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Computer network security represents a major challenge in the digital age, where intrusions 

threaten data confidentiality, accuracy and accessibility. To safeguard data and online 

services, Intrusion Detection Systems (IDS) controls the network traffic for any signs of 

malicious activity. The integration of artificial intelligence into IDSs offers new 

perspectives, but poses challenges, particularly in terms of feature selection and data 

imbalance management. Our research focused on identifying DDoS attacks, a major threat 

to the accessibility of online services. We evaluated the effectiveness of IDS against these 

attacks by testing the RF, XGB, SGD, LGB and MLP machine learning models on the 

CICIDS2018 DDOS attacks dataset. To optimize data quality, we adopted a strategic feature 

selection approach based on correlation matrix, mutual information and feature importance, 

reducing data dimensionality and improving model performance. Then, by balancing our 

dataset using oversampling techniques such as SMOTE, BorderlineSMOTE and ADASYN, 

we achieved better model generalization and reduced false positives. Our results showed 

that the ADASYN+SMOTE+XGB configuration was the most optimal for DDoS attack 

detection regarding effectiveness, false positives and execution duration. Our approach, 

combining judicious feature selection and resampling, has enabled us to create more 

performing intrusion detection systems, strengthening network security against increasingly 

sophisticated threats. 
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1. INTRODUCTION

In today's world, deeply entrenched in the era of the internet 

and associated technologies, where the retention of 

confidential information and user data by service providers is 

unavoidable. The rapid advance of technology has given rise 

to the major problem of network intrusions, giving rise to a 

high level of alert for both service providers and consumers 

worldwide. These intrusions disrupt online services, 

compromising the CIA's fundamental information security 

triad of confidentiality, integrity and availability. Impact of 

these intrusions are potentially devastating, jeopardizing 

services and user data, and generating substantial costs. To 

mitigate these dangers, intrusion detection systems (IDS) are 

now indispensable, playing a capital role as a proactive and 

defensive technical means of protecting information systems. 

Intrusion detection systems are essential components of IT 

security, monitoring network traffic to detect suspicious or 

malicious activity. IDSs can be classified into two main 

categories, network IDS (NIDS) operating across an entire 

network and host IDS (HIDS) focused on the security of a 

single host. These systems can be categorized based on their 

detection method into three types: IDS based on signatures, 

IDS based on anomalies, and hybrid IDS [1]. Signature-based 

IDSs analyze network traffic by comparing it to a database of 

known attack patterns, triggering an alert if there is a match. 

Although effective for known attacks, they are limited against 

new or sophisticated attacks, false positives, and encrypted 

traffic. Anomaly-based IDSs monitor activity patterns for 

significant deviations from normal behavior, enabling the 

detection of previously undiscovered incidents. However, they 

are prone to high false positive rates and struggle to adapt to 

ever-changing network environments that can become 

complex. Hybrid IDS combines the benefits of the previous 

two approaches to improve overall threat detection. The 

evaluation of the effectiveness of IDS takes into account 

various criteria such as detection rate, false positive rate, 

response time, ability to handle new threats, scalability, impact 

on the network, and ease of configuration [1]. 

In this context, research in this field has a major positive 

impact on related disciplines such as data science, network 

engineering and artificial intelligence. Indeed, IDSs generate 

large quantities of data on network traffic, which data science 

analyzes to identify suspicious behavior and improve detection 

algorithms. Research into IDSs also has a direct impact on the 

design and management of secure networks, insofar as mastery 

of the types of attack detected by IDSs helps network 

engineers to design more resilient architectures and implement 

appropriate defense strategies. AI research is indispensable for 

developing more effective and advanced IDS. Machine 
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learning techniques, in particular, are widely employed to 

identify anomalies and malicious behavior in network traffic. 

Integrating AI into IDS enables the development of more 

accurate, intelligent and adaptive detection systems that can 

learn from past attacks and adjust to continually evolving 

attack techniques. 

In fact, the increasing automation of intrusion detection 

within IDS, thanks to the integration of artificial intelligence, 

is recognized as an innovative approach. However, given the 

growing sophistication of attacks, network security today 

represents a major challenge. The processing of vast quantities 

of data remains a persistent difficulty in the development of 

security components, and applying machine learning 

techniques offers a solution for more accurate automated 

detection of attacks. Nevertheless, the judicious choice of the 

appropriate machine learning algorithm and a suitable feature 

set remains a crucial challenge, especially since a large 

number of features in the dataset significantly increases the 

computational cost. Therefore, success of studies related to 

applying machine learning algorithms to IDS data relies on 

careful selection of these key features. Furthermore, data 

imbalance in intrusion detection systems is a major issue, as it 

can lead to biases and unequal sensitivities in the models, thus 

impacting their performance. This imbalance, often 

characterized by an under-representation of the intrusion class 

compared with the normal class, can lead to predictions 

favoring the majority class. To mitigate these effects, various 

strategies are employed, such as oversampling, under 

sampling, the use of synthetic generation methods, class 

weighting, and the application of model ensembles. The 

effective management of data imbalance is essential to 

ensuring that potential attack scenarios are better taken into 

account, thereby enhancing the resilience, reliability and 

effectiveness of IDSs. This helps to strengthen network 

security in the face of increasingly sophisticated attacks. So 

there is still a lot to be done in terms of research into ways of 

improving the accuracy of detection of minority class samples. 

With this in mind, we turned our attention to resilience of 

IDSs face to Distributed Denial of Service (DDoS) attacks. For 

our study, we used the CICIDS 2018 DDOS attacks dataset. 

These attacks represent one of the many criminal activities 

present on the web. They have the ability to compromise or 

interrupt user access to networks or websites, regardless of 

their robustness or size. These attacks overwhelm the network 

with traffic, causing the network to break down and servers 

unavailability, sometimes lasting several hours before being 

restored, thus preventing the system from providing regular 

services to legitimate users [2]. 

Regarding DDoS attack detection, IDSs face a number of 

specific challenges that require an innovative approach for 

effective resolution. These include managing data imbalance, 

improving model performance and reducing false positives. 

The feature selection is a very important phase in machine 

learning, solving several fundamental problems. Indeed, 

datasets can be characterized by high dimensionality, 

potentially containing redundant or uninformative features. 

Firstly, selection reduces data dimensionality by eliminating 

less relevant features, thereby simplifying models, making 

them more efficient and preventing over-fitting. Secondly, it 

enhances model performance by concentrating on the most 

informative features, while reducing the computation time 

required, which is crucial for large datasets or real-time 

applications such as IDS. Finally, this selection makes models 

more interpretable by focusing on a restricted set of features, 

facilitating analysis and understanding of the model's 

decisions. 

For enhancing the efficiency of intrusion detection systems, 

particularly in detecting DDoS attacks, we performed data 

cleaning, label encoding, and scaling, followed by a triple 

feature selection process using successively the correlation 

matrix, mutual information, and the importance of XGBoost 

classifier features. This approach allowed us to identify an 

optimal subset of features most relevant to model prediction. 

This selection process not only optimized model performance 

by eliminating potential noise, but also speeded up training 

times and improved the interpretability of results. This 

complex feature selection operation resulted in a reduced and 

more focused dataset, offering a significant gain in terms of 

efficiency, accuracy and computational resources. 

Managing data imbalance is among the primary difficulties 

encountered by IDS in the context of DDoS attacks. Indeed, 

DDoS attacks are often rare events compared to normal 

network traffic, creating a significant imbalance between 

attack classes and the normal class. Our approach addresses 

this challenge by adopting resampling techniques to balance 

our reduced dataset, such as SMOTE and its variants 

ADASYN and BorderlineSMOTE for oversampling. For 

under sampling, we used random under sampling. But before 

implementing these techniques, we asked ourselves the 

following questions: 

 

1) Does the initial distribution of classes influence the 

choice of oversampling methods? 

2) Does the distribution of initial classes influence the 

choice of oversampling methods, in terms of 

performance and model processing times? 

3) How can we control the degree to which synthetic data 

preserve the characteristics of real data? 

4) Can the specific features inherent in each class affect 

the synthesizing process in a differentiated way 

depending on the class? 

5) Can synthetic data serve as a reliable substitute for real 

data? 

6) In the context of performance optimization, how do the 

models react in terms of performance when we apply a) 

the same oversampling method or b) different 

oversampling methods to all the minority classes? 

 

Before answering these questions, it is important to note that 

two approaches are commonly employed in research to 

effectively manage class imbalance in multi-class datasets 

using resampling techniques. The first is to apply the same 

resampling method to all minority classes in the multi-class 

dataset. This reduces the overall imbalance of the dataset, but 

may not take into account the specificities of each minority 

class, which could lead to underperformance for some classes. 

In the second approach, data from all minority classes are 

combined to form a positive class, while data from the 

majority class form the negative class. This creates a binary 

data set that is simpler to manage. This approach solves the 

problem by transforming it into a simple binary classification 

problem; however, it can result in a loss of important 

information at the level of different minority classes. 

As part of our research, to balance our reduced dataset, we 

adopted an innovative resampling strategy by splitting our 

reduced CICIDS2018 DDoS attack dataset into three distinct 

binary sets, each consisting of a negative class “Benign” and a 

specific attack class. In fact, the attack classes retained the 
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original distribution (count of observations) from the reduced 

multi-class dataset, while the majority negative class was 

randomly under sampled three times. Each resulting 

subsample was associated with an attack class to form binary 

datasets. Three binary datasets resulted from this division, two 

of which were unbalanced. 

Subsequently, we applied the oversampling techniques 

SMOTE, ADASYN and BorderlineSMOTE to the unbalanced 

binary datasets. By splitting the data in this way, we enable 

resampling techniques to focus on the specific characteristics 

of each attack class, rather than aggregating them all into a 

single "Abnormal" class. This approach enables finer-grained 

management of class imbalance by recognizing the diversity 

of DDoS attacks and tailoring resampling techniques to each 

attack type. The aim is to generate synthetic data that faithfully 

captures the characteristics of each type of attack, thus 

improving the ability of models to effectively detect these 

specific attacks. To assess the quality of the synthetic data 

generated on these binary datasets, we first used the 

Kolmogorov-Smirnov test, then compared the correlation 

matrices between the real and synthetic data. Subsequently, we 

evaluated the effectiveness of the LGBM and XGBoost 

models before and after synthesizing using the macro_f1-score 

and AUC_ROC metrics, and finally carried out tests on the 

learning and synthesizing times to assess the operational 

efficiency of the synthetic generation methods. 

One of the main objectives of our approach is to minimize 

the number of false positives, which are a major source of false 

alarms for intrusion detection systems. The resampling 

techniques used to balance the datasets have improved the 

sensitivity of the models to DDoS attack detection, while 

reducing the number of false positives and thus lowering 

classification errors. Furthermore, by considering execution 

time in our method, we strive to provide efficient and 

responsive solutions for DDoS attack detection, ensuring that 

IDSs can identify threats more quickly, thereby minimizing 

response time. 

Subsequently, from the fusion of the generated synthetic 

binary sets with the remaining balanced binary set, we 

constructed the global synthetic multi-class artificially 

balanced dataset. This global synthetic dataset was evaluated 

by comparing the performance of machine learning models 

including Random Forest (RF), eXtreme Gradient Boosting, 

XGBoost (XGB), Stochastic Gradient Descent (SGD), Light 

Gradient Boosting Machine (LGBM) and Multilayer 

Perceptron (MLP). These models were first trained on real 

data, then re-trained on synthetic data before being evaluated 

with the application of real test data. Performance tests on the 

models revealed that the XGB model, with the “ADASYN, 

SMOTE” combination corresponding to the resampling 

techniques respectively applied to the DDoS attack classes 

[LOIC-HTTP, LOIC-UDP], performed best against the 

defined criteria, namely accuracy, precision, recall, f1_score, 

false positive rate (FPR), and learning and prediction times for 

operational efficiency. 

By integrating these different approaches, our method 

provides an effective solution to the specific problems 

encountered by IDSs in detecting DDoS attacks. 

The rest of the document is organized as follows: Section II 

discusses related work, while Section III presents the 

fundamental concepts incorporated into our solution. Section 

IV presents the CSE-CICIDS2018 dataset and in more detail 

the part of this dataset related to DDOS attacks. Section V 

details our approach. Section VI describes the implementation 

of our method, presents the results obtained, and discusses 

their effectiveness. Finally, Section VII concludes the paper 

with a look at future work. 

 

 

2. RELATED WORKS 

 

Network security faces malicious attacks from various 

sources, and intrusion detection systems are essential for 

ensuring security. These systems are a significant research 

focus within network security, drawing numerous researchers 

dedicated to enhancing and optimizing the technology. 

Recently, numerous intrusion detection and prevention 

techniques leveraging machine learning algorithms have been 

proposed to enhance attack detection. In this section, we 

review some relevant prior work that has presented methods 

to improve the performance of IDS. They have focused on data 

pre-processing, feature selection, class imbalance resolution 

using oversampling and/or under sampling methods and 

classifier optimization. 

Liu et al. [3] present in their research work a network 

intrusion detection system based on two main components. 

First, the adaptive synthetic oversampling technology 

(ADASYN) is employed to increase minority samples, 

addressing the issue of low detection rates for minority attacks 

caused by imbalanced training data. Second, the LightGBM 

model is integrated to reduce the system's temporal complexity 

while maintaining detection accuracy. Experiments included 

ADASYN and other resampling techniques, such as random 

downsampling (RD), Near-miss, condensed nearest neighbor 

(CNN), neighborhood cleaning rule (NCL), cluster centroids 

(CC), random oversampling (RO), and synthetic minority 

oversampling technique (SMOTE) for comparison. 

Additionally, various machine learning algorithms were 

explored, including DT, LR, NBM, KNN, ANN, SVM, RF, 

GBDT, Adaboost, and LightGBM. Evaluation metrics 

comprised accuracy, precision, recall, false alarm rate, training 

and detection times, as well as Friedman and Nemenyi post-

hoc tests. Tests conducted on the NSL-KDD, UNSW-NB15, 

and CICIDS2017 datasets demonstrated an improved 

detection rate for minority samples after applying ADASYN 

oversampling, along with an increase in overall accuracy rates. 

The intrusion detection algorithm based on ADASYN and 

LightGBM achieved accuracies of 92.57%, 89.56%, and 99.91% 

for the three datasets, respectively, and showed reductions in 

the processing time of learning and detection phases as well as 

decreased false alarm rates. 

The study described in Latif et al. [4] was carried out in 

several successive stages, where the results of each phase 

represent the combinations that generate the best performance 

for that stage. The resulting combinations were considered as 

the input parameters for the next phase. The researchers began 

their analysis by exploring different pairings of machine 

learning algorithms in conjunction with various feature scaling 

techniques. These combinations were then integrated with 

feature reduction methods, and finally with oversampling 

approaches. The objective was to determine the most optimal 

combination of these techniques for intrusion detection 

systems. The study examined various machine learning 

algorithms including Decision Tree, Support Vector Machine, 

Random Forest, Naïve Bayes, Neural Network, and AdaBoost. 

Techniques for scaling features involved normalization and 

standardization. Methods for reducing features incorporated 

the use of a low variance filter, high correlation filter, random 
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forest, and incremental PCA. Various oversampling methods, 

such as SMOTE, Borderline-SMOTE and ADASYN, were 

also applied. The NSL-KDD dataset was used as a reference, 

with performance metrics including accuracy, precision, recall, 

and learning and prediction times. Among the combinations 

evaluated, the KNN + Normalization + Correlation filter + 

Borderline SMOTE algorithm was singled out for its higher 

performance compared with the other combinations of 

techniques studied. 

In the study by Chen et al. [5], the assessment of intrusion 

detection is based on the use of the CICIDS 2017 dataset. 

Features with a correlation coefficient greater than 0.95 were 

excluded during the pre-processing phase. To select the 

machine learning algorithm to be used to train the 

classification model for intrusion detection, the authors carried 

out a cross-validation comparison of the performance of 

Random Forest, Naive Bayesian, Logistic Regression, KNN 

and CART. The results of this evaluation indicate that Random 

Forest performs best. The study then integrated the Random 

Forest algorithm with three distinct sampling techniques-

Random Under-Sampling, SMOTE, and ADASYN. Through 

a comparative analysis aimed at enhancing precision, recall, 

F1 scores, and AUC values, it was found that combining 

ADASYN with Random Forest particularly excelled in 

addressing class imbalance issues. This method also facilitated 

precise classification and efficient detection of network attack 

behaviors. 

