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The spectrum sensing function plays a significant role in the performance of cognitive 

radio (CR). Spectrum sensing specifies if free channels exist and identifies free channels 

for secondary users, actively helping in the improvement of spectrum usage and 

recognizing available channels in CR systems. Cyclostationary feature detection (CFD) 

is a spectrum sensing method that detects signals depending on different characteristics 

such as carrier frequency, modulation types, cyclic frequency, and symbol rates with an 

extremely low signal-to-noise ratio. At low SNR, CFD achieves a detection process 

with a high computation complexity. This paper designs Enhanced Cyclostationary 

Detector complexity with improved detection speed performances. For the sake of 

minimizing system complexity, utilizing the advantages of the Haar wavelet transform 

and signed correlator method for estimating the cyclic spectra of a detected signal. The 

proposed method performance was evaluated over Rayleigh flat fading and AWGN 

channel that had low SNR values. The acquired simulation results indicated the 

efficiency of the proposed method in terms of reduction 70% in complexity, 60% in 

time, and 7% in memory storage, with improved detection performance that is about 

8% compared to conventional method at low SNR values reach to -30dB. 
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1. INTRODUCTION

Wireless device distribution and the requirement for faster 

data rate transmission have increased in recent years. Radio 

spectrum shortage has resulted from a crowded environment 

and spectrum congestion. As a result, new solutions to utilize 

unused spectrum bands and boost spectrum usage in 

dynamically changing contexts are required [1]. Cognitive 

radio approaches have recently been investigated to meet the 

needs of expanding wireless applications on a restricted 

frequency resource. Spectrum sensing techniques play a key 

role in cognitive radio networks [2]. Its key objective is to 

detect spectrum holes so Cognitive User is able to utilize it and 

monitor the signal activity of the Authorized User to make sure 

that when the authorized user utilizes the spectrum again, the 

cognitive user can immediately leave the relevant frequency 

spectrum. The previous fixed spectrum sensing approaches 

have been unable to react to dynamic modifying in spectrum 

requirements, resulting in issues such as spectrum passiveness 

and unbalanced use, complicating the supply-demand 

imbalance for spectrum resources. The SU's receiver detection 

model employs a traditional technique commonly referred to 

as binary hypothesis testing, in which H0 represents the PU 

absence and H1 represents the PU presence. Suppose that a CR 

user receives a signal with a hypothesis that is [1]: 

𝑦(𝑡) = {
𝑥(𝑡) + 𝑤(𝑡)   for 𝐻1
𝑤(𝑡)                 for 𝐻0

(1) 

where, y(t) is the received signal, x(t) is the PU's transmission 

signal, and w(t) is additive white Gaussian noise (AWGN). To 

distinguish between the hypotheses, a hypothesis test is used 

with a specific threshold derived from the likelihood errors on 

the SU receiver. In the hypothesis tests that employ the model 

given in Eq. (1), there are two types of errors. The first error is 

false alarm probability (Pf) which happens when the SU's 

receiver receives a PU signal while PU not exist. In spectrum 

sensing, the false alarm probability is an essential system 

parameter to determine the threshold in the hypothesis test. 

The other is the probability of missed detection (Pm) that 

happens when the SU's receiver sees no PU signal when the 

PU is present and it is equivalent to: 

𝑃𝑚=1 −𝑃𝑑 (2) 

where, Pd is the probability of detection. The efficiency of the 

CR system is defined by the false alarm probability Pf and the 

detection probability Pd [1, 2]. Pd and Pf indicated as the 

following: 

𝑃𝑓 = P(𝛾 > 𝜆 𝐻0⁄ ) = 𝑒
−
(2𝑁+1)𝜆2

2𝛿4 (3) 

𝑃𝑑 = P(𝛾 > 𝜆 𝐻1⁄ ) = 𝑄1(
√2𝛾

𝛿
,
𝜆

𝛿𝐵
) (4) 

where, N is the number of samples, λ is the threshold and δ is 
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the variance of the input signal: 

 

𝜆 = √((− log 𝑃𝑓𝑎) ∗ 2 ∗ 𝛿𝐵
2) (5) 

 

where, Q1 () is the Q function, γ is the SNR and the value of 

δB can be calculated from the equation: 

 

𝛿𝐵
2 =

(2𝛾 + 1)𝛿4

2𝑁 + 1
 (6) 

 

Cyclostationarity is found in a lot of modulated signals 

presented in communications and telemetry systems. The 

signal is characterized as a cyclostationary signal if its 

statistical properties exhibit periodicity. The statistical 

properties of a cyclostationary system vary over time regularly, 

and it indicates various signal features such as rate, frequency, 

anti-noise ability, and modulation type [3]. Cyclostationary 

methods, its second-order statistical parameters, can show less 

computations in time and memory in terms of simulation and 

experimentation, so they are studied by many researchers. 

