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Signal processing plays a crucial role in biomedical applications, facilitating accurate 

health monitoring and clinical diagnoses. This study presents a comparative analysis of 

Gaussian, Mittag-Leffler, and Savitzky-Golay filters, evaluating their effectiveness in 

noise reduction and signal enhancement for electrocardiogram (ECG) signals. These 

filters offer adjustable parameters, making them adaptable to various applications. Our 

findings demonstrate that the Savitzky-Golay smoothing filter outperforms the others 

in smoothing data and computing derivatives of noisy data, despite its limitations in 

suppressing noise at higher frequencies. On the other hand, the adaptive Gaussian and 

Mittag-Leffler filters excel in noise reduction but may compromise fine signal details. 

Through MATLAB simulations and mean squared error (MSE) comparisons as well as 

Signal to Nosie Ratio (SNR), we evaluate the filters' performance in denoising real-

world ECG signals. The results indicate that both the Savitzky-Golay smoothing and 

Mittag-Leffler filters hold promise for noise reducing in other biomedical signals, such 

as medical EEG and medical EMG signals. This research serves as a foundational 

exploration of the application and enhancement of these filters in biomedical signal 

processing. 
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1. INTRODUCTION

Biosignals, the physiological and physical measures of 

human body functions, offer an insightful peek into an 

individual's physiological, pathophysiological, and emotional 

states, thus playing an indispensable role in health monitoring 

and clinical diagnosis. They exemplify the dynamic and 

complex nature of human physiology, manifesting themselves 

in myriad forms such as Electrocardiograms (ECGs), 

Electroencephalograms (EEGs), and Electromyograms 

(EMGs). Specifically, ECGs, which record the heart's 

functioning, including its rate and rhythm, provide vital 

information regarding potential heart disorders like coronary 

artery narrowing, heart attacks, and irregular heartbeats such 

as atrial fibrillation [1-6]. 

The acquisition of biosignals often involves the presence of 

unwanted components or noise, which can significantly 

compromise their quality and interpretability. Consequently, 

signal filtering—the process of removing undesirable 

elements or features from a signal—becomes extremely 

significant. Many different fields, including radio, television, 

image processing, graphics software, radar, recording of 

sounds, machine control, and music manufacturing, use filters 

extensively.  

However, their utility is perhaps most crucial in biomedical 

systems, where they enhance the readability and accuracy of 

outputs from sensors like EEG, EMG, and ECG [7-12]. 

In this context, Gaussian, Mittag-Leffler, and Savitzky-

Golay filters emerge as popular choices in signal smoothing 

and image processing noise reduction. These filters, while 

presenting unique advantages, also come with their own set of 

limitations, varying across different applications. For instance, 

while the Gaussian and Mittag-Leffler filters excel in noise 

reduction and offer ease of implementation, they may fail to 

retain fine image detail and contrast and underperform when 

dealing with salt-and-pepper noise. Conversely, the Savitzky-

Golay smoothing filter demonstrates efficacy in smoothing 

data and calculating noisy data derivatives but falls short in 

noise suppression at higher frequencies and is susceptible to 

artifacts near data range boundaries. 

Against this backdrop, our paper seeks to calculate the MSE 

for Gaussian, Mittag-Leffler, and Savitzky-Golay filters and 

juxtapose their performances in denoising ECG signals. ECG 

signals, widely used diagnostic tools for detecting heart-

related issues, necessitate superior quality for accurate 

decision-making and classification. We hypothesize that an 

integrated approach, combining these filters, could potentially 

yield a low-pass filter that surpasses individual Gaussian and 

Mittag-Leffler filters in performance. 

Our work builds upon existing literature that has elucidated 

the properties and applications of Gaussian, Mittag-Leffler, 

and Savitzky-Golay filters. The Gaussian filter, with its kernel 

operator representing a bell-shaped filter and mathematical 

representation based on Gaussian distribution, has proven 

Mathematical Modelling of Engineering Problems 
Vol. 11, No. 7, July, 2024, pp. 1841-1850 

Journal homepage: http://iieta.org/journals/mmep 

1841

https://orcid.org/0000-0003-4249-2923
https://orcid.org/0000-0002-1249-009X
https://orcid.org/0000-0003-2255-0081
https://orcid.org/0000-0001-6943-6134
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.110713&domain=pdf


 

instrumental in digital signal and image processing [1-4]. Its 

prowess lies in the ability to effectively remove noise while 

retaining signal properties, regardless of frequency content 

variations [5]. More accurate and subtle noise reduction is now 

possible thanks to adaptive Gaussian filtering approaches like 

the contrast dependent spread (CDS) filter and the intensity 

dependent-spread (IDS) model, which have pushed the 

envelope [6-8]. 

Conversely, the Mittag-Leffler Filter, initially utilized by 

Ivo Petráš, has emerged as an innovative alternative to 

Gaussian filters. This filter, which uses the Mittag-Leffler (ML) 

function in the probability-density function -PDF, offers more 

versatility by allowing for curve shape adjustment because of 

the filter-hidden component. 

