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The primary aim of this research was to delimitate the final pit in an open pit mine using 

the 1×5 and 1×9 arch methods of the pseudoflow maximum flow algorithm. To achieve 

this, Exploratory Data Analysis (EDA), economic, and geomechanical parameters were 

utilized. Various final pit scenarios were generated by varying the revenue factor. The 

analysis was conducted using Python 3.11 (Jupyter Notebook) and SGeMS V.3.0 

software. The block model comprised 480,000 blocks, each measuring 10×10×10 

meters, with a copper grade range from 0 to 1.41%. Specific parameters were employed, 

including a slope angle of 45°, a base copper price of 3.90 US$/lb, and smelting, 

extraction, and crushing-grinding costs of 0.40 US$/lb, 2.30, and 11.00 US$/ton, 

respectively. Twenty final pits were generated for each method, based on a revenue 

factor from 0.10 to 2.00. The results indicated that both methods are effective for final 

pit delineation, with the 1×5 method achieving an NPV of 17,855 MUS$ and a REM of 

0.27, and the 1×9 method attaining an NPV of 18,456 MUS$ and a REM of 0.35. It was 

concluded that the 1×9 arch method is preferable as it yields a higher NPV. This study 

underscores the importance of methodological selection in the planning of open-pit 

mines, demonstrating that despite a higher REM, the 1×9 method significantly enhances 

the NPV, implying substantial economic benefits for the industry. 
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1. INTRODUCTION

In the challenging context of open-pit mining, this study 

focuses on the application of the 1×5 and 1×9 arch methods of 

the pseudoflow algorithm, providing a detailed analysis of 

their efficiency and accuracy in optimally delimiting the 

boundaries of the mines. The open-pit mining technique, 

widely employed in mineral exploitation, is characterized by 

the use of pits or "pits" [1]. Before commencing any mining 

operation, it is vitally important to precisely design the outline 

and final boundaries of the extraction zone [2]. Current 

practices in open-pit mining involve a variety of methods and 

algorithms to design the outline and final boundaries of the 

extraction zone. These methods consider a series of 

fundamental factors such as the geology and topography of the 

site [3], the distribution of minerals, geotechnical restrictions, 

and slope stability [4, 5], environmental considerations, 

extraction, and processing costs [6], metallurgical recovery [7], 

and the price of minerals [8]. 

However, these methods often face limitations [9]. For 

instance, heuristic algorithms like the floating cone and its 

improvements, Korobov, Boykov-Kolmogorov, and Ford 

Fulkerson, do not guarantee mathematically optimal solutions. 

This represents a significant limitation in current practice. 

Similarly, the use of the Lerchs-Grossman algorithm can result 

in prolonged execution times when applied to a block model 

with a large amount of data. The main goal of this design in 

open-pit mining is to establish, prior to operations, the 

definitive layout, and dimensions of the mine, considering a 

series of fundamental factors. Such factors encompass the 

geology and topography of the site, the distribution of minerals, 

geotechnical restrictions, and slope stability [9], 

environmental considerations, extraction and processing costs, 

metallurgical recovery, and the price of minerals. 

In this scenario, the pseudoflow algorithm emerges as an 

effective tool for overcoming these limitations. The 

pseudoflow algorithm employs an optimality certificate based 

on the Lerchs and Grossman algorithm for the maximum cut 

problem in a graph of weighted nodes. This approach shows 

that the concept of mass can be generalized to capacity 
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networks using the notion of pseudoflow. Unlike the 

maximum flow problem, the pseudoflow addresses the 

maximum blocking cut problem, focused on the capacities of 

the arches and the weights of the nodes, without considering 

source and destination nodes. Its goal is to find a subset of 

nodes that maximize the blocking cut. 

The definition of the final boundaries of the mine plays a 

crucial role in the design of open-pit mining operations. To 

achieve this precise definition, block models are used that 

represent the reserve through the combination of small blocks, 

using inverse distance or geostatistical methods [5]. In recent 

decades, two main approaches have been proposed to establish 

the final contour: the maximization of undiscounted benefit 

and the maximization of Net Present Value (NPV). Each 

approach has specific methods and algorithms. The first 

approach seeks to maximize the non-discounted benefit by 

initially establishing the boundaries of the mine. Subsequently, 

the production schedule is planned to obtain the highest NPV. 

Among the most used heuristic algorithms are the floating 

cone [10] and its improvements [11], Korobov [12], Boykov-

Kolmogorov [13], and Ford Fulkerson [14]. However, these 

algorithms do not guarantee mathematically optimal solutions. 