Zhang et al. [4] offered three low-complexity detection 

techniques that can reduce computing complexity. The 

algorithm analysis and practical findings reveal that the 

suggested techniques outperform other techniques involving 

BER performance and computational cost.  

Hu et al. [5] presented FACA technique of acquiring the 

cycle frequencies of a cyclostationary signal efficiently 

through increasing FFT window.  

Souza et al. [6] demonstrated a unique spectral sensing 

approach for detecting signals with nonlinear phase fluctuation 

over time. It relies on the angle-time cyclostationarity theorem, 

which employs transformations to the detected signal to limit 

the impacts of nonlinear phase variation. The acquired 

simulation results indicated enhanced outcomes as a result of 

the primary user detection rate heightened by approximately 8 

dB.  

Kadjo et al. [7] presented a blind detection method 

depending on the cyclostationary properties of received 

signals is developed to circumvent the limitations of spectrum 

detectors. The processing cost is reduced by using the FFT 

accumulation technique for estimating the cyclic spectrum of 

the received signal. The simulation results demonstrated that 

the detector can detect the existence of a communication signal 

with a very low SNR.  

Mathew and Samuel [8] presented a unique low-complexity 

technique for extracting cyclic features of wideband signals in 

sub-Nyquist samples. Because of the sparse spectrum's use in 

wideband, sub-Nyquist sampling and cyclostationary feature 

detection are used at baseband for identifying the modulation 

technique with low computational complexity.  

Abdullah et al. [9] presented a hybrid low-cost spectrum 

sensing approach with improved detection efficiency using 

energy and cyclostationary detectors. The approach is built in 

a way that the energy detector is considered at high SNR 

values to conduct the detection and cyclostationary detector at 

low SNR a with lower complexity is considered for aiding in 

accurate detection. The complexity is reduced by limiting the 

amount of sensing samples utilized in the time domain 

autocorrelation process and by employing the Sliding Discrete 

Fourier Transform (SDFT) rather than FFT. 

In this study, a low-complexity cyclostationary detector is 

proposed. It uses low complexity frequency transform, 

correlator, and threshold setting algorithms while ensuring the 

same detection performance in the AWGN channel. The of the 

paper is organized as follows: in Section 2, conventional 

cyclostationary detector is described. Section 3, presents the 

proposed cyclostationary method. Section 4 illustrates the 

obtained simulation results with their evaluation, while 

Section 5 demonstrates the conclusions drawn throughout the 

research paper. 

 

 

2. CONVENTIONAL CYCLOSTATIONARY 

DETECTOR 

 

Several sensing methods have been proposed to detect the 

primary user presence. Examples of these techniques include 

energy detection, cyclostationary detection, and matched filter 

detection. Energy detection is relatively simple to implement 

and computationally efficient but is sensitive to noise as it does 

not distinguish between signal from noise. Matched filter-

based detection requires some prior knowledge about the 

primary user signal as it compares the received to the reference 

waveform which may not always be available or accurate in 

practical scenarios as this information about the signal is often 

unavailable [10]. Cyclostationary feature detection (CFD) 

utilize of inherent periodicity in modulated signals, generally 

achieved through the coupling with sinusoidal carriers. By 

effectively detect and analyze this periodicity, the cognitive 

system can detect this the presence of the primary user in the 

signal. CFD can differentiate between noise signals and 

modulated signals using signal cyclic features. For lower 

SNRs, cyclostationary feature detection (CFD) detection 

performance is better but has higher computational complexity 

and detection time than matched filter and energy detector. 

