 3. Geometry of horse shape represented as point 

cloud (left) and a triangular mesh (right) from TOSCA 

Dataset [16] 

 

2.2 Shape correspondence 

 

Shape correspondence problem can be formally stated as: 

Given 𝑛 shapes 𝑆1, 𝑆2, 𝑆3.... 𝑆𝑛 find a meaningful relation (or 

mapping) 𝑅 among the elements (points, skeletal attributes, or 

components) of these  shapes. Two elements 𝑎 ∈ 𝑆1 and 𝑏 ∈
𝑆2 are said to be in correspondence if (𝑎, 𝑏) ∈ 𝑅. Meaningful 

map entails understanding the shape structure and 

functionality both at the global and the local level. The map 

can be constrained as one-to-one, one-to-many or many-to-

many depending upon the application [19]. A point-to-point 

map between two discrete shapes 𝒳1 and 𝒳2 is expressed as 

η: 𝒳1 →  𝒳2  such that ∀𝑥1 ∈ 𝒳1| ∃ η(𝑥1) ∈ 𝒳2 . If both the 

shapes contain same number of points, then 𝜂 is a bijection. 

Computing this mapping involves accurately connecting 

specific points, like ensuring the left ear of one cat shape 

corresponds precisely to the left ear of another (see Figure 1). 

However, identifying matching points between shapes leads to 

an exponential increase in possible solutions, with complexity 

O(n!), making the problem NP-hard. Various aspects of 

correspondence problems have been explored as follows: 

Full vs Partial Matching Depending on the presence of 

missing or additional components in shapes relative to each 

other, correspondence mapping may involve matching all 

elements (full match) or selectively matching certain elements, 

indicating a partial match. Partial shape matching presents 

additional challenges as seen in Figure 4 with shapes such as 

an animal horse and a mythological creature centaur from the 

TOSCA dataset [16]. Despite global dissimilarities between 

shapes, certain components, like their bottom parts, may match, 

significantly increasing the search space [43]. 

 

 
 

Figure 4. Partial shape matching between a Horse and a 

Centaur from TOSCA dataset [16], where bottom parts of 

both shapes match 
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Sparse vs Dense Correspondences Based on the density of 

correspondences, all (dense) or few (sparse) of the elements 

are matched. Matching key components like hands, legs, head 

of cat shapes as depicted in Figure 1 offers valuable insights 

into cat shape semantics [44]. However, applications like 

shape morphing and attribute transfer demand dense 

correspondences for achieving global smoothness [45]. 

Directly computing a dense correspondence map is infeasible, 

so various methods resort to obtaining sparse correspondences 

first and then extend them to dense correspondences [46]. 

 

2.2.1 Rigid shape matching 

When a shape undergoes transformation such that the 

pairwise euclidean distances remain unchanged, determining 

correspondences for such shapes, have traditionally been 

posed as a rigid alignment (or registration) problem. Under the 

assumption of rigidity, a shape can be deformed via geometric 

transformations like rotation, translation and reflection or their 

compositions. Rigid registration seeks to obtain an optimal 

rigid transformation that aligns two shapes. Iterative Closest 

Point (ICP) [47] is a renowned method for establishing 

pointwise correspondences between shapes. This local-search 

algorithm iteratively determines correspondences while 

minimizing distances between corresponding points, often 

using a variant of Hausdorff distance [48]. However, ICP's 

performance is significantly influenced by its initial alignment, 

which is a consequence of its greedy optimization. To address 

occlusions and topological noise, efficient versions of ICP [49] 

have been developed. Recently, Zhang et al. [50] introduced a 

faster and more robust version of ICP, boasting improved 

convergence rates.  

 

2.2.2 Non-rigid shape matching 

While rigid shape matching techniques have seen success, 

their effectiveness is constrained in practical situations due to 

the diverse poses and deformations shapes can undergo. 

Variations in pairwise Euclidean distances are significant, as 

seen in Figure 5, where shapes can experience complex non-

rigid deformations such as stretching around shoulders (Figure 

5a) and topological changes induced by self-contact (Figure 

5b), making it difficult to establish meaningful pointwise 

correspondences. To facilitate mathematical analysis of 

shapes experiencing non-rigid deformations and expedite 

correspondence searching, the traditional approach mainly 

restricts deformations to isometry or approximate-isometry, as 

depicted in Figure 2. Isometric deformations aim to maintain 

geodesic distances [51, 52] between points on a shape's surface, 

a property common in real-world organic shapes. Elad and 

Kimmel [6] employed pose-invariant embeddings using 

intrinsic geodesic distances for correspondence determination. 

Bronstein et al. [53] utilized a joint similarity criterion, 

balancing intrinsic and extrinsic measures, to improve 

pointwise correspondences. Introducing stretching into 

deformations escalates the complexity of non-rigid shape 

matching. For instance, matching an elephant with a gorilla 

presents a more challenging non-isometric shape matching 

problem than matching two elephants in different poses. 

Addressing this complexity, Kim et al. [54] introduced a fully 

automatic technique to compute a low-distortion and smooth 

correspondence map between non-isometrically deformed 

shapes. Yet, this method doesn't readily apply to partial shape 

matching, as it computes a global mapping without 

considering localization aspects. For a comprehensive 

exploration of non-rigid shape correspondences, readers are 

urged to consult the insights provided in the study of Bronstein 

et al. [16].  

 

 
a) Deformation inducing bending with stretching, folds and 

creases 

 
b) Deformation inducing topological changes 

 

Figure 5. Shapes of articulated wooden mannequins from 

SHREC 2019 Dataset [35] subjected to various non-rigid 

deformations 

 

 

3. SHAPE CORRESPONDENCE APPROACHES 

 

Shape correspondence, a longstanding challenge, has driven 

various techniques in the shape analysis community. 

Correspondence maps can be estimated through registration, 

alignment-based, similarity-based, or learning-based 

approaches, as outlined below: 

 

3.1 Registration or alignment based approaches 

 

Registration-based approaches align shapes by deforming 

the source shape to the target or aligning both shapes to a 

common domain through parametrization [25]. Once aligned, 

pointwise correspondence is established by identifying 

proximal points. This alignment is achieved by seeking a 

geometric transformation that aligns the shapes. Chang and 

Zwicker [55] aim for piece-wise rigid alignment by applying 

transformations to localized segments of the shape, rather than 

seeking a global transformation (refer Section 2.2.1). To 

register shapes undergoing non-rigid deformations, a 

regularization is introduced to ensure similarity of 

transformations across spatially proximate points, effectively 

determining a deformation field for the source shape. Deng et 

al. [25] investigated non-rigid registration schemes based 

solely on geometric information, while Saiti and Theoharis [56] 

explored the registration of multimodal shape data with 

differing underlying structures, dimensions, densities, and 

noise levels. 
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3.2 Similarity based approaches 

 

Computing correspondences directly involves deriving 

geometric invariants and feature descriptors for different shape 

elements, tailored to the specific type of deformation. These 

descriptors include pointwise surface descriptors such as GPS 

[57], HKS [58, 59], and WKS [60], or pairwise descriptors like 

geodesic distances [51], biharmonic distances [61], etc., used 

for shapes undergoing isometric deformations.  