The Savitzky-Golay (SG) filter, proposed by Savitzky and 

Golay in 1964, has carved a niche for itself in various fields, 

specifically for biomedical data filtering. It provides a 

practical solution for noise reduction by maintaining the 

original signal shape and, consequently, its information, and 

by continuing to follow the guidelines of moving average 

filters [9, 10]. 

The SG filter has found broad-based acceptance across 

various applications, including but not limited to 

electroencephalography and ECG, elastography, near-infrared 

spectroscopy, functional magnetic resonance imaging, speech 

enhancement, and eye movement analysis [10]. 

The criticality of signal processing in the domain of 

biomedical sciences underscores the necessity for further 

exploration and understanding of these filters. Each has its 

unique strengths and trade-offs, and the context of application 

often dictates the choice of filter. The main goal of this study 

is to quantify the performances of Gaussian, Mittag-Leffler, 

and SG filters in denoising ECG signals using MSE as a metric. 

ECG signals are pivotal in the detection and diagnosis of heart-

related abnormalities. Thus, the importance of their quality for 

precise decision-making and classification cannot be 

overemphasized. 

By comprehensively comparing the efficacy of these filters, 

we aim to put forth a refined low-pass filter approach that 

leverages the strengths of each individual filter. The collective 

benefits may potentially outperform each filter used in 

isolation, thereby enhancing the accuracy and reliability of 

ECG signal denoising. We envision that the insights gleaned 

from this study will cover the way for improvements in 

biomedical signal processing and catalyze further exploration 

into two-dimensional extensions of the proposed filters for 

image processing applications. 

 

 

2. METHODS 

 

2.1 Gaussian function, Gaussian distribution and Gaussian 

filter 

 

The Gaussian function and distribution were utilized in our 

analysis. This mathematical function, originally defined by 

Carl Friedrich Gauss, is presented as: 

 

𝑓(𝑥) = 𝑒−𝑥2
 (1) 

 

and the parametric extension is: 

 

𝑓(𝑥) = 𝑎𝑒
−

(𝑥−𝑏)2

2𝑐2  (2) 

 

where a, b, and c are real constants. 

Gaussian functions are predominantly used in statistics and 

signal processing, where they represent the probability density 

function (PDF) of a normally distributed random variable, 

describe Gaussian filters, and define Gaussian distortions 

respectively [11] as shown in Figure 1. The Gaussian filter was 

implemented in our study through MATLAB function 

"gaussfilt(t,z,sigma)" to apply a Gaussian filter to a time series. 

 

 
 

Figure 1. Gaussian function with a =1 and c=2 and b=5 

 

2.2 Mittag-Leffler function, Mittag-Leffler distribution 

and Mittag-Leffler filter 

 

The Mittag-Leffler function, an integral part of the 

fractional calculus theory, was also incorporated in our study. 

Its one-parameter form is defined as: 

 

𝐸𝛼(𝑧) = ∑
𝑧𝑛

Γ(𝛼𝑛 + 1)

∞

𝑛=0

 𝛼 > 0 (3) 

 

where, Γ is a gamma function and 0 < α < 1. Its two-parameter 

form is described as the generalized Mittag-Leffler function 

having two parameters α and β, is described as following 

power series: 

 

𝐸𝛼.𝛽(𝑧) = ∑
𝑧𝑛

Γ(𝛼𝑛 + 𝛽)

∞

𝑛=0

 (4) 

 

The Mittag–Leffler filter was introduced to our study as a 

novel approach, executed using the MATLAB function 

"ML_filter (t, y, sigma, alpha, beta)" that applies the Mittag-

Leffler filter with exponential-type forgetting to a time series.  

Figure 2(a) displays the graph of the general Mittag-Leffler 

function where 'x' is plotted on the x-axis and 𝐸𝑎𝑙𝑝ℎ𝑎 ,0.5
𝛾 (𝑥) is 

depicted on the y-axis. An enhanced definition of the Mittag–

Leffler distribution is provided through the following PDF as 

per reference [12]: 

 

𝜑(𝑥; 𝜎, 𝛼, 𝛽) =
1

𝜎√2𝜋
𝐸𝛼,𝛽 (−

(𝑥 − 𝜇)2

2𝜎2
) (5) 

 

In this equation, σ, α, and β are positive filter parameters 

bound by the conditions 0 < 𝛼 < 2 and 0 < 𝛽 < 2, while μ 

represents the mean value of an independent variable x. 

Similarly, Figure 2(b) presents the plot for the general 

Mittag-Leffler function, using 'x' on the x-axis and 𝐸1,𝑏𝑒𝑡𝑎
𝛾 (𝑥) 

on the y-axis, shown for different beta values of 0.5,1, and 1.5. 

Figure 2(c) presents the graph for the general Mittag Lefller 
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function, where the x-axis represents 'x', and the y-axis depicts 

𝐸𝑔𝑎𝑚𝑚𝑎,0.5
𝛾 (𝑥).  This plot is constructed for distinct gamma 

values of 0.5, 1, and 1.5. 