To resolve the challenge of class imbalance within the data 

and improve network intrusion detection, Pan and Xie [6] 

exploited the KDD CUP99 dataset in their study. To mitigate 

the redundancy of sample features in this dataset, the authors 

implemented the PCA algorithm. To alleviate the class 

imbalance, they adopted ADASYN. Subsequently, the 

original datasets and those treated by PCA + ADASYN were 

used to conduct experiments with Random Forest (RF), 

Support Vector Machine (SVM), and XGBoost. To evaluate 

the effectiveness of the models using this approach, the 

F1_score and FPR metrics were used. The results indicated 

that the PCA + ADASYN + XGBoost method performed best. 

The study conducted by Li et al. [7] exploited the UNSW-

NB15 network traffic dataset. Due to the uneven distribution 

of different attacks in this dataset, the authors consolidated the 

anomalous behaviors into a single category, thus becoming the 

majority category. The study proposes a two-pronged 

approach: using the Adasyn oversampling method to resolve 

the imbalance between normal and abnormal data, and 

adopting the ID3 decision tree algorithm for categorizing 

traffic into two types to detect network intrusions. To assess 

the model's effectiveness, this approach was benchmarked 

against other machine learning methods including K-nearest 

neighbor (KNN), logistic regression, support vector machine 

(SVC) classifier, random forest, adaboost, decision tree (using 

the ID3 algorithm), and a hybrid approach (ADASYN+ID3). 

The evaluation metrics focused on accuracy, precision, recall, 

and the false alarm rate. Findings reveal that the hybrid model 

combining ADASYN with the ID3 decision tree, as suggested 

in this study, achieves higher accuracy and a reduced false 

alarm rate, proving effective for intrusion detection tasks. 

Sun et al. [8] presented an approach to solve the problem of 

multiple classification of network intrusions, with a study 

conducted on the CIC-IDS2017 dataset. To overcome data 

imbalance, the researchers designed a resampling approach 

that involves random sampling and Borderline SMOTE 

oversampling to balance the data. To select features, they 

computed the rate of information gain for each feature and 

each attack category in the balanced data set. Subsequently, 

experiments were conducted with three machine learning 

algorithms (KNN, DT, RF), trained on six feature sets, to 

obtain optimal feature selection and the best machine learning 

method. 

This paper Wu et al. [9] addresses data imbalance by 

proposing a network intrusion detection algorithm that uses an 

improved random forest in conjunction with the SMOTE 

upsampling technique. In the first phase, authors introduce a 

combined sampling approach that associates K-means 

algorithm and SMOTE algorithm. This method aims to 

decrease number of outliers, enrich characteristics of minority 

samples and augment number of samples in this class. 

Preliminary prediction results are then obtained using an 

improved random forest. The decision tree with the highest 

classification performance within the random forest 

framework is selected for similarity computation in the next 

step. Following this, a similarity matrix for network attacks is 

utilized to refine the prediction results during the voting 

process, through an analysis of the attack types. Finally, the 

improved random forest model and other machine learning 

algorithms, including KNN, SVM and RF, are trained on the 

NSL-KDD dataset. The proposed model displays outstanding 

performance, attaining a classification accuracy of 99.72% on 

the training set and 78.47% on the test set. 

In this study, Talukdera et al. [10] present a hybrid approach 

incorporating suitable pre-processing, including missing value 

handling, feature normalization and label encoding to prepare 

datasets. They also apply the SMOTE technique to balance the 

data and use XGBoost for feature selection. Different ML and 

DL algorithms, including RF, DT, KNN, MLP, CNN and 

ANN, are used to evaluate effectiveness of the method in 

detecting network intrusions. Tests are performed using the 

datasets, KDDCUP'99 and CIC-MalMem-2022. Various 

performance measures, including accuracy, precision, recall, 

F1 score, AUC score, ROC curve, MAE, MSE and RMSE, are 

used to evaluate the algorithms in both binary and multi-class 

attack contexts. The findings indicate that the RF algorithm 

particularly excels, achieving the highest accuracy rate of 

99.99% on the KDDCUP'99 dataset and 100% on the CIC-

MalMem-2022 dataset, without exhibiting overfitting and 

Type-1 or Type-2 errors. 

Alshamy et al. [11] present in their study an IDS model 

(IDS-SMOTE-RF) that exploits the SMOTE oversampling 

technique to solve the class imbalance problem and uses the 

Random Forest algorithm to detect various types of attacks. 

The model was formed and tested using the NSL-KDD dataset. 

A comparative analysis was conducted between the IDS-

SMOTE-RF model and other classifiers, including Adaboost 

(AB), Logistic Regression (LR) and Support Vector Machine 

(SVM), focusing on measurements like accuracy, precision, 

recall, the F1 score, and the time required to process binary 

and multi-class classifications. The experimental results 

revealed that the IDS-SMOTE-RF model achieved a high 

accuracy of 99.89% in binary classification and 99.88% in 

multi-class classification, thereby proving to be the most 

efficient in terms of prediction time. 

Generally, within the domain of intrusion detection systems, 

research goals are centered on refining machine learning 

algorithms and enhancing overall dataset learning metrics, 

including model accuracy, detection rate, reduction in false 

alarm rates, and minimizing learning and prediction times. 

Optimization methods include data preprocessing, feature 
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selection, and/or reducing data dimensionality to boost model 

efficacy and decrease the consumption of computing resources. 

In addition, solving the imbalance of sample classes in datasets 

is also an important area of research. In this area of IDS, 

researchers can still bring suitable refinements to achieve 

better detection outcomes. 

 

 

3. BACKGROUND 

 

In this section, we will look at the technologies embedded 

in the solution we propose. We will begin with a detailed 

explanation of the approaches used for feature selection, 

including the correlation matrix and mutual information. The 

function of the XGBoost classifier will be explained in the last 

part of this section. Next, we will discuss oversampling 

methods such as SMOTE, Adasyn and BorderlineSMOTE, 

and then offer an overview of the machine learning models we 

have experienced. 

 

3.1 Feature selection techniques 

 

3.1.1 Correlation matrix 

Feature selection in machine learning is an essential step 

aimed at reducing data dimensionality and enhancing model 

accuracy and efficiency. The correlation matrix, a statistical 

tool, identifies the features with the highest correlations in a 

dataset. Features with high correlation are often redundant and 

do not contribute to the model's predictive power. Eliminating 

these features can lead to better model performance. 

In Data Science, the correlation matrix helps to quantify the 

relationships between variables, measuring the strength and 

direction of these links. It is represented by a table displaying 

correlation coefficients between variables. Each variable 

appears both in row and column, with the corresponding cell 

in the matrix containing the correlation coefficient for each 

pair of variables. The correlation coefficient varies between -

1 and +1, with -1 representing a perfect negative correlation, 

+1 a perfect positive correlation, and 0 indicating no 

correlation between the variables. Coefficients reveal the 

nature of the relationship between variables, clarifying 

dependencies. Variables that tend to increase or decrease 

together have high positive correlation coefficients, while 

variables that tend to move in opposite directions exhibit high 

negative correlation coefficients [12]. This matrix is a 

powerful tool to determine which variables are significantly 

related or poorly correlated or not correlated at all, 

contributing to fact-based predictions and judgments [12]. 

The following formula calculates the correlation coefficient 

between two variables [12]: 

 

𝑟 =  
(𝑛 ∑ 𝑋𝑌 − ∑ 𝑋 ∑ 𝑌)

√(𝑛 ∑ 𝑋2 − (∑ 𝑋)2)(𝑛 ∑ 𝑌2 − (∑ 𝑌)2)
 (1) 

 

where, 

r: correlation coefficient, 

n: number of observations, 
∑ 𝑋𝑌: sum of the product of each pair of corresponding 

observations of the two variables, 
∑ 𝑋: sum of observations of the first variable, 

∑ 𝑌: sum of the observations of the second variable, 

∑ 𝑋2: sum of the squares of the observations of the first 

variable, 

∑ 𝑌2: sum of the squares of the observations of the second 

variable. 

Although the correlation matrix is useful for feature 

selection in machine learning, it is recommended to use it 

judiciously alongside other feature selection methods to 

prevent over-fitting or under-fitting the model. Leveraging the 

correlation matrix, machine learning algorithms can identify 

the most relevant features, thereby enhancing their predictive 

power. 

 

3.1.2 Mutual information 

Mutual information quantifies the dependence between two 

random variables. High mutual information indicates strong 

dependence, while low mutual information suggests 

independence between the variables. The mutual information 

between two random variables X and Y is mathematically 

defined as follows: 

 

𝐼(𝑋; 𝑌) = ∑ ∑ 𝑃(𝑥, 𝑦) ∗ 𝑙𝑜𝑔 (
𝑃(𝑥, 𝑦)

𝑃(𝑥) ∗ 𝑃(𝑦)
)

𝑦∈𝑌𝑥∈𝑋

 (2) 

 

where, 

𝑃(𝑥, 𝑦) is the joint probability of 𝑋 = 𝑥 and 𝑌 = 𝑦 

𝑃(𝑥) and 𝑃(𝑦) are the marginal probabilities of 𝑋 and 𝑌 

𝐼(𝑋; 𝑌) = 0 if and only if x and y are independent 

𝐼(𝑋; 𝑌) is symmetric, i.e. 𝐼(𝑋; 𝑌)=𝐼(𝑌; 𝑋) 

 

In machine learning, it is often employed to assess 

relationships between features in a dataset and is useful for 

feature selection. It can also be used to evaluate the connection 

between each feature and the target variable (label), allowing 

the retention of the most informative features while reducing 

redundancy during dimensionality reduction. Features are 

ranked based on their mutual information with the target 

variable, with those having the highest mutual information 

being retained [13]. This streamlines the decision-making 

process and improves accuracy by reducing noise and 

eliminating unnecessary complexity [14]. In the context of 

clustering, mutual information can be used to measure the 

similarity between two clusters, notably in algorithms such as 

hierarchical agglomeration methods. Although sensitive to 

non-linearity and capable of detecting dependencies not 

captured by linear measures such as correlation, mutual 

information can be influenced by the granularity of the data, 

requiring precautions when using it [14]. 

In summary, mutual information is emerging as a powerful 

measure for quantifying the dependency between two 

variables, making it valuable in numerous machine learning 

applications, such as feature selection and dimensionality 

reduction. 

 

3.2 Oversampling techniques 

 

3.2.1 Smote 

SMOTE (Synthetic Minority Over-Sampling Technique) is 

an over-sampling technique developed to rebalance training 

sets with an under-representation of the minority class. The 

aim is to strengthen the minority class by generating synthetic 

examples. Instead of simply duplicating existing instances of 

the minority class, SMOTE introduces synthetic examples by 

performing a linear interpolation between several instances of 

this class located in a defined neighborhood, using Euclidean 

distance and k-NN (k Nearest Neighbors) [15]. The process of 

creating synthetic instances first involves defining the total 
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number of oversamples N, which is the number of instances 

that will need to be generated to obtain a balanced distribution 

of classes [16]. Next, an iterative process consisting of several 

steps is implemented. SMOTE randomly selects an instance of 

the minority class and uses Euclidean distance to identify the 

k nearest neighbors of the same class. The parameter k is a 

user-defined number, usually k=5 (default). The new synthetic 

examples are generated by linearly interpolating between the 

selected instance and some of its neighbors, adjusting the 

feature values according to the differences between the 

selected instance and its neighbors. The complete process is 

shown below: 

 

Let 𝑥𝑖  be an instance of the minority class, and 𝑥𝑖1, 
𝑥𝑖2, . . , 𝑥𝑖𝐾 , the 𝐾 nearest neighbours of 𝑥𝑖  in the training set. 

 

1) Random selection of an instance of the minority class 

a. Random selection of an instance of the minority class 

 𝑥𝑖 

2) Calculation of new synthetic instances  

a. For each instance 𝑥𝑖𝑗  among the 𝐾  nearest 

neighbours, we calculate the difference 

 

𝑑𝑖𝑓𝑓 = 𝑥𝑖𝑗 − 𝑥𝑖  

 

b. For each instance  𝑥𝑖𝑗 , a random number 𝑢  is 

generated between 0 and 1 

c. For each instance  𝑥𝑖𝑗 , the new synthetic  

instance is calculated using the following 

interpolation formula: 𝑥𝑠𝑦𝑛𝑖𝑗 = 𝑥𝑖 + 𝑢 ∗ 𝑑𝑖𝑓𝑓 

d. These steps are repeated to create 𝑁 new synthetic 

instances. 

e. The set of new synthetic instances created is 

noted {𝑥𝑠𝑦𝑛𝑖1, 𝑥𝑠𝑦𝑛𝑖2, … . . , 𝑥𝑠𝑦𝑛𝑖𝑁}. 

f. Repeating these steps 𝑁 times to select 𝑁 instances 

of the minority class and create 

𝑁 × 𝐾 new synthetic instances. 

3) Applying the oversampling method 

a. The synthetic instances 

𝑥𝑠𝑦𝑛𝑖1, 𝑥𝑠𝑦𝑛𝑖2, … . . , 𝑥𝑠𝑦𝑛𝑖𝑁  are added to the training 

set. 

 

This process aims to introduce variability while avoiding 

simple replication of existing instances. The use of Euclidean 

distance and k-NN ensures that synthetic instances are relevant 

to the local distribution of the data. In general, SMOTE 

focuses on the feature space instead of the data space [16]. This 

means that the specific features defining a class are taken into 

account when generating synthetic examples, thus preserving 

the local structure of the minority class. By exploiting the 

relationships between sample features, SMOTE improves the 

ability of models to deal with class imbalance. 

Note that SMOTE is only applicable to continuous data. An 

adapted version, SMOTENC (SMOTE Nominal Continuous) 

[17], exists for categorical data. Despite its advantages, 

SMOTE has some weaknesses, notably that it does not take 

into account neighboring examples of the majority class. In 

fact, the synthetic observations created for the minority class 

may overlap with instances of this class. In addition, the 

excessive generation of synthetic observations may introduce 

additional noise into the dataset, potentially biasing the model 

[17]. 

The creation of synthetic instances has led to an in-depth 

study of the theoretical relationships between original and 

synthetic instances, taking into account aspects such as data 

dimensionality, variance, correlation in data and feature space, 

and the distribution between training and test instances [16]. 

In summary, SMOTE provides an efficient method for 

oversampling the minority class, generating relevant synthetic 

examples based on relationships in feature space, thus helping 

to maintain minority class structure and diversity, improve 

dataset balance and enhance model performance in 

imbalanced class scenarios. 

 

3.2.2 Borderline-SMOTE 

Borderline-SMOTE is a variation of the original SMOTE, 

an improvement on the algorithm [4], designed to better 

handle examples located at the border between majority and 

minority classes in an unbalanced dataset. Borderline-SMOTE 

is based on the idea that examples located at the border 

between classes are more relevant for oversampling. It uses the 

ratio between the majority and minority examples in the 

neighborhood of each instance to identify the examples 

belonging to the borderline. Borderline-SMOTE classifies 

examples into three categories: "Safe", "Danger" and "Noise". 

"Safe" examples are those where the majority of neighbors 

appertain to the same minority class, while "Dangerous" 

examples are on the borderline with a more balanced 

proportion of neighbors from both classes. Noise" examples 

are characterized by neighbors all belonging to the majority 

class [8, 16]. Only the "Dangerous" examples are selected for 

oversampling [16]. The aim is to improve the distribution of 

example categories without generating noise from examples 

that are clearly in the majority. Borderline-SMOTE uses the 

SMOTE algorithm to generate new synthetic examples. It 

selects a "Dangerous" example and calculates its k nearest 

neighbors. It then synthesizes new examples by performing a 

weighted interpolation between the original example and its 

neighbors. 

 

3.2.3 Adasyn 

ADASYN (Adaptive Synthetic Sampling) is an adaptive 

synthetic sampling technique designed to solve the problem of 

class imbalance in data sets. The technique is based on the 

assumption that not all examples in the minority class are 

equally difficult to learn. Some minority examples are 

considered more difficult to learn than others based on the 

proportion of the majority class in their vicinity [16]. 

ADASYN assigns different weights to the examples in the 

minority class based on their learning difficulty level [5, 16]. 

Minority examples considered more difficult to learn receive 

a higher weighting. Unlike SMOTE, which generates the same 

number of synthetic samples for each minority example, 

ADASYN is density adaptive, generating more synthetic 

samples in areas where the density of minority instances is low. 