Recent techniques have championed the use of learning-

based descriptors including parametric spectral descriptors 

[62], descriptors learnt considering no known deformation 

model between the shapes [63], robust descriptors with 

relatively less training data learnt from raw shapes [64]. These 

descriptors form an objective function that maximizes 

descriptor similarity while minimizing potential deformation 

without explicit alignment [65]. The objective function is 

optimized using well-known continuous optimization 

techniques, such as linear programming in the study by Berg 

et al. [66], convex optimization in the study by Zass and 

Shashua [67], or discrete optimization techniques as utilized 

in the study by Zhang et al. [45] via tree-based searches. 

 

3.2.1 Embeddings 

By embedding shapes in a lower-dimensional geometric 

feature space, a hybrid method simplifies the registration 

process. Correspondences are then inferred from spatial 

relationships within this common space. The embeddings can 

be determined either as isometric or spectral embedding. 

Isometric embedding refers to a mapping or transformation of 

geometric objects in such a way that the pairwise distances on 

the surface of shape remain unchanged [6]. However, by 

leveraging the spectral properties of mesh operators, spectral 

methods offer robust and efficient means to access inherent 

geometric structure of shapes [68]. These techniques that are 

used for directly computing pointwise correspondences give 

rise to challenging non-linear optimization problems that lack 

convexity, posing significant challenges in terms of solution. 

Introducing global constraints into such problems also 

inherently complicates the optimization process. 

 

3.2.2 Functional maps 

The mathematical idea of functional maps was introduced 

in the study [27] to match near-isometric manifolds. It aims at 

obtaining a linear map between spaces of functions defined on 

the shapes, by matching feature descriptors posed as real-

valued functions. Functional map determines the similarity of 

real-valued functions defined on shapes and can be compactly 

represented as a low-rank matrix given a choice of basis 

functions.  Once the functional map is computed, it is 

converted efficiently to obtain point-to-point correspondences 

between shapes. It is an automatic method and does not depend 

on the user input in the form of priors and is computationally 

quite efficient as it, in a sense, linearise the challenging non-

rigid shape correspondence problem. Since the introduction of 

functional maps in the geometry processing community, it has 

become a key building block for varied shape analysis tasks. 

Refer Section 4 for an in-depth discussion of functional maps. 

 

3.3 Learning based approaches 

 

Methods based on machine learning and deep neural 

networks are also demonstrating promising capabilities 

concerning shape correspondence [69]. Xu et al. [70] proposed 

various data-driven techniques for determining 

correspondences. For robust generalization, supervised 

methods need large datasets, while unsupervised alternatives, 

though class-agnostic and annotation-free, may lag in 

performance compared to supervised counterparts [71]. 

Learning-based methods still suffer from over-fitting, heavy 

dependence on application-specific shape priors and data 

augmentation apart from being computationally expensive, 

limiting their use in resource-constrained settings [64]. 

Recently Abdelreheem et. al. [72] exploited capabilities of 

large language and vision models to determine non-isometric 

shape matching.  

 

 

4. FUNCTIONAL MAPS  

 

Ovsjanikov et al. [27] introduced a coordinate free, 

independent of underlying geometric representation of shapes, 

computationally efficient functional map framework that 

utilizes the idea of functional maps to compute point-to-point 

correspondences between shapes. Instead of directly 

comparing physical coordinates of shapes, functional maps 

operate in a higher-level space of geometric functions. 

Formally, on a shape 𝒮, a real-valued function is specified as 

𝑓: 𝒮 → ℝ describing some geometric property like curvature 

or surface distance from a specific point to all other points on 

the shape, etc. (refer Figure 6). Consider 𝐹(𝑆, ℝ)  as the 

generic space of such scalar-valued functions defined on the 

shape 𝒮 . For two shapes 𝒮1 and 𝒮2 equipped with functional 

spaces 𝐹(𝒮1, ℝ)  and 𝐹(𝒮2, ℝ)  respectively, a point-to-point 

bijective correspondence map is specified as 𝜂: 𝒮1 → 𝒮2 , 

which induces a natural transformation 𝜂𝐹: 𝐹(𝒮1, ℝ) →
 𝐹(𝒮2, ℝ) , a unique functional map  between two function 

spaces, also known as the functional representation of map 

𝜂. Hence, for any function 𝑓1 ∈ 𝐹(𝒮1, ℝ) , a corresponding 

function 𝑓2 ∈ 𝐹(𝒮2, ℝ) can be obtained via functional map as 

𝑓2 = 𝜂𝐹(𝑓1) or derived via composition as 𝑓2 = 𝑓1 ∘ 𝜂−1. Note 

that, however complex 𝜂  may be, 𝜂𝐹  operates linearly 

between function spaces and the knowledge of 𝜂𝐹  is 

equivalent to knowledge of 𝜂 . Refer to the study by 

Ovsjanikov et al. [27] for proofs. 

 

 
 

Figure 6. Real-valued functions visualized on wolf shape 

from TOSCA dataset [16] depicting geodesic distances from 

different source points (left; right) and mean curvature 

(middle) (colours from blue to red indicate small to high 

values) 

 

Let the space 𝐹(𝒮1, ℝ) be characterized by a basis {𝜙𝑖}𝑖≥1  

such that any function 𝑓1 ∈ 𝐹(𝒮1, ℝ)  can be expressed as 

linear combination of basis functions as 𝑓1 =  ∑ 𝛼𝑖𝜙𝑖  𝑖 , where 

𝛼𝑖  are representation coefficients that can be identified by 

projecting the function 𝑓1 on each basis function 𝜙𝑖. Since 𝜂𝐹 

is a linear mapping, 𝜂𝐹(𝑓1) = 𝜂𝐹(∑ 𝛼𝑖𝜙𝑖  𝑖 ) =  ∑ 𝛼𝑖𝑖  𝜂𝐹(𝜙𝑖). 

Simultaneously, if the function space 𝐹(𝒮2, ℝ)  is 

characterized by basis {𝜓𝑗}
𝑗≥1

, then 𝜂𝐹(𝜙𝑖) =  ∑ 𝛽𝑗𝑖𝑗 𝜓𝑗  for 

some {𝛽𝑗𝑖} such that: 

 

𝜂𝐹(𝑓1) =  ∑ ∑ 𝛼𝑖𝛽𝑗𝑖𝜓𝑗𝑖𝑗   (1) 
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If 𝑓1 is represented as a coefficient vector 𝒂 =
(𝛼0, 𝛼1, … , 𝛼𝑖, … )  and 𝑓2 = 𝜂𝐹(𝑓1)  as a vector 𝒃 =
(𝑏0, 𝑏1, … , 𝑏𝑖 , … ), then Eq. (1) signifies 𝑏𝑗 = ∑ 𝛽𝑗𝑖𝛼𝑖𝑖  where 