 

 
(a) Representation with alpha variations 

 
(b) Representation with beta variations 

 
(c) Representation with gamma variations 

 

Figure 2. Comparative visualizations of the general Mittag-

Leffler function 

 

By following the notion of generalizing the exponential 

function to a two-parameter Mittag-Leffler function, a new 

generalized filter, referred to as the Mittag-Leffler filter, can 

be defined as per [13]: 

𝑦𝑀𝐿𝐹(𝑡) =
1

𝜎√2𝜋
∫ 𝑦(𝑡 − 𝜏)𝐸𝛼,𝛽(−

(𝜏 − �̂�)2

2𝜎2 )

∞

−∞

𝑑𝜏 (6) 

 

This three-parameter filter has more flexibility than the 

traditional one, offering more degrees of freedom thanks to the 

extra adjustable parameters α and β, which allow us to shape 

the distribution curve. 

 

2.3 Savitzky-Golay (SG) smoothing filter 

 

The Savitzky-Golay (SG) smoothing filter, a popular tool 

for signal smoothening, was utilized in our study. The 

Savitzky-Golay filters operate by employing a specific 

polynomial that fits within a signal frame via the least squares 

method. In this method, the median point of the window is 

substituted with the corresponding value from the polynomial, 

thus yielding a smooth output for the signal. The relevant 

polynomial can be articulated as follows [14]:  

 

𝜌(𝑟𝑖) = 𝑐0 + 𝑐1
𝑟 + ⋯ + 𝑐𝑝

𝑟𝑝
 (7) 

 

In this formulation, ‘𝜌’ refers to the corresponding apparent 

resistivity data vector, while ‘𝑟𝑖 ’ represents the northern 

coordinate point of the resistivity map. Constructing a 

Savitzky-Golay filter involves several initial decisions, 

including the determination of the filter length ‘𝑘’ , the 

derivative order 𝑛, the polynomial order ‘𝑝’, and the size of the 

smoothing window ‘𝑁’. 
The value of 𝑁 is chosen as an odd number that satisfies 

𝑁 ≥ 𝑝 + 1 . Upon application of the Savitzky-Golay filter 

coefficients to the signal, the polynomial is substituted at 

points defined by 𝑁 = 𝑁𝑟 + 𝑁𝑙 + 1. In this scenario, 𝑁𝑙  and 

𝑁𝑟  designate the left and right data points, respectively, 

relative to the current point in the signal. 

The estimation of the polynomial coefficients can be 

performed as follows: 

 

𝑀𝑐 = 𝑑 (8) 

 

The 𝑁 value is selected as an odd number, with 𝑁 ≥ 𝑝 + 1. 

Once the Savitzky-Golay filter coefficients are applied to the 

signal, the polynomial takes the place of the signal points, 

where 𝑁 = 𝑁𝑟 +  𝑁𝑙 + 1. In this context, 𝑁𝑙 and 𝑁𝑟 represent 

the points to the left and right of a current signal point, 

respectively. 

Anywhere 𝑀 can be stated as: 

 
2 ( ( 1) / 2)(( 1) / 2) ( ( 1) / 2)

 
( 1)

( 1)

(( 1 /

1

1 1 0
   

01 0 0

1 1 1

) 2)

p

p

p

p

M

kk k

k

− −− − −

−

−

−

−
=  (9) 

 

Where vector of polynomial coefficient ‘𝑐’ can be denoted 

as: 

 

𝑐 = ||

𝑐0

𝑐1
𝑐2…
𝑐𝑝

|| (10) 
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‘𝜌’ is the data vector values of size 𝑘. 

 

𝜌 =
|

|

𝜌 − (𝑘 − 1)/2

𝜌 − (𝑘 − 2)/2
…
𝜌0…

𝜌(𝑘−1)/2

|

|
 (11) 

 

Using matrix least squares, the vector of polynomial 

coefficients can be initiate as: 

 

𝑐 = (𝑀𝑡𝑀)−1𝑀𝑡𝜌 (12) 

 

The row values of (𝑀𝑡𝑀)−1𝑀𝑡𝜌  might be combined 

linearly to represent the polynomial coefficients of 'c'. Since 

all other polynomial values are zero, the polynomial value at 

𝜌0 can equal 𝑐0. The Savitzky-Golay at derivative order 0 can 

be represented as the central row matrix coefficients 
(𝑀𝑡𝑀)−1𝑀𝑡𝜌. 

 

2.4 MATLAB functions and implementation notes 

 

The discrete-time domain implementation of the Gaussian 

filter (GF), Mittag-Leffler (ML) filter, and the Savitzky-Golay 

(SG) smoothing filter was executed through specific 

MATLAB functions as shown in Figure 3. Given the non-

causal nature of the Gaussian and Mittag-Leffler filters, the 

filter window was symmetric in the time domain, necessitating 

a truncation for practical implementation. Additionally, in 

place of an integration process in convolution for these filters, 

the summation process over all samples was used. 