In addition, SMOTE uses a fixed factor to determine the 

number of synthetic samples, whereas ADASYN adjusts the 

number of synthetic samples based on the estimated learning 

difficulty, considering the ratio of majority class neighbors to 

the total number of neighbors. 

The minority examples that are more difficult to learn are 

associated with a higher production of synthetic samples, 

while those considered easier require fewer synthetic samples. 

The ADASYN algorithm aims to achieve a relative balance of 

classes by generating synthetic examples where this is deemed 
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more necessary, depending on the estimated level of learning 

difficulty. 

The ADASYN algorithm can be detailed as follows [3, 7]: 

Input: 

D: initial training dataset with m instances. 

{xi, yi} where xi  is an instance in the feature space X and 𝑦𝑖  

is the identity label of the class associated with xi  

ms: number of instances of the minority class. 

ml: number of examples of the majority class. 

k: number of nearest neighbors to consider. 

dth: threshold value for the maximum degree of imbalance 

between classes. 

 

Output: 

𝐷′: oversampled data set. 

 

1) Calculation of the degree of imbalance between classes, 

imbalance =𝑚𝑠/𝑚𝑙 

2) Check whether the degree of imbalance is less than the 

dth threshold. If true, then : 

a. Calculate the total number of synthetic samples to 

generate: 𝐺 = (𝑚𝑙 − 𝑚𝑠) ∗ 𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 

b. For each minority example 𝑥𝑖. 

1) Calculate the learning difficulty level which is the ratio 

of majority class neighbors among the k  nearest 

neighbours of 𝑥𝑖 , 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑖 =((number of neighbors 

belonging to the majority class among the k  nearest 

neighbours of 𝑥𝑖)/k). 

2) Difficulty level normalization : 

 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑖 =
𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑖

∑ 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑖
𝑚𝑠
𝑖=1

 

 

3) Adjustment of the difficulty level: 

 

adjusted_difficult𝑦𝑖=normalized_difficult𝑦𝑖  x 𝐺 

 

4) Calculation of the number of synthetic samples to 

generate: 

 

𝑛𝑢𝑚_𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐𝑖 = 𝑟𝑜𝑢𝑛𝑑𝑒𝑑(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑖) 

 

5) Generation of synthetic samples: 

 

• For each i from 1 to 𝑛𝑢𝑚_𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐𝑖: 

• Using the SMOTE algorithm to generate a synthetic 

sample based on the minority example 𝑥𝑖  and its k 

nearest neighbours. 

• Adding the generated synthetic sample to the 

oversampled dataset 𝐷′. 
 

Steps 1 to 5 of point b are repeated until the desired 

equilibrium is reached or until a predefined stopping criterion 

is satisfied. 

ADASYN is a flexible approach that adapts the generation 

of synthetic samples according to the complexity of the 

minority examples, providing an adaptive solution to the class 

imbalance problem. 

 

3.3 Machine learning algorithms 

 

In our research, we selected several machine learning 

algorithms based on their specific characteristics and 

adaptability to the CICIDS2018 DDOS attack dataset. Since 

DDoS attacks generally involve a large volume of malicious 

network traffic, we deemed it essential to use models adept at 

efficiently processing vast amounts of data and identifying 

anomalous patterns. The RF model was chosen for its capacity 

to manage complex data sets with interdependent explanatory 

variables, while offering good robustness to outliers and over-

fitting. We also favored the use of XGB, due to its proficiency 

in handling large datasets with great efficiency in terms of 

speed and performance. On the other hand, SGD seemed the 

obvious choice, given its efficiency in learning from massive 

data and its ability to converge rapidly to optimal solutions, 

making it well suited to our large dataset. For its part, the LGB 

was chosen for its speed of execution and its ability to handle 

class imbalance. These two criteria are, in fact, an eminently 

important aspect for our dataset, where DDoS attacks 

represent a minority class. Finally, MLP was selected for its 

power to identify complex patterns in the data due to its 

multilayer neural network structure, which is beneficial for 

detecting subtle patterns present in our CICIDS2018 DDOS 

attack dataset. 

In sum, by exploiting these algorithms in our study, we were 

able to experiment their respective strengths to enhance the 

performance of our DDoS attack detection model on this 

specific dataset. A detailed description of these algorithms is 

given below: 

 

3.3.1 Random forest 

Random Forest is a powerful supervised classification 

method [18]. It is distinguished by its use of subsets of the 

original dataset to make predictions. During training, it 

constructs many individual decision trees with different sets of 

observations, and the predictions from these trees are then 

combined, typically using majority voting, to produce the final 

prediction [1, 19]. This approach, known as the ensemble 

technique, solves the over-fitting problem [20] by relying on 

the majority ranking of all tree results. 

Random forests are versatile and can be applied to both 

classification and regression tasks. For classification, a 

random forest gathers a class vote from each tree and then 

determines the final classification based on the majority vote. 

For regression, the predictions from each tree for a target value 

are averaged. 

The goal of minimizing the correlation between trees in 

random forests is to decrease the model's variance by 

encouraging diversity among the trees. Each tree is built using 

a random subset of the training data and random subsets of 

features, leading to the creation of distinct trees [21]. This 

diversity ensures that each tree can make unique prediction 

errors since they are trained on different data samples.  By 

combining these predictions, either through averaging or a 

majority vote (for classification), the overall model variance is 

reduced [1]. This approach prevents over-fitting, as the errors 

made by one tree are balanced out by the accurate predictions 

of others [22]. When the predictions of trees show a high 

correlation, this indicates that these trees generally make 

similar errors. In such situations, the application of averaging 

or voting would not lead to a significant improvement in 

performance [1]. By emphasizing diversity and reducing 

correlation, Random Forest increases the stability of 

predictions, improving the generalization of the model to 

unknown data. Hence, the results become more reliable, 

resulting in improved predictive performance. 

An additional advantage of this algorithm is its ability to 
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perform feature selection, measuring the importance of each 

variable at each division of each tree. This importance is 

calculated as a function of the improvement in the division 

criterion, pondered by the likelihood of reaching the 

corresponding node [20, 21]. 

Random Forest is robust and efficient for classification, 

making it an appropriate choice for detecting abnormal 

patterns of network activity. It excels at handling large 

amounts of data and is capable of handling complex features. 

 

3.3.2 XGboost 

XGBoost (Extreme Gradient Boosting) is one of the most 

popular and efficient machine learning algorithms, frequently 

employed for regression and classification fields. Its high 

predictive performance and remarkable efficiency have 

increased its popularity in recent years [23]. XGBoost 

outperforms the gradient-based decision tree (GBDT) 

algorithm with regard generalization, scalability and to 

computational speed [24]. 

XGBoost, a technique for ensemble learning, enhances 

predictive accuracy by optimizing a regularized loss function 

through the combination of multiple decision trees. The 

algorithm employs a reinforcement procedure that involves the 

successively training of numerous decision trees. During each 

iteration, an additional tree is introduced to correct the residual 

mistakes from the preceding trees. The contributions of these 

trees to form the ultimate prediction are then weighted 

according on their individual effectiveness [1]. 

Consider a training dataset composed of feature-label pairs 

{(𝑥𝑖  , 𝑦𝑖)}𝑖=1
𝑛 , where 𝑥𝑖 denotes the set of features for the ith 

example and 𝑦𝑖 represents its associated real class label. 

The primary goal of XGBoost is to construct a predictive 

model F(x) that minimizes a regularized loss function 

L(yi, F(xi))  by accurately predicting the labels 𝑦𝑖 . The 

optimization goal of XGBoost can be formulated as follows 

[1]: 

 

L(θ) = ∑ L(yi, F(xi)) + ∑ Ω(𝑓𝑗)
𝑇

𝑗=1

𝑛

𝑖=1
 (3) 

 

The function L(yi, F(xi)) serves as a metric for quantifying 

the divergence between the model's prediction F(xi) and the 

actual label 𝑦𝑖. Among the frequently employed convex loss 

functions are the logarithmic, square, and exponential loss 

functions. The variable 𝑇  signifies the cumulative count of 

trees within the ensemble, with 𝑓𝑗(𝑥) denoting the function 

represented by the jth tree in the ensemble. The term 

Ω(𝑓𝑗) acts as a regularization component, imposing a penalty 

on the intricacy of the trees to prevent the model from 

overfitting. This term is formulated as follows [1]: 

 

Ω(𝑓𝑗) = 𝛾 𝑇𝑗 +
1

2
 ∑ 𝑤𝑗𝑘

2
𝐿

𝑘=1
 (4) 

 

The parameters 𝛾  and   are utilized to modulate the 

intensity of the regularization process. Here, 𝑇𝑗 represents the 

total count of leaves within a tree, 𝐿 denotes the number of 

nodes in tree 𝑓𝑗  and 𝑤𝑗𝑘  signifies the weight associated with 

the 𝑘 th node in tree 𝑓𝑗 . The initial component of the 

regularization function, 𝛾  𝑇𝑗 , imposes a penalty that scales 

with the total number of leaves in the tree; the more numerous 

the leaves, the greater the penalty incurred. The second 

component, 
1

2
∑ 𝑤𝑗𝑘

2𝐿
𝑘=1  within the XGBoost objective 

function, governs the extent to which the model is penalized 

for assigning higher weights to the leaves. As  increases, the 

algorithm tends to favor lower leaf weights, thereby promoting 

the development of more parsimonious trees. This 

regularization strategy serves to mitigate overfitting by 

curbing the propensity of overly intricate trees to model the 

noise present in the training data. The values for  and ω are 

typically determined through empirical means [25]. 

To reduce the loss function, the predictions F(x) are updated 

by incorporating the predictions from each individual tree 

weighted by its respective learning coefficient  [1]: 

 

𝐹𝑡(𝑥) = 𝐹𝑡−1(𝑥) + ∑ 𝑓𝑗(𝑥)
𝐽

𝑗=1
 (5) 

 

The learning rate   plays an important role as a 

hyperparameter, regulating the magnitude of the update. By 

employing the boosting approach, XGBoost constructs each 

tree with the objective of rectifying the residual errors from the 

preceding model. This iterative process enables the algorithm 

to gradually adapt to the residual errors as additional trees are 

introduced. 

XGBoost offers the advantage of automatically generating 

assessments of feature importance from a trained predictive 

model. The importance of features is determined by examining 

their contribution to the building of the boosted decision trees, 

which reflects their relative significance within the model. The 

assessment of importance relies on the enhancement in the 

performance measure for each attribute-sharing point in a tree, 

with weighting by the number of instances linked to the node. 

Ultimately, XGBoost computes the average of these 

importance scores across all the decision trees in the model, 

delivering a comprehensive estimate of the importance of each 

feature. This process makes it possible to rank characteristics 

according to their contribution to performance, offering 

insights into the most influential variables in the model [26]. 

XGBoost offers high accuracy and good generalization. Its 

ability to handle unbalanced datasets can be useful in the 

context of DDoS attack detection, where malicious activity 

may be rare compared to normal traffic. 

 

3.3.3 Stochastic gradient descent 

Stochastic Gradient Descent (SGD) is a technique of 

iterative optimization that is extensively embraced in the realm 

of machine learning, particularly for the training of neural 

network models. This approach is applied to unconstrained 

optimization problems [27]. Basically, SGD is used to 

iteratively adjust the parameters of a model to minimize a cost 

function [28]. This function evaluates the discrepancy between 

the predictions made by the model and the true values, and is 

central to the learning process. 

SGD is a derivative of classical gradient descent, and aims 

to update model parameters iteratively and incrementally, 

using mini-batches of data, representing a change from 

classical gradient descent which exploits the full dataset at 

each iteration [28]. This sequential approach enables faster 

training, which is particularly beneficial for large datasets. 

Its efficiency stems from its ability to process data in small, 

bite-sized chunks, which significantly reduces memory 

requirements, making SGD ideal for large datasets. In addition, 

SGD tends to converge faster than its conventional counterpart, 

particularly in high-dimensional parameter spaces. However, 
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this rapid convergence is accompanied by inherent variability 

due to stochastic sampling, making the process sometimes 

noisy. Furthermore, SGD requires careful management of the 

hyperparameters, in particular the choice of the learning rate 

(η). Inadequate selection of this value can compromise 

convergence, leading to either slow convergence or 

divergence. Thus, judicious adjustment of the parameters 

becomes a crucial step in guaranteeing fast and stable 

convergence. 

The mathematical formulation of stochastic gradient 

descent presented in the literature [27, 28] is as follows: 

Given a training dataset consisting of (x1, y1), … , (xn, yn), 

where n is the number of examples, 𝑥𝑖 ∈ 𝐑𝑚 represents the 

features of the i th example and 𝑦𝑖 ∈ ℛ is the target label 

associated with this example. 

The goal is to learn the linear score function 𝑓(𝑥) = 𝑤𝑇𝑥 +
𝑏, with the model parameters, 𝑤 ∈ 𝐑𝑚 the weight vector and, 

𝑏 ∈ 𝐑 the intercept. 

The learning objective is to determine the optimal values of 

the model parameters w and b that minimize the regularized 

learning error 𝐸(𝑤, 𝑏) given by: 

 

𝐸(𝑤, 𝑏) =
1

𝑛
∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖)) + 𝛼𝑅(𝑤)

𝑛

𝑖=1

 (6) 

 

where, 𝐿(𝑦, 𝑓(𝑥)) denotes a loss function assessing model fit. 

It evaluates how closely the prediction f(x) matches the true 

target y. 𝑅(𝑤) a regularization term that penalizes the model's 

intricacy. This term helps prevent over-fitting by restricting 

the values of model parameters. 𝛼 represents a positive 

hyperparameter that governs the degree of regularization. 

The SGD algorithm uses optimization techniques such as 

gradient descent to adjust model parameters iteratively until 

convergence. It progresses through the training data, and for 

each entry, it updates the model parameters following the 

specified update rule below: 

 

𝑤 ← 𝑤 − 𝜂[𝛼
𝜕𝑅(𝑤)

𝜕𝑤
+

𝜕𝐿(𝑤𝑇𝑥𝑖 + 𝑏, 𝑦𝑖) 

𝜕𝑤
] (7) 

 

In this context, η represents the learning rate, determining 

the step size of the updates in the parameter space. The 

intercept b is updated similarly, yet it is not subject to 

regularization. 

The convergence of SGD may occur more quickly, yet the 

noise introduced by randomly choicing samples may render 

the algorithm less stabe compared to classical gradient descent. 

However, many techniques and variants have been developed 

to mitigate these problems and improve the stability and 

efficiency of training, making it an essential tool in modern 

machine learning. 

Stochastic Gradient Descent (SGD) can be adopted as a 

model for detecting DDoS attacks, due to its ability to 

efficiently process large datasets. The stochastic nature of 

SGD, using mini-samples in an iterative fashion, enables rapid 

training on real-time data streams, a crucial feature for the 

detection of constantly evolving attacks. SGD can be a 

relevant choice for intrusion detection in a network security 

context. 

 

3.3.4 LightGBM 

Light Gradient Boosting Machine, or LightGBM, is a 

machine learning algorithm developed by Microsoft, based on 

the gradient boosting technique. Its distinction lies in its ability 

to efficiently manage large datasets, offering fast and parallel 

performance [29]. As a boosting model, LightGBM combines 

several weak models, often shallow decision trees, in an 

assembly method to create a more powerful global model. 

Based on the gradient reinforcement algorithm, LightGBM 

successively trains models, focusing on examples that are 

poorly predicted by previous models, with each model aiming 

to rectify the mistakes of its predecessor. This algorithm is 

applied in a range of tasks including classification, regression 

and large-scale ranking, making it effective for solving a 

variety of problems in machine learning [29]. Three distinct 

methods bolster LightGBM's capabilities: Gradient-based 

One-Side Sampling (GOSS), Exclusive Feature Bundling 

(EFB), and the histogram-based approach for choosing 

features and identifying segmentation points [3, 30]. These 

techniques are seamlessly integrated into the overall decision 

tree building process when models are trained with LightGBM. 

The Gradient-based One-Side Sampling (GOSS) algorithm 

is introduced in LightGBM with the goal of decreasing the 

number of samples at each iteration while emphasizing the 

training of samples that show weak predictive performance. 

