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In digital communications, the imperative for secure data transmission is increasingly 

addressed through steganography, wherein information is clandestinely embedded within 

various digital media. This study is concerned with the enhancement of steganographic 

techniques through a modified U-Net architecture, designed to embed 256×256 colored 

message images into identically sized cover images, thereby augmenting capacity for data 

concealment. The classical U-Net architecture has been adapted by the incorporation of 

batch normalization and residual blocks, aiming to refine the embedding and extraction 

processes's efficiency. The novel model, trained on the expansive ImageNet database, 

introduces the one cycle learning rate scheduler and the AdamW optimizer into the U-Net 

framework, achieving enhanced training efficiency, hastened convergence, and superior 

generalization. Validation was conducted through two distinct analyses: the first 

evaluating the impact of secret image size variations on the cover image within the 

steganographic process, and the second assessing model performance on three datasets—

Linnaeus 5, ImageNet, and Labeled Faces in the Wild (LFW). Empirical assessments 

indicate that the proposed model outperforms existing deep learning-based steganographic 

methods, as evidenced by the attained metrics, particularly Peak Signal-to-Noise Ratio 

(PSNR) and Structural Similarity Index Measure (SSIM). On the Linnaeus 5 dataset, 

embedding yielded a PSNR of 44.4656 dB and an SSIM of 0.9897, while extraction 

recorded a PSNR of 43.5393 dB and an SSIM of 0.9875. The ImageNet dataset saw an 

embedding PSNR of 45.3966 dB and an SSIM of 0.9906, with extraction values of 

44.8206 dB PSNR and 0.9903 SSIM. Notably, the LFW dataset embedding resulted in a 

PSNR of 48.1407 dB and an SSIM of 0.9930, and extraction achieved a PSNR of 47.5296 

dB and an SSIM of 0.9907. The qualitative and quantitative outcomes affirm the efficacy 

of the proposed method for the secure transmission of confidential imagery, with potential 

applications ranging from the safeguarding of medical records to the protection of 

sensitive data across various digital platforms. 
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1. INTRODUCTION

The development of network and computer technologies 

has greatly facilitated the flow and exchange of information in 

communication. However, this convenience has introduced 

security concerns regarding the processing as well as the 

protection of large amounts of data. 

Certain security practices that have existed for a long time 

have been transferred to computer science for these reasons. 

Today, the content of these concepts is expanding much more 

rapidly than in the past. Data security encompasses numerous 

fields and disciplines, including cryptography, secret sharing, 

watermarking, and steganography [1]. 

Steganography is a data concealing technology that allows 

a sender and a recipient to communicate across open channels 

while transmitting cover media containing secret information, 

preventing perceptual detection by an observer [2]. In this 

method, secret information is typically embedded within a 

digital carrier like a digital image, audio file, or other digital 

mediums. 

While cryptography and secret sharing have ancient roots, 

watermarking and steganography are relatively newer fields 

that gained traction with the widespread adoption and 

improvement of digital computers. Their focus on data 

security, which aims to protect data from unauthorized 

individuals, is a characteristic they share [3]. Cryptography is 

based on the changing the format of stored data and its 

reconstruction solely by the recipient. In this sense, secret 

sharing is similar to cryptography. According to this 

discipline, data is distributed to a predetermined number of 

individuals, and the original data is obtained only when a 

predetermined number of shares are combined. 

Steganography, on the other hand, takes an entirely different 

path than other techniques. Its primary objective is not to 

change the format of the data, but rather to conceal it within 

seemingly unrelated data. The data used as a cover for the 
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hidden data should not attract the attention of unauthorized 

individuals; they should be unable to detect it even if they 

come across it [4]. 

The foundations of modern steganography were laid by 

Simmons with the introduction of the prisoner's issue. Within 

this problem, two prisoners communicate secretly by 

exchanging messages while being monitored by a warden. The 

challenge is to hide the communication so that the warden is 

unaware of the hidden message. This scenario highlights the 

concept of covert communication, where information is 

concealed within seemingly innocent data [5]. 

In steganography, it is possible to hide data within different 

file types, including digital images, text, audio or video. The 

concealed data can also be of a similar type, like digital 

images, text, audio or video [6]. Despite its existence in 

numerous fields and widespread application, image 

steganography is the driving force behind steganography. This 

is primarily because images are the easiest to share and 

transport. Images have the capacity to store larger amounts of 

hidden data, making it useful for concealing more information 

or larger files and can be viewed and shared on nearly all types 

of devices. In addition, it is difficult to discern that a 

confidential media is on the cover media [7]. 

There are primarily four essential characteristics of all 

steganographic systems: They must be imperceptible, secure, 

capable of hiding information and robust [8-10]. 

Imperceptibility stands as the foremost essential criterion in 

any method of data embedding. The essential feature and 

advantage of a steganographic method reside in its ability to 

effectively hide confidential information within a digital 

image to such an extent that it remains imperceptible to human 

visual perception and statistical examination [11]. 

Within the context of a steganographic system, the term 

"security" can be understood as implicitly encompassing the 

concepts of "un-noticeability" or "undetectability". Therefore, 

any steganography method's security is based on its ability to 

ensure that the confidential information remains undetectable 

through statistical analysis or removal even after an attacker 

has discovered it. The primary necessity in the steganographic 

procedure is the secure conveyance of confidential 

information. Ensuring security is of utmost importance in 

order to prevent unauthorized access to data during 

transmission over an open channel [12]. The primary objective 

of the security concept is not solely limited to maintaining the 

confidentiality of information, but also encompasses the 

prevention of information alteration or corruption, as well as 

the management of unauthorized access. 

The embedded data capacity is the term used to describe the 

upper limit of data that may be hidden during a given 

steganographic process. An increased payload capacity entails 

the capability to accommodate a greater amount of concealed 

information, yet it can also heighten the probability of 

detection due to modifications made to the medium used for 

carrying said information. Hence, it is crucial to attain a state 

of equilibrium among payload capacity, privacy, and 

detectability within the context of steganography applications. 

The main goal of an effective steganographic system is to 

transmit the highest possible amount of information while 

utilizing the least amount of cover media. The embedding rate 

can be described as the proportion of the amount of hidden 

information (measured in bits) to the cover media's size [13]. 

The concept of robustness refers to the capability of the 

encoding and decoding scheme to maintain its effectiveness 

even in the presence of alterations to the stego image resulting 

from external image processing methods including resizing, 

scaling, and rotation [9, 10]. 

1.1 Literature review 

Various conventional approaches, including Least 

Significant Bit (LSB) substitution [14, 6], Pixel Value 

Differencing (PVD) [15, 16], Discrete Wavelet Transform 

(DWT) [17, 18], and Exploiting Modification Directions 

(EMD) [19] are commonly employed in the field of 

steganography. There are also studies aimed at increasing the 

level of security of these traditional techniques using 

encryption algorithms [20-23]. 

The concealment efficacy of conventional techniques is 

limited due to the potential for visual distortion resulting from 

excessive pixel overload during the procedure in which the 

confidential data is embedded. 

The efficiency of typical image steganographic techniques 

is enhanced when the embedding process minimizes stego-

image distortion and maximizes the hiding capacity. 