 

 
 

Figure 1. Cyclostationary feature detection 

 

The cyclostationary feature detection approach is associated 

with detecting the inherent cyclostationary characteristics of a 

modulated signal using the knowledge that signals are 

typically combined with sine wave carriers, repeated 

spreading, pulse trains, or cyclic prefixes, resulting in 

periodicity. Statistics such as mean autocorrelation also 

demonstrate periodicity in a broad sense. Because this 

periodicity feature is employed to determine the presence of 

primary users, this approach performs satisfactorily in low 
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SNR situations. Because noise is unpredictable and lacks 

periodicity, the noise-rejecting capability is quite strong in the 

scenario of cyclostationary feature detection [11]. As 

stationary signals are often examined using the autocorrelation 

function and power spectral density, cyclostationary signals 

are studied using generalizing of these functions known as the 

Cyclic Autocorrelation Function (CAF) and the Spectral-

Correlation Density Function (SCD). Figure 1 shows the 

structures of the conventional cyclostationary feature detectors. 

After signal is received from bandpass filter, the signal is 

sampled, then FFT of the sampled signal is computed and 

correlated with its conjugate in correlation stage then average 

data over period of T to reduce the effect of noise and used in 

feature detection stage where signal feature is detected to 

decision the presence or absence of PU. 

A time-series 𝑅𝑥 
𝛼 (𝜏) is said to exhibit as the main parameter 

of second-order cyclostationarity (SOCS) in continuous time 

for some nonzero frequency α, called the cyclic frequency, is 

called Cyclic Autocorrelation Function (CAF) [11]: 

 

𝑅𝑥 
𝛼 (𝜏)| ≜ 〈𝑥 (𝑡 +

𝜏

2
) 𝑥∗ (𝑡 −

𝜏

2
) 𝑒−𝑖2𝜋𝛼𝑡〉0 (7) 

 

CAF is representing the amount of correlation between 

different frequency shifted version of a signal. The signal is 

called cyclostationary if CAF is not zero for nonzero cyclic 

frequency α. If x(t) demonstrates SOCS, the second-order 

temporal instant for x(t) is given by: 
 

𝑅𝑥(𝑡, 𝜏) ≜ 〈𝑥 (𝑡 +
𝜏

2
) 𝑥∗ (𝑡 −

𝜏

2
)〉 (8) 

 

For each τ, it is a periodic function of t. The moment 

function and the cyclic autocorrelation function are connected 

by Eqs. (6)-(7). 
 

𝑅𝑥(𝑡, 𝜏) =∑𝑅𝑥 
𝛼 (𝜏)𝑒𝑖2𝜋𝛼𝑡

𝛼

 (9) 

 

when the sum is for all cycle frequency parameters α so that 

𝑅𝑥
𝛼 (τ) are not exactly zero. The time-domain (or temporal) 

parameters that demonstrate the SOCS of x(t) are in Eq. (6) 

and the CAF in Eq. (7). The finite-time Fourier transform 

defines a spectral parameter with approximated bandwidth 1/T 

and a center frequency f: 
 

𝑋𝑇(𝑡, 𝑓) ≜ ∫ 𝑥(𝑣)𝑒−𝑖2𝜋𝑓𝑣  𝑑𝑣
𝑡+𝑇 2⁄

𝑡−𝑇 2⁄

 (10) 

 

The spectral correlation function can be defined as the time 

average of the bandwidth-normalized conjugate products of 

two spectral components with the center frequencies f1 and f2 

as the bandwidth approaches zero [11]: 

 

𝑆𝑥(𝑓1,  𝑓2) = lim
𝑇→∞

〈
1

𝑇
𝑋𝑇(𝑡, 𝑓1)𝑋𝑇

∗(𝑡, 𝑓2)〉0 (11) 

 

It can be demonstrated that the aforementioned spectral 

correlation value is only non-zero when both center 

frequencies have been separated by a cycle frequency α: 
 

𝑆𝑥(𝑓1,  𝑓2) ≜ lim
𝑇→∞

〈
1

𝑇
𝑋𝑇(𝑡, 𝑓 + 𝛼 2⁄ )𝑋𝑇

∗(𝑡, 𝑓 − 𝛼 2⁄ )〉0 (12) 

 

where, 𝛼 = 𝑓1 − 𝑓2; 𝑓 =
𝑓1+𝑓2

2
. 

It is additionally demonstrated the fact that the spectral 

correlation function 𝑆𝑥
𝛼(f) is the Fourier transform, which is 

the measure of the cyclic autocorrelation. 