Muir [15] conducted a comprehensive study on the 

optimization of open pit mine pits using the Lerchs-

Grossmann (LG) algorithm and its evolution to pseudoflow 

flow models. Implemented and compared four methods based 

on the LG algorithm, including Hochbaum's lowest and 

highest label pseudoflow variants, on three different ore 

properties. The results obtained indicated that the pseudoflow 

variants, especially when using priority queues, are 

significantly faster and reduce the number of merges and 

prunings required to reach optimality. In addition, the same 

optimal Net Present Value (NPV) value was maintained for 

the mine. On the other hand, Morrison [16] presented a 

detailed discussion on the application of the pseudoflow 

algorithm to solve maximum blockage cut-off and minimum 

residue flow problems. Through linear and combinatorial 

programming methods, he demonstrated how these problems, 

which are applicable in contexts such as open-pit mining, can 

be solved simultaneously with the pseudoflow algorithm. This 

approach proved to be efficient and theoretically sound. Bai et 

al. [17] conducted a performance comparison between the 

pseudoflow algorithm and the LG algorithm in open pit mining 

pit optimization. The results highlighted a significant 

reduction in computational time when using pseudoflow 

compared to LG, with especially noticeable improvements in 

large block models. For example, in the case of 21.3 million 

blocks, the time was reduced from 15 hours to just 12 minutes. 

Musenge et al. [14] explored the application of the Ford and 

Fulkerson algorithm to optimize the final boundaries of an 

open pit mine. Implemented in Python, the algorithm proved 

to be effective in defining the final mine boundaries in three 

dimensions through two-dimensional sections. Comparing the 

results with the LG algorithm, the Ford Fulkerson peak flow 

algorithm managed to design the optimal mine boundary in 

record time, offering optimal pit values with minimal 

difference in Net Present Value (NPV), being USD 881870000 

for FFA and USD 880210100 for LG. Finally, Chicoisne et al. 

[18] indicated that there are open-source implementations of 

the pseudoflow algorithm, such as MineFlow, that provide 

efficient precedence schemes and a simplified pseudoflow-

based solver. 

The Lerchs-Grossman (LG) algorithm [19], based on graph 

theory, and the network flow algorithm [20] also determine the 

final boundaries of the pit using mathematical approaches. 

Each method has its pros and cons. For example, the use of the 

Lerchs-Grossman algorithm to obtain optimal pit boundaries, 

when applied to a block model with a large amount of data, 

can result in prolonged execution times [21]. The maximum 

flow problem seeks to maximize the amount of flow that can 

pass from a source to a destination in a network with capacities 

on the arches. To solve this problem, two types of algorithms 

have been developed: feasible flow algorithms, which increase 

the flow in each iteration using augmenting paths, and preflow 

algorithms, which allow excesses in the flow balance [22]. The 

first feasible flow algorithm was proposed by Ford and 

Fulkerson in 1957, while the first known use of preflows was 

in 1955 by Boldyreff [23]. However, this technique did not 

guarantee optimal solutions. The Push-relabel algorithm by 

Goldberg and Tarjan from 1988 [24, 25] uses preflows and has 

proven to be efficient both theoretically and in practice. 

In this scenario, the pseudoflow algorithm emerges as an 

effective tool for determining the final boundaries of the 

contour in open-pit mining. The pseudoflow algorithm 

employs an optimality certificate based on the Lerchs and 

Grossman algorithm for the maximum cut problem in a graph 

of weighted nodes. This approach shows that the concept of 

mass can be generalized to capacity networks using the notion 

of pseudoflow [22]. Unlike the maximum flow problem, the 

pseudoflow addresses the maximum blocking cut problem, 

focused on the capacities of the arches and the weights of the 

nodes, without taking into account source and destination 

nodes. Its goal is to find a subset of nodes that maximizes the 

sum of the weights of the nodes minus the capacities of the 

arches leaving the subset [24]. The pseudoflow algorithm 

stands out as an optimal and efficient solution to determine the 

final contour of an open pit mine. This research paper will 

delve into the development, implementation, and results 

obtained with the 1×5 and 1×9 arch methods of the pseudoflow 

algorithm to define the final boundaries of the contour in open-

pit mining. 

This research introduces an innovative comparative analysis 

of geometric precedence constraints with 1×5 and 1×9 arcs in 

the application of the pseudoflow algorithm for final pit 

delimitation in open pit mining. 