Additionally, the effectiveness of these techniques is measured 

by the ability to minimize retrieval errors and ensure the 

security of the confidential data against unauthorized access. 

Advanced machine learning approaches are utilized in 

machine learning-based steganographic methods to achieve 

the aforementioned improvement in efficiency [12]. 

In recent times, significant growth has been observed in 

research interest surrounding Convolutional Neural Network 

(CNN) based image steganography. This heightened attention 

can be attributed to the greater capabilities it offers in 

comparison to conventional approaches [24]. The utilization 

of CNN models in image steganography draws significant 

inspiration from the encoder-decoder architecture, which is 

employed for image hiding and extraction. The encoder takes 

two inputs, namely the cover and the hidden image, and 

utilizes them to build the stego image. Subsequently, the 

decoder takes the stego image as input and produces the 

extracted hidden image. While the essential idea stays 

unchanged, researchers have employed different 

methodologies to investigate diverse architectural frameworks 

[25]. 

Rehman et al. [26] offered a steganography approach based 

on CNN that enhanced the stego image's visual quality by 

concealing the grayscale hidden image within specified 

extracted features of the color cover image. The authors 

provide a novel encoder-decoder structure for the 

steganography of images, utilizing deep learning techniques. 

Encoder-decoder architecture introduced in this study 

distinguishes itself from other methods in terms of input 

processing. At the input end of the encoder network, there are 

two branches running in parallel, designated for the cover and 

the message image. Through convolutional layers, features are 

taken from both the cover and covert images and then 

concatenated. The stego image is created by concatenating 

these features. The analysis is conducted using MNIST, 

CIFAR10, PASCAL-VOC12, ImageNet, and LFW datasets. 

A scheme for auto encoders and decoders is presented in 

study [27]. In this scheme, three networks are constructed. The 

initial network converts the Red, Green, and Blue (RGB) 

pixels of the hidden image into features. The secondary 

network is a concealing network that conceals within the cover 

image the features extracted via the network of preparation. 

The last part is the extraction mesh, which takes the cover 

image and extracts the hidden image from it. There are two 
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types of losses that are computed in the context of this study: 

the loss between the stego and the cover image, and the loss 

between the decoded hidden and the original hidden image. 

The model is assessed utilizing the SSIM. The objective of this 

research is to conceal a hidden image of dimensions 

N×N×RGB within a carrier image of the same size, while 

minimizing any disruption to the carrier. By adopting this 

approach, the requirement for perfect reconstruction of the 

previous secret information is loosened, allowing for a trade-

off between the restored secret image's quality and the stego 

image's quality. The ImageNet database is used for testing and 

training. 

The encoder-decoder architecture has been suggested by 

Wu et al. in their studies [28, 29]. The proposed approach 

involves the direct acquisition of end-to-end mappings directly 

between the embedded and the cover medias, as well as 

between the hidden and the decoded medias. The utilization of 

Exponential Linear Unit (ELU) and Batch Normalization (BN) 

techniques is observed. 

The authors suggest a generative steganography framework 

employing the autoregressive model PixelCNN, as discussed 

in reference [30]. The pixel distribution of the cover media is 

acquired through the application of a pixel CNN. Following 

this, the confidential data is evenly integrated into the pixel 

distribution by the technique of reduced sampling. 

In the study [31], a convolutional neural network 

architecture named Image Steganography Generative 

Adversial Network (ISGAN) is applied for image 

steganography. The cover media is transformed into the 

YCrCb image format, consisting of Luma (Y), Chroma Red 

(Cr), and Chroma Blue (Cb), which is a color space used in 

digital image and video processing. The secret image is 

concealed only on the Y channel. Additionally, the secret 

media is transformed into a grayscale image format to reduce 

the payload, making this method specifically designed for 

concealing grayscale images. To generate the stego image, the 

encoder-decoder network uses the grayscale secret image and 

the Y channel of the cover image as inputs. By using the Y 

channel, only the hidden grayscale image is concealed, while 

the Cr and Cb channels remain unaffected as they contain all 

color-related data. The revealing network receives the Y 

channel of the stego image and uses it to create the grayscale 

secret image. This method has been tested on ImageNet, LFW 

and PASCAL-VOC datasets. 

The research conducted in the study [32], deep 

convolutional autoencoder architecture is used. This 

architecture includes three main stages: preparation, 

embedding, and extraction. In the preparation layer, both cover 

and secret images are processed through a preprocessing 

module, with their features being extracted. The encoder 

portion of the concealing network comprises two 

convolutional layers with filter counts of 64 and 128, 

respectively. The decoder part consists of five convolutional 

layers, where the number of filters decreases progressively 

(128, 64, 32, 16, 8). The extraction network's encoder portion 

also consists of five convolutional layers, with progressively 

more filters (8, 16, 32, 64, 128). Similarly, its decoder part also 

has five convolutional layers, but with a decreasing filter count 

(128, 64, 32, 16, 8). In this study, COCO, CelebA, and 

ImageNet datasets are employed for experimentation. 

Liu et al. [33] detail a process that effectively utilizes the 

capabilities of wavelet transform-based methods and U-Net. 
U-Net is an effective deep learning architecture known for its

detailed feature extraction and precise data processing

capabilities. This process is aimed at concealing grayscale 

images within colored ones. The system consists of two parts: 

a hidden network that embeds wavelet coefficients of secret 

data into an image, producing a visually appealing hidden 

image, and an extraction network that dissects the image into 

four wavelet coefficients to retrieve the original secret data 

image through reverse wavelet transformation. In a subsequent 

study referenced as Liu et al. [34] introduced a refined U-Net 

architecture with a smaller network scale, and in this study, 

they achieved a 6.3 dB increase in PSNR compared to their 

previous work. The network in this study is trained and tested 

using images from the ImageNet and PASCAL-VOC datasets. 

A CNN with six layers and a U-Net architecture are 

proposed for concealment and extraction, respectively, in 

paper [35]. The trained neural network is comprised of both a 

concealing network and an extraction network, utilizes the 

ImageNet dataset for dataset for training and testing. Before 

sending the secret image to the recipient, the sender utilizes 

the concealing network to embed it, without alteration, inside 

another full-size image. After that, the receiver reconstructs 

the embedded image using the extraction network. The results 

are evaluated using the PSNR and SSIM measurement 

parameters. 

Himthani et al. [24] implement U-Net, U-Net++ and V-Net 

encoders for image steganography. U-Net++ is a model 

developed to expand the structural connections of U-Net, but 

the additional complexity and computational demand result in 

higher hardware requirements and longer processing times. V-

Net, while structurally similar to U-Net, is a variation designed 

for volumetric (3D) images, offering better results on three-

dimensional data. A comparative evaluation of the efficacy of 

the U-Net, U-Net++ and V-Net designs is conducted using the 

LFW and Know Your Data datasets. These architectural 

techniques are used to conceal the secret image within the 

cover image. In addition, to extract the hidden image from the 

cover image, a standard, one-of-a-kind decoder is devised for 

every architecture. Considering the outcomes of the 

experiment, it is determined that the U-Net design performs 

more effectively than the other two architectures due to its 

higher embedding capacity and ability to produce stego and 

reconstructed secret images of higher quality. In this study, the 

reason for U-Net's greater success in image steganography 

compared to other architectures may stem from its effective 

architecture that balances complexity with computational 

efficiency, and its suitability for the specific types of images 

and data distributions in the datasets used. 