 

𝑆𝑥
𝛼(𝑓) = ∫ 𝑅𝑥

𝛼(𝜏)𝑒−𝑖2𝜋𝑓𝜏  𝑑𝜏
∞

−∞

 (13) 

 

It is important to note that the cyclic autocorrelation for α=0 

corresponds to the standard autocorrelation function, 

 

𝑅𝑥
0(𝜏) = 〈𝑥(𝑡 + 𝜏 2⁄ )𝑥∗(𝑡 − 𝜏 2⁄ )〉0 (14) 

 

and the spectral correlation function for α=0 corresponds to the 

power spectral density function, 

 

𝑆𝑥
0(𝑓) = lim

𝑇→∞
〈
1

𝑇
|𝑋𝑇(𝑡, 𝑓)|

2〉0 (15) 

 

The main advantage of cyclostationary detector is than other 

detection methods is its detection performance with large 

noise and at Low SNR. But it difficult to implement because 

of its long processing time and the high computational 

complexity. 
 

 

3. THE PROPOSED METHOD 
 

In this paper, an improved cyclostationary detection with 

low complexity is proposed by combining transformation and 

correlation processing by using a Modified Cyclostationary 

detector based on Haar wavelet and Signed Correlator 

(MCHSC). In the proposed MCHSC, the FFT process is 

replaced by Haar wavelet transform and the traditional 

autocorrelation process with the signed correlator. The two 

processes used to get the best reduction in the complexity of 

the system. Likewise, we have extracted the statistical 

parameter of the proposed method, named Tsim, with less 

complexity than the original system, and thus we have 

obtained a large degree of simplification of the system. The 

proposed system is designed for reduced complexity, time and 

memory the conventional system with improved performance. 

Figure 2 shows the structures of the proposed cyclostationary 

feature detectors. The highlighted blocks of the figure 

demonstrate the parts that are changed to lower complexity 

with improved performance and accuracy. 

 

3.1 Haar wavelet transform 
 

On changing data, the CWT solution is commonly utilized 

[9]. Many investigations depend on time series approach data 

by considering the parameters of the time series data. The time 

series approach is less successful due to the connection 

between transmission complexity and non-stationary data. 

Wavelet analysis, which analyzes the properties and 

confidence estimations of non-stationary signals, is the 

solution to this challenge. Wavelet analysis illustrates the 

frequency decomposition of a signal and determines its 

spectral features in time.  As the Fourier transform is 

ineffective for analyzing time series signals with non-

stationary features, a wavelet transform is invented as an 

improvement of the Fourier transform. The wavelet transform 

divides the signal into time and frequency domains. The 

wavelet function was first introduced by Haar. Wavelets are 

divided into two types, namely the written father wavelet and 

mother wavelet functions [12]. 
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∫ ∅(𝑥)𝑑𝑥; ∫ 𝜓(𝑥)𝑑𝑥

∞

−∞

∞

−∞

 (16) 

 

 
 

Figure 2. Cyclostationary proposed detector 

 

The Haar wavelet transform, an extension of Fourier 

analysis, has become widely used in various signal-processing 

processing technologies. Haar began with the mother function, 

 

𝜓[0,1](𝑟) =

{
 
 

 
 1,    0 ≤ 𝑟 <

1

2

−1,   
1

2
≤ 𝑟 < 1

0,       otherwise

 (17) 

 

To overcome the resolution problem, the continuous 

wavelet transform CWT was developed as an alternative 

method to FFT. The wavelet analyses are performed in the 

same manner as the FFT. More specifically, the signal is 

multiplied by a function (the wavelet), and the transform is 

performed independently for each segment of the time-domain 

signal. The transform is actually a convolution function-an 

integration of the product of the sliding wavelet function and 

the signal. Convolutions determine the amount of overlap 

between two functions as one is shifted over the other, which 

measures how similar they are. 

The distinguishing characteristic of the wavelet transform is 

that the window width changes as the transform is obtained for 

each spectral component [13]. 

The continuous WT of a signal s(t) is defined as: 

 

𝐶𝑊𝑇(𝑎, 𝜏) = ∫𝑠(𝑡)𝜓∗𝑎(𝑡)  𝑑 = 1 √𝑎⁄ ∫𝑆(𝑡)𝜓∗(𝑡 − 𝜏 𝑎⁄ ) (18) 

 

where, 𝑠(𝑡)  is the receiver signal,  𝝍∗ = (𝒕 − 𝝉 𝒂⁄ )  is the 

conjugate function of the Haar function with |a| is a scaling 

factor that controling the width of wavelet and 𝝉 is the 

translation parameter that controling the wavelet location. the 

scaling parameter a modifies the shape of the wavelet function. 