 

 

2. MATERIALS AND METHODS 

 

A study has been carried out in a surface mine located in 

southern Peru in order to validate the final pit delimitation 

methods. A logic scheme is presented showing how the final 

pit delimitation process looks like, applying the 1×5 and 1×9 

arcs methods of the maximum pseudoflow algorithm. 

 

2.1 Database information 

 

The database used in this study comprised 480,000.0 blocks 

organized into 10 distinct columns. These columns included 

critical information such as the spatial coordinates (x, y, z) 

determining the block's location; dimensions along the x, y, z 

axes; the copper grade percentage (Cu); the volume measured 

in cubic meters (m3); the density expressed in tons per cubic 

meter (t/m3); and the calculated tonnage for each block (t). 

Table 1 shows the characteristics of the first ten blocks within 

this database. For example, block number 1 is characterized by 

having coordinates x=10,305; y=10,305 and z=3,555, with 

uniform dimensions of 10×10×10 meters along all axes. 
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Moreover, this block exhibits a copper grade of 0.37%, a 

volume of 1000 m3, a density of 2.30 t/m3, and a tonnage of 

2300 tons. Figure 1 shows a summary of the methodology used 

in the research. 

 

2.2 Validation of the block model 

 

To validate the block model, tests and comparisons were 

made on data from a specific open pit mine located in southern 

Peru. The model blocks were compared with mine sampling 

data to verify the accuracy of coordinates, block dimensions, 

copper percentage, volume, and density. Although specific 

mine details are kept confidential for privacy reasons, the 

validation results confirmed that the block model provides an 

accurate representation of actual mine conditions. 

 

2.3 Exploratory Data Analysis 

 

Exploratory Data Analysis (EDA) is a set of procedures that 

researchers follow to understand the overall structure of the 

data, identifying anomalies, and gaining insights that can be 

used in more complex analyses. Exploratory Data Analysis 

encompasses techniques such as: the generation of summary 

statistics, the creation of data graphs (histograms, scatter plots), 

the identification of correlations between variables [25-28]. 

In this research, an Exploratory Data Analysis (EDA) was 

conducted to explore the distribution of copper ore grade 

within the block model, as depicted in Figure 2. It was found 

that the copper ore grade ranges from a minimum of 0.00% to 

a maximum of 1.41%. 

 

 
 

Figure 1. Methodology overview 

 

Table 1. Block model database 

 

X Y Z Dim X (m) Dim Y (m) Dim Z (m) Cu (%) Vol (m3) Density (t/m3) Tonnage (t) 

1 10,305 10,305 3,555 10 10 10 0.37 2.3 2,300 

2 10,315 10,305 3,555 10 10 10 0.39 2.3 2,300 

3 10,325 10,305 3,555 10 10 10 0.42 2.3 2,300 

4 10,335 10,305 3,555 10 10 10 0.40 2.3 2,300 

5 10,345 10,305 3,555 10 10 10 0.40 2.3 2,300 

6 10,355 10,305 3,555 10 10 10 0.40 2.3 2,300 

7 10,365 10,305 3,555 10 10 10 0.39 2.3 2,300 

8 10,375 10,305 3,555 10 10 10 0.39 2.3 2,300 

9 10,385 10,305 3,555 10 10 10 0.39 2.3 2,300 

10 10,395 10,305 3,555 10 10 10 0.37 2.3 2,300 

 
 

Figure 2. Cooper grades in the block model 

 

The geometric parameters of the model are shown in the 

Table 2, indicating that the model consists of 486,000 blocks. 

Each block's dimensions, in its east (x), north (y), and 

elevation (z) coordinates, are 10 meters, with a density of 2.30 

t/m3, resulting in a tonnage of 2300.00 tons per block. 

 

Table 2. Parameters of the block model 

 

Length 

x (m) 

Length 

y (m) 

Length 

z (m) 

Density 

(ton/m3) 

Tonnage 

(Ton) 

Total 

Blocks 

10.00 10.00 10.00 2.30 2300.0 486000 

Table 3 presents a summary of the block model statistics, 

showing the minimum, maximum, and average coordinates in 

the east, north, and elevation axes, as well as the minimum, 

maximum, and average values for copper grade, volume (m3), 

and density (tons/m3). 

 

Table 3. Block model statistics 

 
Description Min Max Average 

Coordinate (x) 10305.00 11195.00 10750.00 

Coordinate (y) 10305.00 11195.00 10750.00 

Coordinate (z) 3555.00 4145.00 3850.00 

Copper grade (%) 0.00 1.41 0.33 

Volume (m3) 1000.00 1000.00 1000.00 

Density (t/m3) 2.3 2.3 2.3 

 

For a more detailed analysis, a tonnage versus average grade 

curve was constructed, revealing an intersection between the 

two curves. This intersection indicates that higher tonnage 

corresponds to a lower percentage of copper ore grade, as 

illustrated in Figure 3. 