Furthermore, for the Mittag-Leffler function, problems of 

infinity upper sum limit in the definition were circumvented 

using the integral form of the Mittag-Leffler (ML) function 

[15-17]. 

These filters were applied to our data sets in the time series 

format, as described in the provided MATLAB function 

headers. The functions utilized were "gaussfilt(t, z, sigma)" for 

the Gaussian filter and "ML_filter(t, y, sigma, alpha, beta)" for 

the Mittag-Leffler filter. The implementation details of these 

functions are available in the Appendix. 

 

 
 

Figure 3. Block diagram representing the Gaussian filter, 

Mittag–Leffler filter, and Savitzky-Golay smoothing filter, 

with mean square error assessment 

 

 

3. RESULTS  

 

Figure 4 provides a schematic representation of the three 

signal filters under consideration in this research: the Gaussian, 

the Mittag-Leffler, and the Savitzky-Golay smoothing filters, 

with the graph depicting their respective mean square error 

calculations. The primary intent of these filtering mechanisms 

is to elucidate the inherent signal yT(t) from the contaminated, 

noise-ridden signal yN(t). In our study we assume only normal 

white noise in the ECG signal and the three filters were applied 

to remove this particular noise. 

 

 
(a) Gaussian filtered signal vs. noisy and ideal signal with 

σ=0.1 

 
(b) Gaussian filtered signal vs. noisy and ideal signal with 

σ=0.15 

 
(c) Mittag-Leffler filtered signal vs. noisy and ideal signal 

with σ=0.2, α=1, and β=1 
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(d) Mittag-Leffler filtered signal vs. noisy and ideal signal 

with σ=0.1, α=0.95, and β=0.9 

 
(e) Savitzky-Golay filtered signal vs. noisy and ideal signal 

with nl=4, nr=4, M=4 

 
(f) Savitzky-Golay filtered signal vs. noisy and ideal signal 

with nl=16, nr=16, M=4 

 

Figure 4. Comparative analysis of Gaussian, Mittag-Leffler, 

and Savitzky-Golay filters on a noisy signal 

 

This investigation was bifurcated into two primary sections. 

In the first segment, a prototypical signal was subjected to 

stochastic noise of normal distribution. Subsequently, this 

'noisy' signal was processed via the Gaussian, Mittag–Leffler, 

and smoothing filters to produce the filtered signal. Figures 

4(a)-(f) demonstrate the raw noisy signal, the subsequent 

filtered signal, and the optimal signal for each filter, under 

varying operational parameters. 

Table 1 provides a summarized view of these results, 

showcasing that, based on the mean squared errors (MSE) 

derived from the test signals, the Savitzky-Golay smoothing 

filter outperforms the others, followed by the Mittag–Leffler 

filter, with the Gaussian filter manifesting the least efficacious 

results. also, the Signal to Nosie Ratio was calculated and 

shown in the Table 1. The results shows that SNR is 

changeable for the three filters and depend on the adjustable 

parameters. However, it can be noted that SNR is better for 

Savitzky-Golay Filter then the Mittag-Leffler then the 

Gaussian filters. 

 

Table 1. Comparative analysis of MSE and SNR value in dB 

for three filters the Mittag–Leffler filter, the Gaussian filter, 

and the smoothing filter and parameter sets in simulated 

signals 𝑦1(𝑡) 

 

Figure 4 
Filter 

Type 

Filter 

Parameters 

MSE 

Value 

SNR Value 

in dB 

(a) Gaussian σ=0.1 0.0815 8.7169 

(b) Gaussian σ=0.15 0.2675 4.2187 

(c) 
Mittag–

Leffler 

σ=0.1, α=1, 

β=1 
0.0841 8.6453 

(d) 
Mittag–

Leffler 

σ=0.1, 

α=0.95, 

β=0.9 

0.0486 9.5736 

(e) 
Savitzky-

Golay 

nl=4, nr=4, 

M=4 
0.0167 16.3803 

(f) 
Savitzky-

Golay 

nl=16, 

nr=16, M=4 
0.0078 14.3581 

 

 
(a) Real ECG signal with noise within the timeframe of 0 to 2 

seconds 

 
(b) Noisy ECG signal and equivalent filtered signal using the 

Gaussian variant of the Mittag-Leffler filter (σ=0.01, α=1, 

and β=1) 
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(c) Noisy ECG signal and corresponding filtered signal using 

the Mittag–Leffler filter (Parameters: σ=0.01, α=1.20, and β=1) 

 
(d) Noisy ECG signal and equivalent filtered signal using the 

Gaussian filter (Parameter: σ=0.01) 

 
(e) Noisy ECG signal and equivalent filtered signal using the 

Gaussian filter (Parameter: σ=0.015) 

 
(f) Noisy ECG signal and equivalent filtered signal using the 

Savitzky-Golay smoothing filter (Parameters: nl=4, nr=4, 

M=4) 

