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In this study, we address the challenge of balancing sustainability and decision-maker 

preferences in regional development location selections. We propose a multi-criteria 

decision-making framework combining the Analytical Hierarchy Process (AHP) and 

Fuzzy Goal Programming (FGP) to evaluate potential sites. AHP is utilized to prioritize 

criteria, incorporating both quantitative and qualitative factors, while FGP allows for 

the accommodation of uncertainty and conflicting goals. Our findings reveal that this 

integrated approach provides a robust, systematic method for identifying optimal 

locations that align with both sustainability goals and stakeholder priorities. The 

analysis revealed the following satisfaction levels: Price 61.11%, Quality 80.4%, 

Delivery Time 79.3%, Carbon Emission 91.76%, and Preference 51.18%. The findings 

emphasize the complex process of selecting vendors within the palm oil supply chain. 

The implications of this research suggest enhanced decision-making efficiency and 

effectiveness in regional planning, promoting sustainable development practices. 
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1. INTRODUCTION

In the current period of regional development, there is a 

strong need for sustainable growth, which has resulted in a 

growing focus on incorporating sustainability factors into 

decision-making processes. Although there has been a 

tremendous increase in research and methodology focused on 

improving the selection of locations for regional development, 

there are still notable gaps and limitations in present 

approaches. Conventional approaches frequently struggle to 

effectively reconcile the complex and different aspects of 

sustainability, which include environmental, social, and 

economic components, with the specific preferences and goals 

of various stakeholders. Furthermore, these approaches often 

do not possess the adaptability to handle the inherent 

uncertainties and ambiguities in decision-making situations, 

especially those that involve subjective assessments and 

qualitative standards [1-4]. The conventional Analytical 

Hierarchy Process (AHP) is commonly employed for its 

systematic approach to multi-criteria decision-making. It is 

particularly effective in prioritizing criteria and combining 

expert viewpoints. However, it has limitations when it comes 

to dealing with vagueness and lack of precision in human 

judgments [5, 6]. However, Goal Programming (GP) is not as 

successful in handling the qualitative parts of decision criteria 

and the subjective character of stakeholder preferences, 

despite its effectiveness in managing many, frequently 

conflicting objectives. In addition, current models often fail to 

consider the dynamic and linked characteristics of 

sustainability issues, resulting in less than ideal and perhaps 

unsustainable development results. This study aims to fill 

these existing gaps by introducing a comprehensive multi-

criteria decision-making framework that integrates the 

advantages of Analytic Hierarchy Process (AHP) and Fuzzy 

Goal Programming (FGP) [7-9]. The AHP component of our 

methodology allows for the methodical assessment and 

ranking of a complete range of criteria, including both 

quantitative and qualitative elements, so assuring a fair and 

thorough analysis of all pertinent aspects of sustainability. Our 

technique incorporates FGP to effectively address the 

ambiguities and imprecision that are inherent in the decision-

making process [10, 11]. FGP's ability to integrate fuzzy logic 

enables the accurate modeling of stakeholder preferences and 

goals, capturing the intricate and subjective character of these 

preferences in the actual world. This integration not only 

improves the adaptability and strength of the decision-making 

process but also guarantees that the chosen locations are more 

closely aligned with both sustainability goals and stakeholder 

preferences. In addition, our research presents a new use of 

this integrated strategy in the field of regional development. 

We provide a comprehensive case study that showcases its 

practical usefulness and efficiency [12, 13]. The results of our 

case study demonstrate that the suggested framework greatly 

enhances the quality and long-term viability of judgments 

about location selection. It provides a more thorough and 

nuanced comprehension of the compromises that are inherent 

in such selections. This work enhances the current knowledge 

by addressing a significant gap in the literature and offering a 
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useful tool for decision-makers in regional planning. The 

findings of our research have broader ramifications beyond the 

specific field of regional development [14-18]. They provide 

valuable insights and approaches that may be applied to other 

areas where making decisions based on several criteria is 

essential. Our work facilitates the incorporation of 

sustainability into decision-making processes, thereby 

promoting well-informed, equitable, and environmentally 

responsible development practices [19]. To summarize, this 

study emphasizes the significance of creating advanced 

decision-making instruments that can tackle the intricate and 

interconnected obstacles of sustainability and stakeholder 

preferences. The integration of the Analytic Hierarchy Process 

(AHP) and the Fuzzy Goal Programming (FGP) framework is 

a significant advancement in addressing a critical problem in 

current regional development. This framework provides a 

strong, adaptable, and realistic solution [20].  

