
For Robust DDoS Attack Detection by IDS: Smart Feature Selection and Data Imbalance

Management Strategies

Naoual Berbiche* , Jamila El Alami

Laboratory of Analysis Systems, Processing Information and Industrial Management, The Higher School of Technology of

Sale, Mohammed V University, Rabat 10080, Morocco

Corresponding Author Email: nberbiche@hotmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290401 ABSTRACT

Received: 27 March 2024

Revised: 17 May 2024

Accepted: 3 June 2024

Available online: 21 August 2024

Computer network security represents a major challenge in the digital age, where intrusions

threaten data confidentiality, accuracy and accessibility. To safeguard data and online

services, Intrusion Detection Systems (IDS) controls the network traffic for any signs of

malicious activity. The integration of artificial intelligence into IDSs offers new

perspectives, but poses challenges, particularly in terms of feature selection and data

imbalance management. Our research focused on identifying DDoS attacks, a major threat

to the accessibility of online services. We evaluated the effectiveness of IDS against these

attacks by testing the RF, XGB, SGD, LGB and MLP machine learning models on the

CICIDS2018 DDOS attacks dataset. To optimize data quality, we adopted a strategic feature

selection approach based on correlation matrix, mutual information and feature importance,

reducing data dimensionality and improving model performance. Then, by balancing our

dataset using oversampling techniques such as SMOTE, BorderlineSMOTE and ADASYN,

we achieved better model generalization and reduced false positives. Our results showed

that the ADASYN+SMOTE+XGB configuration was the most optimal for DDoS attack

detection regarding effectiveness, false positives and execution duration. Our approach,

combining judicious feature selection and resampling, has enabled us to create more

performing intrusion detection systems, strengthening network security against increasingly

sophisticated threats.

Keywords:

anomaly based intrusion detection systems,

features selection, correlation matrix,

mutual information, oversampling

techniques, SMOTE, BorderlineSMOTE,

ADASYN

1. INTRODUCTION

In today's world, deeply entrenched in the era of the internet

and associated technologies, where the retention of

confidential information and user data by service providers is

unavoidable. The rapid advance of technology has given rise

to the major problem of network intrusions, giving rise to a

high level of alert for both service providers and consumers

worldwide. These intrusions disrupt online services,

compromising the CIA's fundamental information security

triad of confidentiality, integrity and availability. Impact of

these intrusions are potentially devastating, jeopardizing

services and user data, and generating substantial costs. To

mitigate these dangers, intrusion detection systems (IDS) are

now indispensable, playing a capital role as a proactive and

defensive technical means of protecting information systems.

Intrusion detection systems are essential components of IT

security, monitoring network traffic to detect suspicious or

malicious activity. IDSs can be classified into two main

categories, network IDS (NIDS) operating across an entire

network and host IDS (HIDS) focused on the security of a

single host. These systems can be categorized based on their

detection method into three types: IDS based on signatures,

IDS based on anomalies, and hybrid IDS [1]. Signature-based

IDSs analyze network traffic by comparing it to a database of

known attack patterns, triggering an alert if there is a match.

Although effective for known attacks, they are limited against

new or sophisticated attacks, false positives, and encrypted

traffic. Anomaly-based IDSs monitor activity patterns for

significant deviations from normal behavior, enabling the

detection of previously undiscovered incidents. However, they

are prone to high false positive rates and struggle to adapt to

ever-changing network environments that can become

complex. Hybrid IDS combines the benefits of the previous

two approaches to improve overall threat detection. The

evaluation of the effectiveness of IDS takes into account

various criteria such as detection rate, false positive rate,

response time, ability to handle new threats, scalability, impact

on the network, and ease of configuration [1].

In this context, research in this field has a major positive

impact on related disciplines such as data science, network

engineering and artificial intelligence. Indeed, IDSs generate

large quantities of data on network traffic, which data science

analyzes to identify suspicious behavior and improve detection

algorithms. Research into IDSs also has a direct impact on the

design and management of secure networks, insofar as mastery

of the types of attack detected by IDSs helps network

engineers to design more resilient architectures and implement

appropriate defense strategies. AI research is indispensable for

developing more effective and advanced IDS. Machine

Ingénierie des Systèmes d’Information
Vol. 29, No. 4, August, 2024, pp. 1227-1259

Journal homepage: http://iieta.org/journals/isi

1227

https://orcid.org/0000-0001-6051-7915
https://orcid.org/0000-0003-4658-4550
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290401&domain=pdf

learning techniques, in particular, are widely employed to

identify anomalies and malicious behavior in network traffic.

Integrating AI into IDS enables the development of more

accurate, intelligent and adaptive detection systems that can

learn from past attacks and adjust to continually evolving

attack techniques.

In fact, the increasing automation of intrusion detection

within IDS, thanks to the integration of artificial intelligence,

is recognized as an innovative approach. However, given the

growing sophistication of attacks, network security today

represents a major challenge. The processing of vast quantities

of data remains a persistent difficulty in the development of

security components, and applying machine learning

techniques offers a solution for more accurate automated

detection of attacks. Nevertheless, the judicious choice of the

appropriate machine learning algorithm and a suitable feature

set remains a crucial challenge, especially since a large

number of features in the dataset significantly increases the

computational cost. Therefore, success of studies related to

applying machine learning algorithms to IDS data relies on

careful selection of these key features. Furthermore, data

imbalance in intrusion detection systems is a major issue, as it

can lead to biases and unequal sensitivities in the models, thus

impacting their performance. This imbalance, often

characterized by an under-representation of the intrusion class

compared with the normal class, can lead to predictions

favoring the majority class. To mitigate these effects, various

strategies are employed, such as oversampling, under

sampling, the use of synthetic generation methods, class

weighting, and the application of model ensembles. The

effective management of data imbalance is essential to

ensuring that potential attack scenarios are better taken into

account, thereby enhancing the resilience, reliability and

effectiveness of IDSs. This helps to strengthen network

security in the face of increasingly sophisticated attacks. So

there is still a lot to be done in terms of research into ways of

improving the accuracy of detection of minority class samples.

With this in mind, we turned our attention to resilience of

IDSs face to Distributed Denial of Service (DDoS) attacks. For

our study, we used the CICIDS 2018 DDOS attacks dataset.

These attacks represent one of the many criminal activities

present on the web. They have the ability to compromise or

interrupt user access to networks or websites, regardless of

their robustness or size. These attacks overwhelm the network

with traffic, causing the network to break down and servers

unavailability, sometimes lasting several hours before being

restored, thus preventing the system from providing regular

services to legitimate users [2].

Regarding DDoS attack detection, IDSs face a number of

specific challenges that require an innovative approach for

effective resolution. These include managing data imbalance,

improving model performance and reducing false positives.

The feature selection is a very important phase in machine

learning, solving several fundamental problems. Indeed,

datasets can be characterized by high dimensionality,

potentially containing redundant or uninformative features.

Firstly, selection reduces data dimensionality by eliminating

less relevant features, thereby simplifying models, making

them more efficient and preventing over-fitting. Secondly, it

enhances model performance by concentrating on the most

informative features, while reducing the computation time

required, which is crucial for large datasets or real-time

applications such as IDS. Finally, this selection makes models

more interpretable by focusing on a restricted set of features,

facilitating analysis and understanding of the model's

decisions.

For enhancing the efficiency of intrusion detection systems,

particularly in detecting DDoS attacks, we performed data

cleaning, label encoding, and scaling, followed by a triple

feature selection process using successively the correlation

matrix, mutual information, and the importance of XGBoost

classifier features. This approach allowed us to identify an

optimal subset of features most relevant to model prediction.

This selection process not only optimized model performance

by eliminating potential noise, but also speeded up training

times and improved the interpretability of results. This

complex feature selection operation resulted in a reduced and

more focused dataset, offering a significant gain in terms of

efficiency, accuracy and computational resources.

Managing data imbalance is among the primary difficulties

encountered by IDS in the context of DDoS attacks. Indeed,

DDoS attacks are often rare events compared to normal

network traffic, creating a significant imbalance between

attack classes and the normal class. Our approach addresses

this challenge by adopting resampling techniques to balance

our reduced dataset, such as SMOTE and its variants

ADASYN and BorderlineSMOTE for oversampling. For

under sampling, we used random under sampling. But before

implementing these techniques, we asked ourselves the

following questions:

1) Does the initial distribution of classes influence the

choice of oversampling methods?

2) Does the distribution of initial classes influence the

choice of oversampling methods, in terms of

performance and model processing times?

3) How can we control the degree to which synthetic data

preserve the characteristics of real data?

4) Can the specific features inherent in each class affect

the synthesizing process in a differentiated way

depending on the class?

5) Can synthetic data serve as a reliable substitute for real

data?

6) In the context of performance optimization, how do the

models react in terms of performance when we apply a)

the same oversampling method or b) different

oversampling methods to all the minority classes?

Before answering these questions, it is important to note that

two approaches are commonly employed in research to

effectively manage class imbalance in multi-class datasets

using resampling techniques. The first is to apply the same

resampling method to all minority classes in the multi-class

dataset. This reduces the overall imbalance of the dataset, but

may not take into account the specificities of each minority

class, which could lead to underperformance for some classes.

In the second approach, data from all minority classes are

combined to form a positive class, while data from the

majority class form the negative class. This creates a binary

data set that is simpler to manage. This approach solves the

problem by transforming it into a simple binary classification

problem; however, it can result in a loss of important

information at the level of different minority classes.

As part of our research, to balance our reduced dataset, we

adopted an innovative resampling strategy by splitting our

reduced CICIDS2018 DDoS attack dataset into three distinct

binary sets, each consisting of a negative class “Benign” and a

specific attack class. In fact, the attack classes retained the

1228

original distribution (count of observations) from the reduced

multi-class dataset, while the majority negative class was

randomly under sampled three times. Each resulting

subsample was associated with an attack class to form binary

datasets. Three binary datasets resulted from this division, two

of which were unbalanced.

Subsequently, we applied the oversampling techniques

SMOTE, ADASYN and BorderlineSMOTE to the unbalanced

binary datasets. By splitting the data in this way, we enable

resampling techniques to focus on the specific characteristics

of each attack class, rather than aggregating them all into a

single "Abnormal" class. This approach enables finer-grained

management of class imbalance by recognizing the diversity

of DDoS attacks and tailoring resampling techniques to each

attack type. The aim is to generate synthetic data that faithfully

captures the characteristics of each type of attack, thus

improving the ability of models to effectively detect these

specific attacks. To assess the quality of the synthetic data

generated on these binary datasets, we first used the

Kolmogorov-Smirnov test, then compared the correlation

matrices between the real and synthetic data. Subsequently, we

evaluated the effectiveness of the LGBM and XGBoost

models before and after synthesizing using the macro_f1-score

and AUC_ROC metrics, and finally carried out tests on the

learning and synthesizing times to assess the operational

efficiency of the synthetic generation methods.

One of the main objectives of our approach is to minimize

the number of false positives, which are a major source of false

alarms for intrusion detection systems. The resampling

techniques used to balance the datasets have improved the

sensitivity of the models to DDoS attack detection, while

reducing the number of false positives and thus lowering

classification errors. Furthermore, by considering execution

time in our method, we strive to provide efficient and

responsive solutions for DDoS attack detection, ensuring that

IDSs can identify threats more quickly, thereby minimizing

response time.

Subsequently, from the fusion of the generated synthetic

binary sets with the remaining balanced binary set, we

constructed the global synthetic multi-class artificially

balanced dataset. This global synthetic dataset was evaluated

by comparing the performance of machine learning models

including Random Forest (RF), eXtreme Gradient Boosting,

XGBoost (XGB), Stochastic Gradient Descent (SGD), Light

Gradient Boosting Machine (LGBM) and Multilayer

Perceptron (MLP). These models were first trained on real

data, then re-trained on synthetic data before being evaluated

with the application of real test data. Performance tests on the

models revealed that the XGB model, with the “ADASYN,

SMOTE” combination corresponding to the resampling

techniques respectively applied to the DDoS attack classes

[LOIC-HTTP, LOIC-UDP], performed best against the

defined criteria, namely accuracy, precision, recall, f1_score,

false positive rate (FPR), and learning and prediction times for

operational efficiency.

By integrating these different approaches, our method

provides an effective solution to the specific problems

encountered by IDSs in detecting DDoS attacks.

The rest of the document is organized as follows: Section II

discusses related work, while Section III presents the

fundamental concepts incorporated into our solution. Section

IV presents the CSE-CICIDS2018 dataset and in more detail

the part of this dataset related to DDOS attacks. Section V

details our approach. Section VI describes the implementation

of our method, presents the results obtained, and discusses

their effectiveness. Finally, Section VII concludes the paper

with a look at future work.

2. RELATED WORKS

Network security faces malicious attacks from various

sources, and intrusion detection systems are essential for

ensuring security. These systems are a significant research

focus within network security, drawing numerous researchers

dedicated to enhancing and optimizing the technology.

Recently, numerous intrusion detection and prevention

techniques leveraging machine learning algorithms have been

proposed to enhance attack detection. In this section, we

review some relevant prior work that has presented methods

to improve the performance of IDS. They have focused on data

pre-processing, feature selection, class imbalance resolution

using oversampling and/or under sampling methods and

classifier optimization.

Liu et al. [3] present in their research work a network

intrusion detection system based on two main components.

First, the adaptive synthetic oversampling technology

(ADASYN) is employed to increase minority samples,

addressing the issue of low detection rates for minority attacks

caused by imbalanced training data. Second, the LightGBM

model is integrated to reduce the system's temporal complexity

while maintaining detection accuracy. Experiments included

ADASYN and other resampling techniques, such as random

downsampling (RD), Near-miss, condensed nearest neighbor

(CNN), neighborhood cleaning rule (NCL), cluster centroids

(CC), random oversampling (RO), and synthetic minority

oversampling technique (SMOTE) for comparison.

Additionally, various machine learning algorithms were

explored, including DT, LR, NBM, KNN, ANN, SVM, RF,

GBDT, Adaboost, and LightGBM. Evaluation metrics

comprised accuracy, precision, recall, false alarm rate, training

and detection times, as well as Friedman and Nemenyi post-

hoc tests. Tests conducted on the NSL-KDD, UNSW-NB15,

and CICIDS2017 datasets demonstrated an improved

detection rate for minority samples after applying ADASYN

oversampling, along with an increase in overall accuracy rates.

The intrusion detection algorithm based on ADASYN and

LightGBM achieved accuracies of 92.57%, 89.56%, and 99.91%

for the three datasets, respectively, and showed reductions in

the processing time of learning and detection phases as well as

decreased false alarm rates.

The study described in Latif et al. [4] was carried out in

several successive stages, where the results of each phase

represent the combinations that generate the best performance

for that stage. The resulting combinations were considered as

the input parameters for the next phase. The researchers began

their analysis by exploring different pairings of machine

learning algorithms in conjunction with various feature scaling

techniques. These combinations were then integrated with

feature reduction methods, and finally with oversampling

approaches. The objective was to determine the most optimal

combination of these techniques for intrusion detection

systems. The study examined various machine learning

algorithms including Decision Tree, Support Vector Machine,

Random Forest, Naïve Bayes, Neural Network, and AdaBoost.

Techniques for scaling features involved normalization and

standardization. Methods for reducing features incorporated

the use of a low variance filter, high correlation filter, random

1229

forest, and incremental PCA. Various oversampling methods,

such as SMOTE, Borderline-SMOTE and ADASYN, were

also applied. The NSL-KDD dataset was used as a reference,

with performance metrics including accuracy, precision, recall,

and learning and prediction times. Among the combinations

evaluated, the KNN + Normalization + Correlation filter +

Borderline SMOTE algorithm was singled out for its higher

performance compared with the other combinations of

techniques studied.

In the study by Chen et al. [5], the assessment of intrusion

detection is based on the use of the CICIDS 2017 dataset.

Features with a correlation coefficient greater than 0.95 were

excluded during the pre-processing phase. To select the

machine learning algorithm to be used to train the

classification model for intrusion detection, the authors carried

out a cross-validation comparison of the performance of

Random Forest, Naive Bayesian, Logistic Regression, KNN

and CART. The results of this evaluation indicate that Random

Forest performs best. The study then integrated the Random

Forest algorithm with three distinct sampling techniques-

Random Under-Sampling, SMOTE, and ADASYN. Through

a comparative analysis aimed at enhancing precision, recall,

F1 scores, and AUC values, it was found that combining

ADASYN with Random Forest particularly excelled in

addressing class imbalance issues. This method also facilitated

precise classification and efficient detection of network attack

behaviors.

To resolve the challenge of class imbalance within the data

and improve network intrusion detection, Pan and Xie [6]

exploited the KDD CUP99 dataset in their study. To mitigate

the redundancy of sample features in this dataset, the authors

implemented the PCA algorithm. To alleviate the class

imbalance, they adopted ADASYN. Subsequently, the

original datasets and those treated by PCA + ADASYN were

used to conduct experiments with Random Forest (RF),

Support Vector Machine (SVM), and XGBoost. To evaluate

the effectiveness of the models using this approach, the

F1_score and FPR metrics were used. The results indicated

that the PCA + ADASYN + XGBoost method performed best.