𝛽𝑗𝑖  is the 𝑗𝑡ℎcoefficient of 𝑖𝑡ℎbasis function of 𝐹(𝑆1, ℝ) which 

has been mapped to 𝐹(𝑆2, ℝ) i.e. 𝑗𝑡ℎ  coefficient of 𝜂𝐹(𝜙𝑖) 

expressed in basis 𝜓𝑗. Note that 𝛽𝑗𝑖  is solely determined by the 

basis and the map 𝜂 , and is independent of 𝑓1 . If basis 

functions {𝜓𝑖}  are orthonormal with respect to some inner 

product <⋅,⋅> as 𝛽𝑗𝑖 = < 𝜂𝐹(𝜙𝑖 , 𝜓𝑗 > then {𝛽𝑗𝑖}denoted by 𝐂 

has a simple structure. Consider shapes 𝒳1 and 𝒳2  as the 

discrete representation of shapes, sampled at 𝑛  points with 

basis matrices Φ, Ψ ∈ ℝ𝑛×𝑘  comprising of only 𝑘  basis 

functions for both shapes respectively, then a linear functional 

map 𝜂𝐹  can be expressed via a matrix 𝐂 ∈ ℝ𝑘×𝑘  that 

intuitively maps coefficients from one shape's basis to the 

other. For any function 𝑓1 ∈ 𝐹(𝒳1, ℝ) , represented as a 

coefficient vector 𝒂, the functional map acts on the vector as 

𝜂𝐹(𝒂) = 𝐂𝒂  fully encoding the underlying pointwise 

correspondence map 𝜂.  
 

4.1 Determining functional map  
 

Identification of a correspondence map between shapes 

amounts to determining functional map 𝜂𝐹 and then convert it 

into point-to-point correspondences (refer Section 4.2). 

Functional map framework consists of various steps. First step 

is to determine feature descriptors on each shape that are 

essentially real-valued functions and are expected to remain 

invariant under the desired mapping. Examples of such 

descriptor functions are mentioned in Section 3.2. Once the 

descriptor functions have been identified for both the shapes, 

next step is to determine basis for the respective function 

spaces such that descriptor functions can be efficiently 

represented and utilized as constraints for computing 𝜂𝐹 . 

Laplace-beltrami operator (LBO) eigenfunctions are utilized 

as basis functions in the original work of functional maps [27] 

which are essentially Fourier basis on manifolds [73, 74]. LBO 

eigenfunctions are a preferred choice for basis as only few 

eigenfunctions are required to represent most natural functions 

on shape and due to the stability of the space of functions 

spanned by these eigenbasis under deformations. Please refer 

Section 5 for more details on the properties a basis function 

should possess. Next step is to estimate the functional map 𝐂 

by solving the following optimization problem in the least 

squares sense: 

 
Copt = arg min

C
Edesc (C) + μEreg(C)  (2) 

 

where first term preserves the descriptor functions, 𝜇  is a 

scalar weight parameter and the second term regularizes the 

map by emphasizing the accuracy of its overall structural 

characteristics. Orthogonality of the functional map ensures 

the presence of an underlying point-to-point map; hence Eq. 

(2) is solved such that 𝐶𝑇𝐶 =  𝐼.  Note that 𝐶 , the resulting 

functional map is unaffected by the number of shape points, 

making it efficient, especially for high-resolution shapes. 

Functional maps, due to its compactness, computational 

efficiency, and the capacity to seamlessly transfer information 

across different shapes, have emerged as a powerful technique 

to match non-rigid shapes. 
 

4.2 From functional maps to correspondences 
 

Once functional map 𝜂𝐹 has been optimized as discussed in 

Section 4.1, the underlying point-to-point map 𝜂 which 

induces 𝜂𝐹  is desired. Consider Φ and Ψ  as 𝑘 -dimensional 

point clouds and obtained functional map 𝐂 being orthogonal, 

can be considered a rigid alignment transformation between 

them. Set 𝐂0 =  𝐂. For every 𝑖𝑡ℎ row of Ψ𝐂0
𝑇, find the closest 

row 𝑗𝑖  in Φ  via nearest-neighbour algorithm. Solve for an 

optimal and orthonormal 𝐂  minimising ∑ || Φ𝑗𝑖
− Ψ 𝐂𝐓||2 𝑖  

and set 𝐂𝟎 = 𝐂. These operations are repeated convergence. In 

short, establishing point-to-point correspondences from a 

functional map relies on the rigid ICP alignment of spectral 

coordinates Φ and Ψ in 𝑘-dimensional spectral domain. 

 

4.3 Improvements in functional maps 

 

Over time, a multitude of alternative regularization 

techniques and extensions have been suggested, leading to 

substantial enhancements in the accuracy of estimation of 

functional maps and hence point-to-point correspondences. 

Determination of functional map has been improved by 

dealing with unknown ordering of descriptor functional 

constraints [44], by adding a geometric structure on the 

functional map matrix and considering both rows and columns 

as functions on respective shapes [75], by proposing to 

consider descriptor functions as linear operators ensuring 

improved underlying pointwise map [76], by proposing a 

regularizer consisting of a bounded Laplacian operator 

ensuring structural preservation of functional maps [77]. 

ZoomOut [78], a promising end-to-end technique that 

progressively expands the size of functional basis, while 

alternating between optimization of functional map and 

computation of point-to-point mapping. By exhibiting a 

particular structure on the functional map, Rodolà et al. [79] 

extended maps to deal with partial shape matching. In order to 

enhance the resilience of functional maps to diverse mesh 

tessellations and to refine the precision of pointwise 

correspondences, a technique involving map deblurring and 

denoising was introduced by Ezuz and Ben-Chen [80]. While 

continuous optimization techniques like ADMM and 

MADMM have dominated the field of optimal basis and 

functional map optimization for the past decade, Ren et. al. [81] 

introduced a promising discrete solver designed specifically 

for energies based on functional maps. 

 

 

5. BASIS FOR FUNCTIONAL MAPS  

 

Basis functions are essential in the functional map 

framework, defining the space for shape computation. Initially 

used for space classification and theorem proving, they have 

evolved to analyze spaces across domains. Following reasons 

also establishes the significance of basis functions in the 

functional mapping of shapes: 

Efficiency Functional maps represented via small number 

of basis functions results in significantly improved 

computational efficiency and reduced storage requirements 

particularly for high-resolution shapes.  

Robustness Basis functions are resilient against noise and 

deformations, leading to heavy utilization for real-world shape 

analysis tasks. 

The choice of appropriate basis functions is crucial for 

improving the precision of point-to-point correspondences 

achieved through the functional map approach. Section 5.1 

discusses various desirable properties that a basis should 

exhibit in order to describe the space of functions defined on 
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shapes. 
 

5.1 Desirable properties of basis functions 
 

Basis functions should incorporate characteristics that 

capture critical geometric aspects of the shape. Following are 

preferred properties that a basis should possess: 

(1) Completeness: All linear combinations of basis 

functions should be able to represent the entire space of 

functions defined on shape, regardless of the complexity of its 

geometry.  

(2) Compactness: Basis should be compact i.e. most natural 

shape functions should be spanned by a compact basis, a 

property crucial for efficient storage and processing of shapes. 

(3) Stability: The basis functions should be chosen such that 

the space spanned by their linear combinations remains 

unaffected by shape deformations.  

(4) Orthogonality: By ensuring independence of each basis 

function via orthogonality, it simplifies the representation and 

manipulation of shapes.  

(5) Multi-Scale Property: Basis functions should be able to 

effectively capture features at different scales within the shape. 

Large-scale features representing global aspects of shape 

geometry while small-scale features depicting finer details.  