The adjustment of this parameter stretches and compresses the 

mother wavelet into its daughter wavelets, which changes the 

temporal duration of the windowing function. The scaling 

parameter enables the transform to have a variable window 

width and offers the efficiency of isolating high frequency 

features with good time resolution. 

The factor 
1

√𝑎
 in the CWT normalizes the transform to keep 

the energy of the scaled wavelet the same as the energy of the 

mother wavelet, ψ(t), regardless of the shape and duration of 

the wavelet localized at time t and scaled by Martinez-Ríos et 

al. [14]. 

 

3.2 Signed correlator 

 

This method is dependent on Bussgangs' theorem [15], 

which replaces complex multiplications with sign alterations 

in synthesis. This benefit, in addition to the data multiplexing 

process required, is further acknowledged in hardware 

configurations on FPGA or ASIC, where size and complexity 

are significantly reduced. It is known that correlation 

calculation can be improved by clipping one of the correlate 

signals to ±1, resulting in merely sign value. As a result, 

multiplications of the associated signal will result in sign 

changes of the other signal. Using Bussgang theorem, the cross 

correlation between two signals can be equivalent to a scaled 

version of one signal correlated with a transformed version of 

the other signal in a non-linear memory-less manner. The 

benefits of this kind of technique are widely known: lesser 

hardware, high-speed processing due to lesser logic taps, 

decreased storing space demands, and reduced data 

transmission among components of different systems. 

According to Bussgang's theorem, the cross-correlation 

𝑅𝑢𝑣(𝜏) between u(t) and v(t) signals has the same form of 

function in τ as the cross-correlation 𝑅𝑢𝑣′(𝜏) of u(t) and v(t), 

where v'(t) can be obtained from v(t) by a nonlinear 

memoryless transformation gave that u(t) and v(r) are 

stationary Gaussian processes. Let 𝑣′(𝑛)  be produced from 

𝑣(𝑛)  by any nonlinear memoryless transform ɸ[. ]  so that 

𝑣′(𝑛) = ɸ[𝑣(𝑛)]: 
 

Φ[𝑣] =
1

√2
[𝑠𝑖𝑔𝑛(𝑅𝑒[𝑣]) + 𝑗𝑠𝑖𝑔𝑛(𝐼𝑚[𝑣])] (19) 

 

Further simplification in the computation of correlation can 

be achieved by rotating the output of the complex sign detector 

by 𝜋/4 [16]. As the rotated output of the sign detector can take 

one of four possible values, namely, i.e., I/√2 & times (1, 0), 

(0, l), (-1, 0), or (0, -l), the complex multiplications involved 

in correlation computation can be replaced by sign detection 

and multiplexing operations. 

Let's consider two zero-mean complex Gaussian processes, 

𝑣(𝑛) and 𝑢(𝑛), which are jointly stationary. Suppose 𝑣′(𝑛) is 

obtained from v(n) through a nonlinear memoryless transform 

ɸ [. ]  so that 𝑣’(𝑛) = ɸ [𝑣(𝑛)].  In essence, this technique 

simplifies the correlation computation by reducing complex 

multiplication to a multiplexing operation on the real and 

imaginary components of the input sequences. To extend the 

aforementioned approach of computing the time-averaged 

estimates of the cyclic cross spectrum let 𝑢(𝑛) ≜ 𝑋𝑇(𝑛, 𝑓0 +
𝛼0 2⁄ ) and v(𝑛) ≜ 𝑌𝑇(𝑛, 𝑓0 + 𝛼0 2⁄ ). The time-averaged cyclic 

cross spectrum can be approximated by: 
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𝑆𝑥𝑦𝑇
𝛼0 (𝑛, 𝑓0)∆𝑡 =

𝑎(𝑓0 − 𝛼0 2⁄ )

𝑇
〈𝑋𝑇(𝑛, 𝑓0

+ 𝛼0 2⁄ ). (𝛷[𝑌𝑇(𝑛, 𝑓0
− 𝛼0 2⁄ )]𝑒𝑗𝜋 4⁄ )∗〉∆𝑡 

(20) 

 

where, the scaling factor is: 

 
𝑎(𝑓0 − 𝛼0 2⁄ ) 

=
1

2
〈(Φ[𝑌T(𝑛, 𝑓0 − 𝛼0 2⁄ )]𝑒𝑗𝜋 4⁄ . 𝑌𝑇

∗(𝑛, 𝑓0 − 𝛼0 2⁄ )〉∆𝑡 
(21) 

 

This modification, as previously mentioned, can greatly 

lower the computational cost of the correlation operation. 