An image-to-image steganography technique is proposed in 

another study that uses U-Net and involves embedding secret 

images into the Y channel of a cover image. This approach 

employs a unique loss function that combines Mean Square 

Error (MSE) and Perceptual Path Length (PPL) to enhance the 

quality of both the stego and the extracted hidden images. The 

architecture is tested on the LFW and PASCAL-VOC [36]. 

In the study [37], the U-Net++ design is utilized to embed a 

gray secret image into a color cover image. The hiding 

network, serving as an encoder, combines cover image's Y 

channel with the secret image, forming a 2-channel tensor as 

its input. The extraction network is made up of six 

convolutional layers, without any pooling layers. The study 

employs the ImageNet and LFW datasets for its analysis. 

Three distinct network architectures – convolutional neural 

network (proposed by Baluja [27]), U-Net (designed by Duan 

et al. [35], and Swin Transformer – are currently being utilized 

for image embedding and extraction challenges in paper [38]. 
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These structures were validated using the ImageNet dataset, 

and their results were compared to assess their respective 

efficacies. 

The study introduces a method for embedding one image 

into another using MobileNet Convolutional Neural Network 

and U-Net design, with MobileNet serving as the backbone in 

both hiding and extracting networks within the U-Net structure 

[39]. The method undergoes training and evaluation on image 

datasets including StanfordCars, STL10, and CIFAR10. The 

results demonstrate the method's effectiveness in embedding 

and extracting images, achieving average PSNR values. When 

visual results are examined, cover and secret images exhibit 

visually detectable changes at a noticeable level. 

As mentioned in the study [40], U-Net architecture was 

employed as the hiding network to conceals a color image into 

another one that is the same size. The hiding network merges 

a cover image with a secret image into a tensor using 

convolutions. It uses a module with four branches for varied 

feature extraction. The encoder and decoder apply 3×3 

convolutions and Rectified Linear Unit (ReLU) for feature 

processing, creating a stego image. The extracting network 

uses similar convolutions and a final sigmoid function in order 

to extract the hidden image. ImageNet, LFW and PASCAL-

VOC datasets are used conducted tests.  

U-Net outperforms other architectures in steganography

primarily due to its unique architecture. The symmetric paths 

of the U-Net design allow for accurate localization and are 

particularly effective for image segmentation tasks. This 

architecture facilitates the detailed reconstruction of images, 

which is crucial in steganography for embedding and 

retrieving data without noticeable alterations to the image. 

1.2 Contributions of the research 

Steganography and image processing are key research areas 

within information technology and digital media, and 

advancements in these fields are yielding significant results. 

Steganography enables the undetectable concealment of 

sensitive data, leading to new paradigms in information 

security, playing a critical role particularly in cyber security 

and covert communication strategies. Image processing 

technology, which involves transforming and analyzing raw 

image data, opens up a broad spectrum of applications 

including digital watermarking, content authentication, and 

secure facial recognition systems. The development of these 

disciplines enhances security and efficiency through advanced 

security protocols and data analysis techniques, while also 

offering innovative approaches to privacy and data protection. 

In our study, we focus on the utilization of the U-Net design 

in both the data concealment and data extraction phases. The 

important contributions of our research are outlined as 

follows: 

(1) The proposed method differs from spatial domain

methods such as LSB and PVD, which are widely used in the 

field of steganography, as well as transform domain methods 

such as DFT and DCT. In the mentioned methods, the amount 

of secret data within the cover image is limited. However, in 

our study, the entire hidden image is distributed over the bits 

present on the cover image. This results in enhanced data 

hiding capacity and improved security, overcoming the 

limitations of current steganography techniques. 

(2) RGB cover images with a 256×256-pixel resolution are

used to hide RGB secret images. These secret images 

progressively increase in size, starting from 32×32 pixels, then 

to 64×64 pixels, followed by 128×128 pixels, and finally 

reaching 256×256 pixels. This progressive scaling allows us 

to examine the effects of hidden images of different sizes on 

the steganographic process. As the input message image’s size 

increases, the complexity of embedding the image discreetly 

escalates, challenging our method to maintain the quality and 

undetectability of the steganographic output. 

(3) In our research, the Linnaeus 5 dataset, which had not

been explored in previous studies, was uniquely utilized to test 

our model. This dataset, offering a diverse range of high-

quality images, provides an extensive and rigorous testing 

environment. The use of Linnaeus 5 ensures that the 

evaluation of the U-Net model encompasses a wide array of 

realistic scenarios, distinguishing our study from others where 

more homogeneous datasets may be relied upon. By this 

method, the credibility of the findings is enhanced, illustrating 

the model's effectiveness and suitability for practical 

steganographic applications. The employment of this dataset 

not only presents the U-Net model with varied real-world 

conditions but also establishes a novel standard in the testing 

approaches for steganography. Our study not only offers a 

detailed analysis using the Linnaeus 5 dataset but also includes 

a comparison with the results from the widely used ImageNet 

and LFW datasets in the literature. This approach illustrates 

the effectiveness of our findings in working across various 

types of databases and their reliability in preserving high 

visual quality and structural integrity. 

(4) Differing from other studies in literature, the integration

of the one cycle learning rate scheduler with the AdamW 

optimization algorithm in this study is grounded in their 

complementary strengths for enhancing U-Net training. 

OneCycleLR's dynamic learning rate adjustment is 

instrumental in achieving faster and more stable convergence, 

crucial for complex models like U-Net in steganography. 

AdamW, with its advanced weight decay feature, significantly 

improves the model's ability to generalize, a critical factor in 

ensuring accurate data embedding within images. The 

combination of the one cycle learning rate scheduler and the 

AdamW optimization algorithm in this study ensures a balance 

between quick learning and effective regularization. This 

approach is expected to lead to a model that not only learns 

efficiently but also maintains high accuracy and reliability. 

(5) After analyzing the obtained PSNR and SSIM results,

promising findings have been achieved in comparison to 

previous deep learning studies that used cover and secret 

images of the same dimensions, to the best of our knowledge. 

The improvement in outcomes highlights the success of the 

suggested technique in preserving image quality throughout 

the hiding and revealing process. 

In our study, the architecture and algorithms employed are 

anticipated to offer useful insights for future research in 

steganography, particularly in terms of accommodating larger 

sizes of hidden data and achieving better metric ratios. It is 

thought that the contributions made will influence the 

development of advanced steganography methods and data 

hiding technologies, with a special emphasis on the unique 

applications of the U-Net architecture and its effectiveness in 

complex datasets. Especially by combining the innovative use 

of U-Net architecture with the one cycle learning rate 

scheduler and the AdamW optimization algorithm, the 

approach is thought to address the limitations of previous 

methods and contribute to new directions in research, 

potentially leading to more refined and effective data hiding 

and extraction techniques. 
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The remaining parts are arranged as follows: Sections 2 

describes characteristics and applications of the U-Net 

architecture. Section 3 presents the suggested approach. 

Section 4 outlines datasets used and experimental setup. 