(6) Smoothness: Smooth basis functions provide continuous 

representation of shapes by reducing artifacts and providing a 

more visually pleasing representation. 

(7) Computational Efficiency: Basis should be easy to 

compute and evaluate as this property becomes crucial while 

processing large number of shapes together. 

(8) Numerical Stability: Numerical stability is desired so as 

to prevent divergence and instability in the algorithms that use 

them. 

(9) Consistency: Basis should be consistent when computed 

across multiple shapes i.e. they should be seamlessly 

compatible and robust under minor violations of deformation 

invariance. 

(10) Locality: Basis functions should encode behaviour of 

functions in the neighbourhood of a given point. Locally-

supported basis functions capture shape deformations which is 

essential aspect of effective shape correspondence. 

In addition to the aforementioned properties, it is 

advantageous for the basis functions to exhibit robustness to 

topological changes. The choice of a basis for shape 

representation will depend on the specific application and the 

trade-offs between these properties. 
 

5.2 Proposed basis functions 
 

In order to compute functional mapping between two shapes, 

various basis functions have been proposed since the 

utilization of functional maps in shape analysis community, 

specifically for computing point-to-point correspondences. A 

comprehensive overview of all such basis is provided as 

follows: 
 

5.2.1 Laplace-beltrami operator eigenfunctions 

For a shape 𝒮 and a scalar field 𝑓: 𝒮 → 𝑅, the self-adjoint 

Laplace-Beltrami operator (LBO) ∆𝒮  describing intrinsic 

aspects of shape is defined as the negative divergence of the 

gradient of scalar field as ∆𝒮𝑓 = − 𝑑𝑖𝑣(∇𝑓) and subsequently 

admits an eigendecomposition with non-negative 

eigenvalues 𝜆 and corresponding orthonormal eigenfunctions 

𝜙, via ∆𝒮𝜙 = 𝜆𝜙. The eigenfunctions of LBO (refer Figure 7a) 

also known as manifold harmonics [82] characterizes 

geometric and topological properties of shapes and has been 

utilized to parametrize the linear functional map in the study 

by Ovsjanikov et al. [27] as basis function, owing to its 

compactness, stability, orthogonality, isometric invariance and 

multi-scale capability. The LBO eigenbasis is in principle 

similar to Fourier basis defined on a Euclidean domain.  

Laplace-Beltrami operator ∆𝒮 is independent of any global 

coordinate system and of the underlying representation of 

shape i.e. meshes, point clouds, volumes, etc. For the operator, 

varied consistent discretizations have been proposed [83, 84] 

in the literature. Popularly, for triangle meshes, LBO can be 

effectively discretized using the cotangent scheme, yielding a 

representation expressed as 𝐿 = 𝐷−1𝑊  captures local 

geometry of the shape and is computed based on angles 

between edges, and 𝐷  is a lumped mass matrix containing 

consolidated information about vertex areas [85]. Recently, 

Bunge and Botsch [86] comprehensively investigated the 

discrete LBO for general polygon meshes. While Belkin et al. 

[87] explored LBO for point clouds. The eigendecomposition 

of discrete LBO is a generalized eigenvalue problem 𝑊Φ =
𝐷ΦΛ  which can be numerically posed as the minimization 

problem: 
 

argmin
Φ

𝑡𝑟 (Φ𝑇𝑊Φ)    𝑠𝑡    Φ𝑇DΦ = I  (3) 

 

To represent smooth functions on shape with bounded 

variation, LBO eigenbasis have been proved to be optimal [88] 

being complete, compact, orthogonal, multi-scale and 

computationally quite efficient. Despite being constructed in a 

local manner, LBO eigenbasis contain global information of 

the shape and is considered as the workhorse of geometry 

processing especially for isometrically deformed shapes. 

However, even for slight deviations in the isometric 

deformations, low-frequency basis possess no theoretical 

guarantees for having consistent behaviour across shapes. 

LBO eigenbasis capture global aspect of shapes, are robust to 

local topological changes and are sensitive to local geometric 

details resulting in numerical instability for basis functions 

representing higher frequencies [86]. Learning-based methods 

also acknowledge the challenges posed by LBO eigenbasis 

and seek improved basis for shape correspondence [89], 

despite its heavy utilization. 
 

5.2.2 Coupled-quasi harmonic basis 

Computing the correspondence between shapes, wherein 

the deformation is not only restricted to isometry but also 

include stretching and beyond, consistency among shape basis 

becomes a crucial property. The idea of coupled-quasi 

harmonic basis (CQHB) was subsequently introduced in the 

study by Kovnatsky et al. [90] to accommodate shapes with 

stretching along with matching non-isometric shapes, for 

example, a human shape can be semantically matched with 

that of a gorilla. For two shapes represented as triangle meshes 

𝒳1  and 𝒳2 , coupled bases Φ  and Ψ  are desired, which 

approximately diagonalizes their respective Laplace-Beltrami 

Operators. Each basis function is desired to be coupled as  

{Φ}i ≈ {Ψ}i ∘ η−1  and can be obtained by solving the 

approximate joint diagonalization problem specified as non-

linear optimization with orthogonality constraints:  
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a) Eigenfunctions of the Laplace-Beltrami Operator without local support, characterizing the shape on a global scale 

 

 
b) Compressed Manifold Modes offering localized support and capturing meaningful structural components of the shape 

 

 
c) Manifold Harmonics localized within the explicitly defined region (in blue) corresponding to the left leg of a human shape 

 

 
d) Eigenfunctions of the Hamiltonian operator featuring a step potential function, with the leftmost shape displaying color-coded 

regions (red denoting high-potential areas and blue indicating low-potential regions) 

 

 
e) Coordinate Manifold Harmonics, with the first three figures illustrating intrinsic information via standard LBO eigenfunctions 

and the subsequent three figures representing extrinsic information through the coordinates x, y and z 
 

Figure 7. Examining the localization characteristics of different basis functions, illustrated on human shape from SHREC 2010 

dataset [34] through visual comparisons 
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argmin
Φ,Ψ  

𝑜𝑓𝑓(Φ𝑇𝑊𝒳1
Φ) + 𝑜𝑓𝑓(Ψ𝑇𝑊𝒳2

Ψ) + 

‖𝐹𝒳1

𝑇 Φ −  𝐹𝒳2

𝑇 Ψ‖
𝐹

2
      

𝑠𝑡                 Φ𝑇𝐷𝒳1
Φ = I,      Ψ𝑇𝐷𝒳2

Ψ = I 

 (4) 

 

where “off” denotes the summation of the squares of all off-

diagonal elements, 𝑊𝒳  represents cotangent weight matrix 

and 𝐷𝒳  is a lumped mass matrix for shape 𝒳. The descriptor 

functions for respective shapes are represented as 𝐹𝒳 that are 

preserved under isometric deformations and are utilized as 

constraint for coupling the basis. Though it handles non-

isometric nature of shape deformations better compared to 

LBO basis, the theoretical framework for CQHB is still 

actively expanding to make it computationally more efficient.  