 
(g) Noisy ECG signal and equivalent filtered signal using the 

Savitzky-Golay smoothing filter (Parameters: nl=16, nr=16, 

M=4) 

 

Figure 5. Comparative analysis of noisy and filtered real 

ECG signals: A study using Gaussian filter, Mittag-Leffler 

filter, and Savitzky-Golay smoothing filter with varied 

parameters 

 

In the second section, authentic ECG signals were deployed 

for analysis. The ECG signal was taken from PhysioNet 

website (https://physionet.org/content/?topic=ecg). This 

collection contains 50 ECG records, each lasting 30 minutes 

and having 648,000 sampling points overall. The records are 

verified at a frequency of 360 Hz. For this experiment, three 

QRS were selected as a compromise, and about 2 sec in length. 

In general, the adjustable parameters for each filter were 

selected arbitrary for this paper. And many filters can be taken 

by changing those parameters. However, for the Gaussian 

filter the adjustable parameter sigma that control the 

smoothness of the filter with high sigma we will have more 

smoothness (σ =0.01 and 0.015), for the Mittag-Leffler filter 

the alpha and beta parameter control the shape of the filters the 

result of Mittag-Leffler with different alpha and beta may 

result sin , cos or exp filter or other type of functions (σ=0.01, 

α=1.2, β=1), for Savitzky-Golay filter the number of points to 

the left of the locus point and the number of points to the right 

of the locus point also, the degree of the least squares 

polynomial, those parameter control the smoothness of the 

filter (nl=4, nr=4, M=4). 

Figure 5(a)-(g) depicts both the noisy ECG signals. and their 

filtered counterparts for each respective filter, across different 

operational parameters. 

Table 2 consolidates this data and offers a comparative view 

of the presentation of these three filters, with the mean squared 

errors (MSE) functioning as the core evaluation metric. 

Consistent with the synthetic signal results, the Savitzky-

Golay smoothing filter exhibits superior performance, 

followed by the Mittag–Leffler filter, and the Gaussian filter 

lagging. also, the Signal to Nosie Ratio was calculated and 

shown in the Table 2. The results shows that SNR is 

changeable for the three filters and depend on the adjustable 

parameters. However, it can be noted that SNR is better for 

Savitzky-Golay Filter then the Mittag-Leffler then the 

Gaussian filters. The response time for the Gaussian filters was 

0.038083 seconds. For the Mittag-Leffler filter was 0.143777 

seconds. And for the Savitzky-Golay Filter was 0.004479 

seconds. Whish shows that the Savitzky-Golay Filter is the 

best. 

The trade-offs between the different filters in terms of 

computational efficiency and real-time processing capabilities 
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can be descried as follow the advantage of Savitzky-Golay 

filters is that they preserve the area, location, and breadth of 

peaks, which may be helpful for some types of analysis. 

However, their computation time is related to window width. 

The Gaussian filter has a number of advantages over other 

types of windows, such as rectangular or triangular windows.  

Smoothness: The Gaussian filter produces a smoother 

signal than other types of windows. This is because the 

Gaussian function is a bell-shaped curve, which means that it 

gives more weight to the signal that are closest to the center of 

the window. This helps to reduce noise and artifacts in the 

signal.  

Robustness: The Gaussian filter is more robust to noise 

than other types of windows. This is because the Gaussian 

function is a smooth function, which means that it is not as 

sensitive to outliers as other types of functions. This helps to 

ensure that the edges in the signal are not blurred by noise. 

Efficiency: The Gaussian filter is relatively efficient to 

compute. This is because the Gaussian function (GF) is a 

simple function, which means that it can be computed quickly. 

This makes the Gaussian filter a virtuous choice for real-time 

applications. 

For the Mittag-Leffler (ML) filter is a novel lowpass filter 

that reduce the noise by selecting different alpha and beta 

parameters but we should optimize those parameters for better 

noise removal. 

The hypothesis test for the confidence interval for the ECG 

signals in this study was computed for the Gaussian, Mittag-

Leffler, and Savitzky-Golay filters, respectively. μ=M±Z(sM) 

is the estimate formula, where M is the sample mean Z=Z 

statistic specified by the confidence level sM is the standard 

error = √(s2/n), and Sample Mean (M) for the Gaussian is 

0.0053. Number of Samples (n): 50 We have a 95% 

confidence level in the standard deviation (s) of 0.01, which 

indicates that the population mean (μ) mendacities between 

0.002528 and 0.008072. Regarding the Mittag-Leffler 

filtration Mean (M) of Sample: 0.0035 Number of Samples (n): 

50 We have 95% confidence that the population mean (μ) 

mendacities between 0.000728 and 0.006272, with a standard 

deviation (s) of 0.01. Sample Mean (M) for the Savitzky-

Golay filter: 0.0039 Number of Samples (n): 50 0.001 is the 

standard deviation (s). The population mean (μ) cascades 

between 0.003623 and 0.004177, with a 95% confidence level. 