Section 5 provides experimental outcomes and metrics used. 

Conclusions are presented in Section 6. 

2. THE U-NET ARCHITECTURE

U-Net is an architecture of neural networks that was

developed mainly for the purpose of image segmentation [41]. 
Image segmentation is particularly important in medical 

imaging, yet traditional methods often fall short in precisely 

defining boundaries and efficiently handling computationally 

demanding situations. The U-Net architecture aims to address 

these fundamental challenges in the field, offering more 

accurate and efficient image segmentation. It primarily 

employs the encoding and decoding techniques to integrate the 

underlying and higher-level information [35]. 

Figure 1. Basic U-Net architecture [35] 

As shown in Figure 1, two pathways make up the basic 

framework of a U-Net architecture. The first pathway is the 

contracting pathway and the second pathway is an expansion 

pathway. The contracting pathway adheres to the conventional 

structure of a convolutional network. To achieve 

downsampling, the procedure entails applying two 3×3 

convolutions iteratively, then performing a ReLU and 2×2 

maximum pooling operation with 2 strides. Downsampling is 

used to reduce the input image's spatial dimensions 

progressively. This reduction helps capture high-level features 

and context information. During each downsampling iteration, 

the number of feature channels increased twofold. 'Feature 

channels' refer to the individual feature maps produced by 

different network layers. Increasing the number of feature 

channels allows the network to learn a richer set of features 

from the input data, potentially improving its ability to 

discriminate between different objects or regions in the image. 

Each stage in the expansive pathway involves several 

operations. The feature map is first upsampled, and then it is 

subjected to a 2×2 convolution, which halves the number of 

feature channels. Upsampling, is employed to recover the 

spatial resolution and produce a segmentation map that aligns 

with the original image dimensions. Next, a concatenation is 

present between the contracting pathway's corresponding 

cropped feature map. After that, there are two 3×3 

convolutions. Each is suceeded by ReLU activation function. 

In the last layer of the U-Net design, the 1×1 convolution 

operation transforms the feature vectors, which consist of 64 

components, into the format suitable for the output classes 

targeted by the model [42]. As implied by its name, the 1×1 

convolution is an operation applied to a single-pixel-wide area 

in each feature map. This process compresses the high-

dimensional features learned in the previous layers of the 

network into a more manageable format, making them usable 

for various visual processing tasks. The 1×1 convolution 

reduces the depth dimension of the network while preserving 

the complex feature information, thus enhancing the model's 

computational efficiency and its ability to produce outputs 

effectively with fewer parameters in the final layer. 

An important characteristic of this network is the bypass 

connections between each level. These connections directly 

transfer the feature maps produced at each level of the 

contracting pathway to the corresponding level of the 

expanding pathway. Known as 'skip connections' in deep 

learning architectures, they enhance the network's learning 

efficiency. The primary function of the bypass connections is 

to integrate the general context information from the 

contracting pathway with the detailed local information from 

the expanding pathway. Consequently, U-Net can merge high-

level features (for example, general shapes or structures) 

obtained from the input image with detailed local features 

(such as specific edges or texture information) to perform 

more accurate and comprehensive visual analysis. In 

summary, bypass connections are a crucial part of the U-Net 

architecture, enabling it to produce high-quality results by 

preserving both the general context and fine details of the input 

image. 

In our study, the detailed description of the U-Net 

architecture provides a critical connection to understanding 

our investigation in the domain of deep steganography. The 

advanced image processing capabilities of U-Net are ideal for 

steganographic applications such as embedding and extracting 

hidden information within images. Particularly, U-Net's 

precise image analysis abilities enable the improved 

steganographic data hiding and retrieval processes, which are 

the main goals of our work. In this context, the detailed 

explanation of the U-Net design is essential to deeply 

understand the innovative aspects of our research and its 

contributions to the field of steganography. 

3. PROPOSED METHOD

As mentioned previously, while the U-Net design has 

primarily been employed for medical image segmentation, the 

purpose of this work is to employ the U-Net architecture for 

steganography application. U-Net architecture offers 

significant advantages in steganography over traditional 

methods. In particular, its skip connections allow features to 

be directly transferred from lower to higher levels in the 

network, making it easier to embed and extract hidden data 

with greater accuracy and efficiency. U-Net's deep learning-

based structure excels in learning complex visual details, thus 

providing higher accuracy and efficiency in steganographic 

processes. These features clearly demonstrate why U-Net 

architecture is preferred for steganography applications over 

traditional methods. Therefore, the U-Net architecture is 

employed for both the concealing and revealing of the secret 

image in this study. 
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In adapting the U-Net design for steganography, the main 

challenge is to embed data imperceptibly and ensure its 

accurate recovery. To address this, residual blocks and BN are 

integrated into the architecture. Residual blocks, utilized 

through convolutional layers, minimize information loss even 

in deep network structures, allowing for more precise 

processing of hidden data. These blocks are known to improve 

the learning process and data flow by directly transferring a 

portion of the input data to the output at each layer. This 

approach is especially critical in processing complex patterns, 

as it enables the preservation of hidden data details and their 

integration into the cover image without compromising 

quality. BN, meanwhile, is employed to enhance the stability 

and speed of the network during training. By normalizing data 

distribution in each layer, it assists the model in learning more 

efficiently and effectively. This ensures a more accurate 

placement and recovery of hidden data in the steganographic 

process. In addition to these primary modifications, 

adjustments in hyperparameters, like batch size and learning 

rate, along with the use of optimization algorithms and 

schedulers, as detailed in the datasets used and experimental 

setup section, have also served our main objective. These 

supplementary adjustments further refine the model’s 

performance, ensuring that the steganographic process is both 

efficient and effective in embedding and recovering data 

without detection. The model commences with an initial 

residual block comprising 64 filters, each utilizing a 3×3 

kernel. Internally, this residual block encompasses two 

convolutional layers, each featuring 64 filters with 3×3 

kernels, followed by ReLU activation function and BN. This 

block operates on the input tensor, resulting in a feature map 

with 64 channels. Subsequently, a max pooling layer is applied 

with a 2×2 window and a stride of 2 to down-sample the 

features by half. The subsequent level introduces a new 

residual block containing 128 filters using 3×3 kernels. 

Similar to the previous block, this block consists of two 

convolutional layers with 128 filters each, followed by ReLU 

activation function and BN. After processing through this 

block, the feature map expands to 128 channels. Once again, a 

max pooling layer with a 2×2 window and a stride of 2 is 

employed to reduce the feature dimensions by half. This 

pattern continues throughout the encoder portion of the 

network, with each level doubling the number of filters in its 

respective residual block: 256 filters, and then 512 filters, 

followed by a corresponding max pooling layer. Finally, at the 

bottom level, the model employs a residual block featuring 

1024 filters using 3×3 kernels. 

The model then proceeds to initiate the expansion path. 