During each iteration, LightGBM first calculates the gradients 

for all the instances in the dataset. The instances are then sorted 

according to the magnitude of their gradients. This separates 

the most informative instances from those that have less 

impact on the model. GOSS retains a large proportion of the 

instances with high gradients, thus preserving the most 

relevant information for learning [3]. Random sampling is 

carried out among the instances with lower gradients [3]. This 

reduces their number, while preserving a reasonable 

representation of these less informative examples. LightGBM 

then uses these sampled instances to update the model 

parameters using gradient descent. Updates are made 

incrementally and selectively, making it easier to learn 

difficult cases. By lowering the sample volume processed in 

each iteration, GOSS contributes to a reduction in 

computational load, which is particularly advantageous for 

handling massive datasets. It allows more focus to be placed 

on instances with poor prediction effects, helping to reinforce 

the learning of these difficult cases, improve model efficiency 

and achieve more accurate predictions. 

EFB is a technique introduced in LightGBM for grouping 

features that are mutually exclusive. This method seeks to 

decrease the dimensionality of the feature space, which in turn 

enhances the efficiency of model training. LightGBM analyses 

the features in the dataset to identify those that are mutually 

exclusive, i.e. those that are never simultaneously active in the 

same decision tree. Features that are mutually exclusive are 

grouped into sets [3]. For example, if two features A and B are 

mutually exclusive, they will be grouped together in a set. For 

each set of mutually exclusive features identified, LightGBM 

creates a new aggregated feature that represents these 

combined features. This aggregation can take different forms, 

such as average, sum, or other statistical operations. When 

building decision trees, instead of using individual features, 

LightGBM uses the new aggregated features created by the 

mutually exclusive grouping. By diminishing the feature space 

dimensionality, EFB helps to speed up model training, while 

retaining essential information. Indeed, by grouping mutually 

exclusive features, EFB simplifies the structure of decision 

trees by lessening the number of nodes required to depict the 

relationships between features, which reduces the time needed 

to train the model [30]. The creation of new aggregated 
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features additionally lessens the model's complexity. By 

diminishing the number of features employed in the model, 

EFB contributes to better memory management, which is 

particularly useful for massive datasets [30]. In summary, 

Exclusive Feature Bundling (EFB) in LightGBM provides an 

efficient way to manage mutually exclusive features by 

grouping them together, reducing model complexity and 

improving training efficiency [30]. 

LightGBM uses the histogram algorithm to select features 

and determine segmentation points when building each 

decision tree [31]. Instead of examining all unique feature 

values to identify the optimal segmentation point (which is 

costly in terms of computation time), LightGBM uses 

histograms to approximate the distribution of feature values. 

Histograms are constructed for each feature and are used to 

find optimal segmentation points more quickly. This approach 

considerably speeds up the construction of decision trees in 

LightGBM, making it an effective algorithm for large or high-

dimensional datasets [31]. 

By combining these techniques, LightGBM manages to 

deliver high performance with increased computational 

efficiency, even in complex, high-volume data contexts, 

making it a popular choice for supervised learning on large 

amounts of data. For these reasons, it can be particularly well 

suited to the detection of DDoS attacks. 

 

3.3.5 MLP (Multilayer Perceptron) 

The Multi-Layer Perceptron (MLP) is an artificial neural 

network with a multi-layered architecture, including an input 

layer, hidden layers, and an output layer. It is commonly 

employed for various machine learning tasks, including 

classification and regression, due to its capability to model 

complex and non-linear relationships in data [32]. Figure 1 

displays an MLP hidden layer with scalar output [33, 34]. 

The first layer of the MLP, called the input layer, receives 

the characteristics of the dataset, where each neuron represents 

an input characteristic. The total number of neurons in this 

layer is the total number of characteristics in the dataset [32, 

35]. MLP includes one or more hidden layers located 

intermediate to the input and output layers, each made up of 

neurons. Each neuron in a hidden layer is connected to all 

neurons in the previous and next layers. It transforms the 

values of the previous layer by weighted linear summation, 

followed by a non-linear activation function. Within a hidden 

layer, neurons do not interact directly with each other, but 

indirectly through weighted connections, allowing the 

network to learn complex connections and representations in 

the data. The number of hidden layers and the number of 

neurons in each layer affects the complexity of the task [35]. 

The last layer, designated as the output layer, produces the 

model predictions using the information processed in the 

hidden layers. The output layer activation function depends on 

the type of problem to be solved, such as the sigmoid function 

for binary classification, the softmax function for multi-class 

classification, or no activation for regression. 

The mathematical formulation of the MLP model is as 

follows: 

Suppose we have an MLP with L layers, where layer l is 

composed of 𝑛(𝑙) neurons. Let X be the input vector of 

dimension d, 𝑊(𝑙)  the weight matrix of layer l, 𝑏(𝑙) the bias 

vector of layer l, and 𝑎(𝑙) the activation vector of layer l. 

Forward propagation through the network can be described 

as follows: 

 

 
 

Figure 1. One hidden layer MLP 
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For hidden layer l: 

 

𝑧(𝑙) = 𝑊(𝑙)⋅ 𝑎(𝑙−1) + 𝑏(𝑙) 

𝑎(𝑙) = f (𝑧(𝑙)) 

 

where, f is a non-linear activation function, such as the 

sigmoid function, the hyperbolic tangent (tanh), or the ReLU 

(Rectified Linear Unit) function. 

For the last output layer L: 

 

𝑧(𝐿)=𝑊(𝐿)𝑎(𝐿−1)+𝑏(𝐿) 

�̂�=f (𝑧(𝐿)) 

 

where, �̂� is the predicted output of the network, typically used 

for classification or regression, and f is the activation function 

appropriate for the specific task. 

The MLP assigns weights to each input feature, adjusted 

during training to optimize their value. The perceptron 

combines these weighted inputs through a summation function, 

while the neurons of the hidden layers apply activation 

functions to introduce nonlinearity, allowing the modeling of 

complex relationships. The information propagates through 

the network from the input layer to the output layer, generating 

predictions. For model learning, a loss function J is defined to 

measure the difference between model predictions and true 

labels. Examples of commonly used loss functions are mean 

squared error for regression and cross-entropy loss for 

classification. Next, backpropagation is used to adjust network 

weights and biases in order to minimize the loss function. 

Indeed, once the network output has been calculated and the 

loss function evaluated, error backpropagation is used to 

calculate the gradients of the loss function with respect to the 

network weights and biases. These gradients are then used to 

update the network weights and biases using an optimization 

algorithm such as stochastic gradient descent (SGD) or the 

gradient descent with momentum algorithm [34, 36]. 

MLPs are capable of capturing complex nonlinear 

relationships in data. They can be used to model sophisticated 

network activity patterns, which can be important for detecting 

DDoS attacks. However, MLPs have the following 

disadvantages: MLPs with hidden layers have a non-convex 

loss function where more than one local minimum exists. 

Consequently, different random weight initializations can lead 

to different validation accuracy. In addition, MLP requires the 

setting of a number of hyperparameters such as the number of 

hidden neurons, layers and iterations, and is sensitive to 

feature scaling. 

 

 

4. OVERVIEW OF THE CSE-CIC-IDS2018 DATASET 

 

The CSE-CIC-IDS2018 (Canadian Institute for 

Cybersecurity Intrusion Detection System 2018) dataset is a 

widely used resource for intrusion detection system research 

and development. It was produced by the Canadian Institute 

for Cybersecurity (CIC) in collaboration with the 

Communications Security Establishment (CSE) [37]. The 

main objective is to create a comprehensive reference database 

for intrusion detection systems based on anomalies. This 

dataset was designed to simulate a realistic network 

environment by integrating normal network traffic data as well 

as data representing various potential attacks. The foundation 

of this project is built on creating user profiles that encapsulate 

abstracted event and behavior observed across the network, 

combining these profiles to create diverse datasets. The data 

comes from various sources, including attack simulations and 

real network traffic captures. This ensures a variety of 

representative instances of the scenarios encountered in the 

real world. The behaviors and patterns observed in the data are 

representative of real activities on today's computer networks. 

Collected over a 10-day period, from February 14 to March 2, 

2018, the dataset captures seven distinct types of attack 

scenarios, including brute force, botnets, DoS/DDoS, web-

based attacks, and network infiltrations. It comprises data from 

network traffic captures, system logs for each machine, and 80 

different attributes extracted from the traffic via 

CICFlowMeter-V3. These features include information such 

as IP addresses, ports, protocols, durations, packet size, TCP 

flags, and other data related to network packets. Each record 

in the dataset is labeled as normal or malicious, facilitating the 

use of supervised learning techniques for attack detection. This 

labeling enables researchers to train models that can accurately 

differentiate benign from malicious traffic. The data is usually 

provided as CSV files, making it easy to use with various data 

analysis and machine learning tools. This is a large data set, 

with a large number of instances, providing sufficient scope 

for training machine learning models. The dataset, 

downloaded from Kaggle, has 16,233,002 examples and 80 

features, with variations in the availability of certain features 

depending on the registration dates. The diversity of this data 

makes it a valuable resource for network activity analysis, 

especially in the detection of attacks. Figure 2 presents the 

breakdown of instances in the CICIDS 2018 dataset, 

downloaded from Kaggle. 

 

 
 

Figure 2. The instances breakdown of the CICIDS 2018 

dataset 

 

In sum, with over 16 million examples and 80 features 

extracted from traffic, the CICIDS2018 dataset offers a wealth 

of data essential for machine learning model entrainment. 

Consequently, the diversity of instances representative of 

scenarios encountered in the real world ensures that models 

are exposed to a wide range of situations, contributing to their 

generalization and robustness. Researchers and practitioners 

use the CSE-CICIDS2018 dataset to evaluate the performance 

of their IDSs, analyze attack trends, and develop more robust 

intrusion detection models. As a result, the size of the dataset, 

comprising millions of instances, provides a solid basis for 

assessing intrusion detection systems, allowing thorough 
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analysis for the test of algorithms performances. 

In our approach, we focused on DDoS attacks in the CSE-

CIC-IDS2018 dataset, based on records from days four and 

five of the data acquisition phase for traffic and network 

behavior. The interest in this data collection in our research is 

due to its diverse nature and considerable size. CSE-CIC-

IDS2018 DDOS attack has 8,997,323 instances, or more than 

55% of the instance breakdown of the CSE-CIC-IDS2018 data 

compilation. It has 80 features, of which 45 features have 

float64 data type, 33 features have int64 type and 2 features 

have object type. The CICIDS2018 DDOS attack dataset 

features a variety of simulated DDoS attack scenarios 

including HOIC, LOIC-HTTP and LOIC-UDP attacks, which 

are representative of the types of attacks observed in the real 

world. The breakdown of class labels for DDoS attacks in the 

CSE-CIC-IDS2018 dataset is displayed in Figure 3. 

The dataset shows a very unbalanced distribution of classes, 

with a total of 8937870 instances. The majority class "Benign" 

accounts for 85.86% of the total, while the minority class 

"DDOS attack-LOIC-UDP" accounts for only 0.02%. The 

classes "DDOS attack-HOIC" and "DDOS attack-LOIC-

HTTP" exhibit notably smaller data proportions compared to 

the predominant "Benign" class, at 7.68% and 6.45% 

respectively. This imbalance can pose modelling problems, as 

the predominance of the "Benign" class can lead to biases in 

machine learning models. To manage the imbalance problem 

in this dataset, we used oversampling techniques to increase 

the number of minority class instances and under-sampling 

techniques to decrease majority class occurrences, thus 

equilibrating the distribution. In addition, we used stratified 

cross-validation to maintain the class distribution for each fold 

and obtain more reliable estimates of model performance. We 

used evaluation measures such as precision, recall and F1 

score. 

 

 
 

Figure 3. Allocation of class labels in the CSE-CICIDS 2018 

DDOS attacks dataset 

 

 

5. APPROACH ADOPTED 

 

The approach we adopted in our research is depicted in 

Figure 4, and includes eight distinct stages. The pre-treatment 

constitutes the first stage which encompass label encoding, 

normalization and feature selection. The process of feature 

selection involves three techniques: correlation matrix, mutual 

information and feature importance based on the XGBoost 

classifier. The pre-processing stage ends with an evaluation of 

the relevance of the selected features. The second stage 

involves the creation of binary datasets. The third step 

involves the subdivision of each unbalanced binary dataset 

into separate training, validation, and testing subsets. Before 

applying oversampling, the fourth step is to test the models on 

real data from each unbalanced binary dataset. The fifth step 

is the data increase phase. The synthetic data quality tests for 

each binary data set are carried out in the sixth step. The 

seventh step involves the creation of the synthetically balanced 

multi-class dataset. Finally, the eighth step focuses on 

evaluating the effectiveness of the machine learning models 

across multi-class datasets, whether real or synthetic. 

 

5.1 Pre-processing stage 

 

After importing the csv files, we began the pre-processing 

stage, which includes data cleansing, label encoding, 

normalisation and feature selection. We began by cleaning up 

the data by first eliminating irrelevant columns. Next, we 

converted data with an inf value to a NAN value and then 

deleted all instances containing these values. For the encoding 

of class labels, we used the Label Encoder function from the 

sklearn.preprocessing library, which transforms categorical 

data into integer data. To improve the quality, performance, 

interpretability and explainability of the machine learning 

models, we opted to normalize the data using the 

StandardScaler function in the sklearn.preprocessing library. 

The aim of this approach is to eliminate problems relating to 

the scale of the variables, thereby facilitating a fair comparison 

between the different characteristics of the data. It aims to 

change the values of the numerical columns in the dataset 

using a common and uniform scale, preserving the range 

differences and avoiding information loss. Standard 

normalization, often referred to as standardization or z-score 

normalization, involves deducting the mean and then dividing 

by the standard deviation. In this way, each value represents 

the distance from the mean in units of standard deviation [38]. 

 

The standard normalization formula: 

 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 =
𝑉𝑎𝑙𝑢𝑒𝑠 − 𝑀𝑒𝑎𝑛

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 (8) 

 

5.1.1 Feature selection 

For the feature selection process, we sequentially applied 

three specific techniques: the correlation matrix, Mutual 

Information and feature importance based on the XGBoost 

classifier. 

The correlation matrix. one of the statistical techniques 

adapted in our study to the detection of DDoS attacks, is used 

to detect variables that are highly correlated with each other, 

which may indicate redundancies or interdependencies in the 

data and could introduce noise into the model. In our case 

study, we applied the correlation matrix to the dataset resulting 

from the preliminary pre-processing steps. This set comprises 

80 normalized features. The matrix enabled us to identify the 

pairs of variables that are highly correlated, presenting 

correlation coefficients above the 0.95 threshold. Table 1 

shows this result. 

After applying the correlation matrix, only one of the two 

variables in each highly correlated pair is retained, while the 

other is removed from the data set. This process aims to 

eliminate information redundancy, as highly correlated 

features often provide similar information. So, by eliminating 
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these highly correlated features, we have reduced 

dimensionality, retaining only information relevant to the 

machine learning model. This reduction can improve model 

performance and help prevent over-fitting. In addition, models 

are generally easier to interpret when features are independent 

or weakly correlated. Following the application of the 

correlation matrix, here are the 52 features retained in the 

dataset. 

« 'Dst Port', 'Protocol', 'Flow Duration', 'Tot Fwd Pkts', 'Tot 

Bwd Pkts',  'Fwd Pkt Len Max', 'Fwd Pkt Len Min', 'Fwd Pkt 

Len Mean', 'Bwd Pkt Len Max', 'Bwd Pkt Len Min', 'Bwd Pkt 

Len Mean', 'Flow Byts/s',  'Flow Pkts/s', 'Flow IAT Mean', 

'Flow IAT Std', 'Flow IAT Max',  'Fwd IAT Std', 'Bwd IAT 

Tot', 'Bwd IAT Mean', 'Bwd IAT Std',  'Bwd IAT Max', 'Bwd 

IAT Min', 'Fwd PSH Flags', 'Bwd PSH Flags',  'Fwd URG 

Flags', 'Bwd URG Flags', 'Bwd Pkts/s', 'Pkt Len Min',  'Pkt Len 

Var', 'FIN Flag Cnt', 'RST Flag Cnt', 'PSH Flag Cnt',  'ACK 

Flag Cnt', 'URG Flag Cnt', 'CWE Flag Count', 'Down/Up 

Ratio', 'Fwd Byts/b Avg', 'Fwd Pkts/b Avg', 'Fwd Blk Rate 

Avg', 'Bwd Byts/b Avg', 'Bwd Pkts/b Avg', 'Bwd Blk Rate 

Avg', 'Init Fwd Win Byts', 'Init Bwd Win Byts', 'Fwd Seg Size 

Min',  'Active Mean', 'Active Std', 'Active Max', 'Active Min', 

'Idle Mean', 'Idle Std', 'Label'». 