According to Figure 4, which displays the histogram of 

copper grades and lithologies, the copper grades are divided 
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into three categories: low (blue), medium (green), and high 

(red). A total of 315,895.00 blocks had a low copper grade 

(between 0.00% and 0.40%), 1,482,214.00 blocks had a 

medium copper grade (between 0.40% and 1.00%), and 

21,891.00 blocks had a high copper grade (between 1.00% and 

1.42%). Regarding lithologies, 112,486.00 blocks were 

classified under lithologic code 1, 243,267.00 blocks under 

lithologic code 2, and 130,247 blocks under lithologic code 3, 

resulting in a total of 486,000.00 blocks. 

 

 
 

Figure 3. Tonnes vs. grade curve 

 

 
(a) Copper grade histogram 

 
(b) Lithology histogram 

 

Figure 4. Frequency histograms 

2.4 Delimitation of the final pit with pseudoflow method  

 

The pseudoflow algorithm, which is used to resolve the final 

pit in mining, operates iteratively and has certain advantages 

over the Lerchs and Grossman algorithm. Unlike the latter, the 

pseudoflow algorithm uses the idea of flow rather than mass, 

facilitating the efficient update of different structures [17]. A 

pseudoflow is a type of relaxed flow that does not require 

nodes to comply with flow balance constraints. Nodes may 

have an excess of inflows over outflows or a deficit of these. 

The numbers on the arcs indicate the current flow through each 

arc, while the numbers inside the nodes represent the current 

surpluses or shown in references [5, 29-32]. 

The bounding problem is formulated to maximize the Net 

Present Value of the extracted materials, constrained by the 

flow capacities of each block and the overall system, ensuring 

that the solution adheres to the operational and geotechnical 

constraints. The objective function and constraints are 

mathematically expressed as follows: Maximize the total flow 

Z from source to sink [3]: 
 

Z = ∑ 𝐹𝑠𝑖

(𝑠,𝑖)∈𝐸

 (1) 

 

Subject to capacity constraints on each edge (𝑖, 𝑗): 
 

F𝑖𝑗 ≤ 𝐶𝑖𝑗        ∀(𝑖, 𝑗)  ∈ 𝐸 (2) 
 

Ensure flow conversation at each node, except at the source 

and sink: 
 

∑ 𝐹𝑖𝑗 − ∑ 𝐹𝑖𝑗 = 0 
(𝑗,𝑖)∈𝐸(𝑖,𝑗)∈𝐸

∀𝑖 

∈ 𝑉 ∖ {𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑖𝑛𝑘} 

(3) 

 

Non-negativity of the flow: 
 

𝐹𝑖𝑗 ≥ 0    ∀(𝑖, 𝑗)  ∈ 𝐸  (4) 
 

In addition, 1×5 and 1×9 arch constraints allow accurate 

modeling of slope angles for final pit planning. These 

constraints are implemented by defining arcs with capacities 

that represent the economic and geomechanical costs 

associated with the extraction of adjacent blocks, adapting the 

flow model to the complexity and specific constraints of the 

mine site. 

The economic parameters used in the delimitation of the 

final pit included: cost of sale (𝐶𝑣) which represents the cost 

associated with the sale of the extracted ore, including 

transportation and marketing. Processing cost (𝐶𝑝)  which 

includes expenses related to the transformation of the ore into 

saleable product, such as crushing, grinding and flotation. 

Mining cost (𝐶𝑚)  which encompasses the direct operating 

costs of mining. Ore price (𝑃) which is the market value per 

unit of ore mined. Metallurgical recovery (𝑦) which is the 

percentage of metal recovered in the processing process. 

Average grade (𝑔) which is the average concentration of the 

metal of interest in the ore. Ore tonnage (𝑇𝑚)  and total 

tonnage (𝑇𝑡) which represents, the mass of ore containing the 

metal of interest and the total mass mined including tailings, 

respectively. A profit factor (𝛼). The block profitability (𝐵𝐸) 

is calculated with the formula [33]: 

 

BE = Tm ∗ (g ∗ y ∗ (P ∗ α − Cv) − Cp) − Tt ∗ Cm (5) 
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Specific details of these economic and operational 

parameters applied in the study, including numerical values for 

copper price, processing costs, metallurgical recovery, mining 

cost and crushing and milling costs are presented in Table 4. 