To achieve an equivalent approximate for frequency-

averaged estimations of the cross-cyclic spectrum, we notice 

that for sufficiently big 𝛥𝑡  and little 𝛥𝑓 , the spectral 

components 𝑢(𝑚) ≜ 𝑋𝑇(𝑛, 𝑓0+𝑚 𝛥𝑡⁄ + 𝛼0 2⁄ )  and v (𝑚) ≜

𝑌𝑇 (𝑛, 𝑓0+𝑚 𝛥𝑡⁄ + 𝛼0 2⁄ ). Approximately statistically stationary 

in m throughout the averaging band of width Δf with 𝑢(𝑛) and 

v(𝑛)  substituted by 𝑢(𝑚)  and v(𝑚) . Here, the frequency-

averaged cyclic cross spectrum be approximately represented 

by: 

 

𝑆𝑥𝑦∆𝑡
𝛼0 (𝑛, 𝑓0)∆𝑓 =

𝑏(𝑓0 − 𝛼0 2⁄ )

∆𝑡
〈𝑋∆𝑡(𝑛, 𝑓0 +𝑚 ∆𝑡⁄

+ 𝛼0 2⁄ ). (Φ[𝑌Δ𝑡(𝑛, 𝑓0 +𝑚 ∆𝑡⁄

− 𝛼0 2⁄ )]𝑒𝑗𝜋 4⁄ )∗〉∆𝑓 

(22) 

 

where, the scaling factor is: 

 

𝑏(𝑓0 − 𝛼0 2⁄ ) =
1

2
〈(Φ[𝑌Δ𝑡(𝑛, 𝑓0 +𝑚 ∆𝑡⁄

− 𝛼0 2⁄ )]𝑒𝑗𝜋 4⁄ . 𝑌∆𝑡
∗ (𝑛, 𝑓0 +𝑚 ∆𝑡⁄

− 𝛼0 2⁄ )〉∆𝑓 

(23) 

 

When performed in the hardware configuration of the cyclic 

spectrum analyzer, the signed correlator technique offers 

several benefits. The hardware simplifying obtained by 

substituting complex multipliers used in the spectral 

correlation process with Signed Correlator arithmetic units is 

the most significant. 

 

3.3 Threshold setting 

 

Consequently, the sum of cyclostationary signal power at all 

Correlation Functions (CFs) is the sufficient statistic for the 

optimum detector for cyclostationary signals. This detector is 

called the MC detector, the total power can be calculated as: 

 

𝑌𝑀𝐶 =∑𝑅𝑟
𝛼𝑘(𝜏 = 0)

𝑁𝛼

𝑘=1

 (24) 

 

where, 𝑅𝑟
𝛼𝑘(𝜏 = 0)  represents the cyclostationary signal 

power at the kth CF. 

Several ways to spectrum sensing for CR applications have 

been presented. The most widely considered methodologies 

are based on power spectrum estimation, energy detection, and 

multicycle cyclostationary (MC) detection. The traditional 

MC detector test statistic is simplified in this study to reduce 

computation complexity. An enhanced MC detector was 

suggested based on this simplification method. In comparison 

to the traditional detector, the suggested detector has less 

computational complexity with highly sensing efficiency. 

Because 𝑌𝑀𝐶 = 𝑅𝑒(𝑌𝑀𝐶) + 𝑗𝐼𝑚(𝑌𝑀𝐶) is a complex random 

variable, the traditional MC detector test statistic can be given 

by Zhu et al. [17]. 

 
𝑇𝑀𝐶 = |𝑌𝑀𝐶|

2 

=∑|𝑅𝑟
𝛼𝑘(𝜏 = 0)|

2
+∑ ∑ 𝑅𝑟

𝛼𝑘(𝜏 = 0)

𝑁𝛼

𝑛=1,𝑛≠𝑘

𝑁𝛼

𝑘=1

𝑁𝛼

𝑘=1

𝑅𝑟
𝛼𝑛
∗

(𝜏 = 0) (25) 

 

TMC will be simplified to lower computational complexity. 