The process of choosing the most suitable sites for regional 

development initiatives entails the careful consideration and 

weighing of different, frequently contradictory, factors. Multi-

criteria decision-making (MCDM) methodologies, such as the 

Analytical Hierarchy Process (AHP) and Fuzzy Goal 

Programming (FGP), are useful methods for evaluating 

potential sites in this situation. The main factors considered in 

this assessment are Price, Quality, Delivery Time, Carbon 

Emission, and Preference. The AHP technique initiates by 

organizing these criteria into a hierarchical model, with the 

primary objective (best location selection) at the highest level, 

followed by several degrees of criterion and sub-criteria [21-

23]. Decision-makers utilize pairwise comparisons to evaluate 

the relative significance of each criterion, thereby converting 

subjective judgments into measurable weights. The weights 

assigned to each criterion allow for a thorough assessment of 

potential locations, indicating their relative importance. When 

comparing Price and Quality, decision-makers assess the 

relative significance of cost vs the level of services or products 

provided. Similarly, an analysis is conducted to compare the 

Delivery Time and Carbon Emission, assessing the balance 

between timeliness and ecological consequences. The 

Preference criterion considers the subjective preferences of 

stakeholders, ensuring that the selected location is in line with 

their specific needs and objectives [24, 25]. 

After determining the criteria weights, the subsequent step 

is to utilize Fuzzy Goal Programming to handle the inherent 

ambiguities and vagueness in human judgments. FGP 

enhances classical Goal Programming by integrating fuzzy 

logic, enabling the representation of imprecise and ambiguous 

data. This is especially advantageous in practical situations 

when precise data may be lacking or where preferences are not 

rigidly limited to two options. Within the FGP framework, 

every objective (related to Price, Quality, Delivery Time, 

Carbon Emission, and Preference) is expressed using fuzzy 

phrases, indicating acceptable ranges and levels of satisfaction 

instead of specific targets. Instead of imposing a rigid cost 

limit, the Price objective could be defined as a fuzzy set, where 

lower prices are favored but slightly higher costs are 

permissible within a specific range. Similarly, the Quality 

criterion could be represented to encompass diverse levels of 

satisfaction with many quality standards, rather than a singular 

acceptable norm [26, 27]. This adaptability enables the 

decision-making process to more accurately capture the 

intricacies of real-life situations [28]. 

The process of integrating AHP and FGP starts with 

normalizing the criteria weights derived from AHP. These 

normalized weights are then utilized to develop the FGP model. 

The FGP model utilizes these weights as coefficients in the 

objective function, which symbolize the level of 

accomplishment for each fuzzy goal [29]. The main goal is to 

maximize the total level of goal accomplishment, while 

adhering to the limitations set by the fuzzy goals. In this 

concept, the requirements are not regarded as inflexible limits 

but rather as adaptable objectives that can be partially fulfilled 

to different degrees. When analyzing potential locations, each 

site is examined based on the fuzzy criteria of Price, Quality, 

Delivery Time, Carbon Emission, and Preference. The website 

that has the highest overall level of goal satisfaction is 

considered the most optimal choice. This approach guarantees 

that the chosen location achieves the optimal equilibrium 

among the conflicting requirements, taking into account both 

quantitative and qualitative considerations [30-32]. 