 

Table 2. Comparative analysis of MSE and SNR Value in dB values for ECG signals processed with different filters and 

parameters 

 
Subfigure Filter Type Filter Parameters MSE Value SNR Value in dB 

Figure 5(a) Mittag–Leffler Filter σ=0.01, α=1, β=1 0.0053 8.0443 

Figure 5(b) Mittag–Leffler Filter σ=0.01, α=1.2, β=1 0.0035 9.7668 

Figure 5(c) Gaussian Filter σ=0.01 0.0053 8.0443 

Figure 5(d) Gaussian Filter σ=0.015 0.0103 5.1181 

Figure 5(e) Savitzky-Golay Smoothing Filter nl=4, nr=4, M=4 3.2038×10-6 40.1950 

Figure 5(f) Savitzky-Golay Smoothing Filter nl=16, nr=16, M=4 0.0039 9.3569 

 

3.1 Performance analysis 

 

For evaluating the quality of the noise reduction effect, the 

literature currently in publication often considers the signal-

to-noise ratio and mean square error [18]. This article uses the 

following defined evaluation markers in order to compare the 

proposed algorithm with the existing method and assess its 

effectiveness in reducing noise. The mean square error is 

defined as follows: 

 

𝑀𝑆𝐸 =
1

𝑁
∑[𝑥(𝑖) − �̂�(𝑖)]2

𝑖=𝑁

𝑖=1

 (13) 

 

The definition of the signal-to-noise ratio is as follows: 

 

𝑆𝑁𝑅 = 10 ∗ 𝑙𝑜𝑔10 (
∑ [𝑥(𝑖)]2𝑖=𝑁

𝑖=1

∑ [𝑥(𝑖) − 𝑥(𝑖)̂ ]
2𝑖=𝑁

𝑖=1

) (14) 

 

 

4. DISCUSSION 

 

In this study, we conducted an empirical comparative 

analysis of Gaussian, Mittag-Leffler, and Savitzky-Golay 

smoothing filters using both synthetic and authentic ECG 

signals. The ECG signal was taken from physionet website 

(https://physionet.org/content/?topic=ecg). The results 

highlight the effectiveness of the Savitzky-Golay smoothing 

filter, demonstrating its value in intricate ECG signal 

processing applications [19]. The Mittag-Leffler filter, with its 

variable hidden parameters, outperforms the Gaussian filter, 

providing greater flexibility in accommodating signal 

idiosyncrasies. 

The Gaussian distribution, commonly known as the normal 

distribution, is widely used in image and signal processing to 

minimize noise or smooth out details [20]. It is a bell-shaped 

curve characterized by an equal number of observations above 

and below the mean value. Understanding the mean, median, 

and mode is essential to grasp the Gaussian distribution's 

concept. The mean represents the calculated average of all 

values, the median is the value falling in the middle of the 

distribution, and the mode is the most frequently observed 

value. 

Gaussian noise in digital photos mainly arises during the 

capture process, resulting from factors such as poor lighting, 

high temperatures, or transmission [21]. When an image or 

signal is smoothed using a Gaussian filter, fine-scaled borders 

and features may become blurred due to the suppression of 

high frequencies. Traditional spatial filtering methods for 

noise reduction include mean (convolution), median, and 

Gaussian smoothing. 

The Gaussian filter blurs the intended area while 

simultaneously reducing noise at higher frequencies. It shares 

similarities with mean filters in terms of uniformly weighted 

averaging. These filters are effective for both noise reduction 

and edge blurring. In digital image and signal processing, 

Gaussian filters are implemented as matrices that traverse each 

pixel of the selected area. Various applications of Gaussian 

image processing include noise reduction in low-light 

photographs, removal of bright pixels, edge smoothing, and 

reduction of blurriness [22]. The level of smoothing can be 
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specified to achieve the desired outcome, and the Gaussian 

distribution exhibits rational symmetry. 

The Savitzky-Golay filter is a type of digital filter that 

smoothes data to improve accuracy while preserving the 

underlying signal trend. This is accomplished by fitting 

sequential selections of neighboring data points with low-

degree polynomials using the linear least squares approach 

[23]. When data points are equally spaced, a statistical answer 

to the least-squares equations may be calculated. This solution 

consists of a set of "convolution coefficients" that apply to all 

data subsets and provide estimates of the averaged signal or its 

derivatives at the Centre of each subset. 

Initially introduced by Abraham Savitzky and Marcel J. E. 

Golay in 1964, the technique gained popularity due to its 

mathematical soundness. The convolution coefficients have 

been refined over time, and the method has been extended to 

handle 2D and 3D data [24]. Savitzky-Golay smoothing filters 

are influenced by different forms of noise. In this study, we 

examined the impact of varying the Gaussian filter kernel 

values on filter performance by filtering test ECG signals. The 

kernel values, determined by sigma, ranged from 0.01 to 0.015. 