Because the 2nd term of TMC requires a significant amount of 

computation, it is removed here. The 1st part of TMC is 

employed as the test statistic for the proposed detector. As a 

result, the simplified test statistic of the proposed detector can 

be defined as: 

 

𝑇𝑠𝑖𝑚 =∑|𝑅𝑟
𝛼𝑘(𝜏 = 0)|

2

𝑁𝛼

𝑘=1

 (26) 

 

Because Tsim is the test statistic of the proposed detector, the 

structure of the detector can be defined as: 

 

𝑇𝑠𝑖𝑚 =∑|𝑅𝑟
𝛼𝑘(𝜏 = 0)|

2

𝑁𝛼

𝑘=1 <
𝐻0

𝐻1
>

𝜆 (27) 

 

where, λ is the detection threshold. As a result, the suggested 

detector's false alarm and detecting probability can be 

described as: 

 

𝑃𝑓𝑎 = ∫ 𝑃(𝑇𝑠𝑖𝑚 𝐻0⁄ )𝑑𝑇𝑠𝑖𝑚

+∞

𝜆

 (28) 

 

𝑃𝑑 = ∫ 𝑃(𝑇𝑠𝑖𝑚 𝐻1⁄ )𝑑𝑇𝑠𝑖𝑚

+∞

𝜆

 (29) 

 

The computational complexity of TMC and Tsim can be 

illustrated as follows: computing TMC required N2 complex 

multiplication and  (𝑁2 − 1) complex additions. Therefore, 

the overall computations of TMC are (2𝑁2– 1) and thus 𝛳(𝑁2) 
is the complexity of computation. For computing Tsim, we need 

to perform N complex multiplications and (𝑁 − 1) complex 

additions. Thus, the total number of computations for Tsim is 

(2𝑁–1), and 𝛳(𝑁) is the computational complexity of the 

suggested detector. 

 

 

4. SIMULATION RESULTS AND DISCUSSION 

 

In this section, we will demonstrate the simulation results 

for evaluating the performance of the proposed method that is 

carried out in Rayleigh flat fading channels. The simulations 

are performed using MATLAB version R2022b. Table 1 

shows the simulation parameters used to implement the 

proposed method. Table 2 shows the computations complexity 

reduction in each stage of the proposed method in comparison 

with the conventional method can be noticed the amount of 

complexity reduction that developed in the overall system that 

can reach to more than 70% reduction from the conventional 

method with the improved performance. 

Figure 3 shows the performance of the proposed method by 

investigating the detection probability Pd versus SNR that 

show the cyclostaationay performance at low SNR ranging 
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between −30dB and -5dB and in Rayleigh multipath flat fading 

channel in both conventional and proposed systems. In 

comparison with the conventional method, that there is an 

improvement in Pd which is about 0.08 in proposed method 

and the Pd reaches 1 at -26dB SNR in the proposed method 

while it is reached at -24dB in the conventional method. 

 

Table 1. Simulation parameters used to implement the 

proposed approach 

 
Parameter Value 

PU signal type QPSK 

Channel type Rayleigh flat fading 

Pfa 0.01 

No. of samples 10000 

SNR range -30 to -5dB 

 

Table 2. Computational complexity of each stage of the 

proposed and conventional methods 
 

Algorithm 
Methods 

Conventional Proposed 

Window O(N) O(N) 

Frequency Transform O(N log2 N) O(N) 

Correlation 

Multiplication 
O(N2) O(N) 

Signal Detection 2*O(N2)+O(N) O(N2)+O(N) 

Total 
2*O(N)+2*O(N2)+O(N 

LOG N) 
4*O(N)+O(N2) 

 

 
 

Figure 3. The performance comparison of conventional and 

suggested methods corrupted by Rayleigh & AWGN channel 
 

 
 

Figure 4. The miss detection probability with SNR 

comparison of conventional and proposed method 

 
 

Figure 5. The detection performance with Pfa comparison of 

conventional and proposed method 

 

 
 

Figure 6. The performance comparison of conventional and 

proposed approach number in terms of the number of 

samples regarding to computational complexity ratio 

 

Figure 4 shows the plot of SNR versus Pm with a fixed 

Pfa=0.01. As shown, a lower probability of missed detection 

can be achieved using the proposed method than conventional 

method. 

Figure 5 illustrates the relationship between Pfa and Pd at 

SNR value of -30dB. This curve indicates that as Pfa increases, 

the Pd also increases. Furthermore, it is observed that the 

detection probability reaches its maximum value of Pd=1 

when the false-alarm probability exceeds 0.1, with the 

proposed method Pfa equal 0.2 in conventional method. 