The study conducted by Li et al. [7] exploited the UNSW-

NB15 network traffic dataset. Due to the uneven distribution

of different attacks in this dataset, the authors consolidated the

anomalous behaviors into a single category, thus becoming the

majority category. The study proposes a two-pronged

approach: using the Adasyn oversampling method to resolve

the imbalance between normal and abnormal data, and

adopting the ID3 decision tree algorithm for categorizing

traffic into two types to detect network intrusions. To assess

the model's effectiveness, this approach was benchmarked

against other machine learning methods including K-nearest

neighbor (KNN), logistic regression, support vector machine

(SVC) classifier, random forest, adaboost, decision tree (using

the ID3 algorithm), and a hybrid approach (ADASYN+ID3).

The evaluation metrics focused on accuracy, precision, recall,

and the false alarm rate. Findings reveal that the hybrid model

combining ADASYN with the ID3 decision tree, as suggested

in this study, achieves higher accuracy and a reduced false

alarm rate, proving effective for intrusion detection tasks.

Sun et al. [8] presented an approach to solve the problem of

multiple classification of network intrusions, with a study

conducted on the CIC-IDS2017 dataset. To overcome data

imbalance, the researchers designed a resampling approach

that involves random sampling and Borderline SMOTE

oversampling to balance the data. To select features, they

computed the rate of information gain for each feature and

each attack category in the balanced data set. Subsequently,

experiments were conducted with three machine learning

algorithms (KNN, DT, RF), trained on six feature sets, to

obtain optimal feature selection and the best machine learning

method.

This paper Wu et al. [9] addresses data imbalance by

proposing a network intrusion detection algorithm that uses an

improved random forest in conjunction with the SMOTE

upsampling technique. In the first phase, authors introduce a

combined sampling approach that associates K-means

algorithm and SMOTE algorithm. This method aims to

decrease number of outliers, enrich characteristics of minority

samples and augment number of samples in this class.

Preliminary prediction results are then obtained using an

improved random forest. The decision tree with the highest

classification performance within the random forest

framework is selected for similarity computation in the next

step. Following this, a similarity matrix for network attacks is

utilized to refine the prediction results during the voting

process, through an analysis of the attack types. Finally, the

improved random forest model and other machine learning

algorithms, including KNN, SVM and RF, are trained on the

NSL-KDD dataset. The proposed model displays outstanding

performance, attaining a classification accuracy of 99.72% on

the training set and 78.47% on the test set.

In this study, Talukdera et al. [10] present a hybrid approach

incorporating suitable pre-processing, including missing value

handling, feature normalization and label encoding to prepare

datasets. They also apply the SMOTE technique to balance the

data and use XGBoost for feature selection. Different ML and

DL algorithms, including RF, DT, KNN, MLP, CNN and

ANN, are used to evaluate effectiveness of the method in

detecting network intrusions. Tests are performed using the

datasets, KDDCUP'99 and CIC-MalMem-2022. Various

performance measures, including accuracy, precision, recall,

F1 score, AUC score, ROC curve, MAE, MSE and RMSE, are

used to evaluate the algorithms in both binary and multi-class

attack contexts. The findings indicate that the RF algorithm

particularly excels, achieving the highest accuracy rate of

99.99% on the KDDCUP'99 dataset and 100% on the CIC-

MalMem-2022 dataset, without exhibiting overfitting and

Type-1 or Type-2 errors.

Alshamy et al. [11] present in their study an IDS model

(IDS-SMOTE-RF) that exploits the SMOTE oversampling

technique to solve the class imbalance problem and uses the

Random Forest algorithm to detect various types of attacks.

The model was formed and tested using the NSL-KDD dataset.

A comparative analysis was conducted between the IDS-

SMOTE-RF model and other classifiers, including Adaboost

(AB), Logistic Regression (LR) and Support Vector Machine

(SVM), focusing on measurements like accuracy, precision,

recall, the F1 score, and the time required to process binary

and multi-class classifications. The experimental results

revealed that the IDS-SMOTE-RF model achieved a high

accuracy of 99.89% in binary classification and 99.88% in

multi-class classification, thereby proving to be the most

efficient in terms of prediction time.

Generally, within the domain of intrusion detection systems,

research goals are centered on refining machine learning

algorithms and enhancing overall dataset learning metrics,

including model accuracy, detection rate, reduction in false

alarm rates, and minimizing learning and prediction times.

Optimization methods include data preprocessing, feature

1230

selection, and/or reducing data dimensionality to boost model

efficacy and decrease the consumption of computing resources.

In addition, solving the imbalance of sample classes in datasets

is also an important area of research. In this area of IDS,

researchers can still bring suitable refinements to achieve

better detection outcomes.

3. BACKGROUND

In this section, we will look at the technologies embedded

in the solution we propose. We will begin with a detailed

explanation of the approaches used for feature selection,

including the correlation matrix and mutual information. The

function of the XGBoost classifier will be explained in the last

part of this section. Next, we will discuss oversampling

methods such as SMOTE, Adasyn and BorderlineSMOTE,

and then offer an overview of the machine learning models we

have experienced.

3.1 Feature selection techniques

3.1.1 Correlation matrix

Feature selection in machine learning is an essential step

aimed at reducing data dimensionality and enhancing model

accuracy and efficiency. The correlation matrix, a statistical

tool, identifies the features with the highest correlations in a

dataset. Features with high correlation are often redundant and

do not contribute to the model's predictive power. Eliminating

these features can lead to better model performance.

In Data Science, the correlation matrix helps to quantify the

relationships between variables, measuring the strength and

direction of these links. It is represented by a table displaying

correlation coefficients between variables. Each variable

appears both in row and column, with the corresponding cell

in the matrix containing the correlation coefficient for each

pair of variables. The correlation coefficient varies between -

1 and +1, with -1 representing a perfect negative correlation,

+1 a perfect positive correlation, and 0 indicating no

correlation between the variables. Coefficients reveal the

nature of the relationship between variables, clarifying

dependencies. Variables that tend to increase or decrease

together have high positive correlation coefficients, while

variables that tend to move in opposite directions exhibit high

negative correlation coefficients [12]. This matrix is a

powerful tool to determine which variables are significantly

related or poorly correlated or not correlated at all,

contributing to fact-based predictions and judgments [12].

The following formula calculates the correlation coefficient

between two variables [12]:

𝑟 =
(𝑛 ∑ 𝑋𝑌 − ∑ 𝑋 ∑ 𝑌)

√(𝑛 ∑ 𝑋2 − (∑ 𝑋)2)(𝑛 ∑ 𝑌2 − (∑ 𝑌)2)
 (1)

where,

r: correlation coefficient,

n: number of observations,
∑ 𝑋𝑌: sum of the product of each pair of corresponding

observations of the two variables,
∑ 𝑋: sum of observations of the first variable,

∑ 𝑌: sum of the observations of the second variable,

∑ 𝑋2: sum of the squares of the observations of the first

variable,

∑ 𝑌2: sum of the squares of the observations of the second

variable.

Although the correlation matrix is useful for feature

selection in machine learning, it is recommended to use it

judiciously alongside other feature selection methods to

prevent over-fitting or under-fitting the model. Leveraging the

correlation matrix, machine learning algorithms can identify

the most relevant features, thereby enhancing their predictive

power.

3.1.2 Mutual information

Mutual information quantifies the dependence between two

random variables. High mutual information indicates strong

dependence, while low mutual information suggests

independence between the variables. The mutual information

between two random variables X and Y is mathematically

defined as follows:

𝐼(𝑋; 𝑌) = ∑ ∑ 𝑃(𝑥, 𝑦) ∗ 𝑙𝑜𝑔 (
𝑃(𝑥, 𝑦)

𝑃(𝑥) ∗ 𝑃(𝑦)
)

𝑦∈𝑌𝑥∈𝑋

 (2)

where,

𝑃(𝑥, 𝑦) is the joint probability of 𝑋 = 𝑥 and 𝑌 = 𝑦

𝑃(𝑥) and 𝑃(𝑦) are the marginal probabilities of 𝑋 and 𝑌

𝐼(𝑋; 𝑌) = 0 if and only if x and y are independent

𝐼(𝑋; 𝑌) is symmetric, i.e. 𝐼(𝑋; 𝑌)=𝐼(𝑌; 𝑋)

In machine learning, it is often employed to assess

relationships between features in a dataset and is useful for

feature selection. It can also be used to evaluate the connection

between each feature and the target variable (label), allowing

the retention of the most informative features while reducing

redundancy during dimensionality reduction. Features are

ranked based on their mutual information with the target

variable, with those having the highest mutual information

being retained [13]. This streamlines the decision-making

process and improves accuracy by reducing noise and

eliminating unnecessary complexity [14]. In the context of

clustering, mutual information can be used to measure the

similarity between two clusters, notably in algorithms such as

hierarchical agglomeration methods. Although sensitive to

non-linearity and capable of detecting dependencies not

captured by linear measures such as correlation, mutual

information can be influenced by the granularity of the data,

requiring precautions when using it [14].

In summary, mutual information is emerging as a powerful

measure for quantifying the dependency between two

variables, making it valuable in numerous machine learning

applications, such as feature selection and dimensionality

reduction.

3.2 Oversampling techniques

3.2.1 Smote

SMOTE (Synthetic Minority Over-Sampling Technique) is

an over-sampling technique developed to rebalance training

sets with an under-representation of the minority class. The

aim is to strengthen the minority class by generating synthetic

examples. Instead of simply duplicating existing instances of

the minority class, SMOTE introduces synthetic examples by

performing a linear interpolation between several instances of

this class located in a defined neighborhood, using Euclidean

distance and k-NN (k Nearest Neighbors) [15]. The process of

creating synthetic instances first involves defining the total

1231

number of oversamples N, which is the number of instances

that will need to be generated to obtain a balanced distribution

of classes [16]. Next, an iterative process consisting of several

steps is implemented. SMOTE randomly selects an instance of

the minority class and uses Euclidean distance to identify the

k nearest neighbors of the same class. The parameter k is a

user-defined number, usually k=5 (default). The new synthetic

examples are generated by linearly interpolating between the

selected instance and some of its neighbors, adjusting the

feature values according to the differences between the

selected instance and its neighbors. The complete process is

shown below:

Let 𝑥𝑖 be an instance of the minority class, and 𝑥𝑖1,
𝑥𝑖2, . . , 𝑥𝑖𝐾 , the 𝐾 nearest neighbours of 𝑥𝑖 in the training set.

1) Random selection of an instance of the minority class

a. Random selection of an instance of the minority class

 𝑥𝑖

2) Calculation of new synthetic instances

a. For each instance 𝑥𝑖𝑗 among the 𝐾 nearest

neighbours, we calculate the difference

𝑑𝑖𝑓𝑓 = 𝑥𝑖𝑗 − 𝑥𝑖

b. For each instance 𝑥𝑖𝑗 , a random number 𝑢 is

generated between 0 and 1

c. For each instance 𝑥𝑖𝑗 , the new synthetic

instance is calculated using the following

interpolation formula: 𝑥𝑠𝑦𝑛𝑖𝑗 = 𝑥𝑖 + 𝑢 ∗ 𝑑𝑖𝑓𝑓

d. These steps are repeated to create 𝑁 new synthetic

instances.

e. The set of new synthetic instances created is

noted {𝑥𝑠𝑦𝑛𝑖1, 𝑥𝑠𝑦𝑛𝑖2, … . . , 𝑥𝑠𝑦𝑛𝑖𝑁}.

f. Repeating these steps 𝑁 times to select 𝑁 instances

of the minority class and create

𝑁 × 𝐾 new synthetic instances.

3) Applying the oversampling method

a. The synthetic instances

𝑥𝑠𝑦𝑛𝑖1, 𝑥𝑠𝑦𝑛𝑖2, … . . , 𝑥𝑠𝑦𝑛𝑖𝑁 are added to the training

set.

This process aims to introduce variability while avoiding

simple replication of existing instances. The use of Euclidean

distance and k-NN ensures that synthetic instances are relevant

to the local distribution of the data. In general, SMOTE

focuses on the feature space instead of the data space [16]. This

means that the specific features defining a class are taken into

account when generating synthetic examples, thus preserving

the local structure of the minority class. By exploiting the

relationships between sample features, SMOTE improves the

ability of models to deal with class imbalance.

Note that SMOTE is only applicable to continuous data. An

adapted version, SMOTENC (SMOTE Nominal Continuous)

[17], exists for categorical data. Despite its advantages,

SMOTE has some weaknesses, notably that it does not take

into account neighboring examples of the majority class. In

fact, the synthetic observations created for the minority class

may overlap with instances of this class. In addition, the

excessive generation of synthetic observations may introduce

additional noise into the dataset, potentially biasing the model

[17].

The creation of synthetic instances has led to an in-depth

study of the theoretical relationships between original and

synthetic instances, taking into account aspects such as data

dimensionality, variance, correlation in data and feature space,

and the distribution between training and test instances [16].

In summary, SMOTE provides an efficient method for

oversampling the minority class, generating relevant synthetic

examples based on relationships in feature space, thus helping

to maintain minority class structure and diversity, improve

dataset balance and enhance model performance in

imbalanced class scenarios.

3.2.2 Borderline-SMOTE

Borderline-SMOTE is a variation of the original SMOTE,

an improvement on the algorithm [4], designed to better

handle examples located at the border between majority and

minority classes in an unbalanced dataset. Borderline-SMOTE

is based on the idea that examples located at the border

between classes are more relevant for oversampling. It uses the

ratio between the majority and minority examples in the

neighborhood of each instance to identify the examples

belonging to the borderline. Borderline-SMOTE classifies

examples into three categories: "Safe", "Danger" and "Noise".

"Safe" examples are those where the majority of neighbors

appertain to the same minority class, while "Dangerous"

examples are on the borderline with a more balanced

proportion of neighbors from both classes. Noise" examples

are characterized by neighbors all belonging to the majority

class [8, 16]. Only the "Dangerous" examples are selected for

oversampling [16]. The aim is to improve the distribution of

example categories without generating noise from examples

that are clearly in the majority. Borderline-SMOTE uses the

SMOTE algorithm to generate new synthetic examples. It

selects a "Dangerous" example and calculates its k nearest

neighbors. It then synthesizes new examples by performing a

weighted interpolation between the original example and its

neighbors.

3.2.3 Adasyn

ADASYN (Adaptive Synthetic Sampling) is an adaptive

synthetic sampling technique designed to solve the problem of

class imbalance in data sets. The technique is based on the

assumption that not all examples in the minority class are

equally difficult to learn. Some minority examples are

considered more difficult to learn than others based on the

proportion of the majority class in their vicinity [16].

ADASYN assigns different weights to the examples in the

minority class based on their learning difficulty level [5, 16].

Minority examples considered more difficult to learn receive

a higher weighting. Unlike SMOTE, which generates the same

number of synthetic samples for each minority example,

ADASYN is density adaptive, generating more synthetic

samples in areas where the density of minority instances is low.

In addition, SMOTE uses a fixed factor to determine the

number of synthetic samples, whereas ADASYN adjusts the

number of synthetic samples based on the estimated learning

difficulty, considering the ratio of majority class neighbors to

the total number of neighbors.

The minority examples that are more difficult to learn are

associated with a higher production of synthetic samples,

while those considered easier require fewer synthetic samples.

The ADASYN algorithm aims to achieve a relative balance of

classes by generating synthetic examples where this is deemed

1232

more necessary, depending on the estimated level of learning

difficulty.

The ADASYN algorithm can be detailed as follows [3, 7]:

Input:

D: initial training dataset with m instances.

{xi, yi} where xi is an instance in the feature space X and 𝑦𝑖

is the identity label of the class associated with xi

ms: number of instances of the minority class.

ml: number of examples of the majority class.

k: number of nearest neighbors to consider.

dth: threshold value for the maximum degree of imbalance

between classes.

Output:

𝐷′: oversampled data set.

1) Calculation of the degree of imbalance between classes,

imbalance =𝑚𝑠/𝑚𝑙

2) Check whether the degree of imbalance is less than the

dth threshold. If true, then :

a. Calculate the total number of synthetic samples to

generate: 𝐺 = (𝑚𝑙 − 𝑚𝑠) ∗ 𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒

b. For each minority example 𝑥𝑖.

1) Calculate the learning difficulty level which is the ratio

of majority class neighbors among the k nearest

neighbours of 𝑥𝑖 , 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑖 =((number of neighbors

belonging to the majority class among the k nearest

neighbours of 𝑥𝑖)/k).

2) Difficulty level normalization :

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑖 =
𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑖

∑ 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑖
𝑚𝑠
𝑖=1

3) Adjustment of the difficulty level:

adjusted_difficult𝑦𝑖=normalized_difficult𝑦𝑖 x 𝐺

4) Calculation of the number of synthetic samples to

generate:

𝑛𝑢𝑚_𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐𝑖 = 𝑟𝑜𝑢𝑛𝑑𝑒𝑑(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑖)

5) Generation of synthetic samples:

• For each i from 1 to 𝑛𝑢𝑚_𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐𝑖:

• Using the SMOTE algorithm to generate a synthetic

sample based on the minority example 𝑥𝑖 and its k

nearest neighbours.