For example, let's suppose a situation where three possible 

locations are being assessed. Every location is evaluated based 

on the following criteria: Price (development cost), Quality 

(infrastructure and service standards), Delivery Time (time 

needed to make the location functional), Carbon Emission 

(environmental impact of development and operations), and 

Preference (conformity with stakeholder objectives). The 

Analytic Hierarchy Process (AHP) is utilized to determine the 

respective weights of these criteria through pairwise 

comparisons [33]. This process yields weights of 0.25 for Price, 

0.20 for Quality, 0.15 for Delivery Time, 0.30 for Carbon 

Emission, and 0.10 for Preference. The weights provided 

represent the level of importance assigned to each criterion by 

the decision-makers. Subsequently, the FGP model is 

constructed utilizing the specified weights and the fuzzy goals 

assigned to each criterion [34]. For example, the Price aim can 

be described as a fuzzy set with a membership function that 

gradually diminishes as expenses rise, indicating a preference 

for lower prices but still allowing for greater costs within an 

acceptable range. Similarly, the Quality aim could be 

represented by a membership function that exhibits an upward 

trend as the standards of infrastructure and services improve, 

but with diminishing marginal rewards at the greatest levels of 

quality. The delivery time can be represented to account for 

the urgency of establishing the location, prioritizing shorter 

durations while allowing for some flexibility for longer 

periods. The carbon emission targets prioritize fewer 

emissions, employing a membership function that diminishes 

as emissions rise, indicating a significant inclination towards 

ecologically sound choices. Preference criteria would 

encompass stakeholder-specific requirements, such as the 

proximity to important markets or the alignment with 

corporate goals, using a membership function customized to 

meet these specific demands. 

Subsequently, every possible location is assessed based on 

these ambiguous objectives, leading to a collection of 

satisfaction levels for each criterion. The FGP model combines 

these satisfaction levels to determine the overall level of goal 

attainment for each location. The best site is determined by 

selecting the place with the highest overall satisfaction level. 

This ensures a well-rounded solution that takes into 

consideration the various aspects of sustainability and the 

preferences of stakeholders. 

The utilization of both Analytic Hierarchy Process (AHP) 

and Fuzzy Goal Programming (FGP) in the process of 

selecting a location for regional development has numerous 

benefits. It facilitates a methodical and organized assessment 

of various criteria, guaranteeing the inclusion of all pertinent 
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aspects. Utilizing fuzzy logic in FGP improves the adaptability 

and resilience of the decision-making procedure, tolerating 

uncertainties and imprecisions in data and preferences. This 

approach also guarantees that the chosen site is in line with 

both sustainability targets and stakeholder interests, fostering 

equitable and sustainable regional growth. This technique 

combines both quantitative and qualitative assessments to 

create a comprehensive framework for making well-informed 

and balanced judgments in complicated and unpredictable 

situations. The utilization of both Analytic Hierarchy Process 

(AHP) and Fuzzy Goal Programming (FGP) offers a potent 

method for optimizing the selection of locations in regional 

growth. This strategy ensures that the selected location 

achieves the optimal overall balance among conflicting 

objectives by systematically prioritizing criteria and taking 

into account uncertainties and stakeholder preferences. It 

promotes sustainable and informed decision-making. 

 

 
2. METHODS 

 
The supplier selection and evaluation process are very 

flexible, it depends on the situation and industry, so there is no 

single way. However, there are several methods that can be 

used in supplier selection and evaluation, each method has its 

own advantages depending on the needs of the company [35]. 

Some of these studies use heuristic methods: using Genetic 

Algorithm with the objective function of price and reliability, 

reliability is related to the supplier's ability to meet the 

company's needs precisely, using two heuristic methods 

namely Particle Swarm Optimization (PSO) and Differential 

Equation (DE) to determine the best supplier and order 

allocation with the objective function of minimizing fixed 

costs and purchasing costs, storage and transportation costs. 

used the best-worst method to determine the weight of the 

criteria, while a combination of Genetic Algorithm and AHP 

methods was used to determine the best order and supplier. 

Some researches use a combination of MCDM and MILP 

select suppliers in a composite company using the Best Worst 

Method for weighting criteria and using MILP with the 

objective function of maximizing supplier weights for order 

allocation. Islam et al. [36] weighted the suppliers by 

integrating DEA with AHP and TOPSIS and used MILP with 

the objective function of minimizing the emergency order 

price for order allocation used AHP method for supplier 

weights and combined Weighted Sum method and ε-constraint 

method to determine order allocation with six objective 

functions of cost, economic value, environment, social, risk 

and inflation [37-39]. 

Unfortunately, previous studies were deterministic and did 

not consider uncertainty. Some studies that accommodate 

uncertainty are as follows: conducted supplier selection using 

weighted Fuzzy Goal Programming with the objective 

function of minimizing price, quality and delivery time using 

the objective functions of price, delivery delay, quality of 

goods and carbon emissions on rice, wheat, and rye suppliers, 

this study uses machine learning to forecast the needs of food 

companies, the model that used is a SMILP stochastic model 

uses Weighted Additive Function to transform a multi 

objective function into a single objective with Fuzzy 

parameters which is further solved by the Resolution Method. 