 

Table 4. Economic and operational parameters 

 
Economic and Operational Parameters  Quantity Units 

Cooper price (P) 3.9 US$/lb 

Processing cost (Cp) 0.4 US$/lb 

Metallurgical recovery (y) 90 % 

Mine cost (Cm) 3.5 US$/t 

Crushing and grinding cost (Cg) 11 US$/t 

 

Table 5 presents the geomechanical parameters used in the 

study, which used 1×5 and 1×9 arch constraints to accurately 

model the slope angles, which were set at 45° for both types 

of arches. 

 

Table 5. Geomechanical parameters 

 
Description Arches 1×5 Arches 1×9 

Slope angle 45° 45° 

 

The modeling of the extraction sequence is carried out 

through the conceptualization of the slope angle, using the 

principle of precedence: block "A" precedes another block "B" 

if the extraction of B requires the previous removal of A. This 

precedence relationship between blocks is transitive, that is, if 

"A" is a predecessor of "B", and "B" is a predecessor of "C", 

then "A" also precedes "C". Consequently, a tree of 

precedences is generated. The transitivity of this condition 

culminates in defining a rigorous order in which the extraction 

process must be carried out. That is, if a specific block is 

planned to be extracted, the extraction order must be such that 

all the blocks that precede it are extracted first [34-36]. There 

are various strategies to define the precedence arcs in an open-

pit mining operation, of which the most common are: 

Definition of a classic 5-block mold (1×5 arcs): this strategy 

seeks to specifically represent a 45° angle. Its use is 

recommended when the block dimensions are homogeneous 

so that the interpretation fits this circumstance as shown in 

Figure 5. 

 
 

Figure 5. 1×5 arc model 

 

Definition of a fixed 9-block mold (1×9 arcs): this strategy 

also aims to represent a 45° angle, but with greater amplitude. 

Like the previous strategy, its application is recommended in 

situations where the block dimensions are homogeneous for a 

proper interpretation as shown in Figure 6. 

 

 
 

Figure 6. 1×9 arc model 

 

 

3. RESULTS 

 

To carry out the final pit delimitation in open pit mines, it is 

very important to consider economic, operational and 

geomechanical parameters already detailed above. 

Applying the 1×5 arc methodology and using a revenue 

factor ranging from a minimum of 0.1 to a maximum of 2 with 

an increment of 0.1, generated 20 final pits of different 

tonnages, NPV and ore grade, as shown in Table 6. Similarly, 

Figure 7 shows the visualization of the pit 1 scenario when 

applying the 1×5 arc methodology. 

 

Table 6. Multiple final pit scenarios generated with the application of 1×5 arcs 

 
Pit Ore (Mt) Waste (Mt) Total Tonnage (Mt) NPV (MUS$) REM Ore Grade (%) Revenue Factor 

1 47.35 70.35 117.69 232.95 1.49 0.50 0.10 

2 98.40 78.31 176.70 940.59 0.8 0.46 0.20 

3 121.30 77.53 198.84 1765.34 0.64 0.44 0.30 

4 136.94 78.37 215.31 2638.74 0.57 0.43 0.40 

5 147.52 79.26 226.78 3541.65 0.54 0.42 0.50 

6 155.51 77.97 233.48 4462.16 0.50 0.41 0.60 

7 163.05 76.43 239.49 5393.08 0.47 0.40 0.70 

8 172.07 71.92 243.99 6331.58 0.42 0.40 0.80 

9 181.13 68.94 250.07 7276.58 0.38 0.39 0.90 

10 193.07 66.35 253.89 8226.82 0.35 0.39 1.00 

11 197.66 64.37 257.45 9181.37 0.33 0.38 1.10 

12 200.89 63.09 260.75 10139.20 0.32 0.38 1.20 

13 204.07 60.80 261.68 11099.59 0.30 0.38 1.30 

14 206.07 60.61 264.68 12062.01 0.30 0.38 1.40 

15 207.89 60.11 266.18 13025.18 0.29 0.37 1.50 

16 209.08 59.56 267.45 13990.29 0.29 0.37 1.60 

17 210.42 59.12 268.20 14955.55 0.28 0.37 1.70 

18 211.39 59.58 270.00 15921.88 0.28 0.37 1.80 

19 211.39 58.61 270.00 16888.84 0.28 0.37 1.90 

20 212.34 58.36 270.69 17855.97 0.27 0.37 2.00 
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Figure 7. Scenario of pit 1 applying 1×5 arcs 

 

In Figure 8, a pit-by-pit graph generated with 1×5 arches is 

observed, showing that each pit has its determined tonnage of 

ore and waste, as well as its total tonnage, tons of ore and tons 

of waste. This graph has two y-axes (y-left) where the total 

tonnage is placed, and on the y-right axis, the NPV (Net 

Present Value) is shown in dollars. 