Upsampling is accomplished using transpose convolution, 

also known as deconvolution, employing a 3×3 kernel and a 

stride of 2, which effectively increases the size of the feature 

map by twofold. Following the upsampling step, a residual 

block is applied, reducing the number of filters by half, 

transitioning from 1024 to 512 filters. The output from the 

corresponding encoding level (512 filters) is concatenated 

with the output of this block. This pattern persists throughout 

the decoder section of the network, progressively reducing the 

number of filters in each residual block at each level: 256 

filters, then 128 filters. Each of these steps is preceded by an 

upsampling operation and followed by a concatenation with 

the output from the relevant encoding level. In the decoder 

path, just like in the encoder path, each convolution process is 

followed by ReLU and BN in order to expedite network 

training. Final stage of model includes a 1×1 convolutional 

layer that produces a 3-channel output, essential for integrating 

the hidden data into the RGB channels during the 

steganography process. This is based on the fact that most 

digital images express color information through these three 

primary channels. Consequently, it is possible to efficiently 

encode the hidden data and then precisely extract it from the 

RGB channels. 

The decoder, used to reveal the hidden image from the stego 

image, mirrors the encoder's architectural configuration, 

maintaining the same layer composition and corresponding 

filter dimensions. However, the operational dynamics are 

reversed; the decoder uses upsampling to expand the feature 

maps, in contrast to the encoder's downsampling process. This 

reversal is critical for the steganographic recovery process, 

enabling the decoder to rebuild the high-quality image from 

the hidden image. The proposed model's block diagram is 

displayed in Figure 2, and the architecture of the hiding 

network is illustrated in Figure 3. The efficacy of the suggested 

steganography method, with a 100% payload capacity, is 

evaluated using PSNR and SSIM metrics. PSNR assesses the 

amount of error and its impact on visual quality by evaluating 

the differences between the stego and the cover image. SSIM 

evaluates visual structural similarity and quality, enabling a 

comprehensive analysis of both the concealing and revealing 

processes’ success and their effects on image quality. 

Additionally, histogram comparisons are also conducted for a 

more detailed evaluation of the performance of the model. 

This allows observation of changes in the color distributions 

of the images after the embedding process. Visual results are 

also presented, including comparative visuals of the cover, 

stego, message, and extracted message images. These 

measurement metrics and visual results enable the evaluation 

of our model's performance in steganography-specific 

parameters. These include criteria like imperceptibility, high 

hiding capacity, and reversibility. Imperceptibility ensures the 

hidden message remains undetectable, while high hiding 

capacity signifies the model's ability to embed substantial data 

without visible changes in the image. Reversibility allows for 

the accurate and complete extraction of the hidden message 

without any loss or distortion. Evaluated alongside PSNR, 

SSIM, and histogram comparisons, these metrics not only 

represent the outcomes but also form the fundamental 

components of our comprehensive evaluation strategy. This 

approach highlights the model's effectiveness in 

steganography and underscores its suitability for scenarios 

where data security is important. 

Figure 2. Block diagram of the suggested model 
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Figure 3. The architecture of hiding network 

4. DATASETS USED AND EXPERIMENTAL SETUP

In our study, the training process is conducted using the 

ImageNet database. In the context, a random selection of 

100.000 images is made from the ImageNet database and 

classified into two groups: cover and message images. Of 

these, 50.000 images designated as cover images, 37.500 are 

used for training and 7.500 for testing. In a similar manner, 

from the 50.000 images set aside as message images, 37.500 

are allocated for training and 7.500 for testing. Before being 

fed into the model, the entire dataset is standardized to a 

consistent size of 256×256 pixels to match the model's input 

dimensions. Furthermore, normalization is applied to enhance 

the efficiency of the model's learning. This process involves 

scaling and standardizing each pixel value in the dataset to the 

[-1, 1] range, thereby optimizing the training process for 

efficiency and effectiveness. 

In the validation phase of our model, the Linnaeus 5 dataset 

was employed. Designed for machine learning and image 

processing applications, Linnaeus 5 encompasses five primary 

classes: fruit, bird, dog, flower, and a category termed 'other'. 

The images are presented in various resolutions, including 

256×256, 128×128, 64×64, and 32×32 pixels, and are colored. 

One rationale for utilizing this dataset in validation is its 

provision of a rich source in terms of visual diversity. Another 

reason is its inclusion of images with varying resolutions, 

which allows for an evaluation of the impact of hidden images 

of different original sizes on the cover image. Examples from 

the Linnaeus 5 dataset can be found in Figure 4. 

As cover images, 256×256-pixel images of Linnaeus 5 

dataset are utilized. Different-sized message images (32×32, 

64×64, 128×128, 256×256) were chosen to examine the effect 

of this variation on the cover image. Before being fed into the 

model, hidden images are resized to 256×256 to fit into the 

model, and all cover and hidden images have been normalized 

to to the [-1, 1] range. 

Figure 4. Examples of the Linnaeus 5 dataset 

Our study's validation process, in addition to using the 

Linnaeus 5 database, has also been extended to include the 

ImageNet and LFW databases. The ImageNet database 

includes images of various resolutions sourced from real-

world conditions, while the LFW database specifically houses 

face images with a resolution around 250×250 pixels, catering 

to face recognition studies. These two databases are widely 

referenced in the literature. This validation across multiple 

datasets is important for testing the generalization capabilities 

of our model and assessing how well it can adapt to the 

diversity of real-world conditions. This approach 

demonstrates that our model is not limited to a specific dataset 

but is also effective against different types and resolutions of 

data. It highlights the model's versatility and its ability to 

perform effectively across various datasets. For these datasets 

as well, the resizing and normalization steps were performed 

on the data before being fed into the model. Additionally, 

across three databases, the selection of cover and secret images 

is conducted from mutually exclusive subfolders to prevent 

any potential data leakage. This approach ensured that there 

was no overlap between the images in each database, thus 

preserving the uniqueness of each dataset. 

The network has been initialized with a weight decay and 

learning rate, both of which are set at 0.001. The reason for 

choosing 0.001 as the initial learning rate is its balance 

between fast learning and generalization capability for the 

model. This value is a widely accepted standard in the 

literature and has been proven successful in various studies. It 

also helps in avoiding issues like overfitting and underfitting. 

Similarly, the weight decay value was carefully chosen for 

similar reasons. Other values were tested, but 0.001 was found 

to be the most suitable for our model. 

In our study, we have employed the AdamW optimization 

method, which is renowned for its ability to automatically 

adjust the learning rate, thereby ensuring a smooth learning 

trajectory for network parameters. The choice of AdamW 

optimizer for the steganography task is particularly 

advantageous due to its enhancement of weight decay, which 

reduces the risk of overfitting, and its provision of adaptive 

learning rate adjustments. These features collectively enhance 

the model's capability to integrate and retrieve secret 

information within visual data, while also strengthening its 

generalization ability. In addition, the one cycle learning rate 

scheduler [43] has also been used to further improve the 

dynamic adjustment of the learning rate, hence enhancing the 

efficiency of achieving convergence to the minimum loss. This 

method starts with a minimum learning rate, increasing 

towards a maximum, enabling the model to explore a broad 

parameter space and avoid local minimum. After reaching the 

peak, the learning rate is systematically reduced, either 
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linearly or exponentially, allowing precise fine-tuning and 