Gidiagba et al. [40] Using Fuzzy AHP and Interval TOPSIS 

methods to determine supplier weighting and Simulation-

Optimization to determine order allocation with the objective 

function of maximizing supplier ranking and minimizing price. 

Rahman et al. [41] used the Fuzzy ANP method to select the 

best criteria and sub-criteria, then the Fuzzy Decision-Making 

Trial and Evaluation (DEMATEL) method was used to see the 

relationship between the main criteria, then TOPSIS was used 

to weight suppliers. There are three objective functions used, 

which is minimizing the cost, maximizing the weight of the 

supplier and maximizing the reliability of the supply chain. 

Combined fuzzy sets with PROMETHEE II by considering 

three criteria, which are the basic, ordering, and sustainable 

criteria in Petrochemical Companies. The integration of Fuzzy 

AHP with three MCDM methods, namely MABAC (Multi 

Attribute Border Approximation Area Comparison), 

WASPAS (Weighted Aggregated Sum-Product Assessment) 

and TOPSIS (Technique for order preference by similarity to 

ideal solution) to determine the best supplier in the automotive 

industry where there are 6 environmental criteria and three 

conventional criteria namely price, quality and service. uses 

gray numbers in the DEMATEL method to determine the 

weight of criteria and the Gray Simple Additive Weighting 

Technique (GSAW) method to decide the weight of suppliers. 

This research uses Fuzzy Goal Programming because it can 

accommodate more than one objective function and there is 

uncertainty in the form of using fuzzy numbers, Chai et al. [42] 

using Fuzzy Goal Programming in the selection and allocation 

of shares in portfolios on the Indian stock exchange. 

Meanwhile, related to the problem of selecting FFB suppliers, 

Ho et al. [43] conducted the selection and allocation of FFB 

suppliers with the objective functions of operational costs, 

transportation costs, CPO production costs, and process costs 

and palm oil waste, the model was solved using the 

Generalized Reduced Gradient Method, selected palm oil 

suppliers with criteria such as quality, delivery, price, service 

etc. using the PROMETHEE supplier weighting method [44, 

45]. We will then solve the supplier selection problem that 

involves environmental consideration, decision-maker 

preferences, and resource uncertainty in the palm oil industry 

based on research on the application of fuzzy multicriteria 

questions. 

 
2.1 Mathematical model 

 
Objective Function: 
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Eq. (1) shows that the objective function of minimizing 

costs is the sum of FFB costs, ordering costs and CPO 

inventory storage costs. Eq. (2) shows the quality objective 

function, which is to minimize the rejection of FFB. Eq. (3) 

shows the time objective function, which is the sum of FFB 

production time and delivery time. Eq. (4) shows the carbon 

emission objective function, which is the sum total of carbon 

emissions for vehicles, FFB processing and CPO inventory 

storage. Eq. (5) shows the expert's preference for the selected 

supplier which was determined using AHP. Eq. (6) defines the 

FFB requirement of POM and CPO inventory by POM, 

constraint (7) ensures that suppliers do not supply FFB beyond 

their capacity, Eq. (8) defines supplier weights, constraint (9) 

is a positive value constraint for order allocation and binary 

variables. 

 

2.2 Analytical Hierarchy Process 

 

The Analytical Hierarchy Process (AHP) is a systematic 

method for arranging and evaluating intricate decisions using 

principles from mathematics and psychology. It aids decision 

- makers in establishing priorities and making optimal 

judgments by simplifying intricate choices into a sequence of 

pairwise comparisons, then subsequently combining the 

outcomes.  

 
AHP Algorithm in Selection 

Step 1: Define the Problem and Goal 

Goal: Optimal location selection for regional development. 

Step 2: Structure the Hierarchy 

Level 1: Goal 

Level 2: Criteria (Price, Quality, Delivery Time, Carbon 

Emission, Preference) 

Level 3: Sub-criteria (if any; in this case, we assume the main 

criteria are sufficient) 

Step 3: Construct Pairwise Comparison Matrices 

Compare each pair of criteria with respect to their importance 

towards achieving the goal. 

Use a scale of 1 to 9, where 1 indicates equal importance and 9 

indicates extreme importance of one criterion over the other. 

Step 4: Calculate Criteria Weights 

Normalize the pairwise comparison matrices. 

Compute the eigenvector (priority vector) for each matrix, 

representing the relative weights of the criteria. 