 

 
 

Figure 8. Pit by pit graph when applying 1×5 arcs 

 

 
 

Figure 9. REM vs. VAN graph when applying 1×5 arcs 

 

In Figure 9, the REM vs. NPV graph for the final pit using 

1×5 arches is shown. It can be seen that the optimal final pit is 

pit 20, as it has a higher NPV (Net Present Value) and a lower 

REM (Waste-Ore Ratio). In this case, the NPV was 17,856 

MUS$ and the REM was 0.27, indicating that 0.27 tons of 

waste will be extracted for every ton of ore. 

By applying the 1×9 arch methodology and using a revenue 

factor that ranged from a minimum of 0.10 to a maximum of 

2.00 with an increment of 0.10, it generated 20 final pits of 

different tonnages, NPV and ore grade, as observed in Table 7. 

Similarly, Figure 10 shows the visualization of the pit 1 

scenario when applying the 1×9 arc methodology. 

 

 
 

Figure 10. Scenario of pit 1 applying 1×9 arcs 

 

 
 

Figure 11. Pit by pit graph when applying 1×9 arches 

 

 
 

Figure 12. REM vs. VAN graph when applying 1×9 arches 

 

In Figure 11, a pit-by-pit graph generated with 1×9 arches 

is observed, showing that each pit has its determined tonnage 

of ore and waste, as well as its total tonnage, tons of ore and 

tons of waste. This graph, its values are in relation to the Net 

Present Value (NPV) in dollars. 
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In Figure 12, the REM vs. NPV graph for each final pit 

using 1×9 arches is shown. The optimal final pit is pit 20, as it 

has a higher NPV and a lower REM, with the NPV being 

18,456.47 MUS$ and a REM of 0.35, which means that 0.35 

tons must be extracted for each ton of ore. 

 

Table 7. Multiple final pit scenarios generated with the application of 1×9 arcs 

 
Pit Ore (Mt) Waste (Mt) Total Tonnage (Mt) NPV (MUS$) REM Ore Grade (%) Revenue Factor 

1 21.80 36.86 58.66 272.86 1.69 0.45 0.10 

2 70.44 88.02 158.46 1104.09 1.25 0.40 0.20 

3 131.09 121.20 252.29 2294.02 0.92 0.36 0.30 

4 156.86 127.21 284.07 3360.29 0.81 0.35 0.40 

5 164.77 124.07 288.83 4290.84 0.75 0.35 0.50 

6 170.14 118.70 288.83 5196.71 0.70 0.35 0.60 

7 175.61 113.23 288.83 6111.36 0.64 0.35 0.70 

8 182.78 106.05 288.83 7035.32 0.58 0.35 0.80 

9 189.32 99.51 288.83 7968.33 0.53 0.35 0.90 

10 194.34 94.50 288.83 8908.24 0.49 0.35 1.00 

11 198.66 90.17 288.83 9853.22 0.45 0.35 1.10 

12 202.15 86.68 288.83 10802.21 0.43 0.35 1.20 

13 205.21 83.63 288.83 11754.17 0.41 0.35 1.30 

14 207.41 81.43 288.83 12708.50 0.39 0.35 1.40 

15 208.96 79.88 288.83 13664.31 0.38 0.35 1.50 

16 210.39 78.44 288.83 14621.32 0.37 0.35 1.60 

17 211.38 77.46 288.83 15579.19 0.37 0.35 1.70 

18 212.22 76.61 288.83 16537.69 0.36 0.35 1.80 

19 213.19 75.65 288.83 17496.80 0.35 0.35 1.90 

20 213.97 74.87 288.83 18456.47 0.35 0.35 2.00 

To identify which of the two methodologies is the most 

efficient to use in the delimitation of the final pit using the 

pseudoflow maximum flow algorithm in open-pit mines, it is 

necessary to make comparisons between the results obtained 

between both methodologies. Figure 13 shows the comparison 

of the NPV (Net Present Value) of each pit generated by 1×5 

and 1×9 arches. It can be observed that the final pits generated 

with 1×9 arches obtain a higher NPV in comparison with the 

NPV of the final pits generated with 1×5 arches. 

 

 
 

Figure 13. Comparison of VAN of pits generated by arcs of 

1×5 and 1×9 

 

Figure 14 displays a comparison of the Waste-Ore Ratio 

(REM) for pits delimitated using the 1×5 and 1×9 arc methods. 