 

5.2.3 Compressed manifold modes 

The global spatial support of LBO eigenbasis poses a 

significant challenge while interpreting them as descriptors for 

specific regions of the shape and in addition sensitivity to 

topological noise is higher, in the presence of holes and 

occlusions.  Compressed Manifold Modes (CMM) [91] 

overcomes this issue by enhancing LBO eigenbasis for 

triangle mesh 𝒳  with local support. The sparsity-inducing 

𝑙1 −regularization   lets the shape be processed as a collection 

of parts by solving the following optimization problem: 

 

argmin
Φ

𝑡𝑟(Φ𝑇𝑊Φ) + 𝜇 ‖Φ‖1  𝑠𝑡  Φ𝑇𝐷𝒳1
Φ = I (5) 

 

where 𝜇 is the parameter to handle local support of the basis 

(larger 𝜇  means smaller support region), 𝑊  and 𝐷 are as 

specified in Section 5.2.1 and is solved by utilizing an iterative 

scheme Alternating Direction Method of Multipliers (ADMM) 

algorithm [92]. Manifold Alternating Directions Method of 

Multipliers (MADMM), proposed by Kovnatsky et al. [93] is 

an efficient way to compute CMMs which optimizes the basis 

on Stiefel manifold of orthogonal matrices [94]. CMMs (refer 

Figure 7b) are invariant to isometric deformations, orthogonal, 

robust to geometric and topological noise and performs better 

than LBO eigenbasis especially while dealing with partial 

shape matching. Haas et al. [95] streamlined CMM 

eigenfunction calculation for optimal shape coverage. 

However, CMMs still exhibit computational inefficiency and 

lack a multi-scale nature required for hierarchical processing 

of shapes. 

 

5.2.4 Localized manifold harmonics 

While CMM does offer local support, it lacks explicit 

control over localization and doesn't guarantee a global 

solution. Melzi et al. [96] proposed Localized Manifold 

Harmonics (LMH) where localization can be controlled in an 

explicit and computationally efficient manner by specifying a 

region of interest on the surface. LMH expands the LBO 

eigenbasis for triangular mesh 𝒳  through an incremental 

construction process, wherein new basis functions are ensured 

to be orthogonal to the existing set of basis functions. It is 

obtained by spectrally decomposing a modified LBO through 

the solution of the generalized eigenvalue problem represented 

as 𝑄 Ψ =  𝐷 ΨΛ . The following numerical formulation is 

provided to yield eigenfunctions with localized support as: 

 

argmin
Ψ

𝑡𝑟(Ψ𝑇𝑄Ψ)      𝑠𝑡      Ψ𝑇𝐷Ψ = I (6) 

 

where 𝑄 = 𝑊 + 𝜇𝑅𝐷 𝑑𝑖𝑎𝑔(𝑣) + 𝜇⊥𝐷 ΦΦ𝑇𝐷  is the modified 

Laplacian operator. The modified operator is also symmetric, 

positive semi-definite and intrinsic along with it's 

eigenfunctions. Section 5.2.1 defines 𝑊  and 𝐷  as usual 

cotangent weight and area matrices respectively. 𝜇𝑅 > 0 is a 

support region parameter while 𝜇⊥ > 0 specify parameter for 

orthogonality of LMH with respect to precomputed LBO basis 

Φ, 𝑣 is the discrete version of membership function for the 

region defined explicitly. LMH are isometry-invariant, smooth 

and captures sharp details from specified region along with 

retaining the global structure. With respect to point-to-point 

correspondences, LMH enhances capability of existing LBO 

eigenbasis to beautifully incorporate local information in a 

compact manner. Nevertheless, there persists a challenge in 

pinpointing regions within the shape (refer Figure 7c) that 

must be explicitly supplied to modified operator (𝑄) for the 

purpose of improving correspondences, such as the 

identification of areas exhibiting high reconstruction error. 

 

5.2.5 Hamiltonian operator basis 

The LBO eigenbasis is globally sensitive to shape topology, 

hindering accurate matching, especially for complex shapes 

where detailed localized features are crucial. Originating from 

quantum mechanics, the Hamiltonian operator (HO), well-

known for its role in Schrödinger's equation, was adapted for 

shape analysis in the study of Choukroun et al. [97] to 

represent sharp features using its eigenfunctions. This is 

achieved by modifying manifold harmonics so that its 

localization properties can be utilized and be computationally 

viable for spectral analysis. On the shape 𝒮, given a scalar 

potential function 𝑣: 𝒮 → ℝ+ Hamiltonian Operator ℋ𝒮 is the 

generalization of Laplace-Beltrami operator ∆𝒮  operating on 

𝑓 ∈ 𝒮 as ℋ𝒮(𝑓) = ∆𝒮(𝑓) + 𝜇 𝑣(𝑓) with parameter 𝜇 ∈ ℝ. In 

the discrete setting, for triangle mesh 𝒳 ,  Hamiltonian 

Operator can be specified via LBO's cotangent weight matrix 

𝑊 and 𝐷 respectively and the potential function 𝑣 is applied 

diagonally. Self-adjointness is preserved under addition of 

Hamiltonian operators, enabling eigendecomposition through 

a generalized eigenvalue problem (𝑊 + 𝜇 𝐷 𝑑𝑖𝑎𝑔(𝑣)) Φ =
𝐷 ΦΛ  which can numerically be posed as the respective 

optimization as: 

 

argmin
Φ

𝑡𝑟(Φ𝑇𝑊Φ) + 𝜇 𝑡𝑟(Φ𝑇 𝑑𝑖𝑎𝑔(𝑣)Φ) 

 𝑠𝑡  Φ𝑇𝐷Φ = I
 (7) 

 

with parameter 𝜇  balancing global and local support of the 

Hamiltonian eigenbasis. The Hamiltonian's distinctive feature 

is its ability to concentrate harmonics within arbitrary 

manifold subsets using step potential functions across the 

domain (refer Figure 7d). Rampini et. al. [98] utilized 

alignment of Hamiltonian Operator's eigenvalues for partial 

shape matching without actually solving for underlying 

pointwise correspondences.  Hamiltonian eigenbasis with 

compact support are more noise-robust. Postolache et al. [99] 

provided a theoretical analysis and a unifying approach to 

using Hamiltonian eigenfunctions with the functional map 

framework, achieving state-of-the-art results in partial shape 

matching.   

 

5.2.6 Coordinate manifold harmonics 

The dimensionality of the basis function, traditionally 

determined empirically, indicates the number of required 

functions to preserve and recover a shape's geometric details 

efficiently. By adding three supplementary functions to 

standard manifold harmonics, Coordinate Manifold 
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Harmonics (CMH) [100] significantly enhance the 

preservation of local isometries. This enhancement results in a 

more robust representation of shape geometry, effectively 

capturing both intrinsic and extrinsic information from the 

shapes (refer Figure 7e). To standard LBO eigenfunctions (Φ) 

computed for shape 𝒳 represented as a polygonal mesh, a set 

of three basis functions ϕx, ϕy, ϕz  are added. These basis 

functions contain extrinsic information, which is captured by 

orthogonal projection of representation error of the low-pass 

filter representation of 𝑥 , 𝑦,  and 𝑧 -coordinates of all the 

vertices of the shape respectively. The representation error is 

∑ = ΦΦ𝑇𝐷𝑋 − 𝑋 with x-coordinate of shape 𝒳 specified as 

𝑋  with the basis function given as 𝜙𝑥 =
 ∑ − (ΦΦ𝑇𝐷 ∑  ) which can be normalized further. Similar to 

𝜙𝑥 , other basis functions 𝜙𝑦 and 𝜙𝑧  can be computed by 

replacing 𝑋  with low-pass filter representation of 𝑦  and 𝑧 

coordinates respectively.  CMH, designed for tessellation 

transfer and incorporating extrinsic information, requires 

shapes in similar poses due to its reliance on vertex 

coordinates [101].  