• Adding the generated synthetic sample to the

oversampled dataset 𝐷′.

Steps 1 to 5 of point b are repeated until the desired

equilibrium is reached or until a predefined stopping criterion

is satisfied.

ADASYN is a flexible approach that adapts the generation

of synthetic samples according to the complexity of the

minority examples, providing an adaptive solution to the class

imbalance problem.

3.3 Machine learning algorithms

In our research, we selected several machine learning

algorithms based on their specific characteristics and

adaptability to the CICIDS2018 DDOS attack dataset. Since

DDoS attacks generally involve a large volume of malicious

network traffic, we deemed it essential to use models adept at

efficiently processing vast amounts of data and identifying

anomalous patterns. The RF model was chosen for its capacity

to manage complex data sets with interdependent explanatory

variables, while offering good robustness to outliers and over-

fitting. We also favored the use of XGB, due to its proficiency

in handling large datasets with great efficiency in terms of

speed and performance. On the other hand, SGD seemed the

obvious choice, given its efficiency in learning from massive

data and its ability to converge rapidly to optimal solutions,

making it well suited to our large dataset. For its part, the LGB

was chosen for its speed of execution and its ability to handle

class imbalance. These two criteria are, in fact, an eminently

important aspect for our dataset, where DDoS attacks

represent a minority class. Finally, MLP was selected for its

power to identify complex patterns in the data due to its

multilayer neural network structure, which is beneficial for

detecting subtle patterns present in our CICIDS2018 DDOS

attack dataset.

In sum, by exploiting these algorithms in our study, we were

able to experiment their respective strengths to enhance the

performance of our DDoS attack detection model on this

specific dataset. A detailed description of these algorithms is

given below:

3.3.1 Random forest

Random Forest is a powerful supervised classification

method [18]. It is distinguished by its use of subsets of the

original dataset to make predictions. During training, it

constructs many individual decision trees with different sets of

observations, and the predictions from these trees are then

combined, typically using majority voting, to produce the final

prediction [1, 19]. This approach, known as the ensemble

technique, solves the over-fitting problem [20] by relying on

the majority ranking of all tree results.

Random forests are versatile and can be applied to both

classification and regression tasks. For classification, a

random forest gathers a class vote from each tree and then

determines the final classification based on the majority vote.

For regression, the predictions from each tree for a target value

are averaged.

The goal of minimizing the correlation between trees in

random forests is to decrease the model's variance by

encouraging diversity among the trees. Each tree is built using

a random subset of the training data and random subsets of

features, leading to the creation of distinct trees [21]. This

diversity ensures that each tree can make unique prediction

errors since they are trained on different data samples. By

combining these predictions, either through averaging or a

majority vote (for classification), the overall model variance is

reduced [1]. This approach prevents over-fitting, as the errors

made by one tree are balanced out by the accurate predictions

of others [22]. When the predictions of trees show a high

correlation, this indicates that these trees generally make

similar errors. In such situations, the application of averaging

or voting would not lead to a significant improvement in

performance [1]. By emphasizing diversity and reducing

correlation, Random Forest increases the stability of

predictions, improving the generalization of the model to

unknown data. Hence, the results become more reliable,

resulting in improved predictive performance.

An additional advantage of this algorithm is its ability to

1233

perform feature selection, measuring the importance of each

variable at each division of each tree. This importance is

calculated as a function of the improvement in the division

criterion, pondered by the likelihood of reaching the

corresponding node [20, 21].

Random Forest is robust and efficient for classification,

making it an appropriate choice for detecting abnormal

patterns of network activity. It excels at handling large

amounts of data and is capable of handling complex features.

3.3.2 XGboost

XGBoost (Extreme Gradient Boosting) is one of the most

popular and efficient machine learning algorithms, frequently

employed for regression and classification fields. Its high

predictive performance and remarkable efficiency have

increased its popularity in recent years [23]. XGBoost

outperforms the gradient-based decision tree (GBDT)

algorithm with regard generalization, scalability and to

computational speed [24].

XGBoost, a technique for ensemble learning, enhances

predictive accuracy by optimizing a regularized loss function

through the combination of multiple decision trees. The

algorithm employs a reinforcement procedure that involves the

successively training of numerous decision trees. During each

iteration, an additional tree is introduced to correct the residual

mistakes from the preceding trees. The contributions of these

trees to form the ultimate prediction are then weighted

according on their individual effectiveness [1].

Consider a training dataset composed of feature-label pairs

{(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 , where 𝑥𝑖 denotes the set of features for the ith

example and 𝑦𝑖 represents its associated real class label.

The primary goal of XGBoost is to construct a predictive

model F(x) that minimizes a regularized loss function

L(yi, F(xi)) by accurately predicting the labels 𝑦𝑖 . The

optimization goal of XGBoost can be formulated as follows

[1]:

L(θ) = ∑ L(yi, F(xi)) + ∑ Ω(𝑓𝑗)
𝑇

𝑗=1

𝑛

𝑖=1
 (3)

The function L(yi, F(xi)) serves as a metric for quantifying

the divergence between the model's prediction F(xi) and the

actual label 𝑦𝑖. Among the frequently employed convex loss

functions are the logarithmic, square, and exponential loss

functions. The variable 𝑇 signifies the cumulative count of

trees within the ensemble, with 𝑓𝑗(𝑥) denoting the function

represented by the jth tree in the ensemble. The term

Ω(𝑓𝑗) acts as a regularization component, imposing a penalty

on the intricacy of the trees to prevent the model from

overfitting. This term is formulated as follows [1]:

Ω(𝑓𝑗) = 𝛾 𝑇𝑗 +
1

2
 ∑ 𝑤𝑗𝑘

2
𝐿

𝑘=1
 (4)

The parameters 𝛾 and are utilized to modulate the

intensity of the regularization process. Here, 𝑇𝑗 represents the

total count of leaves within a tree, 𝐿 denotes the number of

nodes in tree 𝑓𝑗 and 𝑤𝑗𝑘 signifies the weight associated with

the 𝑘 th node in tree 𝑓𝑗 . The initial component of the

regularization function, 𝛾 𝑇𝑗 , imposes a penalty that scales

with the total number of leaves in the tree; the more numerous

the leaves, the greater the penalty incurred. The second

component,
1

2
∑ 𝑤𝑗𝑘

2𝐿
𝑘=1 within the XGBoost objective

function, governs the extent to which the model is penalized

for assigning higher weights to the leaves. As increases, the

algorithm tends to favor lower leaf weights, thereby promoting

the development of more parsimonious trees. This

regularization strategy serves to mitigate overfitting by

curbing the propensity of overly intricate trees to model the

noise present in the training data. The values for and ω are

typically determined through empirical means [25].

To reduce the loss function, the predictions F(x) are updated

by incorporating the predictions from each individual tree

weighted by its respective learning coefficient [1]:

𝐹𝑡(𝑥) = 𝐹𝑡−1(𝑥) + ∑ 𝑓𝑗(𝑥)
𝐽

𝑗=1
 (5)

The learning rate plays an important role as a

hyperparameter, regulating the magnitude of the update. By

employing the boosting approach, XGBoost constructs each

tree with the objective of rectifying the residual errors from the

preceding model. This iterative process enables the algorithm

to gradually adapt to the residual errors as additional trees are

introduced.

XGBoost offers the advantage of automatically generating

assessments of feature importance from a trained predictive

model. The importance of features is determined by examining

their contribution to the building of the boosted decision trees,

which reflects their relative significance within the model. The

assessment of importance relies on the enhancement in the

performance measure for each attribute-sharing point in a tree,

with weighting by the number of instances linked to the node.

Ultimately, XGBoost computes the average of these

importance scores across all the decision trees in the model,

delivering a comprehensive estimate of the importance of each

feature. This process makes it possible to rank characteristics

according to their contribution to performance, offering

insights into the most influential variables in the model [26].

XGBoost offers high accuracy and good generalization. Its

ability to handle unbalanced datasets can be useful in the

context of DDoS attack detection, where malicious activity

may be rare compared to normal traffic.

3.3.3 Stochastic gradient descent

Stochastic Gradient Descent (SGD) is a technique of

iterative optimization that is extensively embraced in the realm

of machine learning, particularly for the training of neural

network models. This approach is applied to unconstrained

optimization problems [27]. Basically, SGD is used to

iteratively adjust the parameters of a model to minimize a cost

function [28]. This function evaluates the discrepancy between

the predictions made by the model and the true values, and is

central to the learning process.

SGD is a derivative of classical gradient descent, and aims

to update model parameters iteratively and incrementally,

using mini-batches of data, representing a change from

classical gradient descent which exploits the full dataset at

each iteration [28]. This sequential approach enables faster

training, which is particularly beneficial for large datasets.

Its efficiency stems from its ability to process data in small,

bite-sized chunks, which significantly reduces memory

requirements, making SGD ideal for large datasets. In addition,

SGD tends to converge faster than its conventional counterpart,

particularly in high-dimensional parameter spaces. However,

1234

this rapid convergence is accompanied by inherent variability

due to stochastic sampling, making the process sometimes

noisy. Furthermore, SGD requires careful management of the

hyperparameters, in particular the choice of the learning rate

(η). Inadequate selection of this value can compromise

convergence, leading to either slow convergence or

divergence. Thus, judicious adjustment of the parameters

becomes a crucial step in guaranteeing fast and stable

convergence.

The mathematical formulation of stochastic gradient

descent presented in the literature [27, 28] is as follows:

Given a training dataset consisting of (x1, y1), … , (xn, yn),

where n is the number of examples, 𝑥𝑖 ∈ 𝐑𝑚 represents the

features of the i th example and 𝑦𝑖 ∈ ℛ is the target label

associated with this example.

The goal is to learn the linear score function 𝑓(𝑥) = 𝑤𝑇𝑥 +
𝑏, with the model parameters, 𝑤 ∈ 𝐑𝑚 the weight vector and,

𝑏 ∈ 𝐑 the intercept.

The learning objective is to determine the optimal values of

the model parameters w and b that minimize the regularized

learning error 𝐸(𝑤, 𝑏) given by:

𝐸(𝑤, 𝑏) =
1

𝑛
∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖)) + 𝛼𝑅(𝑤)

𝑛

𝑖=1

 (6)

where, 𝐿(𝑦, 𝑓(𝑥)) denotes a loss function assessing model fit.

It evaluates how closely the prediction f(x) matches the true

target y. 𝑅(𝑤) a regularization term that penalizes the model's

intricacy. This term helps prevent over-fitting by restricting

the values of model parameters. 𝛼 represents a positive

hyperparameter that governs the degree of regularization.

The SGD algorithm uses optimization techniques such as

gradient descent to adjust model parameters iteratively until

convergence. It progresses through the training data, and for

each entry, it updates the model parameters following the

specified update rule below:

𝑤 ← 𝑤 − 𝜂[𝛼
𝜕𝑅(𝑤)

𝜕𝑤
+

𝜕𝐿(𝑤𝑇𝑥𝑖 + 𝑏, 𝑦𝑖)

𝜕𝑤
] (7)

In this context, η represents the learning rate, determining

the step size of the updates in the parameter space. The

intercept b is updated similarly, yet it is not subject to

regularization.

The convergence of SGD may occur more quickly, yet the

noise introduced by randomly choicing samples may render

the algorithm less stabe compared to classical gradient descent.

However, many techniques and variants have been developed

to mitigate these problems and improve the stability and

efficiency of training, making it an essential tool in modern

machine learning.

Stochastic Gradient Descent (SGD) can be adopted as a

model for detecting DDoS attacks, due to its ability to

efficiently process large datasets. The stochastic nature of

SGD, using mini-samples in an iterative fashion, enables rapid

training on real-time data streams, a crucial feature for the

detection of constantly evolving attacks. SGD can be a

relevant choice for intrusion detection in a network security

context.

3.3.4 LightGBM

Light Gradient Boosting Machine, or LightGBM, is a

machine learning algorithm developed by Microsoft, based on

the gradient boosting technique. Its distinction lies in its ability

to efficiently manage large datasets, offering fast and parallel

performance [29]. As a boosting model, LightGBM combines

several weak models, often shallow decision trees, in an

assembly method to create a more powerful global model.

Based on the gradient reinforcement algorithm, LightGBM

successively trains models, focusing on examples that are

poorly predicted by previous models, with each model aiming

to rectify the mistakes of its predecessor. This algorithm is

applied in a range of tasks including classification, regression

and large-scale ranking, making it effective for solving a

variety of problems in machine learning [29]. Three distinct

methods bolster LightGBM's capabilities: Gradient-based

One-Side Sampling (GOSS), Exclusive Feature Bundling

(EFB), and the histogram-based approach for choosing

features and identifying segmentation points [3, 30]. These

techniques are seamlessly integrated into the overall decision

tree building process when models are trained with LightGBM.

The Gradient-based One-Side Sampling (GOSS) algorithm

is introduced in LightGBM with the goal of decreasing the

number of samples at each iteration while emphasizing the

training of samples that show weak predictive performance.

During each iteration, LightGBM first calculates the gradients

for all the instances in the dataset. The instances are then sorted

according to the magnitude of their gradients. This separates

the most informative instances from those that have less

impact on the model. GOSS retains a large proportion of the

instances with high gradients, thus preserving the most

relevant information for learning [3]. Random sampling is

carried out among the instances with lower gradients [3]. This

reduces their number, while preserving a reasonable

representation of these less informative examples. LightGBM

then uses these sampled instances to update the model

parameters using gradient descent. Updates are made

incrementally and selectively, making it easier to learn

difficult cases. By lowering the sample volume processed in

each iteration, GOSS contributes to a reduction in

computational load, which is particularly advantageous for

handling massive datasets. It allows more focus to be placed

on instances with poor prediction effects, helping to reinforce

the learning of these difficult cases, improve model efficiency

and achieve more accurate predictions.

EFB is a technique introduced in LightGBM for grouping

features that are mutually exclusive. This method seeks to

decrease the dimensionality of the feature space, which in turn

enhances the efficiency of model training. LightGBM analyses

the features in the dataset to identify those that are mutually

exclusive, i.e. those that are never simultaneously active in the

same decision tree. Features that are mutually exclusive are

grouped into sets [3]. For example, if two features A and B are

mutually exclusive, they will be grouped together in a set. For

each set of mutually exclusive features identified, LightGBM

creates a new aggregated feature that represents these

combined features. This aggregation can take different forms,

such as average, sum, or other statistical operations. When

building decision trees, instead of using individual features,

LightGBM uses the new aggregated features created by the

mutually exclusive grouping. By diminishing the feature space

dimensionality, EFB helps to speed up model training, while

retaining essential information. Indeed, by grouping mutually

exclusive features, EFB simplifies the structure of decision

trees by lessening the number of nodes required to depict the

relationships between features, which reduces the time needed

to train the model [30]. The creation of new aggregated

1235

features additionally lessens the model's complexity. By

diminishing the number of features employed in the model,

EFB contributes to better memory management, which is

particularly useful for massive datasets [30]. In summary,

Exclusive Feature Bundling (EFB) in LightGBM provides an

efficient way to manage mutually exclusive features by

grouping them together, reducing model complexity and

improving training efficiency [30].

LightGBM uses the histogram algorithm to select features

and determine segmentation points when building each

decision tree [31]. Instead of examining all unique feature

values to identify the optimal segmentation point (which is

costly in terms of computation time), LightGBM uses

histograms to approximate the distribution of feature values.

Histograms are constructed for each feature and are used to

find optimal segmentation points more quickly. This approach

considerably speeds up the construction of decision trees in

LightGBM, making it an effective algorithm for large or high-

dimensional datasets [31].

By combining these techniques, LightGBM manages to

deliver high performance with increased computational

efficiency, even in complex, high-volume data contexts,

making it a popular choice for supervised learning on large

amounts of data. For these reasons, it can be particularly well

suited to the detection of DDoS attacks.

3.3.5 MLP (Multilayer Perceptron)

The Multi-Layer Perceptron (MLP) is an artificial neural

network with a multi-layered architecture, including an input

layer, hidden layers, and an output layer. It is commonly

employed for various machine learning tasks, including

classification and regression, due to its capability to model

complex and non-linear relationships in data [32]. Figure 1

displays an MLP hidden layer with scalar output [33, 34].

The first layer of the MLP, called the input layer, receives

the characteristics of the dataset, where each neuron represents

an input characteristic. The total number of neurons in this

layer is the total number of characteristics in the dataset [32,

35]. MLP includes one or more hidden layers located

intermediate to the input and output layers, each made up of

neurons. Each neuron in a hidden layer is connected to all

neurons in the previous and next layers. It transforms the

values of the previous layer by weighted linear summation,

followed by a non-linear activation function. Within a hidden

layer, neurons do not interact directly with each other, but

indirectly through weighted connections, allowing the

network to learn complex connections and representations in

the data. The number of hidden layers and the number of

neurons in each layer affects the complexity of the task [35].