The denoising responsiveness varied depending on the kernel, 

with ECG signal quality and MSE used to evaluate the filter's 

performance. Our results demonstrated that kernel values 

between 0.01 and 0.015 yielded good results in filtering test 

ECG signals contaminated with common noise. It was 

observed that specific kernel values were more effective in 

handling typical noise, indicating the importance of selecting 

appropriate values based on the ECG signals and denoising 

requirements. 

The Mittag-Leffler filter introduces three parameters that 

affect the shape of the filter curve. The MSE of the filtered 

signal was evaluated for different parameter combinations. As 

the alpha parameter decreased, the MSE reduced, indicating 

improved filtering performance. The filter's forgetting factor 

contributed to its adaptability and allowed for customization 

to specific signal characteristics [25-27]. 

Comparing the performance of the filters, the Savitzky-

Golay smoothing filters preserved the height and original 

shape of the ECG signals, as depicted in the graphical tracings. 

The Savitzky-Golay filter demonstrated effective noise 

reduction and signal preservation within the positive axes. The 

MSE values for the ECG signals with Savitzky-Golay 

smoothing filters (nl=4, nr=4, M=4) and (nl=16, nr=16, M=4) 

were 3.2038×10-6 and 0.0039, respectively. 

While our study establishes the superiority of the Savitzky-

Golay smoothing filter and the potential of the Mittag-Leffler 

filter, further refinement is needed. We identified 

opportunities for improvement, such as enhancing the 

smoothing of F-waves in atrial fibrillation segments. 

Exploring alternative filter parameters or denoising 

methodologies, such as the Butterworth or moving average 

filter, may help overcome these challenges. Additionally, the 

impact of noise variance on the efficacy of Savitzky-Golay 

smoothing filters underscores the need for further 

investigation and the potential for future research in ECG 

denoising. 

Our comparative study provides valuable insights into the 

performance and adaptability of Gaussian, Mittag-Leffler, and 

Savitzky-Golay filters for signal processing, specifically in the 

context of ECG signals (Table 3). The Savitzky-Golay 

smoothing filter outperforms the others in noise reduction and 

signal preservation, while the Mittag-Leffler filter offers 

flexibility with its adjustable parameters. The Gaussian filter 

remains a viable option but may compromise fine signal 

details. These findings contribute to the foundational 

exploration of advanced low-pass filters in biomedical signal 

processing, offering promising avenues for further research 

and application in various biomedical signals beyond ECG, 

such as EEG and EMG signals. 

Features of Gaussian Filtering: They are linear low pass 

filters, rotationally symmetric (perform the same in both 

directions), computationally inexpensive (big filters are 

implemented using small 1D filters), and highly successful at 

eliminating Gaussian noise. σ determines the degree of 

smoothing (higher σ for more extensive smoothing). 

For Mittag-Leffler filters there are many possibilities to 

create a filter by changing alfa and beta parameters so we 

should optimize the filters by playing with alpha and beta 

parameters. 

 

Table 3. Evaluation of this work with parallel scientific works stated in the literature analyzing the impact of using different 

types of filters the Gaussian, Mittag-Leffler, and Savitzky-Golay filters 

 
Ref.  Target of Study Method SNR MSE 

[28] 

to enhance the mode-mixing drop among near IMF scales for the purpose of improving the 

noise-filtering performance. The ECG signal was generated using both standard ECG 

templates that were taken from the Arrhythmia ECG database and the simulator, and the 

noise source was Gaussian white noise. The filter performance indicator was the mean 

square error (MSE) among the original ECG and the rebuilt ECG. 

Gaussian 

noise 

filtering 

Not 

provided 
0.71 

[14] 

The Mittag-Leffler filter, a unique variation of the Gaussian filter, is introduced. The 

probability-density function's (pdf) Mittag-Leffler (ML) function is used by this new filter. 

This type of Mittag-Leffler distribution is employed in the filter's convolution kernel. 

Because of the filter-forgetting factor, the filter's three parameters might change the shape 

of the curve. 

Mittag-

Leffler noise 

filtering 

Not 

provided 
121.2894 

[29] 

The two parameters that determine the performance of the S-G filter are polynomial degree 

and frame size. This research examines the influence of varying degree of polynomial and 

frame size. 

Savitzky-

Golay noise 

filtering 

1.4 
Not 

provided 

[30] 

MATLAB has been used to analyses the Savitzky-Golay (S-G) filter for ECG de-noising 

utilizing Daubechies wavelets. Using an S-G filter of polynomial order 9, noisy ECG 

signals downloaded from physionet.org under the MIT-BIH arrhythmia database were de-

noised to data frames of length 21 displayed in both the time and frequency domains. The 

filter's performance was quantitatively evaluated under the parameters of SNR, MSE, and 

signal-to-interference ratio (SIR). 