 

 
 

Figure 4. The approach followed for IDS optimization 
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Figure 5. Visualization of features according to their importance measured by mutual information 

 

 
 

Figure 6. The importance of features, provided by the XGBoost model 

 

Mutual information. In the second phase of our feature 

selection process, we used the mutual information technique 

on the dataset from the Correlation Matrix. This was done 

using the mutual_info_classif function in the 

sklearn.feature_selection library. Mutual information (MI) 

measures the dependency between two variables. We have 

used it to determine the impact of each feature on predicting 

the target variable, the class label. Regarding of DDoS attack 

detection, this technique is relevant because it identifies the 

variables that are most informative in predicting the class of 

DDoS attacks. 

Mutual information measures the statistical dependence 

between two variables. In the context of machine learning, this 

measure assesses the dependency relationship between each 

feature and the class label variable, allowing us to measure 

how informative a particular feature is in predicting the class 

variable. The higher the mutual information, the more relevant 

the feature is considered to be for predicting the target variable. 

In this way, this measure helps to identify which features 

provide the most discriminating information on the presence 

or absence of a DDoS attack. Figure 5 facilitates the 

identification of the most informative features for the creation 

of predictive models in the context of our study. 

In order to select the most informative features, we defined 

a selection threshold equal to 0.01. We retained 41 features 

whose mutual information with the label exceeded the defined 

threshold. The resulting dataset therefore includes the 

following 42 features: 'Dst Port', 'Protocol', 'Flow Duration', 

'Tot Fwd Pkts', 'Tot Bwd Pkts', 'Fwd Pkt Len Max', 'Fwd Pkt 

Len Min', 'Fwd Pkt Len Mean', 'Bwd Pkt Len Max', 'Bwd Pkt 

Len Min', 'Bwd Pkt Len Mean', 'Flow Byts/s', 'Flow Pkts/s', 

'Flow IAT Mean', 'Flow IAT Std', 'Flow IAT Max', 'Fwd IAT 

Std', 'Bwd IAT Tot', 'Bwd IAT Mean', 'Bwd IAT Std', 'Bwd 

IAT Max', 'Bwd IAT Min', 'Fwd PSH Flags', 'Bwd Pkts/s', 'Pkt 

Len Min', 'Pkt Len Var', 'RST Flag Cnt', 'ACK Flag Cnt', 'URG 

Flag Cnt', 'Down/Up Ratio', Init Fwd Win Byts', 'Init Bwd Win 

Byts', 'Fwd Seg Size Min', 'Active Mean', 'Active Std', 'Active 

Max', 'Active Min', 'Idle Mean', 'Idle Std', 'Label'. 

Mutual information has proved invaluable in identifying 

influential features in class prediction. Its use reinforced the 
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reduction of dimensionality and the retention of only the most 

informative features, contributing to the creation of a more 

succinct and refined dataset. 

XGBoost feature importance. As part of the third feature 

selection method, we used the feature importance method of 

the XGBoost classifier. Feature importance is calculated by 

analyzing the contribution of each feature to the construction 

of the model's decision trees, thus providing indications as to 

which features are the most discriminating. The model assigns 

an importance score to each feature after training, measuring 

their contribution to the overall performance of the model. A 

major advantage of this classifier is its ability to prioritise 

features that increase predictive accuracy during training. In 

this phase, we trained the XGBoost model on the dataset 

resulting from the previous mutual information stage. By 

calculating and ranking the features according to their 

feature_importances, we were able to ascertain the 

significance of each feature for prediction. This is 

demonstrated in Figure 6, which identifies the most significant 

features for the XGBClassifier model, enabling us to establish 

a selection threshold at 0.001. 

Applying this threshold, we selected 18 features with an 

importance greater than 0.001. We then checked that these 

selected features also had strong mutual information with the 

class label variable, indicating their predictive potential. This 

means that these features provide sufficient discriminant 

information to distinguish the different classes of the target 

variable. 

 

Table 1. Pairs of highly correlated features following the correlation matrix 

 
 Feature1 Feature2 Correlation Value 

0 Flow Duration Fwd IAT Tot 0.996960 

1 Tot Fwd Pkts TotLen Fwd Pkts 0.999216 

2 Tot Fwd Pkts Fwd Header Len 0.998923 

3 Tot Fwd Pkts Subflow Fwd Pkts 1.000000 

4 Tot Fwd Pkts Subflow Fwd Byts 0.999216 

5 Tot Fwd Pkts Fwd Act Data Pkts 0.999644 

6 Tot Bwd Pkts TotLen Bwd Pkts 0.996437 

7 Tot Bwd Pkts Bwd Header Len 0.999914 

8 Tot Bwd Pkts  Subflow Bwd Pkts 1.000000 

9 Tot Bwd Pkts Subflow Bwd Byts 0.996437 

10 TotLen Fwd Pkts Fwd Header Len 0.997085 

11 TotLen Fwd Pkts Subflow Fwd Pkts 0.999216 

12 TotLen Fwd Pkts Subflow Fwd Byts 1.000000 

13 TotLen Fwd Pkts Fwd Act Data Pkts 0.999518 

14 TotLen Bwd Pkts Bwd Header Len 0.996341 

15 TotLen Bwd Pkts Subflow Bwd Pkts 0.996437 

16 TotLen Bwd Pkts Subflow Bwd Byts 1.000000 

17 Fwd Pkt Len Max Fwd Pkt Len Std 0.964655 

18 Fwd Pkt Len Mean Fwd Seg Size Avg 1.000000 

19 Bwd Pkt Len Max Bwd Pkt Len Std 0.969744 

20 Bwd Pkt Len Max Pkt Len Max 0.966422 

21 Bwd Pkt Len Mean Pkt Len Mean 0.951733 

22 Bwd Pkt Len Mean Bwd Seg Size Avg 1.000000 

23 Bwd Pkt Len Std Pkt Len Max 0.959944 

24 Bwd Pkt Len Std Pkt Len Std 0.953718 

25 Flow Pkts/s Fwd Pkts/s 0.989220 

26 Flow IAT Mean Flow IAT Min 0.988931 

27 Flow IAT Mean Fwd IAT Mean 0.989511 

28 Flow IAT Mean Fwd IAT Min 0.986116 

29 Flow IAT Max Fwd IAT Max 0.991463 

30 Flow IAT Min Fwd IAT Mean 0.965669 

31 Flow IAT Min Fwd IAT Min 0.988629 

32 Fwd IAT Mean Fwd IAT Min 0.977335 

33 Fwd PSH Flags SYN Flag Cnt 1.000000 

34 Fwd Header Len Subflow Fwd Pkts 0.998923 

35 Fwd Header Len Subflow Fwd Byts 0.997085 

36 Fwd Header Len Fwd Act Data Pkts 0.997376 

37 Bwd Header Len Subflow Bwd Pkts 0.999914 

38 Bwd Header Len Subflow Bwd Byts 0.996341 

39 Pkt Len Max Pkt Len Std 0.968040 

40 Pkt Len Mean Pkt Size Avg 0.992375 

41 Pkt Len Mean Bwd Seg Size Avg 0.951733 

42 RST Flag Cnt ECE Flag Cnt 0.999986 

43 Subflow Fwd Pkts Subflow Fwd Byts 0.999216 

44 Subflow Fwd Pkts Fwd Act Data Pkts 0.999644 

45 Subflow Fwd Byts Fwd Act Data Pkts 0.999518 

46 Subflow Bwd Pkts Subflow Bwd Byts 0.996437 

47 Idle Mean Idle Max 0.995137 

48 Idle Mean Idle Min 0.995723 

49 Idle Max Idle Min 0.982556 
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Table 2. The features in the reduced dataset after the three selection operations 

 
NO. Position in CICIDS2018 Column Dtype   

1 1 Dst Port float64 

2 2 Protocol float64 

3 3 Flow Duration float64 

4 5 Tot Fwd Pkts float64 

5 9 Fwd Pkt Len Max float64 

6 19 Flow IAT Mean float64 

7 20 Flow IAT Std float64 

8 21 Flow IAT Max float64 

9 25 Fwd IAT Std float64 

10 30 Bwd IAT Std float64 

11 45 Pkt Len Var float64 

12 48 RST Flag Cnt float64 

13 49 PSH Flag Cnt float64 

14 50 ACK Flag Cnt float64 

15 68 Init Fwd Win Byt float64 

16 69 Init Bwd Win Byt float64 

17 71 Fwd Seg Size Min float64 

18 76 Idle Mean float64 

19 80 Label int64 

Our approach was to sequentially combine these methods to 

obtain an optimal subset of relevant variables. First, we used 

the correlation matrix to remove highly correlated features, 

effectively reducing the data's dimensionality while retaining 

pertinent information. Next, we applied Mutual Information to 

assess the importance of the remaining features, selecting 

those that were most informative for predicting DDoS attacks. 

Finally, we used feature importance according to the XGBoost 

classifier to further refine the selection, focusing on the most 

discriminating features to improve model performance. Table 

2 displays the breakdown of selected features following the 

implementation of the triple operation of selection. It includes 

the names of the features, their associated data type, as well as 

their position in the initial dataset of the CICIDS2018 DDOS 

attack. 

We present below each of the characteristics of this reduced 

data set and how it could contribute to the detection of DDoS 

attacks: 

• Dst Port and Protocol: DDoS attacks can often target 

specific ports or exploit vulnerabilities in certain protocols. 

For example, Syn Flood attacks often aim to saturate 

destination ports by initiating numerous TCP connections. 

Analysis of these characteristics may reveal unusual traffic 

patterns or exploitation attempts. 

• Flow Duration: DDoS attacks can generate heavy traffic 

over a relatively short period of time. Abnormally short or long 

flow durations could indicate suspicious activity. 

• Tot Fwd Pkts and Fwd Pkt Len Max: DDoS attacks can 

cause a significant increase in the number of packets or an 

abnormally large packet size. By monitoring these 

characteristics, our model could detect unusual behavior that 

could indicate an attack in progress. 

• Flow IAT Mean, Flow IAT Std and Flow IAT Max: 

Variations in flow inter-arrival intervals may indicate DDoS 

attacks, especially if these values are very different from 

normal. By analyzing the mean, standard deviation and 

maximum of flow inter-arrival intervals, our model can detect 

suspicious traffic patterns associated with DDoS attacks. 

• Fwd IAT Std (Forward packet inter-arrival interval 

standard deviation) and Bwd IAT Std (Backward packet inter-

arrival interval standard deviation): DDoS attacks can disrupt 

regular packet arrival patterns. High standard deviations may 

indicate significant variability in traffic, which could be 

characteristic of an ongoing DDoS attack. 

• Pkt Len Var (Packet Length Variation): DDoS attacks can 

generate significant variability in packet length. By 

monitoring the variation in Pkt Len Var, our model can detect 

abnormal fluctuations in traffic that could indicate an attack in 

progress. 

• RST Flag Cnt, PSH Flag Cnt and ACK Flag Cnt: Some 

types of DDoS attacks may involve manipulating flags in 

packets. Abnormal values for these counters could indicate an 

attack in progress. 

• Init Fwd Win Byt (Initial forward transfer window size) 

and Init Bwd Win Byt (Initial backward transfer window size): 

DDoS attacks can affect network performance, including 

transfer window management. Significant changes in these 

values may be indicative of an ongoing DDoS attack that is 

disrupting normal communication between hosts. 

Each selected characteristic from our reduced dataset offers 

a different perspective on network traffic, and can be used to 

detect anomalies or specific patterns of DDoS attacks. These 

features can all serve as potential indicators of an attack in 

progress. Combining these features in a machine learning 

model has the advantage of capturing complex malicious 

behavior and effectively detecting DDoS attacks. In this way, 

our feature selection methodology is based on solid principles 

and provides a robust framework for the proactive detection of 

DDoS attacks in computer networks. 

Evaluation of selected features. We then investigated the 

reduced features to ensure that they retained sufficient 

information to ensure reliable detection of DDoS attacks. We 

also analyzed the impact of this reduction on the complexity 

of the model, the gain in execution time and the use of 

computational resources.  

To verify the potential loss of information, we compared the 

performance of several machine learning models (RF, XGB, 

SGD, LGB and MLP) trained on the full dataset without 

feature reduction (0FS) with those trained on the reduced 

subset resulting from the three selection operations (3FS). 

Performance was evaluated using global metrics such as 

Accuracy, macro_accuracy, macro_recall and macro_F1-

score. We also examined learning and prediction times in 

order to analyze the effect of the reduction on execution time. 
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5.2 Data balancing 

 

The CICIDS2018 DDOS attack dataset shows a marked 

imbalance between classes, which can lead to a decrease in the 

performance of machine learning models, particularly for the 

minority class. ML models tend to be biased towards the 

majority class, which can lead to poor generalization for the 

minority class. With an unbalanced dataset, a model can 

achieve high accuracy (Accuracy) simply by consistently 

predicting the majority class. Furthermore, when the majority 

class is strongly represented, the model can overfit the data, 

leading to poor generalisation on the new data. 

Balancing the class instances in a dataset enables a more 

accurate assessment of model performance and reduces the 

risk of overlearning. We opted for resampling techniques such 

as SMOTE, BorderlineSMOTE and ADASYN to resolve the 

class imbalance in our DDOS attack dataset. These methods 

generate synthetic examples based on the existing data of the 

minority class, preserving the underlying structure of the data 

while increasing the number of examples of that class. This 

approach helps to avoid the biases introduced by a radical 

modification of the data distribution. Compared with random 

oversampling, which can introduce duplicates and lead to 

overfitting, oversampling techniques such as SMOTE, 

BorderlineSMOTE and ADASYN generate synthetic 

examples in a more targeted way, improving the ability of 

models to generalize to real data. Indeed, these resampling 

techniques create synthetic examples, using methods that 

preserve the meaning of existing data. By way of illustration, 

SMOTE generates new examples by performing a linear 

interpolation between several existing examples of the 

minority class, located in a defined neighborhood. This 

ensures that the synthetic data remains consistent with the real 

characteristics of the data. Furthermore, by generating 

synthetic examples for minority classes, these oversampling 

techniques improve the diversity of the training data, essential 

for generalizing to new examples. They also balance the 

distribution of classes without introducing excessive biases, 

thus reducing the risk of over-fitting models to majority 

classes. What's more, these techniques offer control over the 

generation of synthetic data, allowing parameters such as the 

level of oversampling or the neighbor selection method to be 

adjusted in order to optimize results. In sum, resampling 

techniques offer a flexible and effective approach to managing 

class imbalance, preserving data distribution and improving 

the ability of models to detect examples of minority classes. 

In our research, we used resampling techniques to balance 

our reduced dataset. We divided the dataset into three binary 

datasets, each consisting of a "Benign" class and an attack 

class. Using the "sample" function, we randomly subsampled 

instances of the majority "Benign" class to obtain 686012 

instances in each binary set. This process was repeated three 

times to create three binary sets. We associated each attack 

class in the reduced dataset with a subsample of the "Benign" 

class to form binary datasets. The three binary datasets 

resulting from this division are as follows: 

The first unbalanced dataset, named dfbehttp, consists of: 

686012 benign instances and 576191 DDoS-LOIC-HTTP 

attack samples, it has an imbalance ratio = 1.190. The second 

unbalanced dataset, called dfbeudp, consists of 686012 benign 

instances and 1730 DDOS-LOIC-UDP attacks, it has an 

imbalance ratio=396.538. The third data set, named dfbehoic, 

is balanced and consists of 686012 benign observations and 

686012 DDOS-HOIC attack samples. 

First, we divided each unbalanced binary dataset into a 

training set and a test set, the latter representing 12% of 

instances. Then, from each training set, a validation set 

representing 18% of the data was extracted we extracted a 

validation set comprising 18% of the data. To assess the 

quality of the synthetic data to be generated, we first trained, 

validated and tested the XGB and LGB classifiers on the real 

data from these sets. 