The last layer, designated as the output layer, produces the

model predictions using the information processed in the

hidden layers. The output layer activation function depends on

the type of problem to be solved, such as the sigmoid function

for binary classification, the softmax function for multi-class

classification, or no activation for regression.

The mathematical formulation of the MLP model is as

follows:

Suppose we have an MLP with L layers, where layer l is

composed of 𝑛(𝑙) neurons. Let X be the input vector of

dimension d, 𝑊(𝑙) the weight matrix of layer l, 𝑏(𝑙) the bias

vector of layer l, and 𝑎(𝑙) the activation vector of layer l.

Forward propagation through the network can be described

as follows:

Figure 1. One hidden layer MLP

1236

For hidden layer l:

𝑧(𝑙) = 𝑊(𝑙)⋅ 𝑎(𝑙−1) + 𝑏(𝑙)

𝑎(𝑙) = f (𝑧(𝑙))

where, f is a non-linear activation function, such as the

sigmoid function, the hyperbolic tangent (tanh), or the ReLU

(Rectified Linear Unit) function.

For the last output layer L:

𝑧(𝐿)=𝑊(𝐿)𝑎(𝐿−1)+𝑏(𝐿)

�̂�=f (𝑧(𝐿))

where, �̂� is the predicted output of the network, typically used

for classification or regression, and f is the activation function

appropriate for the specific task.

The MLP assigns weights to each input feature, adjusted

during training to optimize their value. The perceptron

combines these weighted inputs through a summation function,

while the neurons of the hidden layers apply activation

functions to introduce nonlinearity, allowing the modeling of

complex relationships. The information propagates through

the network from the input layer to the output layer, generating

predictions. For model learning, a loss function J is defined to

measure the difference between model predictions and true

labels. Examples of commonly used loss functions are mean

squared error for regression and cross-entropy loss for

classification. Next, backpropagation is used to adjust network

weights and biases in order to minimize the loss function.

Indeed, once the network output has been calculated and the

loss function evaluated, error backpropagation is used to

calculate the gradients of the loss function with respect to the

network weights and biases. These gradients are then used to

update the network weights and biases using an optimization

algorithm such as stochastic gradient descent (SGD) or the

gradient descent with momentum algorithm [34, 36].

MLPs are capable of capturing complex nonlinear

relationships in data. They can be used to model sophisticated

network activity patterns, which can be important for detecting

DDoS attacks. However, MLPs have the following

disadvantages: MLPs with hidden layers have a non-convex

loss function where more than one local minimum exists.

Consequently, different random weight initializations can lead

to different validation accuracy. In addition, MLP requires the

setting of a number of hyperparameters such as the number of

hidden neurons, layers and iterations, and is sensitive to

feature scaling.

4. OVERVIEW OF THE CSE-CIC-IDS2018 DATASET

The CSE-CIC-IDS2018 (Canadian Institute for

Cybersecurity Intrusion Detection System 2018) dataset is a

widely used resource for intrusion detection system research

and development. It was produced by the Canadian Institute

for Cybersecurity (CIC) in collaboration with the

Communications Security Establishment (CSE) [37]. The

main objective is to create a comprehensive reference database

for intrusion detection systems based on anomalies. This

dataset was designed to simulate a realistic network

environment by integrating normal network traffic data as well

as data representing various potential attacks. The foundation

of this project is built on creating user profiles that encapsulate

abstracted event and behavior observed across the network,

combining these profiles to create diverse datasets. The data

comes from various sources, including attack simulations and

real network traffic captures. This ensures a variety of

representative instances of the scenarios encountered in the

real world. The behaviors and patterns observed in the data are

representative of real activities on today's computer networks.

Collected over a 10-day period, from February 14 to March 2,

2018, the dataset captures seven distinct types of attack

scenarios, including brute force, botnets, DoS/DDoS, web-

based attacks, and network infiltrations. It comprises data from

network traffic captures, system logs for each machine, and 80

different attributes extracted from the traffic via

CICFlowMeter-V3. These features include information such

as IP addresses, ports, protocols, durations, packet size, TCP

flags, and other data related to network packets. Each record

in the dataset is labeled as normal or malicious, facilitating the

use of supervised learning techniques for attack detection. This

labeling enables researchers to train models that can accurately

differentiate benign from malicious traffic. The data is usually

provided as CSV files, making it easy to use with various data

analysis and machine learning tools. This is a large data set,

with a large number of instances, providing sufficient scope

for training machine learning models. The dataset,

downloaded from Kaggle, has 16,233,002 examples and 80

features, with variations in the availability of certain features

depending on the registration dates. The diversity of this data

makes it a valuable resource for network activity analysis,

especially in the detection of attacks. Figure 2 presents the

breakdown of instances in the CICIDS 2018 dataset,

downloaded from Kaggle.

Figure 2. The instances breakdown of the CICIDS 2018

dataset

In sum, with over 16 million examples and 80 features

extracted from traffic, the CICIDS2018 dataset offers a wealth

of data essential for machine learning model entrainment.

Consequently, the diversity of instances representative of

scenarios encountered in the real world ensures that models

are exposed to a wide range of situations, contributing to their

generalization and robustness. Researchers and practitioners

use the CSE-CICIDS2018 dataset to evaluate the performance

of their IDSs, analyze attack trends, and develop more robust

intrusion detection models. As a result, the size of the dataset,

comprising millions of instances, provides a solid basis for

assessing intrusion detection systems, allowing thorough

1237

analysis for the test of algorithms performances.

In our approach, we focused on DDoS attacks in the CSE-

CIC-IDS2018 dataset, based on records from days four and

five of the data acquisition phase for traffic and network

behavior. The interest in this data collection in our research is

due to its diverse nature and considerable size. CSE-CIC-

IDS2018 DDOS attack has 8,997,323 instances, or more than

55% of the instance breakdown of the CSE-CIC-IDS2018 data

compilation. It has 80 features, of which 45 features have

float64 data type, 33 features have int64 type and 2 features

have object type. The CICIDS2018 DDOS attack dataset

features a variety of simulated DDoS attack scenarios

including HOIC, LOIC-HTTP and LOIC-UDP attacks, which

are representative of the types of attacks observed in the real

world. The breakdown of class labels for DDoS attacks in the

CSE-CIC-IDS2018 dataset is displayed in Figure 3.

The dataset shows a very unbalanced distribution of classes,

with a total of 8937870 instances. The majority class "Benign"

accounts for 85.86% of the total, while the minority class

"DDOS attack-LOIC-UDP" accounts for only 0.02%. The

classes "DDOS attack-HOIC" and "DDOS attack-LOIC-

HTTP" exhibit notably smaller data proportions compared to

the predominant "Benign" class, at 7.68% and 6.45%

respectively. This imbalance can pose modelling problems, as

the predominance of the "Benign" class can lead to biases in

machine learning models. To manage the imbalance problem

in this dataset, we used oversampling techniques to increase

the number of minority class instances and under-sampling

techniques to decrease majority class occurrences, thus

equilibrating the distribution. In addition, we used stratified

cross-validation to maintain the class distribution for each fold

and obtain more reliable estimates of model performance. We

used evaluation measures such as precision, recall and F1

score.

Figure 3. Allocation of class labels in the CSE-CICIDS 2018

DDOS attacks dataset

5. APPROACH ADOPTED

The approach we adopted in our research is depicted in

Figure 4, and includes eight distinct stages. The pre-treatment

constitutes the first stage which encompass label encoding,

normalization and feature selection. The process of feature

selection involves three techniques: correlation matrix, mutual

information and feature importance based on the XGBoost

classifier. The pre-processing stage ends with an evaluation of

the relevance of the selected features. The second stage

involves the creation of binary datasets. The third step

involves the subdivision of each unbalanced binary dataset

into separate training, validation, and testing subsets. Before

applying oversampling, the fourth step is to test the models on

real data from each unbalanced binary dataset. The fifth step

is the data increase phase. The synthetic data quality tests for

each binary data set are carried out in the sixth step. The

seventh step involves the creation of the synthetically balanced

multi-class dataset. Finally, the eighth step focuses on

evaluating the effectiveness of the machine learning models

across multi-class datasets, whether real or synthetic.

5.1 Pre-processing stage

After importing the csv files, we began the pre-processing

stage, which includes data cleansing, label encoding,

normalisation and feature selection. We began by cleaning up

the data by first eliminating irrelevant columns. Next, we

converted data with an inf value to a NAN value and then

deleted all instances containing these values. For the encoding

of class labels, we used the Label Encoder function from the

sklearn.preprocessing library, which transforms categorical

data into integer data. To improve the quality, performance,

interpretability and explainability of the machine learning

models, we opted to normalize the data using the

StandardScaler function in the sklearn.preprocessing library.

The aim of this approach is to eliminate problems relating to

the scale of the variables, thereby facilitating a fair comparison

between the different characteristics of the data. It aims to

change the values of the numerical columns in the dataset

using a common and uniform scale, preserving the range

differences and avoiding information loss. Standard

normalization, often referred to as standardization or z-score

normalization, involves deducting the mean and then dividing

by the standard deviation. In this way, each value represents

the distance from the mean in units of standard deviation [38].

The standard normalization formula:

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 =
𝑉𝑎𝑙𝑢𝑒𝑠 − 𝑀𝑒𝑎𝑛

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 (8)

5.1.1 Feature selection

For the feature selection process, we sequentially applied

three specific techniques: the correlation matrix, Mutual

Information and feature importance based on the XGBoost

classifier.

The correlation matrix. one of the statistical techniques

adapted in our study to the detection of DDoS attacks, is used

to detect variables that are highly correlated with each other,

which may indicate redundancies or interdependencies in the

data and could introduce noise into the model. In our case

study, we applied the correlation matrix to the dataset resulting

from the preliminary pre-processing steps. This set comprises

80 normalized features. The matrix enabled us to identify the

pairs of variables that are highly correlated, presenting

correlation coefficients above the 0.95 threshold. Table 1

shows this result.

After applying the correlation matrix, only one of the two

variables in each highly correlated pair is retained, while the

other is removed from the data set. This process aims to

eliminate information redundancy, as highly correlated

features often provide similar information. So, by eliminating

1238

these highly correlated features, we have reduced

dimensionality, retaining only information relevant to the

machine learning model. This reduction can improve model

performance and help prevent over-fitting. In addition, models

are generally easier to interpret when features are independent

or weakly correlated. Following the application of the

correlation matrix, here are the 52 features retained in the

dataset.

« 'Dst Port', 'Protocol', 'Flow Duration', 'Tot Fwd Pkts', 'Tot

Bwd Pkts', 'Fwd Pkt Len Max', 'Fwd Pkt Len Min', 'Fwd Pkt

Len Mean', 'Bwd Pkt Len Max', 'Bwd Pkt Len Min', 'Bwd Pkt

Len Mean', 'Flow Byts/s', 'Flow Pkts/s', 'Flow IAT Mean',

'Flow IAT Std', 'Flow IAT Max', 'Fwd IAT Std', 'Bwd IAT

Tot', 'Bwd IAT Mean', 'Bwd IAT Std', 'Bwd IAT Max', 'Bwd

IAT Min', 'Fwd PSH Flags', 'Bwd PSH Flags', 'Fwd URG

Flags', 'Bwd URG Flags', 'Bwd Pkts/s', 'Pkt Len Min', 'Pkt Len

Var', 'FIN Flag Cnt', 'RST Flag Cnt', 'PSH Flag Cnt', 'ACK

Flag Cnt', 'URG Flag Cnt', 'CWE Flag Count', 'Down/Up

Ratio', 'Fwd Byts/b Avg', 'Fwd Pkts/b Avg', 'Fwd Blk Rate

Avg', 'Bwd Byts/b Avg', 'Bwd Pkts/b Avg', 'Bwd Blk Rate

Avg', 'Init Fwd Win Byts', 'Init Bwd Win Byts', 'Fwd Seg Size

Min', 'Active Mean', 'Active Std', 'Active Max', 'Active Min',

'Idle Mean', 'Idle Std', 'Label'».

Figure 4. The approach followed for IDS optimization

1239

Figure 5. Visualization of features according to their importance measured by mutual information

Figure 6. The importance of features, provided by the XGBoost model

Mutual information. In the second phase of our feature

selection process, we used the mutual information technique

on the dataset from the Correlation Matrix. This was done

using the mutual_info_classif function in the

sklearn.feature_selection library. Mutual information (MI)

measures the dependency between two variables. We have

used it to determine the impact of each feature on predicting

the target variable, the class label. Regarding of DDoS attack

detection, this technique is relevant because it identifies the

variables that are most informative in predicting the class of

DDoS attacks.

Mutual information measures the statistical dependence

between two variables. In the context of machine learning, this

measure assesses the dependency relationship between each

feature and the class label variable, allowing us to measure

how informative a particular feature is in predicting the class

variable. The higher the mutual information, the more relevant

the feature is considered to be for predicting the target variable.

In this way, this measure helps to identify which features

provide the most discriminating information on the presence

or absence of a DDoS attack. Figure 5 facilitates the

identification of the most informative features for the creation

of predictive models in the context of our study.

In order to select the most informative features, we defined

a selection threshold equal to 0.01. We retained 41 features

whose mutual information with the label exceeded the defined

threshold. The resulting dataset therefore includes the

following 42 features: 'Dst Port', 'Protocol', 'Flow Duration',

'Tot Fwd Pkts', 'Tot Bwd Pkts', 'Fwd Pkt Len Max', 'Fwd Pkt

Len Min', 'Fwd Pkt Len Mean', 'Bwd Pkt Len Max', 'Bwd Pkt

Len Min', 'Bwd Pkt Len Mean', 'Flow Byts/s', 'Flow Pkts/s',

'Flow IAT Mean', 'Flow IAT Std', 'Flow IAT Max', 'Fwd IAT

Std', 'Bwd IAT Tot', 'Bwd IAT Mean', 'Bwd IAT Std', 'Bwd

IAT Max', 'Bwd IAT Min', 'Fwd PSH Flags', 'Bwd Pkts/s', 'Pkt

Len Min', 'Pkt Len Var', 'RST Flag Cnt', 'ACK Flag Cnt', 'URG

Flag Cnt', 'Down/Up Ratio', Init Fwd Win Byts', 'Init Bwd Win

Byts', 'Fwd Seg Size Min', 'Active Mean', 'Active Std', 'Active

Max', 'Active Min', 'Idle Mean', 'Idle Std', 'Label'.

Mutual information has proved invaluable in identifying

influential features in class prediction. Its use reinforced the

1240

reduction of dimensionality and the retention of only the most

informative features, contributing to the creation of a more

succinct and refined dataset.

XGBoost feature importance. As part of the third feature

selection method, we used the feature importance method of

the XGBoost classifier. Feature importance is calculated by

analyzing the contribution of each feature to the construction

of the model's decision trees, thus providing indications as to

which features are the most discriminating. The model assigns

an importance score to each feature after training, measuring

their contribution to the overall performance of the model. A

major advantage of this classifier is its ability to prioritise

features that increase predictive accuracy during training. In

this phase, we trained the XGBoost model on the dataset

resulting from the previous mutual information stage. By

calculating and ranking the features according to their

feature_importances, we were able to ascertain the

significance of each feature for prediction. This is

demonstrated in Figure 6, which identifies the most significant

features for the XGBClassifier model, enabling us to establish

a selection threshold at 0.001.

Applying this threshold, we selected 18 features with an

importance greater than 0.001. We then checked that these

selected features also had strong mutual information with the

class label variable, indicating their predictive potential. This

means that these features provide sufficient discriminant

information to distinguish the different classes of the target

variable.