Ensure consistency by calculating the Consistency Ratio (CR). A 

CR less than 0.1 is generally acceptable. 
 

1. The weight for each row in a column will be summed up 

(si). 
 

1

n

i ij

i

s a
=

=  

 

2. Each entry will be normalized, thus normalized entries 

are obtained bij. 
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ij

i

a
b
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=  

 

3. The weight for the attribute will be obtained by dividing 

it by the number of columns. 
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j
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4. Weight of criteria as follow: 
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1

.
K

k

i k i

k

p b b
=

=  

 

where, pi=Weight criteria; 𝑏𝑘
(0)

=Weight provided by pairwise 

comparison of criteria; 𝑏𝑖
𝑘 =Weight provided by pairwise 

comparison of alternative considering the criterion. 

 

2.3 Fuzzy Goal Programming 

 

Fuzzy Goal Programming (FGP) is an enhanced version of 

Goal Programming that integrates fuzzy logic to effectively 

manage the uncertainty and imprecision involved in decision-

making. 

 
Fuzzy Goal Programming Algorithm 

Step 1: Define Goals and Fuzzy Goals 

Goals are defined for each criterion with a desired target value and 

acceptable range. 

Price: Minimize cost 

Quality: Maximize quality score  

Delivery Time: Minimize time  

Carbon Emission: Minimize emissions 

Preference: Maximize alignment  

Step 2: Formulate Fuzzy Membership Functions 

Each criterion is represented by a fuzzy membership function to 

capture the degree of satisfaction. 

Step 3: Construct the FGP Model 

The objective function aims to maximize the overall degree of 

goal satisfaction, aggregated across all criteria. 

Incorporate the criteria weights from AHP into the FGP model. 

General Equation for FGP: 

( )
1

max
n

i i i

i

Z w x
=

=  

 

where, wi is the weight of the i-th criterion from AHP, μi is 

membership function for the i-th criterion, xi is the decision 

variable for the i-th criterion, and n is the number of criteria. 

Step 4: Solve the FGP Model 

Using linear programming or other suitable optimization 

techniques, solve the model to find the values of decision variables 

xi that maximize Z. 
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This detailed methodology ensures transparency and 

justifies the selection process by explicitly showing how 

criteria and sub-criteria are evaluated, weighted, and 

aggregated to make an informed decision. This approach 

provides a robust framework for balancing sustainability and 

stakeholder preferences in location selection for regional 

development. 

a. Establish a fuzzy membership objective function as 

follows: 
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where, 𝐹𝑘
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 is lower bound of objective function and 

𝐹𝑘
𝛼−𝑎𝑐𝑐  is upper bound of objective function.  

b. Determine the priority weights for each objective 

function NFWk to transform the multiobjective function to 

single objective: 
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3. RESULTS AND DISCUSSION 

 

This study used a case example of 4 Palm Oil Mills (POM), 

8 suppliers and 12 time periods. The model is solved using 

LINGO 19. With the following data in Tables 1-8. 

The number of rejected FFBs is uncertain due to the 

fluctuating nature of the data and the possibility of 

miscalculation. Thus triangular fuzzy numbers are used where 

the upper limit is an addition for 15 percent of the rejected 

quantity, the lower limit is a reduction for 10 percent of the 

rejected quantity. 

1. Vehicle speed is assumed to be (Vt) 50 Km/hour. 

2. Carbon emission for truck type vehicle (TE) is 0.549 Ton 

CO2/Km, assuming the number of trucks passing in one period 

is 25, then the carbon emission for transportation becomes 

TE=0.549×25. 

3. Carbon emission for FFB processing TBS (PEjt) is 

assumed to be 1.423 Ton CO2/Ton. 

4. Carbon emission for CPO storage (IvE) assumed 0.95 Ton 

CO2/Ton. 

Qualitative criteria are used to determine the weight of 

suppliers, the qualitative criteria used are: Reputation (C1) 

shows how good the supplier brand, Quality Management (C2) 

shows how good the supplier's governance. Communication 

Convenience (C3) shows how good the supplier response is if 

there is a complaint. Historical Relationship (C4) shows how 

good the relationship has been established in the past between 

POM and related suppliers. Quality (C5) shows how good the 

quality of FFB delivered by the supplier based on the 

assessment of the decision maker. The steps for solving the 

model are presented in the following.