Figure 6 demonstrates comparison of traditional and 

proposed methods by investigating the number of samples 

versus the computational complexity ratio. It can be seen in 

this figure that the computing complexity is significantly 

reduced using the proposed MCHSC method as compared to 

traditional method and this reduction is increased as the 

number of samples is increased. For instance, the 

computational complexity of conventional cyclostationary and 

proposed technique methods are computed as shown in the 

following equations [9]: 

 

CS w ft Corr sdC C C C C= + + +  (30) 

 

where, CCS=total computational complexity of cyclostationary 

technique, Cw=Widowing complexity, Cft=Fourier transform 
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complexity and Csd=Signal Detection complexity 

In conventional cyclostationary, computational complexity 

Cconv is computed as follows: 

 
𝐶𝑐𝑜𝑛𝑣=𝑁 + 𝑁 𝑙𝑜𝑔2 𝑁 + 𝑁2 + 𝑁2 + 𝑁 = 2𝑁 + 2𝑁2 +𝑁 𝑙𝑜𝑔2 𝑁 (31) 

 

In the proposed, the computational complexity Cprop are 

computed as follows: 

 
𝐶𝑝𝑟𝑜𝑝=𝑁 + 𝑁 + 𝑁 + 𝑁2+ 𝑁 = 4𝑁 +𝑁2 (32) 

 

The computational complexity ratio of each method is 

computed as follows: 

 

conv conv conv axm/C ratio C C
−

=  (33) 

 

-prop prop conv axm/C ratio C C=  (34) 

 

Cconv_max=maximum computational complexity of 

conventional method. 

Table 3 shows comparison between proposed and other 

studies in terms of the average complexity reduction, number 

of samples, probability of false alarm and probability of 

detection. The table shows that the proposed method is better 

in complexity reduction, probability of detection and in lower 

SNR values. 

 

Table 3. Performance of the proposed method compared with 

previous implementations 

 

Method SNR Pfa Pd N 
Complexity 

Reduction 

[18] -20 -- 0.5 32 40% 

[9] 0 to 10 0.001 0.7 100 40% 

[19] -20 to 0 0.1 0.1 8 70% 

[20] -20 to 0 0.1 0.8-0.9 1000 40% 

Proposed 

Method 
-30 to -5 0.01 0.95 10000 >70% 

 

Table 4. Proposed system performance in terms of 

complexity cost, time, and storage compared with a 

conventional system 

 

Method 

Avg 

Complexity 

Reduction (%) 

Time(s) Storage (MB) 

Conventional - 1.203 4169 

Proposed ⁓70% 0.46 3855 

 

Table 4 shows comparison between proposed and 

conventional methods in terms of the average complexity 

reduction, time and required storage. The table shows that the 

proposed system significantly improves all above mentioned 

parameters at low SNR reach to -30 with reduction >70% in 

complexity, 60% in time, and 7% in memory storage, with 

improved detection performance that is about 8% compared to 

conventional method. 

 

 

5. CONCLUSIONS 

 

Cyclostationary feature detection can be computationally 

intensive as the cyclostationary features may require 

significant computationally resources making real-time 

processing challenging, particularly in resource constrain 

environments. In this research, a low-complexity 

cyclostationary feature detection for improved primary user 

signal detection with reduced computational complexity is 

proposed. The proposed detection method uses Haar wavelet 

transform and signed correlator with simplified test statistics 

for digital communication receivers with QPSK Modulation. 

The proposed detection is computationally effective and can 

be easily implemented using embedded systems, signal 

classification and modulation recognition for practical 

application. The complexity reduction is also referred to that 

the proposed signed correlator algorithm only takes the sign 

bit of the real and imaginary portions of spectral data, so the 

storage and transfer issues are considerably minimized. The 

simulation result shows that the proposed method significantly 

reduces the complexity cost, time, and storage at low SNR 

reaches -30dB with reduction >70% in complexity, 60% in 

time, and 7% in memory storage, with improved detection 

performance that is about 8% compared to conventional 

method. 

 

 

6. FUTURE RESEARCH 

 

The system is evaluated under an AWGN and Rayleigh 

multipath fading. Other effects like other fading types, 

Doppler shift, phase error, etc., can be added to the channel in 

order to closely reflect the real-life system. The utilization of 

the Multiple Input Multiple Output (MIMO) technique can 

enhance the results of cyclostationary feature detection. 

Additionally, cooperative communication can be employed to 

sense the spectrum, taking into account factors such as antenna 

diversity and other relevant considerations. These approaches 

contribute to improved cyclostationary feature detection 

outcomes. 
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