Table 1. Pairs of highly correlated features following the correlation matrix

 Feature1 Feature2 Correlation Value

0 Flow Duration Fwd IAT Tot 0.996960

1 Tot Fwd Pkts TotLen Fwd Pkts 0.999216

2 Tot Fwd Pkts Fwd Header Len 0.998923

3 Tot Fwd Pkts Subflow Fwd Pkts 1.000000

4 Tot Fwd Pkts Subflow Fwd Byts 0.999216

5 Tot Fwd Pkts Fwd Act Data Pkts 0.999644

6 Tot Bwd Pkts TotLen Bwd Pkts 0.996437

7 Tot Bwd Pkts Bwd Header Len 0.999914

8 Tot Bwd Pkts Subflow Bwd Pkts 1.000000

9 Tot Bwd Pkts Subflow Bwd Byts 0.996437

10 TotLen Fwd Pkts Fwd Header Len 0.997085

11 TotLen Fwd Pkts Subflow Fwd Pkts 0.999216

12 TotLen Fwd Pkts Subflow Fwd Byts 1.000000

13 TotLen Fwd Pkts Fwd Act Data Pkts 0.999518

14 TotLen Bwd Pkts Bwd Header Len 0.996341

15 TotLen Bwd Pkts Subflow Bwd Pkts 0.996437

16 TotLen Bwd Pkts Subflow Bwd Byts 1.000000

17 Fwd Pkt Len Max Fwd Pkt Len Std 0.964655

18 Fwd Pkt Len Mean Fwd Seg Size Avg 1.000000

19 Bwd Pkt Len Max Bwd Pkt Len Std 0.969744

20 Bwd Pkt Len Max Pkt Len Max 0.966422

21 Bwd Pkt Len Mean Pkt Len Mean 0.951733

22 Bwd Pkt Len Mean Bwd Seg Size Avg 1.000000

23 Bwd Pkt Len Std Pkt Len Max 0.959944

24 Bwd Pkt Len Std Pkt Len Std 0.953718

25 Flow Pkts/s Fwd Pkts/s 0.989220

26 Flow IAT Mean Flow IAT Min 0.988931

27 Flow IAT Mean Fwd IAT Mean 0.989511

28 Flow IAT Mean Fwd IAT Min 0.986116

29 Flow IAT Max Fwd IAT Max 0.991463

30 Flow IAT Min Fwd IAT Mean 0.965669

31 Flow IAT Min Fwd IAT Min 0.988629

32 Fwd IAT Mean Fwd IAT Min 0.977335

33 Fwd PSH Flags SYN Flag Cnt 1.000000

34 Fwd Header Len Subflow Fwd Pkts 0.998923

35 Fwd Header Len Subflow Fwd Byts 0.997085

36 Fwd Header Len Fwd Act Data Pkts 0.997376

37 Bwd Header Len Subflow Bwd Pkts 0.999914

38 Bwd Header Len Subflow Bwd Byts 0.996341

39 Pkt Len Max Pkt Len Std 0.968040

40 Pkt Len Mean Pkt Size Avg 0.992375

41 Pkt Len Mean Bwd Seg Size Avg 0.951733

42 RST Flag Cnt ECE Flag Cnt 0.999986

43 Subflow Fwd Pkts Subflow Fwd Byts 0.999216

44 Subflow Fwd Pkts Fwd Act Data Pkts 0.999644

45 Subflow Fwd Byts Fwd Act Data Pkts 0.999518

46 Subflow Bwd Pkts Subflow Bwd Byts 0.996437

47 Idle Mean Idle Max 0.995137

48 Idle Mean Idle Min 0.995723

49 Idle Max Idle Min 0.982556

1241

Table 2. The features in the reduced dataset after the three selection operations

NO. Position in CICIDS2018 Column Dtype

1 1 Dst Port float64

2 2 Protocol float64

3 3 Flow Duration float64

4 5 Tot Fwd Pkts float64

5 9 Fwd Pkt Len Max float64

6 19 Flow IAT Mean float64

7 20 Flow IAT Std float64

8 21 Flow IAT Max float64

9 25 Fwd IAT Std float64

10 30 Bwd IAT Std float64

11 45 Pkt Len Var float64

12 48 RST Flag Cnt float64

13 49 PSH Flag Cnt float64

14 50 ACK Flag Cnt float64

15 68 Init Fwd Win Byt float64

16 69 Init Bwd Win Byt float64

17 71 Fwd Seg Size Min float64

18 76 Idle Mean float64

19 80 Label int64

Our approach was to sequentially combine these methods to

obtain an optimal subset of relevant variables. First, we used

the correlation matrix to remove highly correlated features,

effectively reducing the data's dimensionality while retaining

pertinent information. Next, we applied Mutual Information to

assess the importance of the remaining features, selecting

those that were most informative for predicting DDoS attacks.

Finally, we used feature importance according to the XGBoost

classifier to further refine the selection, focusing on the most

discriminating features to improve model performance. Table

2 displays the breakdown of selected features following the

implementation of the triple operation of selection. It includes

the names of the features, their associated data type, as well as

their position in the initial dataset of the CICIDS2018 DDOS

attack.

We present below each of the characteristics of this reduced

data set and how it could contribute to the detection of DDoS

attacks:

• Dst Port and Protocol: DDoS attacks can often target

specific ports or exploit vulnerabilities in certain protocols.

For example, Syn Flood attacks often aim to saturate

destination ports by initiating numerous TCP connections.

Analysis of these characteristics may reveal unusual traffic

patterns or exploitation attempts.

• Flow Duration: DDoS attacks can generate heavy traffic

over a relatively short period of time. Abnormally short or long

flow durations could indicate suspicious activity.

• Tot Fwd Pkts and Fwd Pkt Len Max: DDoS attacks can

cause a significant increase in the number of packets or an

abnormally large packet size. By monitoring these

characteristics, our model could detect unusual behavior that

could indicate an attack in progress.

• Flow IAT Mean, Flow IAT Std and Flow IAT Max:

Variations in flow inter-arrival intervals may indicate DDoS

attacks, especially if these values are very different from

normal. By analyzing the mean, standard deviation and

maximum of flow inter-arrival intervals, our model can detect

suspicious traffic patterns associated with DDoS attacks.

• Fwd IAT Std (Forward packet inter-arrival interval

standard deviation) and Bwd IAT Std (Backward packet inter-

arrival interval standard deviation): DDoS attacks can disrupt

regular packet arrival patterns. High standard deviations may

indicate significant variability in traffic, which could be

characteristic of an ongoing DDoS attack.

• Pkt Len Var (Packet Length Variation): DDoS attacks can

generate significant variability in packet length. By

monitoring the variation in Pkt Len Var, our model can detect

abnormal fluctuations in traffic that could indicate an attack in

progress.

• RST Flag Cnt, PSH Flag Cnt and ACK Flag Cnt: Some

types of DDoS attacks may involve manipulating flags in

packets. Abnormal values for these counters could indicate an

attack in progress.

• Init Fwd Win Byt (Initial forward transfer window size)

and Init Bwd Win Byt (Initial backward transfer window size):

DDoS attacks can affect network performance, including

transfer window management. Significant changes in these

values may be indicative of an ongoing DDoS attack that is

disrupting normal communication between hosts.

Each selected characteristic from our reduced dataset offers

a different perspective on network traffic, and can be used to

detect anomalies or specific patterns of DDoS attacks. These

features can all serve as potential indicators of an attack in

progress. Combining these features in a machine learning

model has the advantage of capturing complex malicious

behavior and effectively detecting DDoS attacks. In this way,

our feature selection methodology is based on solid principles

and provides a robust framework for the proactive detection of

DDoS attacks in computer networks.

Evaluation of selected features. We then investigated the

reduced features to ensure that they retained sufficient

information to ensure reliable detection of DDoS attacks. We

also analyzed the impact of this reduction on the complexity

of the model, the gain in execution time and the use of

computational resources.

To verify the potential loss of information, we compared the

performance of several machine learning models (RF, XGB,

SGD, LGB and MLP) trained on the full dataset without

feature reduction (0FS) with those trained on the reduced

subset resulting from the three selection operations (3FS).

Performance was evaluated using global metrics such as

Accuracy, macro_accuracy, macro_recall and macro_F1-

score. We also examined learning and prediction times in

order to analyze the effect of the reduction on execution time.

1242

5.2 Data balancing

The CICIDS2018 DDOS attack dataset shows a marked

imbalance between classes, which can lead to a decrease in the

performance of machine learning models, particularly for the

minority class. ML models tend to be biased towards the

majority class, which can lead to poor generalization for the

minority class. With an unbalanced dataset, a model can

achieve high accuracy (Accuracy) simply by consistently

predicting the majority class. Furthermore, when the majority

class is strongly represented, the model can overfit the data,

leading to poor generalisation on the new data.

Balancing the class instances in a dataset enables a more

accurate assessment of model performance and reduces the

risk of overlearning. We opted for resampling techniques such

as SMOTE, BorderlineSMOTE and ADASYN to resolve the

class imbalance in our DDOS attack dataset. These methods

generate synthetic examples based on the existing data of the

minority class, preserving the underlying structure of the data

while increasing the number of examples of that class. This

approach helps to avoid the biases introduced by a radical

modification of the data distribution. Compared with random

oversampling, which can introduce duplicates and lead to

overfitting, oversampling techniques such as SMOTE,

BorderlineSMOTE and ADASYN generate synthetic

examples in a more targeted way, improving the ability of

models to generalize to real data. Indeed, these resampling

techniques create synthetic examples, using methods that

preserve the meaning of existing data. By way of illustration,

SMOTE generates new examples by performing a linear

interpolation between several existing examples of the

minority class, located in a defined neighborhood. This

ensures that the synthetic data remains consistent with the real

characteristics of the data. Furthermore, by generating

synthetic examples for minority classes, these oversampling

techniques improve the diversity of the training data, essential

for generalizing to new examples. They also balance the

distribution of classes without introducing excessive biases,

thus reducing the risk of over-fitting models to majority

classes. What's more, these techniques offer control over the

generation of synthetic data, allowing parameters such as the

level of oversampling or the neighbor selection method to be

adjusted in order to optimize results. In sum, resampling

techniques offer a flexible and effective approach to managing

class imbalance, preserving data distribution and improving

the ability of models to detect examples of minority classes.

In our research, we used resampling techniques to balance

our reduced dataset. We divided the dataset into three binary

datasets, each consisting of a "Benign" class and an attack

class. Using the "sample" function, we randomly subsampled

instances of the majority "Benign" class to obtain 686012

instances in each binary set. This process was repeated three

times to create three binary sets. We associated each attack

class in the reduced dataset with a subsample of the "Benign"

class to form binary datasets. The three binary datasets

resulting from this division are as follows:

The first unbalanced dataset, named dfbehttp, consists of:

686012 benign instances and 576191 DDoS-LOIC-HTTP

attack samples, it has an imbalance ratio = 1.190. The second

unbalanced dataset, called dfbeudp, consists of 686012 benign

instances and 1730 DDOS-LOIC-UDP attacks, it has an

imbalance ratio=396.538. The third data set, named dfbehoic,

is balanced and consists of 686012 benign observations and

686012 DDOS-HOIC attack samples.

First, we divided each unbalanced binary dataset into a

training set and a test set, the latter representing 12% of

instances. Then, from each training set, a validation set

representing 18% of the data was extracted we extracted a

validation set comprising 18% of the data. To assess the

quality of the synthetic data to be generated, we first trained,

validated and tested the XGB and LGB classifiers on the real

data from these sets.

To tackle the class imbalance in the binary datasets dfbehttp

and dfbeudp, we generated 109,821 instances for the LOIC-

HTTP class in the dfbehttp dataset and 684,282 instances for

the LOIC-UDP class in the dfbeudp dataset to achieve to

balance these two datasets. We used the oversampling

techniques of the Python "imbalanced-learn" library, including

the Synthetic Minority Oversampling Technique (SMOTE)

and its variants ADASYN (Adaptive Synthetic Sampling

Approach) and BorderlineSMOTE. We were able to apply the

SMOTE method to both datasets. However, the variants could

not only be tested on the dfbehttp dataset because running each

of them on the dfbeudp dataset generated an error message for

ADASYN indicating that the variant was not suitable for this

specific dataset and that SMOTE should be used instead. As

for BorderlineSMOTE, it did not result in oversampling for the

LOIC-UDP class of DDOS attack, leaving the number of

observations for this class unchanged. As a result, we only

used the SMOTE technique to generate instances for the

dfbeudp dataset.

The underlying theory behind the SMOTE, ADASYN and

BorderlineSMOTE oversampling techniques may help explain

why SMOTE was able to generate synthetic data for the LOIC

HTTP and LOIC UDP classes, while ADASYN and

BorderlineSMOTE only generated synthetic data for the LOIC

HTTP class. SMOTE works by generating synthetic examples

by linearly interpolating between examples of the minority

class in feature space. This technique is generally effective

when the examples of the minority class are close to each other

in feature space. In the case of the LOIC HTTP and LOIC UDP

classes, SMOTE was able to generate synthetic data because

the examples of these classes were probably close enough to

each other to allow linear interpolation. ADASYN adapts the

oversampling rate for each example in the minority class

according to the local density of examples in that class. This

means that ADASYN tries to generate more synthetic

examples where there are fewer real examples of the minority

class. In the case of the LOIC UDP class, where there are very

few real examples, ADASYN may struggle to generate

efficient synthetic data as it is difficult to estimate the local

density in these sparsely populated regions of the feature space.

BorderlineSMOTE generates synthetic examples only from

those examples of the minority class that are close to the

decision boundary between classes. In the case of the LOIC

UDP class, where the imbalance is very marked, it's possible

that the examples of this class are very far from the decision

frontier, which would explain why BorderlineSMOTE didn't

generate synthetic examples for this class.

Table 3. The techniques used for oversampling the minority

classes of the dfbehttp and dfbeudp datasets

Test

Number

LOIC-Http Class of DDoS

Attacks for the Dfbehttp

LOIC-UDP Class of

DDOS Attacks for

the Dfbeudp

config 1 SMOTE SMOTE

config 2 ADASYN SMOTE

config 3 BorderlineSMOTE SMOTE

1243

The different configurations tested are summarized in Table

3.

To assess the quality of the synthetic data generated, we

carried out several tests on the data generated by each of the

above-mentioned configurations and relating to the two

imbalanced binary datasets dfbehttp and dfbeudp.

Firstly, we used the Kolmogorov-Smirnov (KS) test, which

assesses the similarity between two cumulative probability

distributions [39], It assesses the normality of a distribution by

comparing an empirical distribution with a reference

distribution (usually a theoretical distribution), in order to

detect any significant deviation in the data. In our research,

this method is used to assess the similarity between the

distributions of real data and synthetically generated data. This

evaluation is necessary because it is important to ensure that

the synthetic data preserves the fundamental characteristics of

the real data, this is essential for the reliability of our DDoS

attack detection models. This test is also used to determine

whether two independent samples come from the same

population, or whether they show significant differences,

which is particularly useful in comparative studies [40]. Next,

we explored the correlation matrix to analyze the linear

relationships between the variables. Comparing the correlation

matrices of the real and synthetic data allowed us to determine

whether the relationships between the variables were correctly

reproduced by the synthetic data. As a third test, we evaluated

the performance of the XGB and LGB models using first the

real data for training and then the synthetic data. This allowed

us to compare the performance of the synthetic models with

that of the real models and to assess the generalizability of the

synthetic models on real-world data. To evaluate these

performances, we used the AUC_ROC and macro f1_score

metrics. Lastly, we considered the training and synthesis times

to assess the operational efficiency of synthetic generation

methods.

Next, we combined the syn_dfbeudp and syn_dfbehttp

synthetic datasets with the remaining dfbehoic dataset,

forming a balanced, synthetic and global dataset that includes

both real and synthetic data. The Figure 7 shows the

synthetically balanced dataset.

Then, to evaluate this global synthetic dataset, we compared

how well the models (MLP, LGB, RF, XGB, and SGD)

performed. Firstly, the machine learning models were initially

trained on the real data. Then, they were re-trained on the

synthetic data and, finally, evaluated in both cases using the

real test data. This evaluation focused on studying the

behaviour of the models, analysing both the overall

performance and the performance per class on the real test data

before and after synthesising the data.

To carry out this evaluation, we first divided the reduced

global dataset of real data into training and test sets, the second

set representing 12% of the data. Next, we trained the

aforementioned machine learning models on the training set of

real data using the Stratified K-Folds cross-validator technique

with n_splits=5. This method divides the dataset into folds to

evaluate the performance of a model that ensures a balanced

distribution of classes in each fold, thus guaranteeing a robust

evaluation even when the classes are not uniformly distributed.

After training, the models were tested with real test data. Next,

the same models were re-trained on the global synthetic

dataset, also using StratifiedKFold with n_splits=5. Finally,

the performance of these synthetic models was evaluated with

test data and real data to check their performance with real data

and verify whether the synthetic data succeeded in capturing

the features important for DDOS attack detection. The

evaluation metrics used in this step are precision, sensitivity,

F1_score and false positive rate (FPR). Execution times for

learning and prediction were also taken into account.

The approach used in our study is based on a holistic

strategy aimed at improving the robustness and effectiveness

of anomaly-based intrusion detection systems in detecting

DDOS attacks. To achieve this goal, we have combined

several key techniques, including feature selection, data

resampling (undersampling and oversampling) and the use of

advanced classification algorithms.

Figure 7. The synthetically balanced CICIDS 2018 DDOS

attack dataset

Firstly, feature selection was carried out by sequentially

applying three specific techniques: correlation matrix, Mutual

Information and feature importance according to the XGBoost

classifier. This triple feature selection operation created an

optimal subset of relevant variables, contributing to a more

concise representation of the data. Then, to cope with the class

imbalance in our dataset, we used oversampling techniques

such as SMOTE, ADASYN and BorderlineSMOTE. These

methods were applied in a targeted manner to each binary

dataset, focusing on the specific characteristics of each attack

class. This enabled us to generate synthetic data that faithfully

captured the characteristics of each attack type, thereby

increasing the diversity of the training data and improving the

ability of the models to generalize to new examples. Finally,

we used advanced classification algorithms such as RF, XGB,

SGD, LGB and MLP to train our models. These algorithms

were evaluated on the global synthetic and balanced dataset

resulting from merging the binary sets after oversampling. The

performance of each algorithm was analyzed based on

detection rate (precision, recall and f1_score), false positive

rate and execution time. By combining these different

techniques, our methodology aims to make the most of the

complementary nature of the feature selection, oversampling

and classification approaches, in order to optimize model

performance in the detection of DDoS attacks.