 
Table 1. Ordering cost (Osj) (Rp) for each period (in units of hundreds of thousands of rupiah) 

 

Supplier 
Palm Oil Mills (POM) 

1 2 3 4 

1 8.13 9.24 9.47 5.2 

2 8.81 5.66 5.21 7.04 

3 7.05 9.3 9.55 9.51 

4 6.94 7.03 6.91 6.78 

5 9.99 6.38 8.67 5.96 

6 6.62 6.25 6.32 7.96 

7 9.99 9.09 9.36 8.55 

8 6.17 8.78 5 8.71 

 

Table 2. Demand of FFB for each period (Ivjt) (Ton) 

 

POM 
Period 

1 2 3 4 5 6 7 8 9 10 11 12 

1 568 622 447 687 684 546 543 815 466 535 576 710 

2 551 580 692 693 529 663 583 575 591 499 618 449 

3 497 669 626 653 649 594 728 664 578 589 674 522 

4 540 602 547 549 493 660 498 640 765 491 596 607 
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Table 3. Demand of FFB for each POM (Djt) (Ton) 

 

POM 
Period 

1 2 3 4 5 6 7 8 9 10 11 12 

1 5.148 5.192 5.324 4.950 4.961 5.104 4.983 5.225 4.873 4.940 5.412 4.000 

2 4.554 4.961 5.038 4.080 4.230 5.258 5.390 5.071 5.005 4.520 5.093 4.884 

3 5.357 4.741 4.220 4.030 4.330 5.324 5.324 4.873 4.873 4.470 4.510 5.269 

4 4.796 5.236 4.774 4.830 4.300 4.600 4.970 4.796 5.137 5.049 4.939 4.220 

 

Table 4. Accepted FFB from each supplier in previous 

period (qdsj) (Ton) 

 

Supplier 
Palm Oil Mills (POM) 

1 2 3 4 

1 4.183 2.096 2.749 4.861 

2 3.226 2.856 2.981 3.802 

3 4.570 3.155 4.814 4.400 

4 4.105 2.749 4.503 2.078 

5 2.262 2.702 2.668 4.631 

6 4.570 4.135 4.964 4.586 

7 2.303 2.382 3.806 4.331 

8 3.559 4.353 3.730 2.385 

 

Table 5. Rejected FFB in previous period (qcsj) in previous 

period 

 

Supplier 
Palm Oil Mills (POM) 

1 2 3 4 

1 453 258 356 400 

2 272 453 435 495 

3 380 495 220 401 

4 437 469 367 330 

5 243 222 299 490 

6 491 386 327 396 

7 427 343 352 437 

8 243 325 324 325 

 

Table 6. Total production off FFB for earch supplier (qcsj) (Ton) 

 

Supplier 
Period (t) 

1 2 3 4 5 6 7 8 9 10 11 12 

1 19.28 16.77 18.43 16.14 17.74 16.01 16.52 18.06 17.34 16.16 16.24 19.25 

2 18.8 17.46 18.51 17.36 18.5 17.56 19.28 17.1 19.36 19.54 19.14 18.02 

3 18.54 19.76 18.98 19.43 19.28 17.44 17.79 18.8 18.21 17.94 16.44 19.75 

4 19.4 16.4 16.43 17.67 16.54 16.43 19.1 18.74 16.4 16.21 18.58 19.06 

5 19.06 19.52 18.62 17.21 17.2 17.9 17.02 19.85 17.72 17.95 17.57 16.23 

6 19.99 19.89 18.37 16.06 16.79 18.78 17.08 19.82 18.33 18.06 19.01 19.09 

7 17.73 17.05 19.46 17.39 18.11 16.14 17.87 18.45 19.55 18.3 17.38 16.11 

8 19.12 16.17 16.89 16.06 17.88 19.31 17.03 18.4 16 18.23 18.66 19.33 

 

Table 7. Distance from supplier to POM (hsj) (Km) 

 

Supplier 
Palm Oil Mills (POM) 

1 2 3 4 

1 8 13 8 10 

2 9 29 19 23 

3 22 18 16 23 

4 21 11 10 12 

5 24 16 16 28 

6 19 23 28 25 

7 26 18 14 26 

8 17 6 7 28 

 

Table 8. Weight of Supplier which is provided by using AHP 

 
Supplier 

1 2 3 4 5 6 7 8 

0.13 0.14 0.15 0.1 0.07 0.17 0.12 0.13 

 

3.1 Determining supplier weight 

 

1. Performing a comparison of each criterion to produce a 

pairwise comparison table as follows Table 9. 