Savitzky-

Golay noise 

filtering 

32.78 0.0001 
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The fairly weedy conquest of some high frequencies (poor 

stopband suppression) and artefacts when employing 

polynomial fits for the first and last points are the drawbacks 

of the Savitzky-Golay filters. Finally, to the best of our 

knowledge, there are no attempts to combine these filters and 

no outcomes of such integrations for the last 10 years and no 

studies show the efficiency of such combination. Using this 

study, we can reduce calculations and use Savitzky-Golay 

Filter to remove normal noise with low MSE, and good SNR. 

however, we can use integrated approach to use two or more 

filters to reduce the noise to lowest MSE and good SNR. but 

in our study, we use filters separately. Choosing a suitable 

theoretical framework for our research is a crucial and 

essential procedure that every research must undertake. A 

thorough and careful evaluation of your topic, goal, 

importance, and research questions is necessary before 

choosing a theoretical framework. To ensure that your 

theoretical framework can support your work and direct your 

selection of research design and data analysis, it is essential 

that all four constructs-the problem, purpose, significance, and 

research questions-are closely matched and intricately woven. 

 

 

5. CONCLUSION 

 

In this study, we planned a comprehensive approach to low-

pass filtering employing three distinct filters—Gaussian, 

Mittag–Leffler, and Savitzky-Golay smoothing—for signal 

processing applications. Each of these filters presents various 

adjustable parameters, offering more flexibility than 

traditional Gaussian filters. Among these, the Savitzky-Golay 

smoothing filter emerged as the superior choice. 

In the context of specific filter parameters, the Gaussian 

filter can be viewed as a particular instantiation of the 

innovative Mittag–Leffler filter. We utilized MATLAB 

functions of the proposed filters for our analysis. Our 

simulation example illustrated the distinct advantages of the 

Savitzky-Golay smoothing filter over both the Mittag–Leffler 

and Gaussian filters, demonstrated through a comparative 

analysis of MSE and SNR values. 

Furthermore, our empirical analysis on real-world ECG 

signals substantiates the theoretical outcomes, asserting their 

utility in a crucial application area such as ECG-signal noising 

reduction. The newly introduced Savitzky-Golay smoothing 

and Mittag–Leffler filters open new avenues for potential 

applications in the denoising of other biomedical signals, 

including medical EEG and medical EMG. 

The methodologies, tools, and techniques outlined and 

utilized in this study enable the further extension of the 

proposed filters to two-dimensional realms, opening up 

prospects for applications of image-processing. Thus, this 

study provides a solid foundation for future explorations in 

diverse signal processing scenarios. 
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APPENDIX 

 

Gaussian filter 

function [zfilt]=gaussfilt(t,z,sigma) 

%Apply a Gaussian filter to a time series 

%   Inputs: t=independent variable, z=data at points t, and  

%       sigma=standard deviation of Gaussian filter to be 

applied. 

%   Outputs: zfilt=filtered data. 

% 

%   written by James Conder. Aug 22, 2013 

%   Sep 04, 2014: Convolution for uniformly spaced time 

time vector (faster)  

%   Mar 20, 2018: Damped edge effect of conv (hat tip to 

Aaron Close) 

Mittag-Leffler filter 

function [y_filt]=ML_filter(t, y, sigma, alpha, beta) 

% 

% function [y_filt]=ML_filter(t, y, sigma, alpha, beta) 

% 

%   Mittag-Leffler filter with exponential-type forgetting 

%   Inputs: t=independent variable  

%           y=noisy data to be filtered at the points t   

%       sigma=standard deviation 

%   alpha, beta=parameters of the Mittag-Leffler function 

%   Output: y_filt=filtered data given in variable y 

% 

% Acknowledgements: This software was created by 

Technical  

% University of Kosice under Army Research Office (ARO) 

Award  

% Number W911NF-22-1-0264 and under other grants 

from Slovakian 

% agencies: VEGA 1/0365/19, APVV-14-0892, and 

APVV-18-0526.  

% 

% Author: Ivo Petras, Technical University of Kosice, 

Slovakia 

Savitzky-Golay smoothing filter 

function g=savGol (f, nl, nr, M) 

% SAVGOL SavGol smoothes the data in the vector f by 

means of a 

%        Savitzky-Golay smoothing filter. 

% 

%        g=savGol (f, nl, nr, M) 

%        Input: f: noisy data 

%        nl: number of points to the left of the locus point 

%        nr: number of points to the right of the locus point 

%        M: degree of the least squares polynomial 

% 

%        Output: g: smoothed data 

% 

%        Example: 

%        g=savGol(f,16,16,4) 

% 

%        In many tenders one is measuring a variable that is 

both  

%        slowly changing and tarnished by random noise. Then 

it is often  

%        wanted to put on a smoothing filter to the measured 

data in  

%        order to renovate the underlying smooth function. 

We assume  

%        that the noise is independent of the observed variable 

and that  

%        the noise follows a normal distribution with zero 

mean and given  

%        variation. 

% 

%        W. H. Press and S. A. Teukolsky, 

%        Savitzky-Golay Smoothing Filters, 

%        Computers in Physics, 4 (1990), pp. 669-672. 
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