6. EXECUTION, OUTCOMES AND DEBATES

6.1 Setting up hardware and the operating environment

The empirical study conducted in this research work used

the Google Colab Pro+ platform to perform the experiments

1244

and answer the questions we were posed. it's an online

machine learning environment offering hosted Jupyter

notebooks with no configuration required and high RAM

capacity, including access to GPUs and TPUs. The models

were developed, trained, evaluated and tested using the Scikit-

Learn library, which is an open source Python library for

machine learning based on NumPy, SciPy and Matplotlib.

These libraries provide essential functionality for data

processing, scientific calculations and visualisation, enabling

Scikit-Learn to implement many machine learning algorithms

and associated tools. We have used various Scikit-Learn

modules for pre-processing, feature selection, model selection,

as well as for the implementation of different classification

methods (RF, SGD, MLP) and performance evaluation. In

addition, we have integrated the open source Imbalanced-learn

library (under the name imblearn) to handle unbalanced

datasets using oversampling techniques such as SMOTE,

BorderlineSMOTE and ADASYN. We used the LightGBM

and XGBoost machine learning algorithm modules, the latter

also for feature selection. For KS testing, we used the

scipy.stats library. Finally, to analyse and visualise the data,

we used the Python libraries NumPy, Pandas and Matplotlib.

6.2 Performance metrics

In order to evaluate the performance of the machine learning

models used to test synthesizing, we used the following

metrics: accuracy, precision, recall, F1-score, macro-accuracy,

macro-recall, macro F1-score and area under the ROC curve

(ROC AUC). These measures are based on different

combinations of confusion matrix elements (TP, TN, FP, FN).

TP indicates the number of correct predictions of the positive

class, TN indicates the number of correct predictions of the

negative class, FP refers to the count of erroneous

classifications where a negative instance is identified as

positive, while FN represents the number of incorrect

predictions where a positive sample is mistakenly classified as

negative.

Accuracy is the ratio between the number of correctly

predicted normal and abnormal data (TN and TP) and the total

number of predictions made. It assesses the overall accuracy

of a classification model.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁
 (9)

Precision represents the ratio of true positives to the total

number of positives predicted. It assesses the reliability of

positive predictions, focusing on Type I (FP) errors.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10)

Macro-precision is the average precision for each class in a

multi-class classification problem, providing an overall

assessment of prediction reliability for all classes.

Recall, also called true positive rate (TPR) or sensitivity,

evaluates the model's ability to correctly detect all positive

instances among all truly positive instances.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11)

Macro-recall is the average recall for each class in a multi-

class classification problem, offering an overall assessment of

the model's ability to correctly identify all positive instances

of each class.

The F1 score is the harmonic mean of precision and recall.

This measure provides a balance between precision and recall,

offering an overall assessment of classification performance.

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (12)

The Macro F1-score represents the harmonic mean between

macro-precision and macro-recall, giving a single measure

balancing precision and recall for each class, valuable for

evaluating the overall performance of multi-class

classification.

The false positive rate (FPR) is calculated as the number of

false positives divided by the total number of negative

instances in a dataset. It assesses a model's effectiveness in

correctly identifying negative instances.

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (13)

The area under the ROC curve (ROC AUC) measures a

model's ability to correctly classify positive versus negative

instances, giving an overall measure of binary classification

model performance.

6.3 Experimentation, outcomes and discussion

Figure 8. The performance of the RF, XGB, SGD, LGB and

MLP models before and after feature selection

Figure 9. Variations in ML model runtimes between Initial

and Reduced datasets

1245

During the experiment to evaluate the reduced features, we

observed a significant difference in resource requirements

when normalizing the data. The initial dataset required 70GB

of RAM, while the reduced dataset consumed only 29.6GB of

RAM. We then divided each dataset (initial and reduced) into

a training set (70%) and a test set (30%). When evaluating the

overall performance of the models (RF, XGB, SGD, LGB and

MLP) on the test datasets, we found that most of the models

using the reduced dataset performed similarly compared to

those using the original dataset, or even better, as seen with the

MLP classifier. Figure 8 shows the performance results of the

models before and after feature selection for the chosen

metrics.

As for the evaluation of execution times, we observed that

the total duration, including learning and prediction times,

halved for all models, with the exception of the MLP model,

where it increased. This evaluation of the execution time of the

models before and after feature selection is presented in Figure

9.

The inherent complexity of the MLP model, with its hidden

layers and numerous parameters to adjust, can explain the

extended execution time when using reduced data. This

complexity requires more time to adapt the MLP to the

reduced data while maintaining high performance. However,

the observed increase in performance suggests that feature

selection has been beneficial.

In order to assess the quality of the synthetic data obtained

by applying the data increase techniques (SMOTE,

BorderlineSMOTE or ADASYN) to the real data from the

LOIC-HTTP and LOIC-UDP classes of DDOS attack, we

carried out several tests on both the binary synthetic datasets

and the multi-class synthetic dataset.

6.3.1 Evaluations on binary datasets

Kolmogorov Smirnov test. In our evaluations on

synthetically balanced binary datasets, we used the

Kolmogorov-Smirnov test to compare the distributions of the

synthetic data with the distributions of the real data. The

results are shown in Table 4 and Table 5

Regarding the LOIC-HTTP class of DDoS attacks, we

observed that the SMOTE method has the lowest KS_statistics

values compared to the other two methods, ADASYN and

BorderLine, indicating that the synthetic data generated by

SMOTE is closest to the real data for this class. In contrast, we

found that the distributions of synthetic features for the LOIC-

UDP class of DDoS attack are further away from the

distribution of real data compared to the LOIC-HTTP class of

DDoS attacks. This finding suggests a divergence in the

feature distribution of this class compared to the real data.

Comparison of correlation matrices. The second test we

conducted involves of comparing the correlation matrices.

This analysis is essential because it enables us to assess the

preservation of the relationships between the variables when

synthesizing the data.

Figure 10 illustrates the correlation matrices of both the real

and synthetic data for the LOIC-HTTP class of DDoS attack

following the execution of the SMOTE, BorderlineSMOTE

and ADASYN oversampling techniques. Visually, the

correlation matrices of the synthetic data are similar to those

of the real data, indicating that all three synthesis methods

preserved all the linear relationships between the variables

present in the real data of the DDoS attack LOIC-HTTP class.

Figure 11 shows the correlation matrices of the real and

synthetic data for the LOIC-UDP class of DDoS attacks. We

note that in the synthetic correlation matrix for this class of

DDoS attack, the majority of linear relationships between

features in the real correlation matrix are preserved. However,

we also note the emergence of new relationships. This

observation can be explained by the substantial increase of

684282 instances for this class.

Evaluation of model performance on synthetic binary

datasets. For each synthesizing method, we evaluated the

performance of the XGB and LGB models, before and after

generation, for the datasets relating to each of the DDOS attack

classes LOIC-http and LOIC-UDP. This evaluation was

carried out using a real test dataset specific to each class,

applied to the associated real and synthetic models. The

assessment metrics used include Accuracy, ROC_auc and

macro_f1_score. The outcomes for synthesizing the dfhttp

dataset are presented in Table 6, while those for synthesizing

the dfbeudp dataset appear in Table 7.

Table 4. Results of the KS test for the LOIC-HTTP class of

DDOS attack

KS-Statistic DDOS attack LOIC-HTTP

Column SMOTE BorderlineSMOTE ADASYN

Dst Port 0.023801 0.023801 0.023794

Protocol 0.014198 0.014295 0.012985

Flow Duration 0.027785 0.046384 0.035082

Tot Fwd Pkts 0.016297 0.032933 0.032832

Fwd Pkt Len Max 0.034014 0.052691 0.051370

Flow IAT Mean 0.029248 0.034208 0.021132

Flow IAT Std 0.012769 0.036087 0.035985

Flow IAT Max 0.029782 0.045402 0.035474

Fwd IAT Std 0.016803 0.032920 0.032819

Bwd IAT Std 0.014723 0.033361 0.033351

Pkt Len Var 0.017811 0.052338 0.052323

RST Flag Cnt 0.012019 0.028345 0.028337

PSH Flag Cnt 0.003937 0.036428 0.036418

ACK Flag Cnt 0.011229 0.051690 0.050370

Init Fwd Win Byts 0.022441 0.054127 0.055325

Init Bwd Win Byts 0.014228 0.039986 0.039974

Fwd Seg Size Min 0.015016 0.015113 0.013803

Idle Mean 0.013301 0.015461 0.016670

Table 5. Results of the KS test for the LOIC-UDP class of

DDOS attack

KS-Statistic DDOS attack LOIC-UDP

Column SMOTE

Dst Port 0.271756

Protocol 0.334688

Flow Duration 0.460121

Tot Fwd Pkts 0.497359

Fwd Pkt Len Max 0.352893

Flow IAT Mean 0.274427

Flow IAT Std 0.285545

Flow IAT Max 0.333415

Fwd IAT Std 0.317059

Bwd IAT Std 0.171214

Pkt Len Var 0.387959

RST Flag Cnt 0.113825

PSH Flag Cnt 0.206268

ACK Flag Cnt 0.117379

Init Fwd Win Byts 0.325373

Init Bwd Win Byts 0.246794

Fwd Seg Size Min 0.325373

Idle Mean 0.073201

1246

(a) Real data

(b) Synthetic data generated by SMOTE

1247

(c) Synthetic data generated by BorderlineSMOTE

(d) Synthetic data generated by Adasyn

Figure 10. The correlation matrices of the real and synthetic data for the LOIC-HTTP class of DDoS attack following execution

of oversampling techniques

1248

(a) Real data

(b) Synthetic data generated by SMOTE

Figure 11. Correlation matrices of the real and synthetic binary datasets corresponding to the LOIC-UDP DDoS attack class

1249

Table 6. Outcomes of synthesizing the dfbehttp dataset for the LGB and XGB models

Synthetization Method Model Accuracy Roc_auc Macro f1_Score

SMOTE

LGB_http_BS 99.97% 99.97% 99.97%

LGB_http_AS 99.96% 99.97% 99.96%

XGB_http_BS 100% 100% 100%

XGB_http_AS 100.00% 100% 100%

Borderline SMOTE

LGB_http_BS 99.97% 99.98% 99.97%

LGB_http_AS 99.98% 99.98% 99.98%

XGB_http_BS 100% 100% 100%

XGB_http_AS 100% 100% 100%

ADASYN

LGB_http_BS 99.96% 99.97% 99.96%

LGB_http_AS 99.98% 99.98% 99.98%

XGB_http_BS 100% 100% 100%

XGB_http_AS 100% 100% 100%
BS: Before synthesis-AS: After synthesis

Table 7. Results of synthesizing the dfbeudp dataset for the LGB and XGB models

Synthetization Method Model Accuracy Roc_auc Macro f1_Score

SMOTE

LGB_udp_BS 100% 99.53% 99.88%

LGB_udp_AS 100% 100% 100%

XGB_udp_BS 100% 100% 100%

XGB_udp_AS 100% 100% 100%

Table 8. The results for learning times and synthetic data generation for the dfbehttp and dfbeudp datasets

Dataset Synthetization Method Learning and Synthetic Data Generation Times in Seconds

dfbehttp

SMOTE 271.475

BorderlineSMOTE 644.242

ADASYN 1042.087

dfbeudp

SMOTE 0.513

SMOTE 0.527

SMOTE 0.755

Table 9. Global performance results of models before and after synthesizing

Model and Ssynthesizing Combinations Accuracy Macro Precision Macro Recall Macro f1_Score

RF_Real_data 1 0.96 0.98 0.97

RF_SMOTE SMOTE 1 0.97 1 0.98

RF_BorderlineSmote SMOTE 1 0.97 1 0.98

RF_Adasyn SMOTE 1 0.97 1 0.98

XGB_Real _data 1 0.96 0,98 0.97

XGB_SMOTE SMOTE 1 0.95 1 0.97

XGB_BorderlineSmote SMOTE 1 0.95 1 0.97

XGB_Adasyn SMOTE 1 0.95 1 0.97

SGD_Real _data 0.99 0.89 0.88 0.88

SGD_SMOTE SMOTE 0.95 0.82 0.99 0.89

SGD_BorderlineSmote SMOTE 0.95 0.82 0.99 0.88

SGD_Adasyn SMOTE 0.95 0.82 0.99 0.88

LGB_Real _data 1 0.74 0.74 0.74

LGB_SMOTE SMOTE 0.9 0.64 0.97 0.71

LGB_BorderlineSmote SMOTE 0.99 0.76 1 0.76

LGB_Adasyn SMOTE 1 0.87 1 0.91

MLP_Real _data 1 0.94 0.99 0.96

MLP_SMOTE SMOTE 1 0.93 1 0.96

MLP_BorderlineSmote SMOTE 0.96 0.84 0.99 0.9

MLP_Adasyn SMOTE 1 0.93 1 0.96

The results show a similarity in the performance of the LGB

and XGB models before and after synthesizing, whether for

the three methods applied to dfbehttp or for the SMOTE

method applied to dfbeudp, with a slight improvement for

LGB. This similarity suggests that the synthetically generated

data effectively retains the characteristics of the real data.

Evaluation of learning and synthesis times. In our

evaluation, we have taken into account the time required to

learn from real data and to generate synthetic data. The aim of

this evaluation is to measure the operational efficiency of

synthetic data generation methods by analyzing the time

required to train models on real data and to produce synthetic

data. This analysis makes it possible to understand the

differences in performance between the methods, which is

important for choosing the optimum approach according to the

time constraints specific to each project. Significant

differences in learning times between methods can impact on

the practicality and overall efficiency of models, underlining

the importance of these aspects when choosing the synthetic

generation method.

1250

Table 8 shows the results for learning times and synthetic

data generation for the two datasets, dfbehttp and dfbeudp,

using different synthesis methods.

For dfbehttp, we observe that ADASYN requires

significantly more learning time (1042.087seconds) compared

to SMOTE (271.475seconds) and BorderlineSMOTE

(644.242seconds). However, all the methods produce

balanced synthetic data after sampling, maintaining an equal

number of instances for each class. For dfbeudp, the learning

times with SMOTE vary slightly (0.513, 0.527, and 0.755

seconds). A significant difference is also noted in the training

and synthetic data generation times between the two datasets

dfbehttp and dfbeudp, which could be attributed in part to the

imbalance in the number of initial instances for class "1". The

fact that dfbehttp has a minority class with 506979 instances,

while dfbeudp has only 1517, may influence the time taken for

the synthesis methods to balance the classes. A high initial

number of instances can potentially require more time to

generate synthetic data while maintaining balance.

Figure 12. Synthesizing results on the benign class

1251

Figure 13. Results of synthesizing on the HOIC class of DDOS attack

6.3.2 Model evaluation on synthetically balanced multi-class

datasets

To form the synthetically balanced multi-class datasets of

CICIDS2018 DDOS attacks, we used the oversampling

techniques SMOTE, Borderline SMOTE and ADASYN. Each

multi-class dataset was created by merging the synthetically

balanced binary datasets (dfbehttp_syn and dfbeudp_syn) with

the real, balanced dataset (dfbehoic). These synthetic multi-

class datasets comprise the classes generated by different

combinations of synthesis methods, namely (SMOTE;

SMOTE), (ADASYN; SMOTE) and (BorderlineSMOTE;

SMOTE), applied respectively to the DDOS attack classes,

namely the LOIC-http class of the dfbehttp dataset and the

LOIC-UDP class of the dfbeudp dataset. Each multi-class

synthetic dataset corresponds to one of the aforementioned

combinations.

To select the most optimal combination of synthesis

methods that we used to increase the representation of

minority classes and improve the balance between classes, we

evaluated the performance of the RF, XGB, SGD, LGB and

MLP models. This evaluation was carried out both on the

reduced global real dataset and on the synthetic multi-class

datasets produced by the different synthesizing combinations

such as (SMOTE_SMOTE), (ADASYN_SMOTE) and

(BorderlineSMOTE_SMOTE). Performance was evaluated

using real test data, a crucial approach for ensuring that models

trained on synthetic data generalize effectively in real-life

situations. This method avoids any biases or artificial

relationships introduced by synthetic data. Testing on real data

allows the robustness and effectiveness of the model to be

validated under a wider range of conditions, ensuring a more

reliable assessment of its performance and applicability under

a variety of practical conditions.

Regarding the evaluation of overall model effectiveness,

Table 9 presents the global outcomes of the RF, XGB, SGD,

LGB and MLP models on real test data before and after data

synthesis. The evaluation was conducted using the global

indicators Accuracy, macro_precision, macro_recall and

macro_f1 score. These indicators provide an overall view of

the behavior of these models.