To tackle the class imbalance in the binary datasets dfbehttp 

and dfbeudp, we generated 109,821 instances for the LOIC-

HTTP class in the dfbehttp dataset and 684,282 instances for 

the LOIC-UDP class in the dfbeudp dataset to achieve to 

balance these two datasets. We used the oversampling 

techniques of the Python "imbalanced-learn" library, including 

the Synthetic Minority Oversampling Technique (SMOTE) 

and its variants ADASYN (Adaptive Synthetic Sampling 

Approach) and BorderlineSMOTE. We were able to apply the 

SMOTE method to both datasets. However, the variants could 

not only be tested on the dfbehttp dataset because running each 

of them on the dfbeudp dataset generated an error message for 

ADASYN indicating that the variant was not suitable for this 

specific dataset and that SMOTE should be used instead. As 

for BorderlineSMOTE, it did not result in oversampling for the 

LOIC-UDP class of DDOS attack, leaving the number of 

observations for this class unchanged. As a result, we only 

used the SMOTE technique to generate instances for the 

dfbeudp dataset. 

The underlying theory behind the SMOTE, ADASYN and 

BorderlineSMOTE oversampling techniques may help explain 

why SMOTE was able to generate synthetic data for the LOIC 

HTTP and LOIC UDP classes, while ADASYN and 

BorderlineSMOTE only generated synthetic data for the LOIC 

HTTP class. SMOTE works by generating synthetic examples 

by linearly interpolating between examples of the minority 

class in feature space. This technique is generally effective 

when the examples of the minority class are close to each other 

in feature space. In the case of the LOIC HTTP and LOIC UDP 

classes, SMOTE was able to generate synthetic data because 

the examples of these classes were probably close enough to 

each other to allow linear interpolation. ADASYN adapts the 

oversampling rate for each example in the minority class 

according to the local density of examples in that class. This 

means that ADASYN tries to generate more synthetic 

examples where there are fewer real examples of the minority 

class. In the case of the LOIC UDP class, where there are very 

few real examples, ADASYN may struggle to generate 

efficient synthetic data as it is difficult to estimate the local 

density in these sparsely populated regions of the feature space. 

BorderlineSMOTE generates synthetic examples only from 

those examples of the minority class that are close to the 

decision boundary between classes. In the case of the LOIC 

UDP class, where the imbalance is very marked, it's possible 

that the examples of this class are very far from the decision 

frontier, which would explain why BorderlineSMOTE didn't 

generate synthetic examples for this class. 

 

Table 3. The techniques used for oversampling the minority 

classes of the dfbehttp and dfbeudp datasets 

 

Test 

Number 

LOIC-Http Class of DDoS 

Attacks for the Dfbehttp 

LOIC-UDP Class of 

DDOS Attacks for 

the Dfbeudp 

config 1 SMOTE SMOTE 

config 2 ADASYN SMOTE 

config 3 BorderlineSMOTE SMOTE 

1243



 

The different configurations tested are summarized in Table 

3. 

To assess the quality of the synthetic data generated, we 

carried out several tests on the data generated by each of the 

above-mentioned configurations and relating to the two 

imbalanced binary datasets dfbehttp and dfbeudp. 

Firstly, we used the Kolmogorov-Smirnov (KS) test, which 

assesses the similarity between two cumulative probability 

distributions [39], It assesses the normality of a distribution by 

comparing an empirical distribution with a reference 

distribution (usually a theoretical distribution), in order to 

detect any significant deviation in the data. In our research, 

this method is used to assess the similarity between the 

distributions of real data and synthetically generated data. This 

evaluation is necessary because it is important to ensure that 

the synthetic data preserves the fundamental characteristics of 

the real data, this is essential for the reliability of our DDoS 

attack detection models. This test is also used to determine 

whether two independent samples come from the same 

population, or whether they show significant differences, 

which is particularly useful in comparative studies [40]. Next, 

we explored the correlation matrix to analyze the linear 

relationships between the variables. Comparing the correlation 

matrices of the real and synthetic data allowed us to determine 

whether the relationships between the variables were correctly 

reproduced by the synthetic data. As a third test, we evaluated 

the performance of the XGB and LGB models using first the 

real data for training and then the synthetic data. This allowed 

us to compare the performance of the synthetic models with 

that of the real models and to assess the generalizability of the 

synthetic models on real-world data. To evaluate these 

performances, we used the AUC_ROC and macro f1_score 

metrics. Lastly, we considered the training and synthesis times 

to assess the operational efficiency of synthetic generation 

methods. 

Next, we combined the syn_dfbeudp and syn_dfbehttp 

synthetic datasets with the remaining dfbehoic dataset, 

forming a balanced, synthetic and global dataset that includes 

both real and synthetic data. The Figure 7 shows the 

synthetically balanced dataset. 

Then, to evaluate this global synthetic dataset, we compared 

how well the models (MLP, LGB, RF, XGB, and SGD) 

performed. Firstly, the machine learning models were initially 

trained on the real data. Then, they were re-trained on the 

synthetic data and, finally, evaluated in both cases using the 

real test data. This evaluation focused on studying the 

behaviour of the models, analysing both the overall 

performance and the performance per class on the real test data 

before and after synthesising the data. 

To carry out this evaluation, we first divided the reduced 

global dataset of real data into training and test sets, the second 

set representing 12% of the data. Next, we trained the 

aforementioned machine learning models on the training set of 

real data using the Stratified K-Folds cross-validator technique 

with n_splits=5. This method divides the dataset into folds to 

evaluate the performance of a model that ensures a balanced 

distribution of classes in each fold, thus guaranteeing a robust 

evaluation even when the classes are not uniformly distributed. 

After training, the models were tested with real test data. Next, 

the same models were re-trained on the global synthetic 

dataset, also using StratifiedKFold with n_splits=5. Finally, 

the performance of these synthetic models was evaluated with 

test data and real data to check their performance with real data 

and verify whether the synthetic data succeeded in capturing 

the features important for DDOS attack detection. The 

evaluation metrics used in this step are precision, sensitivity, 

F1_score and false positive rate (FPR). Execution times for 

learning and prediction were also taken into account. 

The approach used in our study is based on a holistic 

strategy aimed at improving the robustness and effectiveness 

of anomaly-based intrusion detection systems in detecting 

DDOS attacks. To achieve this goal, we have combined 

several key techniques, including feature selection, data 

resampling (undersampling and oversampling) and the use of 

advanced classification algorithms. 

 

 
 

Figure 7. The synthetically balanced CICIDS 2018 DDOS 

attack dataset 

 

Firstly, feature selection was carried out by sequentially 

applying three specific techniques: correlation matrix, Mutual 

Information and feature importance according to the XGBoost 

classifier. This triple feature selection operation created an 

optimal subset of relevant variables, contributing to a more 

concise representation of the data. Then, to cope with the class 

imbalance in our dataset, we used oversampling techniques 

such as SMOTE, ADASYN and BorderlineSMOTE. These 

methods were applied in a targeted manner to each binary 

dataset, focusing on the specific characteristics of each attack 

class. This enabled us to generate synthetic data that faithfully 

captured the characteristics of each attack type, thereby 

increasing the diversity of the training data and improving the 

ability of the models to generalize to new examples. Finally, 

we used advanced classification algorithms such as RF, XGB, 

SGD, LGB and MLP to train our models. These algorithms 

were evaluated on the global synthetic and balanced dataset 

resulting from merging the binary sets after oversampling. The 

performance of each algorithm was analyzed based on 

detection rate (precision, recall and f1_score), false positive 

rate and execution time. By combining these different 

techniques, our methodology aims to make the most of the 

complementary nature of the feature selection, oversampling 

and classification approaches, in order to optimize model 

performance in the detection of DDoS attacks. 

 

 

6. EXECUTION, OUTCOMES AND DEBATES 

 

6.1 Setting up hardware and the operating environment 

 

The empirical study conducted in this research work used 

the Google Colab Pro+ platform to perform the experiments 
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and answer the questions we were posed. it's an online 

machine learning environment offering hosted Jupyter 

notebooks with no configuration required and high RAM 

capacity, including access to GPUs and TPUs. The models 

were developed, trained, evaluated and tested using the Scikit-

Learn library, which is an open source Python library for 

machine learning based on NumPy, SciPy and Matplotlib. 

These libraries provide essential functionality for data 

processing, scientific calculations and visualisation, enabling 

Scikit-Learn to implement many machine learning algorithms 

and associated tools. We have used various Scikit-Learn 

modules for pre-processing, feature selection, model selection, 

as well as for the implementation of different classification 

methods (RF, SGD, MLP) and performance evaluation. In 

addition, we have integrated the open source Imbalanced-learn 

library (under the name imblearn) to handle unbalanced 

datasets using oversampling techniques such as SMOTE, 

BorderlineSMOTE and ADASYN. We used the LightGBM 

and XGBoost machine learning algorithm modules, the latter 

also for feature selection. For KS testing, we used the 

scipy.stats library. Finally, to analyse and visualise the data, 

we used the Python libraries NumPy, Pandas and Matplotlib. 

 

6.2 Performance metrics 

 

In order to evaluate the performance of the machine learning 

models used to test synthesizing, we used the following 

metrics: accuracy, precision, recall, F1-score, macro-accuracy, 

macro-recall, macro F1-score and area under the ROC curve 

(ROC AUC). These measures are based on different 

combinations of confusion matrix elements (TP, TN, FP, FN). 

TP indicates the number of correct predictions of the positive 

class, TN indicates the number of correct predictions of the 

negative class, FP refers to the count of erroneous 

classifications where a negative instance is identified as 

positive, while FN represents the number of incorrect 

predictions where a positive sample is mistakenly classified as 

negative. 

Accuracy is the ratio between the number of correctly 

predicted normal and abnormal data (TN and TP) and the total 

number of predictions made. It assesses the overall accuracy 

of a classification model. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁
 (9) 

 

Precision represents the ratio of true positives to the total 

number of positives predicted. It assesses the reliability of 

positive predictions, focusing on Type I (FP) errors. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

 

Macro-precision is the average precision for each class in a 

multi-class classification problem, providing an overall 

assessment of prediction reliability for all classes. 

Recall, also called true positive rate (TPR) or sensitivity, 

evaluates the model's ability to correctly detect all positive 

instances among all truly positive instances. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11) 

 

Macro-recall is the average recall for each class in a multi-

class classification problem, offering an overall assessment of 

the model's ability to correctly identify all positive instances 

of each class. 

The F1 score is the harmonic mean of precision and recall. 

This measure provides a balance between precision and recall, 

offering an overall assessment of classification performance. 

 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (12) 

 

The Macro F1-score represents the harmonic mean between 

macro-precision and macro-recall, giving a single measure 

balancing precision and recall for each class, valuable for 

evaluating the overall performance of multi-class 

classification. 

The false positive rate (FPR) is calculated as the number of 

false positives divided by the total number of negative 

instances in a dataset. It assesses a model's effectiveness in 

correctly identifying negative instances. 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (13) 

 

The area under the ROC curve (ROC AUC) measures a 

model's ability to correctly classify positive versus negative 

instances, giving an overall measure of binary classification 

model performance. 

 

6.3 Experimentation, outcomes and discussion 

 

 
 

Figure 8. The performance of the RF, XGB, SGD, LGB and 

MLP models before and after feature selection 

 

 
 

Figure 9. Variations in ML model runtimes between Initial 

and Reduced datasets 
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During the experiment to evaluate the reduced features, we 

observed a significant difference in resource requirements 

when normalizing the data. The initial dataset required 70GB 

of RAM, while the reduced dataset consumed only 29.6GB of 

RAM. We then divided each dataset (initial and reduced) into 

a training set (70%) and a test set (30%). When evaluating the 

overall performance of the models (RF, XGB, SGD, LGB and 

MLP) on the test datasets, we found that most of the models 

using the reduced dataset performed similarly compared to 

those using the original dataset, or even better, as seen with the 

MLP classifier. Figure 8 shows the performance results of the 

models before and after feature selection for the chosen 

metrics. 

As for the evaluation of execution times, we observed that 

the total duration, including learning and prediction times, 

halved for all models, with the exception of the MLP model, 

where it increased. This evaluation of the execution time of the 

models before and after feature selection is presented in Figure 

9. 

The inherent complexity of the MLP model, with its hidden 

layers and numerous parameters to adjust, can explain the 

extended execution time when using reduced data. This 

complexity requires more time to adapt the MLP to the 

reduced data while maintaining high performance. However, 

the observed increase in performance suggests that feature 

selection has been beneficial. 

In order to assess the quality of the synthetic data obtained 

by applying the data increase techniques (SMOTE, 

BorderlineSMOTE or ADASYN) to the real data from the 

LOIC-HTTP and LOIC-UDP classes of DDOS attack, we 

carried out several tests on both the binary synthetic datasets 

and the multi-class synthetic dataset. 

 

6.3.1 Evaluations on binary datasets 

Kolmogorov Smirnov test. In our evaluations on 

synthetically balanced binary datasets, we used the 

Kolmogorov-Smirnov test to compare the distributions of the 

synthetic data with the distributions of the real data. The 

results are shown in Table 4 and Table 5 

Regarding the LOIC-HTTP class of DDoS attacks, we 

observed that the SMOTE method has the lowest KS_statistics 

values compared to the other two methods, ADASYN and 

BorderLine, indicating that the synthetic data generated by 

SMOTE is closest to the real data for this class. In contrast, we 

found that the distributions of synthetic features for the LOIC-

UDP class of DDoS attack are further away from the 

distribution of real data compared to the LOIC-HTTP class of 

DDoS attacks. This finding suggests a divergence in the 

feature distribution of this class compared to the real data. 

Comparison of correlation matrices. The second test we 

conducted involves of comparing the correlation matrices. 

This analysis is essential because it enables us to assess the 

preservation of the relationships between the variables when 

synthesizing the data. 

Figure 10 illustrates the correlation matrices of both the real 

and synthetic data for the LOIC-HTTP class of DDoS attack 

following the execution of the SMOTE, BorderlineSMOTE 

and ADASYN oversampling techniques. Visually, the 

correlation matrices of the   synthetic data are similar to those 

of the real data, indicating that all three synthesis methods 

preserved all the linear relationships between the variables 

present in the real data of the DDoS attack LOIC-HTTP class. 

Figure 11 shows the correlation matrices of the real and 

synthetic data for the LOIC-UDP class of DDoS attacks. We 

note that in the synthetic correlation matrix for this class of 

DDoS attack, the majority of linear relationships between 

features in the real correlation matrix are preserved. However, 

we also note the emergence of new relationships. This 

observation can be explained by the substantial increase of 

684282 instances for this class. 

Evaluation of model performance on synthetic binary 

datasets. For each synthesizing method, we evaluated the 

performance of the XGB and LGB models, before and after 

generation, for the datasets relating to each of the DDOS attack 

classes LOIC-http and LOIC-UDP. This evaluation was 

carried out using a real test dataset specific to each class, 

applied to the associated real and synthetic models. The 

assessment metrics used include Accuracy, ROC_auc and 

macro_f1_score. The outcomes for synthesizing the dfhttp 

dataset are presented in Table 6, while those for synthesizing 

the dfbeudp dataset appear in Table 7. 