It is evident that all pits created with the 1×5 arc method 

exhibit a lower REM when compared to those generated by the 

1×9 arcs, suggesting that the 1×9 arc method results in the 

extraction of larger quantities of waste to obtain ore. A prime 

example is observed in the optimal pit for both methods, which 

is pit number 20. Here, with the 1×5 arcs, a REM of 0.27 is 

noted, indicating that 0.27 tons of waste are extracted for every 

ton of ore. Conversely, with the 1×9 arcs, the REM is 0.35, 

which is 0.08 higher. 

 
 

Figure 14. Comparison of REM of pits generated by arcs of 

1×5 and 1×9 

 

Table 8 shows the summary of the results of the optimal pit 

generated with the 1×5 and 1×9 arch methodologies. Where 

for the 1×5 arch method the optimal pit was pit 20 and for 1×9 

arches it was also pit 20. Likewise, with 1×9 arches, they 

generate a higher NPV of 18,456.47 MUS$, and with 1×5 

arches, pit 20 had an NPV of 17,856.97 MUS$. Additionally, 

the REM of the optimal pit generated with 1×9 arches is higher 

than the optimal pit generated by 1×5 arches. 

 

Table 8. Summary of optimum pit characteristics when 

applying 1×5 and 1×9 arcs 

 
Description 1×5 Arcs 1×9 Arcs 

Optimal Pit 20 20 

Ore (Mt) 212.34 213.97 

Waste (Mt) 58.36 74.87 

Total Tonnage (Mt) 270.69 288.83 

NPV (MUS$) 17855.97 18456.47 

REM 0.27 0.35 

Ore Grade (%) 0.37 0.35 
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In Figure 15, the visualization of the optimal final pits 

generated with the 1×5 and 1×9 arch methodology, using the 

maximum pseudoflow pit delimitation algorithm, is shown. 

 

 
a) Isometric view of the optimal pit with copper grade and 

1×5 arches 

 
b) Isometric view of the optimal pit with copper grade and 

1×9 arches 

 

Figure 15. View of the optimal pit scenarios 
 

Table 9 outlines a summary of the economic and operational 

parameters utilized to define pessimistic, baseline, and 

optimistic scenarios for the final pit delimitation in an open-

pit mining operation. The variability in copper price (𝑃𝑟) 

reflects the fluctuating market conditions, whereas the other 

costs remain constant, illustrating an approach focused on the 

sensitivity to copper price fluctuations. 

 

Table 9. Economic and operational parameters for different 

final pit delimitation scenarios 

 

Scenarios 
Pessimistic 

(P) 

Baseline 

(B) 

Optimistic 

(O) 

Copper price (𝑃𝑟)  2.93 3.9 4.88 

Processing cost (𝐶𝑝) 0.4 0.4 0.4 

Metallurgical 

recovery (𝑅𝑒𝑐) 
90 90 90 

Mining cost (𝐶𝑚) 3.5 3.5 3.5 

Crushing and grinding 

cost(𝐶𝑔) 
11 11 11 

 

Table 10 demonstrates significant variability in the Net 

Present Value (NPV), ranging from $1,539.12 MUS$ in the 

pessimistic scenario to $5,116.95 MUS$ in the optimistic 

scenario, representing an increase of 232.46%. Similarly, the 

quantity of extractable ore sees an increase of 39.43%, moving 

from 112.77 Mt to 157.23 Mt across these scenarios. 

Interestingly, the ore grade slightly decreases by 8.9%, from 

0.45% to 0.41% copper, while the Waste-Ore Ratio (REM) 

improves from 0.68 to 0.49, a decrease of 27.9%. This 

indicates a higher efficiency in ore extraction as economic 

conditions become more favorable. 

 

Table 10. Final pit delimitation under variable economic 

scenarios using 1×5 arches 

 
1×5 

Arches 

NPV 

(MUS$) 

Ore 

(Mt) 

Waste 

(Mt) 

Ore Grade 

(%) 
REM 

Pessimistic 1,539.12 112.77 77.16 0.45 0.68 

Baseline 3,273.30 142.24 78.97 0.42 0.56 

Optimistic 5,116.95 157.23 77.46 0.41 0.49 

 

Table 11 demonstrates that, when employing 1×9 arches 

under identical economic conditions, the Net Present Value 

(NPV) reaches $2,784.62 MUS$ in the baseline scenario, 

accompanied by a Waste-Ore Ratio (REM) of 0.79. This 

indicates that, despite the 1×9 arches facilitating the extraction 

of a greater quantity of ore, the 1×5 arches exhibit superior 

economic efficiency, as evidenced by their enhanced NPV and 

reduced REM. 