For the RF and XGB classifiers, the effectiveness of the

synthesized data is similar to that of the real data. However,

for the SGD model, the performance of the synthetic data is

generally inferior or equal to that of the real data, with the

exception of recall. As for the LGB model, the "ADASYN,

SMOTE" combination shows synthetic data performance

superior to real data, while performance for the

"BorderlineSMOTE, SMOTE" combination is equivalent, and

for the "SMOTE, SMOTE" combination it is inferior to real

data, with the exception of recall. As for the MLP model, the

performance of the synthetic data for the "BorderlineSMOTE,

SMOTE" combination is inferior to that of the real data, while

for the other two synthesizing combinations, it is equivalent.

In general, the metrics appear stable or show slight variation

after synthesizing, suggesting that overall model performance

is not significantly affected by the introduction of synthetic

data. This indicates that the synthetically generated data

succeeded in maintaining the generalization capability of the

models, producing results consistent with those obtained on

real data.

Evaluation of model performance by class. Looking more

closely at the performance evaluation of the models by class,

we observed different trends according to the combinations of

synthesis methods. For the "Benign" class, whose results are

presented in Figure 12, the SGD and LGB models showed

inferior performance for the "SMOTE_SMOTE" combination,

while the other models achieved similar performance between

real and synthetic data. With the "BorderlineSMOTE,

SMOTE" combination, RF, XGB and LGB showed stable

performance, but SGD and MLP showed weaker performance

for synthetic data. For the "ADASYN, SMOTE" combination,

performance was comparable between real and synthetic data

for RF, XGB, LGB and MLP, but slightly lower for SGD.

In summary, synthetic data performance is stable for RF and

XGB, variable for LGB and MLP depending on the

combination, while SGD consistently shows lower

performance with all combinations. The "ADASYN,

SMOTE" combination stands out as presenting the most

models with stable performance between real and synthetic

data, suggesting good prediction quality while balancing the

data.

Models performances results for the HOIC class of DDOS

attacks after the data synthesis corresponding to combinations

of SMOTE, BorderlineSMOTE and ADASYN techniques, are

presented in Figure 13.

The "ADASYN, SMOTE" and "BorderlineSMOTE,

SMOTE" combinations showed identical performance

between synthetic and real data, with even an improvement for

the synthetic LGB model. The "SMOTE, SMOTE"

combination also performed similarly, but with a decrease in

performance for the synthetic LGB model. For the SGD

classifier, all combinations resulted in a reduction in precision

1252

after synthesizing.

The LOIC-UDP minority class of DDoS attacks benefited

from an increase in data thanks to data synthesis. The

performance of models with the SMOTE, BorderlineSMOTE

and ADASYN synthesis combinations on this class is

displayed in Figure 14.

Figure 14. Synthesized results on the LOIC-UDP class of

DDOS attack

For RF, the performance of the synthetic data is better for

all three combinations. The XGB model shows superior recall

and F1-score results with synthetic data for all three

combinations. SGD performance increases for all metrics and

combinations. The LGB model shows zero performance with

real data, but synthesizing improves this performance.

The "ADASYN, SMOTE" combination proved to be the

most efficient, followed by "SMOTE, SMOTE". For the MLP

model, performance is identical between real and synthetic

data for all combinations. Overall, the increase in data led to

an improvement in performance for this minority class, and the

"ADASYN, SMOTE" combination stood out as the most

efficient compared with the other two combinations.

The DDOS attack LOIC-HTTP class also benefited from an

increase in data. Figure 15 displays the performance results of

the models before and after the synthesis on the LOIC-HTTP

class. The efficiency of the synthetic data for the RF and XGB

models is found to be identical to that of the real data for the

three synthesizing combinations.

Figure 15. Synthesized results on the LOIC-HTTP class of

DDOS attack

Concerning the SGD model, all three variants showed a

decrease in precision and F1 score, but an improvement in

recall. LGB slightly improved its performance with the

"ADASYN, SMOTE" and "BorderlineSMOTE, SMOTE"

combinations, while "SMOTE, SMOTE" led to a deterioration.

MLP achieved similar performance between real and synthetic

data for "SMOTE, SMOTE" and "ADASYN, SMOTE", but a

1253

decrease in precision and f1_score for "BorderlineSMOTE,

SMOTE".

In summary, the "ADASYN, SMOTE" combination

presented the most synthetic models with performance

equivalent to real data for the DDOS attack LOIC-HTTP class,

with an additional performance improvement for the LGB

model.

Evaluation of false positive rates. Still with a view to

evaluating the performance of the models, we also tested the

false positive rates obtained by the five models before and

after synthesizing. Table 10 below provides information on the

results of these tests.

The results show an overall trend towards a decrease in the

false positive rate (FPR) for the "Benign" class after applying

different synthesizing methods, suggesting an improvement in

the models' ability to correctly classify the majority class. The

LGB model showed significant decreases in FPR, especially

for the "ADASYN; SMOTE" and "BorderlineSMOTE;

SMOTE" synthesizing combinations, highlighting the

effectiveness of these methods in enhancing the accuracy of

the LGB model in classifying the Benign class and DDoS

attack classes HOIC and LOIC-HTTP. However, the "SMOTE;

SMOTE" combination led to a substantial rise in the FPR for

the LGB model, indicating a particular sensitivity to this

synthesizing method. On the other hand, the SGD model stood

out, showing an increase in FPR for all synthesizing

combinations, which is consistent with previous results

indicating a decrease in performance for this model in the

synthetic context. These observations underline the

importance of choosing the right synthesizing method for

specific models. Finally, synthesizing the data using the

"SMOTE; SMOTE", "ADASYN; SMOTE" and

"BorderlineSMOTE; SMOTE" combinations improved model

performance by reducing false positives for the "Benign"

negative class.

Evaluation of runtimes. As part of our evaluation of the

overall performance of the RF, XGB, SGD, LGB and MLP

models on real test data before and after synthesizing the data,

we also tested the runtimes of the real and synthetic models

(taking into account the training, validation and test runtimes)

for each synthesizing combination. Figure 16 shows the results

of these runtime tests. Firstly, we note that the MLP model

followed by the RF model take the longest time to execute, and

that the synthetic models have a significantly shorter execution

time than the real models.

Faster convergence of synthetic models during training can

lead to faster optimized performance, as synthetic data, often

balanced and homogeneous, reduces noise and outliers,

enabling the model to identify relevant relationships in the data

and fit more efficiently. This homogeneity stabilizes gradients,

speeding up the optimization process and reducing the number

of iterations needed to achieve optimal performance. As a

result, models converge faster, require fewer computing

resources and deliver better performance in less time.

This significant reduction in execution times can be

interpreted as a major practical advantage, suggesting that

models based on synthetic data can be more efficient in regard

of time resources, which can be particularly decisive in

operational contexts where time is a constraint.

Table 10. Results of the false-positive rates obtained by the models before and after synthesizing

 FPR Results-Before Synthesizing FPR Results-After Synthesizing

Synthetization

Combinaison
Model Benign

DDOS

Attack-

HOIC

DDOS

Attack-

LOIC-UDP

DDoS

Attacks-

LOIC-HTTP

Benign

DDOS

Attack-

HOIC

DDOS

Attack-

LOIC-UDP

DDoS

Attacks-

LOIC-HTTP

SMOTE, SMOTE

RF
2,62E-

05
0,00E+00 4,01E-05 1,69E-05 0,00E+00 0,00E+00 2,80E-05 2,39E-05

XGB
1,31E-

05
0,00E+00 3,92E-05 1,79E-05 0,00E+00 3,03E-06 4,66E-05 0,00E+00

SGD
5,18E-

02
4,72E-03 6,34E-05 1,82E-03 7,87E-05 5,10E-03 7,65E-05 4,30E-02

LGB
1,20E-

02
4,12E-04 9,14E-05 2,23E-03 3,48E-04 4,51E-03 7,08E-04 1,00E-01

MLP
2,44E-

03
4,04E-06 6,43E-05 1,37E-04 8,66E-04 4,04E-06 7,37E-05 9,00E-04

BorderlineSMOTE,

SMOTE

RF
1,97E-

05
0,00E+00 4,01E-05 1,99E-05 0,00E+00 0,00E+00 3,26E-05 1,59E-05

XGB
1,31E-

05
0,00E+00 3,92E-05 1,79E-05 0,00E+00 3,03E-06 4,48E-05 9,97E-07

SGD
5,17E-

02
4,71E-03 6,34E-05 1,85E-03 7,87E-05 5,03E-03 7,65E-05 4,45E-02

LGB
1,20E-

02
4,12E-04 9,14E-05 2,23E-03 2,56E-04 1,11E-05 6,23E-03 1,52E-04

MLP
4,81E-

03
4,04E-06 6,34E-05 2,44E-04 0,00E+00 5,05E-06 7,37E-05 4,06E-02

ADASYN, SMOTE

RF
2,62E-

05
0,00E+00 4,10E-05 2,09E-05 0,00E+00 0,00E+00 2,70E-05 3,19E-05

XGB
1,31E-

05
0,00E+00 3,92E-05 1,79E-05 0,00E+00 3,03E-06 4,48E-05 9,97E-07

SGD
5,21E-

02
4,72E-03 6,25E-05 1,82E-03 7,87E-05 5,04E-03 7,65E-05 4,45E-02

LGB
1,20E-

02
4,12E-04 9,14E-05 2,23E-03 0,00E+00 5,05E-06 2,24E-04 6,46E-04

MLP
2,44E-

03
4,04E-06 6,43E-05 1,37E-04 7,41E-04 3,03E-06 7,46E-05 1,76E-03

Notes: 1. Green color: FPR Reduction; 2. Orange color: FPR Increase

1254

Figure 16. Runtimes of real and synthetic models for each synthesizing combination

6.3.3 Discussion

The triple feature selection operation on the CICIDS2018

DDOS attack dataset led to an optimal subset of relevant

variables, thus providing a more concise representation of the

data. This approach reduced information redundancy by

eliminating highly correlated features, improved the

interpretation of results by simplifying the relationship

between features and target, and focusing on the most

insightful features. Additionally, it bolstered the model's

stability by lowering its sensitivity to data variations, and

ultimately reduced the dataset's complexity. This triple

selection improved the models' ability to generalize to new

examples and capture complex relationships in the data. By

eliminating less important features, the dataset's

dimensionality was decreased, as was complexity of the

models. leading to a decrease in model execution time and a

saving in computational resources, thus improving the

efficiency of the learning and prediction process. Thus, by

combining the three feature selection techniques, we were able

to achieve more efficient models, less sensitive to over-fitting,

and able to process a large dataset more economically in terms

of computational resources and faster in terms of execution

time. In conclusion, feature selection is a crucial step in

building effective and efficient machine learning models, and

the results observed in our study confirm the importance of

this approach for improving model quality and efficiency.

Regarding the evaluations on binary datasets, the KS test

showed that the SMOTE method reacted differently for the

LOIC-UDP and LOIC-HTTP classes of DDoS attacks, which

can be attributed to the specific characteristics of each class.

In addition, the count of instances, in the reduced real dataset,

of the LOIC-HTTP class of DDoS attack is 576191, while that

of the LOIC-UDP class is 1730. The KS test results suggest

that larger classes, such as LOIC-HTTP, may be better

represented by the synthesis methods, while smaller classes,

such as LOIC-UDP, may show larger discrepancies. In other

words, SMOTE was better able to capture the feature

distribution for the class with a large number of instances, but

had more difficulty doing so for the small class with a much

smaller number of instances.

The result of the correlation matrices tells us that a

significant expansion of the data can introduce artificial

relationships between features, resulting from synthetic

resampling, which do not necessarily reflect the reality of the

original data and must therefore be interpreted with caution

when analyzing the results by comparing them with other

evidence or contextual information to confirm or refute their

validity.

The similarity in the performance of the LGB and XGB

models before and after synthesizing indicates that the

synthetic generation methods are robust, preserving the

structures and patterns crucial for machine learning. The

consistency of model results on synthetic data reinforces

confidence in the use of such data as a credible surrogate for

real data in the context of our research work.

The evaluation of learning and synthesis times showed

significant differences in learning times between the different

methods, highlighting their impact on the operational

efficiency of the models. Furthermore, the evaluation on

binary datasets underlined the importance of considering the

initial distribution of classes when choosing synthesis methods,

particularly in the presence of significant imbalances, in order

to optimize model performance and processing times.

Concerning the evaluation of overall model performance,

the RF and XGB models perform consistently between real

and synthetic data. The performance of these models remains

stable between real and synthetic data, suggesting that they are

robust and can generalize effectively to synthetic data. These

models are known for their ability to capture complex

relationships in the data, making them less sensitive to

variations introduced by synthetic data. For the SGD model,

the increase in macro_Recall associated with a decrease in

Accuracy and macro_precision could indicate a particular

adaptation to the nature of synthetic data, with increased

1255

priority given to the detection of positive examples. This may

be attributed to the way the SGD algorithm adjusts its weights

to minimize the cost of classification errors, which may lead

to increased sensitivity to positive examples when exposed to

synthetic data. The relative stability of macro_f1_score with

the actual results informs that the model can still generalize

effectively despite these variations. The synthetic LGB model

shows poorer performance for the "SMOTE; SMOTE"

combination and an increase in performance for the

"ADASYN; SMOTE" combination. This suggests that the

data synthesis method has a differentiated impact on the results

of the LGB model, depending on the techniques used. LGB

uses decision trees and boosting techniques, which can make

the model sensitive to the way data is distributed and

synthesized. Finally, the MLP model shows poorer

performance for the "Borderline; SMOTE" combination,

while it maintains equivalent performance between real and

synthetic data for the other combinations indicating a

particular sensitivity of this model to the specific synthesizing

method. This sensitivity may be due to its complex structure

and its capacity to grasp non-linear relationships between

features. The synthetic data generated can influence the way

the neural network weights are adjusted during training, which

can lead to variations in model performance.

The choice of synthesis method has a significant impact on

model performance, particularly for the SGD, LGB and MLP

models in our case. The effectiveness of synthesis depends on

how these methods interact to enrich the training data. It is

therefore crucial to consider the differentiated responses of

models to different synthesis methods when selecting the

optimal method for a specific problem. Furthermore,

variations in model performance depending on the synthesis

methods used reflect differences in the way these models

interact with the data and adjust their internal parameters.

Choosing the optimum synthesizing method therefore depends

on the specific nature of the problem and the models employed,

and requires a thorough analysis of the performance and

metrics specific to each model.

Based on the above, the "ADASYN, SMOTE" combination

stands out as presenting the best performance for these global

tests. This combination generated synthetic data that better

captured the variability and complexity of real data, suggesting

that combining ADASYN, designed to handle low-density

areas, with SMOTE, which generates examples in already

dense areas, can provide greater diversity and improve the

ability of models to handle different data characteristics.

The results of the class performance evaluation of the RF,

XGB, SGD, LGB and MLP models, before and after

synthesizing the data, are in line with the results of the global

evaluation of these models, and reveal distinct dynamics

between the models. Figure 17 shows a mapping of model

performance by class according to the combination of

synthesis techniques.

They highlight the robust performance of the RF and XGB

models, which remain stable for all three synthesizing

combinations and for all classes. This constancy suggests a

lesser sensitivity of these models to variations introduced by

data synthetization. On the other hand, the variable

performance of the LGB and MLP models indicates a more

marked dependence on the synthesizing method used, as well

as on the nature of the class data. It should be pointed out that

the findings for the LGB model showed that the

"ADASYN_SMOTE" combination is the most optimal,

whereas the "SMOTE, SMOTE" configuration is not

appropriate for this model, nor is the "BorderlineSMOTE,

SMOTE" combination ideal for the MLP model. It's important

to underline that the LGB model recorded improved

performance for both minority classes in all synthesizing

combinations, with the exception of the SMOTE_SMOTE

combination for the LOIC HTTP class of DDOS attack.

Despite lower accuracy in the synthetic context, the SGD

model shows a specific adaptation to synthetic data, with

increased priority given to the detection of positive examples.

It shows an overall performance improvement in minority

class detection, and remains a practical option.

Figure 17. Mapping of model performance by class

Precision Recall F1_score Precision Recall F1_score Precision Recall F1_score Precision Recall F1_score Precision Recall F1_score

BENIGN

SMOTE_SMOTE

BORDERLINE_SMOTE

ADASYN_SMOTE

DDOS attack HOIC

SMOTE_SMOTE

BORDERLINE_SMOTE

ADASYN_SMOTE

DDOS attack LOIC UDP

SMOTE_SMOTE

BORDERLINE_SMOTE

ADASYN_SMOTE

DDOS attack LOIC HTTP

SMOTE_SMOTE

BORDERLINE_SMOTE

ADASYN_SMOTE

Performance similarity between real and synthetic models

Increased performance of synthetic models compared with real models

Diminished performance of synthetic models compared to real models

RF XGB SGD LGB MLP

1256

This study highlights the importance of carefully

considering the specific behavior of each model when

choosing synthesis methods. Model performance varies

significantly according to the synthesizing methods used and

the classes examined. Thus, a judicious selection of these

methods according to the specific characteristics of each class

is essential to improve the generalizability of models over the

whole dataset.