reducing overfitting. We specifically implemented the one 

cycle learning rate scheduler in our project, starting with a 

learning rate of 1e-4 and gradually increasing to 1e-2, followed 

by a reduction to approximately 1e-6. The combination of 

AdamW's weight decay management and adaptive learning 

rate adjustments with the dynamic learning rate changes from 

the one cycle learning rate scheduler accelerates and enhances 

model training. This synergistic approach is effective in 

optimizing complex tasks like steganography, where the 

learning rate initially increases for extensive parameter space 

exploration and then decreases for fine-tuning around optimal 

parameters. A batch size of 32 per iteration has been chosen, 

and the network has been trained over 200 iterations. This 

choice targets an optimal balance between computational 

efficiency and the model's generalization capability. A batch 

size of 32 is sufficiently large to provide reliable gradient 

estimates at each step, yet it is not so large as to necessitate 

excessive computational resources or lead to poor 

generalization. Additionally, this size optimally utilizes the 

capabilities of the hardware used in our setup. The duration of 

200 iterations has been determined through empirical testing, 

balancing the need for adequate learning and computational 

efficiency. This number of iterations has been identified as the 

optimal duration, ensuring sufficient model learning while 

preventing overfitting, making it particularly suitable for 

complex tasks such as steganography. Within the GPU, 

NVIDIA Tesla A100 40Gb is employed, the testing 

framework utilized is Pytorch 2.0.1+cu118, and Python 3.10 

is used for conducting simulation experiments. Additionally, 

the libraries used in this study include: TensorFlow, 

torchvision, NumPy, Pandas, Matplotlib, PIL (Pillow), 

torchmetrics, skimage, pytorch_msssim, sklearn, plotly, os, re, 

copy, and pickle. Although optimized for high-performance 

GPUs, our model can also be trained on less powerful systems, 

though this may require some trade-offs. Training on hardware 

with lower computational capabilities might result in longer 

training periods and could demand changes in training 

parameters such as batch size and learning rate to suit the 

available resources. 

5. EXPERIMENTAL RESULTS AND METRICS

USED

In the optimization of our model during the training phase, 

a custom loss function is devised, which combines two 

fundamental components: MSE and SSIM, with the aim of 

establishing a balance between them. MSE measures pixel-

level discrepancies between the model's output and the target, 

while SSIM is employed to provide a more encompassing 

perspective on structural similarity and image quality, 

assessing the structural and textural similarity between the 

model’s output and the target. Our loss function is defined by 

a hyperparameter, denoted as α, which dictates the weight that 

is accorded to each component during combination. 

Mathematically, the total loss L is expressed as: 

𝐿 = 𝛼. 𝑀𝑆𝐸 + (1 − 𝛼). (1 − 𝑆𝑆𝐼𝑀) (1) 

The formula used to calculate the MSE value between the 

stego and the cover image is provided below. 

𝑀𝑆𝐸 =
𝛴𝑀,𝑁 [𝐼1(𝑚, 𝑛) − 𝐼2(𝑚, 𝑛)]2

𝑀 ∗ 𝑁
(2) 

where, M and N are defined as the rows and columns of the 

images, respectively, in terms of pixel count. I1(m, n) depicts 

the pixel value at location (m, n) in the cover image. I2(m, n) 

symbolizes the pixel value at location (m, n) in the stego image. 

A smaller MSE denotes a higher similarity between the cover 

and the stego image, resulting in a decreased detectability of 

the steganography [44]. Using the same formula, the 

difference between the secret and the hidden image extracted 

from the cover image is computed. The loss graphs of the 

encoder-decoder model over epochs are shown in Figure 5. 

Figure 5. The loss graphs of the encoder-decoder model 

In the scope of performance evaluation, PSNR and SSIM 

metrics are utilized to assess both the differences between the 

stego and the cover image, and the differences between the 

original and the extracted secret image. PSNR measures the 

average error rate per pixel between the images. This metric, 

especially when measuring the differences between the stego 

and the cover image, is utilized to evaluate how much error is 

generated by the embedding process and the impacts of these 

errors on visual quality. Similarly, the success of the extraction 

procedure is ascertained by measuring the differences between 

the extracted hidden and the original image. A greater PSNR 

value, measured in decibels, indicates that the secret image 

remains virtually undistorted when embedded within or 

extracted from the cover image [45]. PSNR is computed as 

follows: 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10(
𝑅2

𝑀𝑆𝐸
) (3) 

where, R stands for the highest value a pixel can have in the 

image. It's calculated as R=2n-1, where n represents the pixel 

depth. For an eight-bit image, this value is set at 255.

SSIM is a metric that assesses the structural resemblance 

between a pair of images. Unlike traditional methods which 

solely evaluate pixel-based differences, SSIM takes into 
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account structural information, contrast, and luminance 

changes. 

Luminance similarity is defined as: 

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1
(4) 

Contrast similarity is defined as: 

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2
(5) 

Structure similarity is defined as: 

𝑠(𝑥, 𝑦) =
2𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
(6) 

Combining these gives the full formula for SSIM: 

𝑆𝑆𝐼𝑀 = 𝑙(𝑥, 𝑦) ∗  𝑐(𝑥, 𝑦) ∗  𝑠(𝑥, 𝑦) (7) 

where, μx and μy symbolize the mean of the images x and y, σx 

and σy represents standard deviations of images and σxσy 

indicate the covariance between x and y. A value close to 1 

ensures that the visual characteristics and patterns of the image 

remain consistent even after the embedding and extraction 

processes. 

In the most challenging scenario, which involves hiding a 

same-size image inside a 256×256×3 cover image, the results 

indicate that the stego and the extracted message images have 

the same visual characteristics as the original cover and 

message images. The results of hiding and extracting 4 images 

are listed in Figure 6. The figure illustrates four columns: The 

first column contains the cover images, the second column 

displays the stego images, the third column shows the message 

images, and the fourth column depicts the extracted message 

images. Similarly, the visual results obtained from the 

ImageNet and LFW databases are presented in Figure 7 and 

Figure 8. 

Figure 6. Visual comparison of hidden and extracted images 

for Linnaeus 5 dataset 

Figure 7. Visual comparison of hidden and extracted images 

for ImageNet dataset 

Figure 8. Visual comparison of hidden and extracted images 

for LFW dataset 

Table 1. PSNR and SSIM values for images in Figure 9 

Stego-

Cover 

PSNR (dB) 

Extracted-

Message PSNR 

(dB) 

Stego-

Cover 

SSIM 

Extracted-

Message SSIM 

48.2361 49.2357 0.9959 0.9938 

Table 2. PSNR and SSIM values for images in Figure 10 

Stego-

Cover 

PSNR (dB) 

Extracted-

Message PSNR 

(dB) 

Stego-

Cover 

SSIM 

Extracted-

Message SSIM 

47.9897 47.7276 0.9929 0.9933 
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Table 3. PSNR and SSIM values for images in Figure 11 

Stego-

Cover 

PSNR (dB) 

Extracted-

Message PSNR 

(dB) 

Stego-

Cover 

SSIM 

Extracted-

Message SSIM 

46.5265 46.3236 0.9904 0.9895 

Table 4. PSNR and SSIM values for images in Figure 12 

Stego-

Cover 

PSNR (dB) 

Extracted-

Message PSNR 

(dB) 

Stego-

Cover 

SSIM 

Extracted-

Message SSIM 

45.8864 45.5080 0.9856 0.9847 

Table 5. PSNR and SSIM values for images in Figure 13 

Stego-

Cover 

PSNR (dB) 