 

Table 11. Final pit delimitation under variable economic 

scenarios using 1×9 arches 

 
1×9 

Arches 

NPV 

(MUS$) 

Ore 

(Mt) 

Waste 

(Mt) 

Ore Grade 

(%) 
REM 

Pessimistic 949.88 106.40 112.65 0.38 1.06 

Baseline 2,784.62 161.76 127.08 0.35 0.79 

Optimistic 4,736.98 171.49 117.34 0.35 0.68 

 

Figure 16 illustrates the percentage changes in NPV and 

REM across economic scenarios. For the 1×5 arches, the NPV 

increases by 56.32% in the optimistic scenario, while it 

decreases by 52.98% in the pessimistic scenario. In contrast, 

the 1×9 arches exhibit a more dramatic shift, with an increase 

of 70.11% in the optimistic scenario and a decrease of 65.89% 

in the pessimistic scenario. Moreover, the REM decreases by 

11.26% for the 1×5 arches and 12.90% for the 1×9 arches in 

the optimistic scenario, whereas in the pessimistic scenario, 

they increase by 23.25% and 34.77%, respectively. 

 

 
 

Figure 16. Relative change in scenario values 
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This indicates that a lower market price for ore results in a 

final pit with a lower NPV, less ore, and a higher REM, in 

contrast to scenarios with significantly higher ore prices, 

which yield the opposite outcomes. 

This study, while offering significant insights into the 

efficiency of final pit delimitation methods using 1×5 and 1×9 

arches via the pseudoflow maximum flow algorithm, is subject 

to several limitations that must be considered. The analysis 

was conducted on a specific dataset from an open pit mine in 

southern Peru, potentially limiting the generalizability of the 

findings to other geological or mining contexts. Moreover, 

although the block model provides a detailed approximation 

of the mineral distribution, it cannot fully capture unexpected 

geological variabilities, which could potentially impact the 

accuracy of the final pit delimitation. 

 

 

4. CONCLUSIONS 

 

This study has successfully delimitated the final pit by 

applying 1×5 and 1×9 arch methods using the pseudoflow 

maximum flow algorithm in an open pit mine. It was found 

that the 1×9 arch method, with a Net Present Value (NPV) of 

18,456.47 MUS$ for the optimal pit (pit 20), outperforms the 

1×5 arch method, which recorded an NPV of 17,855.97 

MUS$ for the same pit. This underscores the greater efficiency 

and economic value of employing 1×9 arches in the final pit 

delineation, although it involves a higher Waste-Ore Ratio 

(REM) of 0.35 compared to 0.27 for 1×5 arches. 

This research contributes to the field of mining engineering 

by providing a detailed comparative analysis of the efficacy of 

geometric constraint methods using 1×5 and 1×9 arches. It 

offers mining engineers and decision-makers in the industry 

valuable insights into optimizing mineral resource extraction, 

highlighting the significance of selecting the most appropriate 

final pit delineation method to maximize operational 

efficiency and project profitability. 

Although choosing the 1×9 arch method increases the total 

extraction volume and REM, it results in a superior NPV by 

601 MUS$ compared to the 1×5 arch method. This outcome 

emphasizes the necessity for a thorough evaluation of 

operational costs, guiding professionals towards adopting 

strategies that balance economic efficiency. 

Future research should explore comparing optimal cuts 

generated by the pseudoflow algorithm with 1×5 and 1×9 

arches against those obtained using conventional algorithms 

such as Lerchs and Grossman, or alternatives like Push 

Relabel or Ford Fulkerson. Such a comparative analysis would 

provide a more comprehensive and accurate view of the 

methodologies available for final pit delineation, enhancing 

the planning and execution of mining projects in a more 

efficient and sustainable manner. 
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NOMENCLATURE 

 

EDA Exploratory Data Analysis 

MUS$ Millions of dollars 

Cu Copper grade 

REM Ore Sterile ratio 

NPV Net Present Value 

LG Lerchs and Grossman 

t/m3 Tons per cubic meter 

Cy Sale cost 

Cp Processing cost 

Cm Mine cost 

P Mineral price 

BE Benefit of the blocks 

y Recovery 

g Average grade 

Tm Mineral tonnage 

Tt Total tonnage 

α Benefit factor 

Mt Millions of tons 

US$/lb Dollars per pound 
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