False positive rate (FPR) results show a general downward

trend for the "Benign" class after synthesis, indicating an

improvement in the models' ability to correctly discriminate

the negative class. Furthermore, the FPR results for the other

classes are in line with previous results, underlining the need

for judicious choice of synthesis methods.

In addition, the synthetic models showed significantly

shorter runtimes than the real models, indicating faster

convergence during training.

Finally, the Adasyn+Smote configuration demonstrates

stable performance for RF, XGB, and MLP models, with a

notable improvement for LGB. However, despite this

improvement, LGB's performance remains below that of RF,

XGB and MLP. It should be noted that the RF, XGB, MLP,

LGB and SGD models respectively obtained the following

results for the F1_score metric: 0.98, 0.97, 0.96, 0.91 and 0.88.

However, the execution times of the RF and MLP models are

relatively long. RF takes 7 times longer in the real case and 13

times longer in the synthetic case than XGB. MLP takes 40

times longer in the real case and 82 times longer in the

synthetic case than XGB. Although RF performs slightly

better, if we take the time criterion into account, the

Adasyn+Smote+XGBoost combination seems to be the most

optimal in the context of our study.

7. CONCLUSION

In our quest to improve the effectiveness of intrusion

detection systems, we have concentrated our efforts on two

main areas: data preparation through careful selection of

features to ensure high-quality data, and improving model

performance via resampling to ensure more effective attack

detection. Our experimental approach was based on the

CICIDS2018 DDOS attacks dataset. Our tests covered various

machine learning models, including RF, XGB, SGD, LGB and

MLP, while exploring the effectiveness of oversampling

methods such as SMOTE, BorderlineSMOTE and ADASYN

to improve model robustness and mitigate the problem of class

imbalance in intrusion datasets.

To optimize data quality in machine learning processes, we

adopted a strategic approach to feature selection. Our aim was

to pinpoint and retain the most pertinent features for predicting

classes, using techniques such as the correlation matrix,

Mutual Information and feature importance by the XGBoost

classifier. This approach allowed us to decrease the data's

dimensionality, simplifying its structure, and cut down on the

model's execution time, while alleviating the load on

computational resources. By combining these techniques, we

obtained more efficient models, guaranteeing reliable

detection of DDoS attacks, capable of processing a large

dataset more economically in terms of computational

resources and execution time.

Our second objective was to balance our reduced dataset,

CICIDS2018 DDOS attacks, to solve the class imbalance

problem. To do this, we divided the dataset into three binary

sets, each with a "Benign" class and an attack class. In-depth

analysis of the binary data synthesis results revealed the

significant impact of the initial class distribution of the real

data on the quality of the synthetic data. Indeed, the greater the

number of instances, the more examples the synthetic

generators have to train themselves to faithfully reproduce the

structures and patterns present in the original data. Conversely,

the smaller the number of instances of a class, the greater the

divergence from the real data, and to ensure equilibrium in this

case, the increase in instances produces new artificial

relationships between features. The unbalanced distribution of

initial classes can also influence learning and synthetic data

generation times. The greater the number of initial instances,

the longer the learning time. The SMOTE, BorderlineSMOTE

and ADASYN oversampling methods have shown exemplary

robustness in maintaining the essential structures and patterns

of real data.

Tests carried out on the synthetically balanced multi-class

dataset evaluated the performance of the RF, XGB, SGD, LGB

and MLP models before and after data synthesization, taking

into account both overall and class-specific performance. The

results show stable performance for RF and XGB, but greater

dependence on the synthesizing method for LGB and MLP.

The SGD model adapted well to the synthetic data, despite its

lower accuracy. The study underscores the importance of

choosing synthesizing methods wisely, as they have a

differentiated impact on model performance, depending on the

class. The majority class showed an overall reduction in the

false-positive rate after synthesizing, indicating a better

discrimination capacity. In addition, the synthetic models

showed shorter execution times than the real models,

suggesting faster convergence during training.

By under-sampling the majority class ("Benign" class) and

over-sampling the minority classes by synthesizing the

examples, we corrected the initial imbalance between the

classes and thus improved the ability of the models to

generalize and detect intrusions into the minority classes. The

results show similar or better performance of the synthetic

models, coupled with reduced execution times, underlining the

effectiveness of data synthesis in generating high-quality data

that can reliably represent real data in the context of our

research work. In addition, increasing the data with synthetic

examples introduces greater diversity into the dataset,

exposing the models to a wider variety of potential intrusion

scenarios, enhancing their ability to detect new threats. The

results show that the "ADASYN, SMOTE" combination stood

out as the best performer, successfully balancing the data

while preserving the quality of predictions. It demonstrated its

effectiveness in maintaining stability and even improved

model performance in a context of synthetic data, while

reducing false positives and offering advantages in terms of

execution time. The ADASYN+SMOTE+XGB configuration

stands out as the most optimal for DDOS attack detection in

terms of performance, false positives and execution time.

The results of our research offer promising prospects for

enhancing network security in operational environments. The

sequential approach adopted in feature selection significantly

reduced data complexity while preserving its relevance for

intrusion detection, which could be applied in IDS design to

improve threat detection efficiency. Furthermore, our data

oversampling method, using techniques such as SMOTE and

ADASYN to balance classes, is relevant to better identify and

counter attacks, even those from minority classes. These

approaches could be integrated into the deployment and

1257

configuration of IDSs in real network infrastructures, enabling

fine-tuning to specific environments and improving the

responsiveness of security systems, while optimizing the use

of computational resources and reducing execution times,

essential in environments where speed of response to threats is

paramount.

While our research into improving anomaly-based network

IDS for detecting DDOS attacks has shown its potential,

certain limitations can be identified. Our approach relies

heavily on the quality and representativeness of the data used,

which can be a challenge in constantly changing real network

environments. Indeed, as the experiments were conducted on

the CICIDS2018 DDOS attack dataset, generalizing the results

to other datasets may be a challenge. It would be useful to

explore the robustness of our approach on various datasets

such as CIC-DDoS2019 or CICIDS 2017 DDOS attack. In

addition, there is also the complexity of some models which

may pose problems in terms of interpretability and deployment

in real environments. Concerning future work we plan to first

explore other data synthesis techniques or combinations of

techniques in order to better manage class imbalances and

further improve model performance. Secondly, to adapt our

methods to enable real-time detection of attacks, which is

necessary for the security of constantly evolving networks.

REFERENCES

[1] Berbiche, N., El Alami, J. (2023). Enhancing anomaly-

based intrusion detection systems: A hybrid approach

integrating feature selection and bayesian

hyperparameter optimization. Ingénierie des Systèmes

d'Information, 28(5): 1177-1195.

https://doi.org/10.18280/isi.280506

[2] Hassan, A.A., Hussein, M.S., AboMoustafa, A.S.,

Elmowafy, S.H. (2022). Synthesis of adversarial DDOS

attacks using tabular generative adversarial networks.

arXiv Preprint arXiv: 2212.14109.

https://doi.org/10.48550/arXiv.2212.14109

[3] Liu, J., Gao, Y., Hu, F. (2021). A fast network intrusion

detection system using adaptive synthetic oversampling

and LightGBM. Computers & Security, 106: 102289.

https://doi.org/10.1016/j.cose.2021.102289

[4] Latif, S., Faria, F.D., Afsar, M.M., Esha, I.J., Nandi, D.

(2022). Investigation of machine learning algorithms for

network intrusion detection. International Journal of

Information Engineering and Electronic Business, 15(2):

1. https://doi.org/10.5815/ijieeb.2022.02.01

[5] Chen, Z., Zhou, L., Yu, W. (2021). ADASYN-Random

forest based intrusion detection model. In Proceedings of

the 2021 4th International Conference on Signal

Processing and Machine Learning, pp. 152-159.

https://doi.org/10.1145/3483207.3483232

[6] Pan, L., Xie, X. (2020). Network intrusion detection

model based on PCA+ADASYN and XGBoost. In

Proceedings of the 2020 3rd International Conference on

E-Business, Information Management and Computer

Science, pp. 44-48.

https://doi.org/10.1145/3453187.3453311

[7] Li, Y., Xu, W., Li, W., Li, A., Liu, Z. (2022). Research

on hybrid intrusion detection method based on the

ADASYN and ID3 algorithms. Mathematical

Biosciences and Engineering, 19(2): 2030-2042.

https://doi.org/10.3934/mbe.2022095

[8] Sun, Y., Que, H., Cai, Q., Zhao, J., Li, J., Kong, Z., Wang,

S. (2022). Borderline smote algorithm and feature

selection-based network anomalies detection strategy.

Energies, 15(13): 4751.

https://doi.org/10.3390/en15134751

[9] Wu, T., Fan, H., Zhu, H., You, C., Zhou, H., Huang, X.

(2022). Intrusion detection system combined enhanced

random forest with SMOTE algorithm. EURASIP

Journal on Advances in Signal Processing, 2022(1): 39.

https://doi.org/10.1186/s13634-022-00871-6

[10] Talukder, M.A., Hasan, K.F., Islam, M.M., Uddin, M.A.,

Akhter, A., Yousuf, M.A., Alharbi, F., Moni, M.A.

(2023). A dependable hybrid machine learning model for

network intrusion detection. Journal of Information

Security and Applications, 72: 103405.

https://doi.org/10.1016/j.jisa.2022.103405

[11] Alshamy, R., Ghurab, M., Othman, S., Alshami, F.

(2021). Intrusion detection model for imbalanced dataset

using SMOTE and random forest algorithm. In Advances

in Cyber Security: Third International Conference, ACeS

2021, Penang, Malaysia, Revised Selected Papers.

Springer Singapore, 3: 361-378.

https://doi.org/10.1007/978-981-16-8059-5_22

[12] Correlation matrix.

https://www.questionpro.com/blog/fr/matrice-de-

correlation/, accessed on Dec. 12, 2023.

[13] Microsoftml.mutualinformation_select: Sélection de

caractéristiques en fonction de l'information mutuelle.

https://learn.microsoft.com/fr-fr/sql/machine-

learning/python/reference/microsoftml/mutualinformati

on-select?view=sql-server-ver16, accessed on Dec. 12,

2023.

[14] Information mutuelle: quantifier les connaissances pour

une prise de décision optimale.

https://fastercapital.com/fr/contenu/Information-

mutuelle---quantifier-les-connaissances-pour-une-prise-

de-decision-optimale.html, accessed on Dec. 12, 2023.

[15] Gonzalez-Cuautle, D., Hernandez-Suarez, A., Sanchez-

Perez, G., Toscano-Medina, L.K., Portillo-Portillo, J.,

Olivares-Mercado, J., Perez-Meana, H.M., Sandoval-

Orozco, A.L. (2020). Synthetic minority oversampling

technique for optimizing classification tasks in botnet

and intrusion-detection-system datasets. Applied

Sciences, 10(3): 794.

https://doi.org/10.3390/app10030794

[16] Fernández, A., Garcia, S., Herrera, F., Chawla, N.V.

(2018). SMOTE for learning from imbalanced data:

Progress and challenges, marking the 15-year

anniversary. Journal of Artificial Intelligence Research,

61: 863-905. https://doi.org/10.1613/jair.1.11192

[17] Comprendre le SMOTE et éviter ses pièges.

https://kobia.fr/imbalanced-data-smote/, accessed on

Dec. 26, 2023.

[18] Bernard, S., Heutte, L., Adam, S. (2009). On the

selection of decision trees in random forests. In 2009

International Joint Conference on Neural Networks,
Atlanta, GA, USA, pp. 302-307.

https://doi.org/10.1109/IJCNN.2009.5178693

[19] Random Forests.

https://www.math.mcgill.ca/yyang/resources/doc/rando

mforest.pdf, accessed on Aug. 10, 2023.

[20] Saini, A. (2021). An introduction to random forest

algorithm for beginners. Analytics Vidhya, 19.

https://www.analyticsvidhya.com/blog/2021/10/an-

1258

introduction-to-random-forest-algorithm-for-beginners/,

accessed on Aug. 10, 2023.

[21] Ronaghan, S. (2018). The mathematics of decision trees,

random forest and feature importance in scikit-learn and

spark. https://towardsdatascience.com/the-mathematics-

of-decision-trees-random-forest-and-feature-

importance-in-scikit-learn-and-spark-f2861df67e3,

accessed on Aug. 10, 2023.

[22] Zhang, J., Zulkernine, M., Haque, A. (2008). Random-

forests-based network intrusion detection systems. IEEE

Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), 38(5): 649-659.

https://doi.org/10.1109/TSMCC.2008.923876

[23] Gupta, S., Goel, L., Singh, A., Agarwal, A.K., Singh,

R.K. (2022). TOXGB: Teamwork optimization based

XGBoost model for early identification of post-traumatic

stress disorder. Cognitive Neurodynamics, 16(4): 833-

846. https://doi.org/10.1007/s11571-021-09771-1

[24] Chen, Z., Jiang, F., Cheng, Y., Gu, X., Liu, W., Peng, J.

(2018). XGBoost classifier for DDoS attack detection

and analysis in SDN-based cloud. In 2018 IEEE

International Conference on Big Data and Smart

Computing (Bigcomp), Shanghai, China, pp. 251-256.

https://doi.org/10.1109/BigComp.2018.00044

[25] Qin, C., Zhang, Y., Bao, F., Zhang, C., Liu, P., Liu, P.

(2021). XGBoost optimized by adaptive particle swarm

optimization for credit scoring. Mathematical Problems

in Engineering, 2021(1): 6655510.

https://doi.org/10.1155/2021/6655510

[26] Feature Importance and Feature Selection with XGBoost.

https://notebook.community/minesh1291/MachineLearn

ing/xgboost/feature_importance_v1, accessed on Dec.

10, 2023.

[27] Stochastic Gradient Descent-Scikit-Learn 1.3.0

Documentation. https://scikit-

learn.org/stable/modules/sgd.html, accessed on Apr. 15,

2023.

[28] Barani, F., Savadi, A., Yazdi, H.S. (2021). Convergence

behavior of diffusion stochastic gradient descent

algorithm. Signal Processing, 183: 108014.

https://doi.org/10.1016/j.sigpro.2021.108014

[29] LightGBM Gradient-Based Strategy.

https://www.geeksforgeeks.org/lightgbm-gradient-

based-strategy/, accessed on Jan. 15, 2024.

[30] LightGBM Boosting Algorithms.

https://www.geeksforgeeks.org/lightgbm-boosting-

algorithms/?ref=ml_lbp, accessed on Jan. 15, 2024.

[31] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma,

W., Ye, Q., Liu, T.Y. (2017). Lightgbm: A highly

efficient gradient boosting decision tree. Advances in

Neural Information Processing Systems, 30.

[32] Multi-Layer Perceptron a Supervised Neural Network

Model Using Sklearn.

https://www.geeksforgeeks.org/multi-layer-perceptron-

a-supervised-neural-network-model-using-

sklearn/?ref=header_search, accessed on Jan. 20, 2024.

[33] Neural Network Models (Supervised). https://scikit-

learn.org/stable/modules/neural_networks_supervised.ht

ml, accessed on Apr. 12, 2024.

[34] Mayank Banoula (2023). An Overview on Multilayer

Perceptron (MLP).

https://www.simplilearn.com/tutorials/deep-learning-

tutorial/multilayer-perceptron, accessed on Apr. 12, 2024.

[35] Classification using Sklearn Multi-Layer Perceptron.

https://www.geeksforgeeks.org/classification-using-

sklearn-multi-layer-perceptron/?ref=header_search,

accessed on Jan. 20, 2024.

[36] What is Perceptron. The Simplest Artificial neural

network. https://www.geeksforgeeks.org/what-is-

perceptron-the-simplest-artificial-neural-

network/?ref=header_search, accessed on Jan. 22, 2024.

[37] Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.A realistic

cyber defense dataset (CSE-CIC-

IDS2018). .http://www.unb.ca/cic/datasets/ids-

2018.html, accessed on Dec. 15, 2022.

[38] Comment Normaliser Et Standardiser Les Données Dans

R Pour Une Visualisation En Heatmap Magnifique.

https://www.datanovia.com/en/fr/blog/comment-

normaliser-et-standardiser-les-donnees-dans-r-pour-

une-visualisation-en-heatmap-

magnifique/#:~:text=La%20normalisation%20standard

%2C%20%C3%A9galement%20appel%C3%A9e,unit

%C3%A9s%20d'%C3%A9cart%2Dtype, accessed on

Jan. 20, 2024.

[39] Aslam, M. (2019). Introducing Kolmogorov-Smirnov

tests under uncertainty: An application to radioactive

data. ACS Omega, 5(1): 914-917.

https://doi.org/10.1021/acsomega.9b03940

[40] Calixto, E. (2016). Gas and Oil Reliability Engineering:

Modeling and Analysis, Gulf Professional Publishing.

Second Edition, Elsevier.

1259