Extracted-

Message PSNR 

(dB) 

Stego-

Cover 

SSIM 

Extracted-

Message SSIM 

47.6706 45.6327 0.9867 0.9934 

Table 6. PSNR and SSIM values for images in Figure 14 

Stego-

Cover 

PSNR (dB) 

Extracted-

Message PSNR 

(dB) 

Stego-

Cover 

SSIM 

Extracted-

Message SSIM 

48.5492 48.0038 0.9914 0.9945 

Figure 9. The distinction between cover image and message image before and after steganography in Linneaus 5 dataset 

(cover image 256×256×3, original message image 32×32×3) 

Figure 10. The distinction between cover image and message image before and after steganography in Linneaus 5 dataset 

(cover image 256×256×3, original message image 64×64×3) 
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Figure 11. The distinction between cover image and message image before and after steganography in Linneaus 5 dataset 

(cover image 256×256×3, original message image 128×128×3) 

Figure 12. The distinction between cover image and message image before and after steganography in Linneaus 5 dataset 

(cover image 256×256×3, original message image 256×256×3) 

Figure 13. The distinction between cover image and message image before and after steganography in ImageNet dataset 
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Figure 14. The distinction between cover image and message image before and after steganography in LFW dataset 

The visual results and histogram graphs obtained from the 

concealment and extraction of colored message images with 

original sizes of 32×32, 64×64, 128×128, and 256×256 

respectively, within a 256×256 sized colored cover image, are 

provided in Figures 9-12. As mentioned before, hidden images 

are resized to 256×256 to fit into the model, followed by a 

resizing back to their original resolution for plotting purposes 

The corresponding results, including the PSNR and SSIM 

values associated with these visual outcomes, are respectively 

detailed in Tables 1-4. Additionally, the mentioned results 

obtained from the ImageNet and LFW databases are presented 

in Figure 13 and Figure 14, and the metric results are included 

in Table 5 and Table 6. 

Upon examining the average values presented in Table 7, it 

appears that when smaller original images with a size of 32×32 

are resized to 256×256 and inputted into the architecture, the 

resulting PSNR and SSIM scores are at their highest. Our 

findings suggest that there is an inherent connection between 

the original message image sizes and the steganographic 

quality, as measured by PSNR and SSIM. This is due to the 

resizing and embedding process of the image, which affects 

the overall information density and consequently the 

steganographic outcome. Smaller images, when resized to a 

larger format, undergo interpolation which introduces a 

smoothing effect. This effect reduces high-frequency 

components and noise, which typically hinders steganography, 

and as a result, blends the image more seamlessly into the 

cover, yielding higher PSNR and SSIM values. On the 

contrary, larger original images carry more intricate details 

and higher informational content per pixel. When these images 

are embedded into the cover, they tend to introduce more 

noticeable alterations, due to both the increased amount of 

detail and the potential for more pronounced noise. These 

factors can disrupt the steganographic process, leading to 

lower PSNR and SSIM scores. 

Table 7. Average PSNR and SSIM values for various original message image sizes 

Cover Image 

Size 

Original Message Image 

Size 

Stego-

Cover 

PSNR (dB) 

Extracted-Message PSNR 

(dB) 

Stego-Cover 

SSIM 

Extracted-Message 

SSIM 

256×256×3 32×32×3 49.5532 49.0738 0.9946 0.9940 

256×256×3 64×64×3 49.0185 48.6563 0.9933 0.9924 

256×256×3 128×128×3 47.9247 46.7569 0.9911 0.9902 

256×256×3 256×256×3 44.4656 43.5393 0.9897 0.9875 

In practical applications, the choice of original image size 

should be guided by the specific requirements of the 

steganographic task. For applications where maximum 

imperceptibility is critical, smaller original images may be 

preferred. However, for applications where the integrity of the 

embedded information is paramount, larger original images 

might be more appropriate despite the potential reduction in 

PSNR and SSIM metrics. However, it is important to 

emphasize in the context of our study that even when the cover 

and message images have the same dimensions, our results 

maintain a very high level of imperceptibility. This 

demonstrates the consistent performance of our model in the 

domain of steganography. 

Overall, it is evident from the results of our study that we 

have achieved statistically significant and visually impressive 

outcomes. It is important to highlight that the effectiveness of 

our method lies in embedding supplementary information into 

every pixel in the cover image, rather than altering the pixel 

values directly. This subtle approach not only preserves the 

visual integrity of the cover image but also makes it 

challenging to detect the presence of the embedded data, 

showcasing the robustness of our steganography technique. 

Comparing the suggested approach's outcomes with those of 

other deep learning research, especially those involving U-

Net, is shown in Table 8. In the referenced table, all studies 

except [39] utilized colored cover images of 256×256 
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dimensions. Studies where the payload is indicated as 33% 

employed grayscale images of 256×256 dimensions as secret 

images. On the other hand, studies specifying a payload of 

100% used colored images of 256×256 dimensions as message 

images. Only in the study [39], both cover and secret images 

of 224×224 dimensions in color were used. When the results 

are examined, it is observed that our study enhances the PSNR 

and SSIM values obtained in other studies which have same 

payload. This success reflects the impact of the methods 

employed. This clearly demonstrates the effectiveness of our 

approach in optimizing image quality in steganographic 

applications, achieving positive results in terms of statistical 

reliability and visual accuracy, thereby setting a benchmark for 

future research in this field. 

In Table 8, in addition to the results obtained from the 

Linnaeus 5 dataset, the average PSNR and SSIM results from 

the validation process of our model with the ImageNet and 

LFW databases are also presented. Upon examining these 

results, it is observed that the improvement in PSNR and SSIM 

levels continues and even increases. The notable quantitative 

and qualitative results obtained across three distinct datasets 

demonstrate the generalization ability of our model against 

various data types and conditions. It is evident that our model 

can successfully process diverse visual contents and 

complexities, effectively preserving steganographic secrecy. 

When evaluated in terms of application areas, the results 

clearly indicate our model's capacity to adapt to various image 

types encountered in real-world scenarios, including facial 

images, and to exhibit high steganographic performance in 

these situations. 