 

5.2.7 Data-driven basis 

While the LBO emphasizes low-frequency eigenfunctions 

to enhance smoothness, Azencot and Lai [102] introduced an 

adaptive basis that facilitates improved feature matching. By 

integrating the computation of functional maps with the design 

of basis functions, authors have been able to create a cohesive 

and unified framework for determining correspondences. 

Considering two shapes 𝒳1  and 𝒳2  represented as triangle 

meshes, with corresponding descriptor functions 𝐹1  and 𝐹2 , 

the objective is to calculate the basis 𝐵1 and 𝐵2 for each shape 

while concurrently establishing a functional map 𝐂.  This 

functional map aims to optimally align the descriptor functions 

for both shapes as: 

 

min
𝐵1,𝐵2,C

1

2
|C B1

𝑇𝐹1 − 𝐵2
𝑇𝐹2|

𝐹

𝑠𝑡𝐵1
𝑇𝐷1𝐵1 = 𝐼, 𝐵2

𝑇𝐷2𝐵2 = 𝐼 (8) 

 

This optimization problem exhibits complex non-linearity, 

non-convexity, and involves a high degree of dimensionality. 

To decrease dimensionality, the authors suggested employing 

Proper Orthogonal Decomposition (POD) modes offering 

improved spectral representation for high-frequency signals. 

These modes expand the solution space by employing feature 

descriptors with multiple degrees of freedom. By integrating 

regularization terms that encourage smoothness, consistency 

and isometry, the optimization process is carried out using the 

Alternating Direction Method of Multipliers (ADMM). While 

data-driven bases favor descriptor similarity on shapes, high-

frequency-tuned bases show less uniform correspondence. 

Accuracy in shape correspondence is sensitive to subspace 

choice and size. Larger subspaces improve scalar function 

representation but require extra regularization to avoid local 

minima and undesired solutions. These bases adapt to the input 

shapes. Similar to the concept of deriving insights directly 

from data, Marin et al. [103] suggested that basis learned 

through machine learning techniques exhibit resilience and 

contribute to enhanced accuracy in demanding scenarios. 

Though it also ends up learning descriptor features along with 

the basis, it does not exploit the underlying geometric structure 

of the shape.  
 

5.2.8 Landmark adapted basis 

In texture transfer, artists pinpoint landmark 

correspondences that must be preserved and expanded into a 

detailed, time-efficient, and adaptable point-to-point map for 

non-isometric deformations. While landmark correspondences 

are used as descriptor preservation constraints in the functional 

map framework to resolve symmetry ambiguities, they are not 

always precisely preserved in the dense map. 

Panine et al. [104] introduced orthogonal landmark adapted 

basis functions (LAB), combining solutions of Dirichlet-

Steklov and Dirichlet-Laplacian eigenproblems. These 

functions precisely preserve landmark correspondences and 

promote conformal maps between shapes. For a shape 

𝒳 represented as triangle mesh, discrete Dirichlet-Laplacian 

eigenproblem is specified via cotangent LBO as 𝑊Φ = 𝐷Φ 

such that Φ|𝜕𝒳 = 0. For the same shape 𝒳, consider that the 

boundary 𝜕𝒳  consists of two disjoint non-empty open sets 

denoted by 𝐷  and 𝑃,  then discrete Dirichlet-Steklov 

eigenvalue problem is specified as: 𝑊 Ψ = 𝑃 Ψ  such that 

Ψ|𝐷 = 0 where the non-lumped Steklov mass matrix is given 

by: 

 

𝒫𝑝𝑞 = {

1

3
(𝑟𝑝−1 + 𝑟𝑝+1) , 𝑝 = 𝑞 and 𝑝, 𝑞 ∈ ∂𝒳

1

6
𝑟𝑝𝑞 , 𝑝~𝑞 and 𝑝, 𝑞 ∈ ∂𝒳

0 , elsewhere 

  

 

where the length of edge connecting vertices 𝑝 and 𝑞 is 𝑟𝑝𝑞 . 

The computed correspondences exhibit improved accuracy for 

non-isometric shapes. Overall, the suggested approach is 

descriptor-free, demonstrating efficiency and robustness in 

handling substantial variations in mesh structures. Note that 

LAB functions are capable of handling meshes with 

significant topological variations in connectivity and in noise. 

 

5.2.9 Elastic basis 

Computing correspondences for shapes that undergo non-

isometric deformations, especially when the goal is to align 

extrinsic features, presents a considerable challenge. In 

addressing this challenge, Hartwig et al. [105] introduced a 

crease-aware elastic basis that is non-orthogonal. This basis is 

derived from the Hessian of elastic thin shell energy, capturing 

bending and stretching properties influenced by shell 

thickness. For reduced thickness, the bending energy 

significantly impacts eigenmodes characterized by smaller 

eigenvalues, making these modes more susceptible to 

curvature features. The eigenmodes of the Hessian, arranged 

by ascending eigenvalues, symbolize deformations organized 

according to their associated elastic energy. The elastic basis, 

unlike previously proposed bases used in functional maps, is 

not orthogonal, posing challenges for standard functional map 

computations. Hence, the authors have also modified the 

functional map framework to effectively compute point-to-

point correspondences with these non-orthogonal basis. We 

refer the reader to Algorithm (1) in the study [105] to gain 

insight into the precise methodology for computing point-to-

point correspondences via elastic basis for triangular mesh. 

The elastic basis requires that the triangle meshes under 

consideration should be regular in order to achieve desired 

results. 

 

5.3 Other operators and basis 

 

While the shape analysis community has extensively 

studied operators both within and outside the functional 

framework, their ability to establish correspondences between 
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non-rigid shapes has been largely overlooked. This thorough 

examination of basis functions explores the potential of these 

unexplored operators within functional maps, encouraging 

further research and analysis.  

Extrinsic Operators Addressing the complexities of non-

rigid shapes, especially their susceptibility to transformations 

and prevalence in natural settings, non-rigid shape 

correspondence research has prioritized intrinsic aspects as 

reliable features. However, Liu et al. [106] counter this notion, 

highlighting limitations in intrinsic measurements' ability to 

discern surface protrusion directionality. To capture extrinsic 

aspects of the shapes in an explicit manner, Liu et al. [106] 

introduced a family of Dirac operators 𝐿(𝜏) = (1 − 𝜏)Δ𝒳 +
𝜏𝐷𝑁, which by varying 𝜏 ∈ [0,1] captures the entire spectrum 

of intrinsic and extrinsic features from shape 𝒳  depending 

upon the desired task. Note Δ𝒳  is Laplace-Beltrami Operator 

is purely intrinsic in nature and 𝐷𝑁  refers to relative Dirac 

operator which is purely extrinsic in nature and is based on the 

Gauss map. To this end, Andreux et al. [107] proposed 

Anisotropic LBO, which incorporates variability in principal 

curvature directions, capturing both intrinsic and extrinsic 

shape aspects. Wang et al. [108] introduced the Steklov 

operator, encoding volumetric geometry by treating the 2D 

surface as the boundary of its 3D interior. This operator is 

robust to topological changes and offers strong localization 

capabilities. While the Dirac operator efficiently captures 

surface features, the Steklov operator excels in capturing 

volumetric information. 