 

Table 4. Results of the KS test for the LOIC-HTTP class of 

DDOS attack 

 
KS-Statistic DDOS attack LOIC-HTTP 

Column SMOTE BorderlineSMOTE ADASYN 

Dst Port 0.023801 0.023801 0.023794 

Protocol 0.014198 0.014295 0.012985 

Flow Duration 0.027785 0.046384 0.035082 

Tot Fwd Pkts 0.016297 0.032933 0.032832 

Fwd Pkt Len Max 0.034014 0.052691 0.051370 

Flow IAT Mean 0.029248 0.034208 0.021132 

Flow IAT Std 0.012769 0.036087 0.035985 

Flow IAT Max 0.029782 0.045402 0.035474 

Fwd IAT Std 0.016803 0.032920 0.032819 

Bwd IAT Std 0.014723 0.033361 0.033351 

Pkt Len Var 0.017811 0.052338 0.052323 

RST Flag Cnt 0.012019 0.028345 0.028337 

PSH Flag Cnt 0.003937 0.036428 0.036418 

ACK Flag Cnt 0.011229 0.051690 0.050370 

Init Fwd Win Byts 0.022441 0.054127 0.055325 

Init Bwd Win Byts 0.014228 0.039986 0.039974 

Fwd Seg Size Min 0.015016 0.015113 0.013803 

Idle Mean 0.013301 0.015461 0.016670 

 

Table 5. Results of the KS test for the LOIC-UDP class of 

DDOS attack 

 
KS-Statistic DDOS attack LOIC-UDP 

Column SMOTE 

Dst Port 0.271756 

Protocol 0.334688 

Flow Duration 0.460121 

Tot Fwd Pkts 0.497359 

Fwd Pkt Len Max 0.352893 

Flow IAT Mean 0.274427 

Flow IAT Std 0.285545 

Flow IAT Max 0.333415 

Fwd IAT Std 0.317059 

Bwd IAT Std 0.171214 

Pkt Len Var 0.387959 

RST Flag Cnt 0.113825 

PSH Flag Cnt 0.206268 

ACK Flag Cnt 0.117379 

Init Fwd Win Byts 0.325373 

Init Bwd Win Byts 0.246794 

Fwd Seg Size Min 0.325373 

Idle Mean 0.073201 
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(a) Real data 

 
(b) Synthetic data generated by SMOTE 
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(c) Synthetic data generated by BorderlineSMOTE 

 
(d) Synthetic data generated by Adasyn 

 

Figure 10. The correlation matrices of the real and synthetic data for the LOIC-HTTP class of DDoS attack following execution 

of oversampling techniques 
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(a) Real data 

 
(b) Synthetic data generated by SMOTE 

 

Figure 11. Correlation matrices of the real and synthetic binary datasets corresponding to the LOIC-UDP DDoS attack class 
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Table 6. Outcomes of synthesizing the dfbehttp dataset for the LGB and XGB models 

 
Synthetization Method Model Accuracy Roc_auc Macro f1_Score 

SMOTE 

LGB_http_BS 99.97% 99.97% 99.97% 

LGB_http_AS 99.96% 99.97% 99.96% 

XGB_http_BS 100% 100% 100% 

XGB_http_AS 100.00% 100% 100% 

Borderline SMOTE 

LGB_http_BS 99.97% 99.98% 99.97% 

LGB_http_AS 99.98% 99.98% 99.98% 

XGB_http_BS 100% 100% 100% 

XGB_http_AS 100% 100% 100% 

ADASYN 

LGB_http_BS 99.96% 99.97% 99.96% 

LGB_http_AS 99.98% 99.98% 99.98% 

XGB_http_BS 100% 100% 100% 

XGB_http_AS 100% 100% 100% 
BS: Before synthesis-AS: After synthesis 

 

Table 7. Results of synthesizing the dfbeudp dataset for the LGB and XGB models 

 
Synthetization Method Model Accuracy Roc_auc Macro f1_Score 

SMOTE 

LGB_udp_BS 100% 99.53% 99.88% 

LGB_udp_AS 100% 100% 100% 

XGB_udp_BS 100% 100% 100% 

XGB_udp_AS 100% 100% 100% 

 

Table 8. The results for learning times and synthetic data generation for the dfbehttp and dfbeudp datasets 

 
Dataset Synthetization Method Learning and Synthetic Data Generation Times in Seconds 

dfbehttp 

SMOTE 271.475 

BorderlineSMOTE 644.242 

ADASYN 1042.087 

dfbeudp 

SMOTE 0.513 

SMOTE 0.527 

SMOTE 0.755 

 

Table 9. Global performance results of models before and after synthesizing 

 
Model and Ssynthesizing Combinations Accuracy Macro Precision Macro Recall Macro f1_Score 

RF_Real_data 1 0.96 0.98 0.97 

RF_SMOTE SMOTE 1 0.97 1 0.98 

RF_BorderlineSmote SMOTE 1 0.97 1 0.98 

RF_Adasyn SMOTE 1 0.97 1 0.98 

XGB_Real _data 1 0.96 0,98 0.97 

XGB_SMOTE SMOTE 1 0.95 1 0.97 

XGB_BorderlineSmote SMOTE 1 0.95 1 0.97 

XGB_Adasyn SMOTE 1 0.95 1 0.97 

SGD_Real _data 0.99 0.89 0.88 0.88 

SGD_SMOTE SMOTE 0.95 0.82 0.99 0.89 

SGD_BorderlineSmote SMOTE 0.95 0.82 0.99 0.88 

SGD_Adasyn SMOTE 0.95 0.82 0.99 0.88 

LGB_Real _data 1 0.74 0.74 0.74 

LGB_SMOTE SMOTE 0.9 0.64 0.97 0.71 

LGB_BorderlineSmote SMOTE 0.99 0.76 1 0.76 

LGB_Adasyn SMOTE 1 0.87 1 0.91 

MLP_Real _data 1 0.94 0.99 0.96 

MLP_SMOTE SMOTE 1 0.93 1 0.96 

MLP_BorderlineSmote SMOTE 0.96 0.84 0.99 0.9 

MLP_Adasyn SMOTE 1 0.93 1 0.96 

 

The results show a similarity in the performance of the LGB 

and XGB models before and after synthesizing, whether for 

the three methods applied to dfbehttp or for the SMOTE 

method applied to dfbeudp, with a slight improvement for 

LGB. This similarity suggests that the synthetically generated 

data effectively retains the characteristics of the real data. 

Evaluation of learning and synthesis times. In our 

evaluation, we have taken into account the time required to 

learn from real data and to generate synthetic data. The aim of 

this evaluation is to measure the operational efficiency of 

synthetic data generation methods by analyzing the time 

required to train models on real data and to produce synthetic 

data. This analysis makes it possible to understand the 

differences in performance between the methods, which is 

important for choosing the optimum approach according to the 

time constraints specific to each project. Significant 

differences in learning times between methods can impact on 

the practicality and overall efficiency of models, underlining 

the importance of these aspects when choosing the synthetic 

generation method. 
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Table 8 shows the results for learning times and synthetic 

data generation for the two datasets, dfbehttp and dfbeudp, 

using different synthesis methods. 

For dfbehttp, we observe that ADASYN requires 

significantly more learning time (1042.087seconds) compared 

to SMOTE (271.475seconds) and BorderlineSMOTE 

(644.242seconds). However, all the methods produce 

balanced synthetic data after sampling, maintaining an equal 

number of instances for each class. For dfbeudp, the learning 

times with SMOTE vary slightly (0.513, 0.527, and 0.755 

seconds). A significant difference is also noted in the training 

and synthetic data generation times between the two datasets 

dfbehttp and dfbeudp, which could be attributed in part to the 

imbalance in the number of initial instances for class "1". The 

fact that dfbehttp has a minority class with 506979 instances, 

while dfbeudp has only 1517, may influence the time taken for 

the synthesis methods to balance the classes. A high initial 

number of instances can potentially require more time to 

generate synthetic data while maintaining balance. 

 

 

 

 
 

Figure 12. Synthesizing results on the benign class 
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Figure 13. Results of synthesizing on the HOIC class of  DDOS attack 

 

6.3.2 Model evaluation on synthetically balanced multi-class 

datasets 

To form the synthetically balanced multi-class datasets of 

CICIDS2018 DDOS attacks, we used the oversampling 

techniques SMOTE, Borderline SMOTE and ADASYN. Each 

multi-class dataset was created by merging the synthetically 

balanced binary datasets (dfbehttp_syn and dfbeudp_syn) with 

the real, balanced dataset (dfbehoic). These synthetic multi-

class datasets comprise the classes generated by different 

combinations of synthesis methods, namely (SMOTE; 

SMOTE), (ADASYN; SMOTE) and (BorderlineSMOTE; 

SMOTE), applied respectively to the DDOS attack classes, 

namely the LOIC-http class of the dfbehttp dataset and the 

LOIC-UDP class of the dfbeudp dataset. Each multi-class 

synthetic dataset corresponds to one of the aforementioned 

combinations. 

To select the most optimal combination of synthesis 

methods that we used to increase the representation of 

minority classes and improve the balance between classes, we 

evaluated the performance of the RF, XGB, SGD, LGB and 

MLP models. This evaluation was carried out both on the 

reduced global real dataset and on the synthetic multi-class 

datasets produced by the different synthesizing combinations 

such as (SMOTE_SMOTE), (ADASYN_SMOTE) and 

(BorderlineSMOTE_SMOTE). Performance was evaluated 

using real test data, a crucial approach for ensuring that models 

trained on synthetic data generalize effectively in real-life 

situations. This method avoids any biases or artificial 

relationships introduced by synthetic data. Testing on real data 

allows the robustness and effectiveness of the model to be 

validated under a wider range of conditions, ensuring a more 

reliable assessment of its performance and applicability under 

a variety of practical conditions. 

Regarding the evaluation of overall model effectiveness, 

Table 9 presents the global outcomes of the RF, XGB, SGD, 

LGB and MLP models on real test data before and after data 

synthesis. The evaluation was conducted using the global 

indicators Accuracy, macro_precision, macro_recall and 

macro_f1 score. These indicators provide an overall view of 

the behavior of these models. 

For the RF and XGB classifiers, the effectiveness of the 

synthesized data is similar to that of the real data. However, 

for the SGD model, the performance of the synthetic data is 

generally inferior or equal to that of the real data, with the 

exception of recall. As for the LGB model, the "ADASYN, 

SMOTE" combination shows synthetic data performance 

superior to real data, while performance for the 

"BorderlineSMOTE, SMOTE" combination is equivalent, and 

for the "SMOTE, SMOTE" combination it is inferior to real 

data, with the exception of recall. As for the MLP model, the 

performance of the synthetic data for the "BorderlineSMOTE, 

SMOTE" combination is inferior to that of the real data, while 

for the other two synthesizing combinations, it is equivalent. 

In general, the metrics appear stable or show slight variation 

after synthesizing, suggesting that overall model performance 

is not significantly affected by the introduction of synthetic 

data. This indicates that the synthetically generated data 

succeeded in maintaining the generalization capability of the 

models, producing results consistent with those obtained on 

real data. 

Evaluation of model performance by class. Looking more 

closely at the performance evaluation of the models by class, 

we observed different trends according to the combinations of 

synthesis methods. For the "Benign" class, whose results are 

presented in Figure 12, the SGD and LGB models showed 

inferior performance for the "SMOTE_SMOTE" combination, 

while the other models achieved similar performance between 

real and synthetic data. With the "BorderlineSMOTE, 

SMOTE" combination, RF, XGB and LGB showed stable 

performance, but SGD and MLP showed weaker performance 

for synthetic data. For the "ADASYN, SMOTE" combination, 

performance was comparable between real and synthetic data 

for RF, XGB, LGB and MLP, but slightly lower for SGD. 

In summary, synthetic data performance is stable for RF and 

XGB, variable for LGB and MLP depending on the 

combination, while SGD consistently shows lower 

performance with all combinations. The "ADASYN, 

SMOTE" combination stands out as presenting the most 

models with stable performance between real and synthetic 

data, suggesting good prediction quality while balancing the 

data. 

Models performances results for the HOIC class of DDOS 

attacks after the data synthesis corresponding to combinations 

of SMOTE, BorderlineSMOTE and ADASYN techniques, are 

presented in Figure 13. 

The "ADASYN, SMOTE" and "BorderlineSMOTE, 

SMOTE" combinations showed identical performance 

between synthetic and real data, with even an improvement for 

the synthetic LGB model. The "SMOTE, SMOTE" 

combination also performed similarly, but with a decrease in 

performance for the synthetic LGB model. For the SGD 

classifier, all combinations resulted in a reduction in precision 
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after synthesizing. 

The LOIC-UDP minority class of DDoS attacks benefited 

from an increase in data thanks to data synthesis. The 

performance of models with the SMOTE, BorderlineSMOTE 

and ADASYN synthesis combinations on this class is 

displayed in Figure 14. 

 

 

 

 
 

Figure 14. Synthesized results on the LOIC-UDP class of 

DDOS attack 

 

For RF, the performance of the synthetic data is better for 

all three combinations. The XGB model shows superior recall 

and F1-score results with synthetic data for all three 

combinations. SGD performance increases for all metrics and 

combinations. The LGB model shows zero performance with 

real data, but synthesizing improves this performance. 

The "ADASYN, SMOTE" combination proved to be the 

most efficient, followed by "SMOTE, SMOTE". For the MLP 

model, performance is identical between real and synthetic 

data for all combinations. Overall, the increase in data led to 

an improvement in performance for this minority class, and the 

"ADASYN, SMOTE" combination stood out as the most 

efficient compared with the other two combinations. 

The DDOS attack LOIC-HTTP class also benefited from an 

increase in data. Figure 15 displays the performance results of 

the models before and after the synthesis on the LOIC-HTTP 

class. The efficiency of the synthetic data for the RF and XGB 

models is found to be identical to that of the real data for the 

three synthesizing combinations. 

 

 

 

 
 

Figure 15. Synthesized results on the LOIC-HTTP class of 

DDOS attack 

 

Concerning the SGD model, all three variants showed a 

decrease in precision and F1 score, but an improvement in 

recall. LGB slightly improved its performance with the 

"ADASYN, SMOTE" and "BorderlineSMOTE, SMOTE" 

combinations, while "SMOTE, SMOTE" led to a deterioration. 

MLP achieved similar performance between real and synthetic 

data for "SMOTE, SMOTE" and "ADASYN, SMOTE", but a 
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decrease in precision and f1_score for "BorderlineSMOTE, 

SMOTE". 

In summary, the "ADASYN, SMOTE" combination 

presented the most synthetic models with performance 

equivalent to real data for the DDOS attack LOIC-HTTP class, 

with an additional performance improvement for the LGB 

model. 

Evaluation of false positive rates. Still with a view to 

evaluating the performance of the models, we also tested the 

false positive rates obtained by the five models before and 

after synthesizing. Table 10 below provides information on the 

results of these tests. 

The results show an overall trend towards a decrease in the 

false positive rate (FPR) for the "Benign" class after applying 

different synthesizing methods, suggesting an improvement in 

the models' ability to correctly classify the majority class. The 

LGB model showed significant decreases in FPR, especially 

for the "ADASYN; SMOTE" and "BorderlineSMOTE; 

SMOTE" synthesizing combinations, highlighting the 

effectiveness of these methods in enhancing the accuracy of 

the LGB model in classifying the Benign class and DDoS 

attack classes HOIC and LOIC-HTTP. However, the "SMOTE; 

SMOTE" combination led to a substantial rise in the FPR for 

the LGB model, indicating a particular sensitivity to this 

synthesizing method. On the other hand, the SGD model stood 

out, showing an increase in FPR for all synthesizing 

combinations, which is consistent with previous results 

indicating a decrease in performance for this model in the 

synthetic context. These observations underline the 

importance of choosing the right synthesizing method for 

specific models. Finally, synthesizing the data using the 

"SMOTE; SMOTE", "ADASYN; SMOTE" and 

"BorderlineSMOTE; SMOTE" combinations improved model 

performance by reducing false positives for the "Benign" 

negative class. 

Evaluation of runtimes. As part of our evaluation of the 

overall performance of the RF, XGB, SGD, LGB and MLP 

models on real test data before and after synthesizing the data, 

we also tested the runtimes of the real and synthetic models 

(taking into account the training, validation and test runtimes) 

for each synthesizing combination. Figure 16 shows the results 

of these runtime tests. Firstly, we note that the MLP model 

followed by the RF model take the longest time to execute, and 

that the synthetic models have a significantly shorter execution 

time than the real models. 

Faster convergence of synthetic models during training can 

lead to faster optimized performance, as synthetic data, often 

balanced and homogeneous, reduces noise and outliers, 

enabling the model to identify relevant relationships in the data 

and fit more efficiently. This homogeneity stabilizes gradients, 

speeding up the optimization process and reducing the number 

of iterations needed to achieve optimal performance. As a 

result, models converge faster, require fewer computing 

resources and deliver better performance in less time. 

This significant reduction in execution times can be 

interpreted as a major practical advantage, suggesting that 

models based on synthetic data can be more efficient in regard 

of time resources, which can be particularly decisive in 

operational contexts where time is a constraint. 