Table 8. Result comparison between the suggested method and other deep learning approaches 

Method Technique Payload 
Stego-Cover 

PSNR (dB) 

Extracted-Message 

PSNR (dB) 

Stego-Cover 

SSIM 

Extracted-Message 

SSIM 

Rehman et al. [26] CNN %33 32.92 36.58 0.96 0.96 

Baluja [27] CNN %100 41.2 37.6 0.98 0.97 

Zhang et al. [31] ISGAN %33 34.57 36.58 0.9652 0.9465 

Subramanian et al. [32] Autoencoder %100 34.55 27.93 - - 

Liu et al. [33] U-Net %33 39.7708 43.3571 0.9828 0.9862 

Liu et al. [34] U-Net %33 40.8965 49.6028 0.9813 0.9963 

Duan et al. [35] U-Net %100 40.4716 40.6665 0.9794 0.9842 

Himthani et al. [24] U-Net %100 38.00 38.00 0.9875 0.9869 

Himthani et al. [24] V-Net %100 30.00 33.00 0.9680 0.9810 

Himthani et al. [24] U-Net++ %100 24.00 27.00 0.910 0.930 

Zeng et al. [36] U-Net %100 39.3912 35.8427 0.9894 0.9833 

Wang [37] U-Net++ %33 37.1381 35.4812 0.9768 0.9681 

Wei et al. [38] U-Net %100 36.96 35.98 0.970 0.963 

Jenynof & Ahmad [39] U-Net %100 28.539 29.759 - - 

Kich & Taouil [40] U-Net %100 37.83 31.77 0.9786 0.9077 

Proposed (Linnaeus 5) U-Net %100 44.4656 43.5393 0.9897 0.9875 

Proposed (ImageNet) U-Net %100 45.3966 44.8206 0.9906 0.9903 

Proposed (LFW) U-Net %100 48.1407 47.5296 0.9930 0.9907 

Table 9. PSNR and SSIM box graphs 

Database Stego-Cover PSNR Extracted-Message PSNR Stego-Cover SSIM Extracted-Message SSIM 
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In addition, the box plots in Table 9 offer a comprehensive 

statistical analysis of the PSNR and SSIM metrics for each 

investigated step. Each box plot features a central horizontal 

line representing the median, which serves as a visual indicator 

of the dataset's central value. The upper and lower boundaries 

of the box define the third and first quartiles (Q3 and Q1), 

respectively, encompassing the interquartile range (IQR) that 

reflects the middle 50% spread of the dataset. The 'whiskers' 

extend from the quartiles to the minimum and maximum 

values of the data, excluding any outliers, and map the full 

range of observed values. This comprehensive representation 

enhances the mean PSNR and SSIM values reported in Table 

7 and Table 8 by incorporating the maximum and minimum 

values obtained, as well as the overall variance. Such a level 

of detail helps in understanding the consistency of the 

steganographic process's embedding and extraction quality 

across various datasets and conditions. 

6. CONCLUSIONS

In our research, we developed a U-Net based steganography 

model specifically designed to embed and extract a message 

image of 256×256×3 dimensions into and from a cover image 

of the same size. Our model was trained using the ImageNet 

database. During the validation phase, two different analyses 

were conducted. 

The first analysis involved examining the impact of secret 

images of various original sizes on the cover image during the 

steganography process. The second analysis evaluated the 

efficiency of our model across three different datasets. For the 

first analysis, the Linnaeus 5 database, which offers colored 

images of various sizes (32×32, 64×64, 128×128, 256×256) 

and a wide variety of image types, was utilized. Images 

smaller than 256×256 were resized to fit the architecture's 

input and were hidden inside colored cover images of 256×256 

size for detailed analysis. For the 32×32×3 message image, the 

hiding phase achieved 49.5532 dB PSNR and 0.9946 SSIM, 

and the extraction phase achieved 49.0738 dB PSNR and 

0.9940 SSIM. For the 64×64×3 size, the hiding phase recorded 

49.0185 dB PSNR and 0.9933 SSIM, and the extraction phase 

recorded 48.6563 dB PSNR and 0.9924 SSIM. For the 

128×128×3 size, the hiding phase achieved 47.9247 dB PSNR 

and 0.9911 SSIM, and the extraction phase achieved 46.7569 

dB PSNR and 0.9902 SSIM. In the most challenging scenario, 

the 256×256×3 message image, our model reached 44.4656 

dB PSNR and 0.9897 SSIM during the hiding phase, and 

43.5393 dB PSNR and 0.9875 SSIM during the extraction 

phase. The results indicate that the quality of the extracted and 

stego images declines with increasing original image size, but 

high-quality levels are maintained across all sizes. Our 

findings demonstrate that our model provides a robust and 

effective solution for messages of varying sizes, offering 

potential applications in secure data transmission. 

In the second analysis, our model's performance was also 

evaluated using the ImageNet and LFW datasets. This 

approach demonstrates the extent to which our findings may 

be generalised across different datasets. Additionally, it has 

provided the opportunity for direct comparison with other 

studies in the literature that have used the same datasets. For 

the ImageNet dataset, our model exhibited 45.3966 dB PSNR 

and 0.9906 SSIM during the hiding phase, and 44.8206 dB 

PSNR and 0.9903 SSIM during the extraction phase. On the 

LFW dataset, the model achieved 48.1407 dB PSNR and 

0.9930 SSIM during the hiding phase, and 47.5296 dB PSNR 

and 0.9907 SSIM during the extraction phase. To the best of 

our knowledge, the results obtained from all datasets indicate 

promising outcomes compared to existing deep learning 

algorithms in the literature, particularly in terms of 

improvements in PSNR and SSIM metrics Furthermore, based 

on the results obtained from different datasets, our algorithm 

has proven to be robust and reliable against complex 

backgrounds and variations in object appearances, thereby 

being suitable for reliable image steganograph. 

In our investigation, the classical U-Net architecture is 

adapted for steganography purposes by incorporating specific 

modifications like batch normalization and residual blocks. 

These enhancements enable the network to handle deeper 

structural training while efficiently embedding secret data into 

images and maintaining their undetectability without 

compromising on quality. In addition, the integration of the 

one cycle learning rate scheduler with the AdamW 

optimization algorithm enhances U-Net training, contributing 

to improved outcomes through faster and more stable 

convergence. This combination enhances the model's 

generalization capability while ensuring high accuracy and 
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reliability in learning, as indicated by the metric results. 

For the statistical analysis of the obtained PSNR and SSIM 

values, box plots were utilized in our study. These plots 

visually display the distribution and central tendencies of these 

metrics, providing evidence for the statistical consistency of 

our results. Additionally, they substantiate the accuracy of our 

findings and the overall methodological robustness of our 

research. 

In light of the aforementioned considerations, our study 

offers important improvements, particularly in the embedding 

and extraction of high-capacity hidden data in large-scale 

images. This contributes to a strong and effective solution in 

steganography, improving the state of the art as it exists now. 

In our research, limitations were encountered in terms of 

hardware resources and computational intricacy. The 

successful outcomes of the study were significantly 

contributed to by the utilization of high-performance GPUs. 

Performance constraints might be anticipated in systems 

equipped with lower-end hardware. When the algorithm is 

trained on hardware with limited computational capacity, 

extended training times might be required, and adjustments in 

training parameters such as batch size and learning rate might 

be necessitated to align with available resources. Therefore, 

continuing efforts in optimization and the exploration of 

distributed computing techniques is important for ensuring the 

efficient functioning of the algorithm on hardware with limited 

resources. The implementation of these improvements is 

expected to broaden the applicability of the algorithm across 

diverse hardware environments and enhance its scalability. 

The practical application areas of our research are quite 

extensive. It can be beneficial in various fields where data 

privacy and secure transmission are important, such as 

healthcare, social media, and cybersecurity. 
Finally, we would like to highlight that, due to the nature of 

steganography, ethical considerations are important. Despite 

being a powerful tool for transmitting and preserving hidden 

data, the potential for misuse of steganography is high. For 

example, its use in illegal activities can cause serious concerns. 

Therefore, in presenting our research findings, we emphasize 

the importance of guidelines and policies that promote the 

ethical and responsible use of steganography. 
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