Indicator Basis The LBO eigenbasis effectively captures 

smooth functions and low-frequency components but 

struggles with high-frequency details and non-smooth 

functions like step functions. Melzi [109] introduced the 

Indicator basis to improve this, showing promise for 

transferring region indicator functions between shapes via 

functional maps. However, careful vertex sampling is essential 

for complete representation of the indicator function basis 

across the surface. 

Shell Operator Shapes containing topological noise, 

possessing intrinsic self-similarities and deviating from 

isometric deformations require robust basis functions to 

improve pointwise shape correspondences under such 

challenging scenarios. Corman et al. [110] proposed a 

functional shape difference-based approach to encode both 

intrinsic and extrinsic shape properties. Eisenberger et al. [111] 

integrated intrinsic and extrinsic aspects by embedding shapes 

in a product space of LBO basis (intrinsic) and Cartesian 

coordinates with outer normals (extrinsic). They use smooth 

shells as coarse-to-fine shape approximations, aligning them 

iteratively with minimal geometric changes to establish 

functional maps and point-to-point correspondences between 

shapes.  

 

 

6. COMPARATIVE ANALYSIS OF BASES 

 

Methodology: Multiple ordered basis functions for a single 

shape have been computed using MATLAB. The first six basis 

functions are visualized on the shape with colours ranging 

from red to blue. As shown in Figure 7, this visualization helps 

understand the properties captured by each basis. Following 

are the observations. 

Observations: Popularly utilized Laplace-Betrami Operator 

eigenbasis, which are natural harmonic basis functions defined 

on the shape is a preferred choice mainly due to its well-

established theoretical foundations along with multi-scale 

capability, orthogonality and invariance to isometric 

deformations. However, when shape deformations deviate 

from isometric to non-isometric, consistency of LBO 

eigenbasis become questionable as they are computed 

independently for each shape. LBO basis especially while 

representing high-frequencies are numerically unstable. 

Coupled-quasi harmonic basis (CQHB) introduced the idea to 

jointly diagonalize the LBO for the shapes under consideration 

so as to retain consistency among such deviations in 

deformations but are computationally expensive over LBO 

basis. Regardless of less robust theoretical grounding in 

comparison to LBO, CQHB shines in its joint construction for 

multiple shapes. This facilitates compatibility, direct 

comparison, and ultimately, more accurate non-rigid shape 

correspondences.  

LBO eigenfunctions characterizes the global information of 

shape but by construction is not capable of localization. Hence, 

LBO eigenbasis complicates shape interpretation in parts, 

hindering partial shape matching and subsequently requires 

infinite (or very high) number of basis functions to represent 

sharper details of shapes. Compressed Manifold modes 

(CMMs) and Localised Manifold harmonics (LMH) address 

this issue by providing local support allowing shapes to be 

interpreted as a collection of parts. CMMs localised via 𝑙1-

sparsity regularization are orthogonal, local, smooth and 

robust to topological noise present in shapes, but are 

computationally quite intensive. LMH are computationally as 

efficient as LBO eigenbasis and retains theoretical guarantees 

and are flexible in regulating and providing local support 

which makes them quite impressive for many practical 

applications like for semantically-guided interventions. LMH 

performs better in capturing sharp details with a few localized 

harmonics compared to large number of LBO basis when 

aiming to represent the same level of detail in a given region 

and also to mitigate influence of topological noise. While 

LMH effectively addresses various desirable characteristics 

for isometric shape matching, the need to provide valuable 

information like the region of support and precomputed LBO 

basis in order to derive newly computed basis in an orthogonal 

manner introduces an additional complexity. The inclusion of 

these extra tasks have contributed to relatively limited 

popularity of LMH in comparison to other basis. Various 

attempts have been made to introduce localization in basis 

functions, so that better and meaningful details can be captured 

via functional map framework (refer Figure 7). The 

introduction of step potential in Hamiltonian Operator serves 

as a form of guided localization over the vibrational modes 

occurring on the surface and a lack of underlying global 

structure makes Hamiltonian basis an organic choice for 

partial shape matching.  

Unlike LBO eigenbasis, Coordinate Manifold Harmonics 

(CMH) incorporates extrinsic information by utilizing spatial 

coordinates of the shapes. This capability proves invaluable in 

shape matching scenarios, especially when dealing with 

shapes that share intrinsic similarities but vary in their overall 

spatial positioning. For example, a cardboard sheet and a 

cylinder crafted from that same sheet are similar from intrinsic 

aspect but differs while considering extrinsic features. 

While CQHB and data-driven basis may seem analogous in 

their approach by taking shapes as input and determining the 

basis in a coupled manner, a crucial distinction arises. CQHB 

operates on the assumption that a smooth function space is 

encompassed by its basis, aiming to diagonalize the LBO and 
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thus favouring smooth basis functions. In contrast, this is not 

applicable to data-driven basis, which does not inherently 

prioritize the smoothness of the basis functions. Unlike 

methods developed for matching isometrically deformed 

shapes, the elastic basis aligns creases and folds accurately and 

robustly, leading to more accurate correspondences for non-

isometric shapes. Its various characteristics, including non-

orthogonality, feature sensitivity, and multi-scale 

representation is preferred over conventional orthogonal basis.  

Landmark Adapted Basis, by exactly preserving the provided 

landmark correspondences as desired by certain texture 

transfer applications in a time-efficient manner, is unlike any 

other proposed basis functions. LAB while preserving 

landmarks, also caters to non-isometrically deformed shapes. 

Indicator basis excels at transferring step functions i.e. highly 

non-smooth functions between shapes which is an uphill task 

for other discussed smooth operator basis. 

 

 

 
 

Figure 8. Point-to-point correspondence accuracy for the wolf mesh using different bases within the functional framework: 

Laplace-Beltrami eigenfunctions (blue line with triangle markers), Hamiltonian eigenfunctions (red line with circular markers), 

and compressed manifold modes (black line with plus markers) 

 

Table 1. Diverse Basis Functions employed in Non-rigid Shape Correspondence, satisfying distinct properties 

 

 

LBO 

Basis 

[82] 

CMM [91] CQHB [90] LMH [96] CMH [100] 
HO Basis 

[97] 

Data-Driven 

Basis [102] 

Elastic Basis 

[105] 
LAB [104] 