 

Table 10. Results of the false-positive rates obtained by the models before and after synthesizing 

 
  FPR Results-Before Synthesizing FPR Results-After Synthesizing 

Synthetization 

Combinaison 
Model Benign 

DDOS 

Attack-

HOIC 

DDOS 

Attack-

LOIC-UDP 

DDoS 

Attacks-

LOIC-HTTP 

Benign 

DDOS 

Attack-

HOIC 

DDOS 

Attack-

LOIC-UDP 

DDoS 

Attacks-

LOIC-HTTP 

SMOTE, SMOTE 

RF 
2,62E-

05 
0,00E+00 4,01E-05 1,69E-05 0,00E+00 0,00E+00 2,80E-05 2,39E-05 

XGB 
1,31E-

05 
0,00E+00 3,92E-05 1,79E-05 0,00E+00 3,03E-06 4,66E-05 0,00E+00 

SGD 
5,18E-

02 
4,72E-03 6,34E-05 1,82E-03 7,87E-05 5,10E-03 7,65E-05 4,30E-02 

LGB 
1,20E-

02 
4,12E-04 9,14E-05 2,23E-03 3,48E-04 4,51E-03 7,08E-04 1,00E-01 

MLP 
2,44E-

03 
4,04E-06 6,43E-05 1,37E-04 8,66E-04 4,04E-06 7,37E-05 9,00E-04 

BorderlineSMOTE, 

SMOTE 

RF 
1,97E-

05 
0,00E+00 4,01E-05 1,99E-05 0,00E+00 0,00E+00 3,26E-05 1,59E-05 

XGB 
1,31E-

05 
0,00E+00 3,92E-05 1,79E-05 0,00E+00 3,03E-06 4,48E-05 9,97E-07 

SGD 
5,17E-

02 
4,71E-03 6,34E-05 1,85E-03 7,87E-05 5,03E-03 7,65E-05 4,45E-02 

LGB 
1,20E-

02 
4,12E-04 9,14E-05 2,23E-03 2,56E-04 1,11E-05 6,23E-03 1,52E-04 

MLP 
4,81E-

03 
4,04E-06 6,34E-05 2,44E-04 0,00E+00 5,05E-06 7,37E-05 4,06E-02 

ADASYN, SMOTE 

RF 
2,62E-

05 
0,00E+00 4,10E-05 2,09E-05 0,00E+00 0,00E+00 2,70E-05 3,19E-05 

XGB 
1,31E-

05 
0,00E+00 3,92E-05 1,79E-05 0,00E+00 3,03E-06 4,48E-05 9,97E-07 

SGD 
5,21E-

02 
4,72E-03 6,25E-05 1,82E-03 7,87E-05 5,04E-03 7,65E-05 4,45E-02 

LGB 
1,20E-

02 
4,12E-04 9,14E-05 2,23E-03 0,00E+00 5,05E-06 2,24E-04 6,46E-04 

MLP 
2,44E-

03 
4,04E-06 6,43E-05 1,37E-04 7,41E-04 3,03E-06 7,46E-05 1,76E-03 

Notes: 1. Green color: FPR Reduction; 2. Orange color: FPR Increase 
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Figure 16. Runtimes of real and synthetic models for each synthesizing combination 

 

6.3.3 Discussion 

The triple feature selection operation on the CICIDS2018 

DDOS attack dataset led to an optimal subset of relevant 

variables, thus providing a more concise representation of the 

data. This approach reduced information redundancy by 

eliminating highly correlated features, improved the 

interpretation of results by simplifying the relationship 

between features and target, and focusing on the most 

insightful features. Additionally, it bolstered the model's 

stability by lowering its sensitivity to data variations, and 

ultimately reduced the dataset's complexity. This triple 

selection improved the models' ability to generalize to new 

examples and capture complex relationships in the data. By 

eliminating less important features, the dataset's 

dimensionality was decreased, as was complexity of the 

models. leading to a decrease in model execution time and a 

saving in computational resources, thus improving the 

efficiency of the learning and prediction process. Thus, by 

combining the three feature selection techniques, we were able 

to achieve more efficient models, less sensitive to over-fitting, 

and able to process a large dataset more economically in terms 

of computational resources and faster in terms of execution 

time. In conclusion, feature selection is a crucial step in 

building effective and efficient machine learning models, and 

the results observed in our study confirm the importance of 

this approach for improving model quality and efficiency. 

Regarding the evaluations on binary datasets, the KS test 

showed that the SMOTE method reacted differently for the 

LOIC-UDP and LOIC-HTTP classes of DDoS attacks, which 

can be attributed to the specific characteristics of each class. 

In addition, the count of instances, in the reduced real dataset, 

of the LOIC-HTTP class of DDoS attack is 576191, while that 

of the LOIC-UDP class is 1730. The KS test results suggest 

that larger classes, such as LOIC-HTTP, may be better 

represented by the synthesis methods, while smaller classes, 

such as LOIC-UDP, may show larger discrepancies. In other 

words, SMOTE was better able to capture the feature 

distribution for the class with a large number of instances, but 

had more difficulty doing so for the small class with a much 

smaller number of instances. 

The result of the correlation matrices tells us that a 

significant expansion of the data can introduce artificial 

relationships between features, resulting from synthetic 

resampling, which do not necessarily reflect the reality of the 

original data and must therefore be interpreted with caution 

when analyzing the results by comparing them with other 

evidence or contextual information to confirm or refute their 

validity. 

The similarity in the performance of the LGB and XGB 

models before and after synthesizing indicates that the 

synthetic generation methods are robust, preserving the 

structures and patterns crucial for machine learning. The 

consistency of model results on synthetic data reinforces 

confidence in the use of such data as a credible surrogate for 

real data in the context of our research work. 

The evaluation of learning and synthesis times showed 

significant differences in learning times between the different 

methods, highlighting their impact on the operational 

efficiency of the models. Furthermore, the evaluation on 

binary datasets underlined the importance of considering the 

initial distribution of classes when choosing synthesis methods, 

particularly in the presence of significant imbalances, in order 

to optimize model performance and processing times. 

Concerning the evaluation of overall model performance, 

the RF and XGB models perform consistently between real 

and synthetic data. The performance of these models remains 

stable between real and synthetic data, suggesting that they are 

robust and can generalize effectively to synthetic data. These 

models are known for their ability to capture complex 

relationships in the data, making them less sensitive to 

variations introduced by synthetic data. For the SGD model, 

the increase in macro_Recall associated with a decrease in 

Accuracy and macro_precision could indicate a particular 

adaptation to the nature of synthetic data, with increased 
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priority given to the detection of positive examples. This may 

be attributed to the way the SGD algorithm adjusts its weights 

to minimize the cost of classification errors, which may lead 

to increased sensitivity to positive examples when exposed to 

synthetic data.  The relative stability of macro_f1_score with 

the actual results informs that the model can still generalize 

effectively despite these variations. The synthetic LGB model 

shows poorer performance for the "SMOTE; SMOTE" 

combination and an increase in performance for the 

"ADASYN; SMOTE" combination. This suggests that the 

data synthesis method has a differentiated impact on the results 

of the LGB model, depending on the techniques used. LGB 

uses decision trees and boosting techniques, which can make 

the model sensitive to the way data is distributed and 

synthesized. Finally, the MLP model shows poorer 

performance for the "Borderline; SMOTE" combination, 

while it maintains equivalent performance between real and 

synthetic data for the other combinations indicating a 

particular sensitivity of this model to the specific synthesizing 

method. This sensitivity may be due to its complex structure 

and its capacity to grasp non-linear relationships between 

features. The synthetic data generated can influence the way 

the neural network weights are adjusted during training, which 

can lead to variations in model performance. 

The choice of synthesis method has a significant impact on 

model performance, particularly for the SGD, LGB and MLP 

models in our case. The effectiveness of synthesis depends on 

how these methods interact to enrich the training data. It is 

therefore crucial to consider the differentiated responses of 

models to different synthesis methods when selecting the 

optimal method for a specific problem. Furthermore, 

variations in model performance depending on the synthesis 

methods used reflect differences in the way these models 

interact with the data and adjust their internal parameters. 

Choosing the optimum synthesizing method therefore depends 

on the specific nature of the problem and the models employed, 

and requires a thorough analysis of the performance and 

metrics specific to each model. 

Based on the above, the "ADASYN, SMOTE" combination 

stands out as presenting the best performance for these global 

tests. This combination generated synthetic data that better 

captured the variability and complexity of real data, suggesting 

that combining ADASYN, designed to handle low-density 

areas, with SMOTE, which generates examples in already 

dense areas, can provide greater diversity and improve the 

ability of models to handle different data characteristics. 

The results of the class performance evaluation of the RF, 

XGB, SGD, LGB and MLP models, before and after 

synthesizing the data, are in line with the results of the global 

evaluation of these models, and reveal distinct dynamics 

between the models. Figure 17 shows a mapping of model 

performance by class according to the combination of 

synthesis techniques. 

They highlight the robust performance of the RF and XGB 

models, which remain stable for all three synthesizing 

combinations and for all classes. This constancy suggests a 

lesser sensitivity of these models to variations introduced by 

data synthetization. On the other hand, the variable 

performance of the LGB and MLP models indicates a more 

marked dependence on the synthesizing method used, as well 

as on the nature of the class data. It should be pointed out that 

the findings for the LGB model showed that the 

"ADASYN_SMOTE" combination is the most optimal, 

whereas the "SMOTE, SMOTE" configuration is not 

appropriate for this model, nor is the "BorderlineSMOTE, 

SMOTE" combination ideal for the MLP model. It's important 

to underline that the LGB model recorded improved 

performance for both minority classes in all synthesizing 

combinations, with the exception of the SMOTE_SMOTE 

combination for the LOIC HTTP class of DDOS attack. 

Despite lower accuracy in the synthetic context, the SGD 

model shows a specific adaptation to synthetic data, with 

increased priority given to the detection of positive examples. 

It shows an overall performance improvement in minority 

class detection, and remains a practical option. 

 

 
 

Figure 17. Mapping of model performance by class  

Precision Recall F1_score Precision Recall F1_score Precision Recall F1_score Precision Recall F1_score Precision Recall F1_score
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This study highlights the importance of carefully 

considering the specific behavior of each model when 

choosing synthesis methods. Model performance varies 

significantly according to the synthesizing methods used and 

the classes examined. Thus, a judicious selection of these 

methods according to the specific characteristics of each class 

is essential to improve the generalizability of models over the 

whole dataset. 

False positive rate (FPR) results show a general downward 

trend for the "Benign" class after synthesis, indicating an 

improvement in the models' ability to correctly discriminate 

the negative class. Furthermore, the FPR results for the other 

classes are in line with previous results, underlining the need 

for judicious choice of synthesis methods. 

In addition, the synthetic models showed significantly 

shorter runtimes than the real models, indicating faster 

convergence during training. 

Finally, the Adasyn+Smote configuration demonstrates 

stable performance for RF, XGB, and MLP models, with a 

notable improvement for LGB. However, despite this 

improvement, LGB's performance remains below that of RF, 

XGB and MLP. It should be noted that the RF, XGB, MLP, 

LGB and SGD models respectively obtained the following 

results for the F1_score metric: 0.98, 0.97, 0.96, 0.91 and 0.88. 

However, the execution times of the RF and MLP models are 

relatively long. RF takes 7 times longer in the real case and 13 

times longer in the synthetic case than XGB. MLP takes 40 

times longer in the real case and 82 times longer in the 

synthetic case than XGB. Although RF performs slightly 

better, if we take the time criterion into account, the 

Adasyn+Smote+XGBoost combination seems to be the most 

optimal in the context of our study. 

 

 

7. CONCLUSION 

 

In our quest to improve the effectiveness of intrusion 

detection systems, we have concentrated our efforts on two 

main areas: data preparation through careful selection of 

features to ensure high-quality data, and improving model 

performance via resampling to ensure more effective attack 

detection. Our experimental approach was based on the 

CICIDS2018 DDOS attacks dataset. Our tests covered various 

machine learning models, including RF, XGB, SGD, LGB and 

MLP, while exploring the effectiveness of oversampling 

methods such as SMOTE, BorderlineSMOTE and ADASYN 

to improve model robustness and mitigate the problem of class 

imbalance in intrusion datasets. 

To optimize data quality in machine learning processes, we 

adopted a strategic approach to feature selection. Our aim was 

to pinpoint and retain the most pertinent features for predicting 

classes, using techniques such as the correlation matrix, 

Mutual Information and feature importance by the XGBoost 

classifier. This approach allowed us to decrease the data's 

dimensionality, simplifying its structure, and cut down on the 

model's execution time, while alleviating the load on 

computational resources. By combining these techniques, we 

obtained more efficient models, guaranteeing reliable 

detection of DDoS attacks, capable of processing a large 

dataset more economically in terms of computational 

resources and execution time. 

Our second objective was to balance our reduced dataset, 

CICIDS2018 DDOS attacks, to solve the class imbalance 

problem. To do this, we divided the dataset into three binary 

sets, each with a "Benign" class and an attack class. In-depth 

analysis of the binary data synthesis results revealed the 

significant impact of the initial class distribution of the real 

data on the quality of the synthetic data. Indeed, the greater the 

number of instances, the more examples the synthetic 

generators have to train themselves to faithfully reproduce the 

structures and patterns present in the original data. Conversely, 

the smaller the number of instances of a class, the greater the 

divergence from the real data, and to ensure equilibrium in this 

case, the increase in instances produces new artificial 

relationships between features. The unbalanced distribution of 

initial classes can also influence learning and synthetic data 

generation times. The greater the number of initial instances, 

the longer the learning time. The SMOTE, BorderlineSMOTE 

and ADASYN oversampling methods have shown exemplary 

robustness in maintaining the essential structures and patterns 

of real data. 

Tests carried out on the synthetically balanced multi-class 

dataset evaluated the performance of the RF, XGB, SGD, LGB 

and MLP models before and after data synthesization, taking 

into account both overall and class-specific performance. The 

results show stable performance for RF and XGB, but greater 

dependence on the synthesizing method for LGB and MLP. 

The SGD model adapted well to the synthetic data, despite its 

lower accuracy. The study underscores the importance of 

choosing synthesizing methods wisely, as they have a 

differentiated impact on model performance, depending on the 

class. The majority class showed an overall reduction in the 

false-positive rate after synthesizing, indicating a better 

discrimination capacity. In addition, the synthetic models 

showed shorter execution times than the real models, 

suggesting faster convergence during training. 

By under-sampling the majority class ("Benign" class) and 

over-sampling the minority classes by synthesizing the 

examples, we corrected the initial imbalance between the 

classes and thus improved the ability of the models to 

generalize and detect intrusions into the minority classes. The 

results show similar or better performance of the synthetic 

models, coupled with reduced execution times, underlining the 

effectiveness of data synthesis in generating high-quality data 

that can reliably represent real data in the context of our 

research work. In addition, increasing the data with synthetic 

examples introduces greater diversity into the dataset, 

exposing the models to a wider variety of potential intrusion 

scenarios, enhancing their ability to detect new threats. The 

results show that the "ADASYN, SMOTE" combination stood 

out as the best performer, successfully balancing the data 

while preserving the quality of predictions. It demonstrated its 

effectiveness in maintaining stability and even improved 

model performance in a context of synthetic data, while 

reducing false positives and offering advantages in terms of 

execution time. The ADASYN+SMOTE+XGB configuration 

stands out as the most optimal for DDOS attack detection in 

terms of performance, false positives and execution time. 

The results of our research offer promising prospects for 

enhancing network security in operational environments. The 

sequential approach adopted in feature selection significantly 

reduced data complexity while preserving its relevance for 

intrusion detection, which could be applied in IDS design to 

improve threat detection efficiency. Furthermore, our data 

oversampling method, using techniques such as SMOTE and 

ADASYN to balance classes, is relevant to better identify and 

counter attacks, even those from minority classes. These 

approaches could be integrated into the deployment and 
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configuration of IDSs in real network infrastructures, enabling 

fine-tuning to specific environments and improving the 

responsiveness of security systems, while optimizing the use 

of computational resources and reducing execution times, 

essential in environments where speed of response to threats is 

paramount. 

While our research into improving anomaly-based network 

IDS for detecting DDOS attacks has shown its potential, 

certain limitations can be identified. Our approach relies 

heavily on the quality and representativeness of the data used, 

which can be a challenge in constantly changing real network 

environments. Indeed, as the experiments were conducted on 

the CICIDS2018 DDOS attack dataset, generalizing the results 

to other datasets may be a challenge. It would be useful to 

explore the robustness of our approach on various datasets 

such as CIC-DDoS2019 or CICIDS 2017 DDOS attack. In 

addition, there is also the complexity of some models which 

may pose problems in terms of interpretability and deployment 

in real environments. Concerning future work we plan to first 

explore other data synthesis techniques or combinations of 

techniques in order to better manage class imbalances and 

further improve model performance. Secondly, to adapt our 

methods to enable real-time detection of attacks, which is 

necessary for the security of constantly evolving networks. 
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