Completeness ✓ ✓  ✓ ✓ ✓   ✓ 

Compactness ✓   ✓ ✓ ✓  ✓ ✓ 

Stability ✓ ✓ ✓ ✓ ✓ ✓   ✓ 

Orthogonality ✓ ✓ ✓ ✓ ✓ ✓   ✓* 

Multi-scale 

Property 
✓  ✓ ✓ ✓ ✓  ✓ ✓ 

Smoothness ✓ ✓ ✓ ✓ ✓ ✓ ✓* ✓ ✓ 

Computational 

Efficiency 
✓   ✓ ✓ ✓ ✓*  ✓* 

Numerical 

Stability 
✓* ✓ ✓ ✓ ✓ ✓ ✓* ✓* ✓* 

Consistency for 

Isometric 

deformations 

✓ ✓ ✓ ✓ ✓ ✓ ✓*   

Consistency for 

Non-Isometric 

deformations 

  ✓    ✓* ✓ ✓ 

Local Support  ✓  ✓  ✓* ✓*  ✓* 

Global Support ✓  ✓ ✓ ✓ ✓* ✓ ✓ ✓* 

Robustness to 

Topological Noise 
 ✓ ✓ ✓  ✓ ✓  ✓ 

Shared-bases   ✓    ✓   
(✓ specifies property is completely satisfied, ✓* means property is satisfied given certain conditions,  means property is not satisfied, “” (space) means property 

has not been studied for respective basis in literature so far). For a rapid reference, consult the notations provided in Section 1.4 
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Table 1 provides a summary of various functional basis used 

for non-rigid shape correspondence, indicating their adherence 

to specific properties. Symbols such as ✓ denote property is 

completely satisfied, ✓* signifies that the property is satisfied 

under certain conditions,  indicates non-satisfaction of the 

property, and a " " (space) implies that the property has not 

been studied for the respective basis in the existing literature.   

In order to visually compare the localization aspects 

exhibited by various basis functions see Figure 7. LBO 

eigenfunctions with no local support is shown in Figure 7a; 

CMMs as shown in Figure 7b captures meaningful local 

regions of human shape like hands, legs, head, etc., making it 

effective to use for partial shape matching. CMH as shown in 

Figure 7e captures intrinsic (three leftmost shapes) as well as 

extrinsic information based on spatial coordinates (three 

rightmost shapes). LMH shown in Figure 7c with leftmost 

shape depicting the region in blue explicitly provided to 

restrict the information captured in that region. By 

incorporating the step potential function such that red region 

indicating high-potential region and blue region indicating 

low-potential region is shown in leftmost shape of Figure 7d. 

Hamiltonian operator basis functions capture details from low 

potential region while avoiding high-potential region in Figure 

7d. 

Consider wolf shapes in two different poses from TOSCA 

dataset [16] for which point-to-point correspondences are 

computed via functional maps keeping all variables constant 

except the basis functions. This enables analysis of how basis 

function changes impact correspondence map accuracy. Refer 

to Figure 8 for the accuracy of point-to-point correspondences, 

expressed as the percentage of correct matches relative to the 

total number of vertices on the shapes, calculated using the 

LBO basis, Hamiltonian basis, and CMMs. 

 

 

7. DISCUSSION AND FUTURE SCOPE 

 

Based on existing literature of computing point-to-point 

correspondences for non-rigid shapes via functional maps, 

several promising research directions are provided as follows: 

• Despite demonstrating powerful capability of Laplace-

Beltrami operator eigenfunctions in the case of near-isometric 

shapes, the task of determining basis for functional spaces of 

partial and non-isometric shapes, remains a challenging area. 

• Irrespective of the varied basis functions proposed to 

obtain enhanced non-rigid shape correspondences, it still 

remains the major challenge as to theoretically determine how 

many basis functions are sufficient for the task and the given 

resolution of shapes. 

• Various operators as discussed in Section 5.3 have not yet 

been explored in the context of functional maps, as to how the 

eigenfunctions of such operators behave when considered as 

basis functions. 

• For Hamiltonian Operator, so far only step potential 

function has been explored in the context of partial shape 

matching. Other smoother potential functions can be 

investigated further to see if they improve pointwise 

correspondences between shapes [98].  

• Functional maps, initially designed for orthogonality and 

now extended to accommodate non-orthogonal Elastic basis 

has opened up new avenues for exploring basis functions 

beyond traditional constraints [105].  

• Despite beautiful descriptors proposed to capture details 

from shape, identifying a descriptor function that is able to 

capture both local and global geometry of the surface and is 

simultaneously stable with respect to both isometric and non-

isometric deformations is still an open problem [100].  

• The Landmark Adapted Basis exhibits dense clustering of 

Dirichlet-Steklov eigenfunctions around landmarks, 

indicating the potential for alternative basis with more 

dispersed functions to enhance behaviour near these landmark 

points [104]. 

• Bases functions discussed in Section 5.2 have been 

designed with a primary focus on shapes represented as 

triangle meshes, excluding the widely known LBO. Exploring 

additional shape representations, as outlined in Section 2.1, 

presents opportunities for further investigation with respect to 

basis functions.  

To summarize, the findings show that future research in 

non-rigid shape correspondences via functional maps includes 

exploring bases for partial and non-isometric shapes, 

determining the optimal number of basis functions, and 

investigating eigenfunctions from various operators. For the 

Hamiltonian Operator, examining smoother potential 

functions may improve correspondences. Extending 

functional maps to nonorthogonal Elastic bases and 

developing descriptor functions that capture both local and 

global geometries while being stable for all deformations are 

key challenges. Additionally, refining Landmark Adapted 

Basis and exploring basis functions for different shape 

representations, like triangle meshes, could enhance accuracy. 

 

 

8. CONCLUSIONS 

 

This survey explores various basis functions proposed in the 

functional map framework within the context of non-rigid 

shape correspondence in a comprehensive manner. Different 

functional map bases can be effectively used to represent and 

compute correspondences in non-rigidly deformed shapes by 

leveraging their unique properties tailored to specific 

deformation scenarios. The Laplace-Beltrami Operator (LBO) 

eigenbasis is ideal for isometric deformations due to its strong 

theoretical foundation and multi-scale capabilities, while the 

Coupled-Quasi Harmonic Basis (CQHB) addresses non-

isometric deformations with improved consistency but higher 

computational costs. Localized bases like Compressed 

Manifold Modes (CMMs) and Localized Manifold Harmonics 

(LMH) provide local support for capturing detailed features 

and handling partial shape matching. Hamiltonian Operator 

Eigenfunctions are suited for partial matching due to their 

guided localization, and Coordinate Manifold Harmonics 

(CMH) incorporate extrinsic information, useful for shapes 

with spatial variations. Elastic Basis excels in aligning creases 

and folds in non-isometric shapes, and Landmark Adapted 

Basis (LAB) precisely preserves landmark correspondences.  

Overall, no single basis offers a universal solution for all 

deformation complexities. Trade-offs exist between 

theoretical rigour, computational efficiency, and desired 

properties like local support and multi-scale analysis. 

Orthogonality and smoothness of basis, which has been 

synonymous with functional maps since its inception have 

now taken a back seat, with localization and incorporating 

extrinsic features in non-rigid shape analysis as emerging 

focus. Integrating consistency, handling varied tessellations, 

dealing with non-isometric real-world data, preserving 

attributes as demanded by artists and still being able to 

automatize the process of shape matching are the kind of 
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themes, around which basis functions are being looked at. 

Though various learning-based approaches are coming up to 

determine functional maps, they tend to be oblivious to the 

underlying geometry of the shape and moreover in resource-

constrained settings fixed basis functions are preferred. 
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