 

Table 9. Pairwise comparison 
 

Criteria C1 C2 C3 C4 C5 

C1 1 3 5 3 0.3 

C2 0.3 1 0.3 0.3 0.2 

C3 0.2 3 1 0.3 0.3 

C4 0.3 3 3 1 0.3 

C5 3 5 3 3 1 

Table 10. Pairwise comparison for reputation 
 

C1 P1 P2 P3 P4 P5 P6 P7 P8 

P1 1 3 1 0.3 5 0.3 1 3 

P2 0.3 1 5 3 1 0.2 3 1 

P3 1 0.2 1 0.3 1 1 3 0.2 

P4 3 0.3 3 1 0.3 1 0.3 1 

P5 0.2 1 1 3 1 0.5 3 1 

P6 3 5 1 1 2 1 0.3 0.3 

P7 1 0.3 0.3 3 0.3 3 1 1 

P8 0.3 1 5 1 1 3 1 1 

 

Table 11. Supplier weight 
 

Weight S1 S2 S3 S4 S5 S6 S7 S8 
 0.13 0.14 0.15 0.10 0.07 0.17 0.12 0.13 

 

Table 12. Maximum and Minimum value for objective 

function 
 

No. Objective Function Maximum Minimum 

1 Cost 4,059.720 3,513.299 

2 Quality 44.70 7.95 

3 Delivery Time 3.460 2.266 

4 Emission 603.155 521.999 

5 Preference 32,777.59 17,686.92 

 

2. Determine the assessment for each alternative (supplier) 

based on the criteria used. Table 10 shows an example for 

assessment on reputation. 

3. Multiplying the weights on the criteria and the weights 

on the alternatives for each criterion to produce the supplier's 

weight as follows in Table 11. 
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3.2 Fuzzy Goal Programming 

 

Solve each objective function separately for minimum and 

maximum values, so that the results on the tab are obtained. 

The supplier weights that have been obtained from the AHP 

method are used for maximizing the preference of objective 

function (Table 12). 

Performed a comparison for each two objective functions, 

by making one of the objective functions a constraint. Results 

are shown in Table 13. 
 

Table 13. Payoff table 
 

 Cost Quality Delivery Time Emission Preference 

Cost 3,513.299 12.89 2,681.42 533.377 24,448.66 

Quality 3,513.299 7.95 2,265.79 521.999 32,777.59 

Delivery Time 3,858.873 11.49 2,265.79 530.975 32,777.59 

Emission 3,513.299 7.95 2,265.79 521.999 32,777.59 

Preference 3,513.299 7.95 2,265.79 521.999 32,535.90 

 

This table provides a comparative analysis of five key 

factors such as cost, quality, delivery time, emissions, and 

preferences that are often considered in real-life decision-

making scenarios, such as supply chain management or project 

planning. For instance, in choosing a supplier, a company must 

balance the cost of goods (cost), the quality of products 

received (quality), the time taken for delivery (delivery time), 

the environmental impact of the supply chain (emission), and 

the overall preference or priority given to these factors 

(preference). The data shows that while one supplier might 

offer lower costs, they may also have higher emissions or 

longer delivery times, necessitating a trade-off analysis to 

determine the best option that aligns with the company’s 

strategic goals and values. Hence, the following membership 

function is defined as follows: 

 

cos

cos
cos cos

cos

0, 3.858.873

3.858.873
, 3.513.299 3.858.873

3.858.873 3.513.299

1, 3.513.299

t

t
t t

t

if F

F
if F

if F




 −

=  
−



; 

 

0, 12,89

12,89
, 7,95 12,89

12,89 7,95

1, 7,95

quality

quality

quality quality

quality

if F

F
if F

if F



 


−
=  

−
 

; 

 

0, 2.681,42

2.681,42
, 2.265,79 2.681,42

2.681,42 2.265,79

1, 2.265,79

time

time
time time

time

if F

F
if F

if F



 


−
=  

−
 

; 

 

0, 533.277

533.277
, 521.999 533.277

533.277 521.999

1, 521.999

emission

emission
emission emission

emission

if F

F
if F

if F




 −

=  
−



; 

 

0, 24.448,66

24.448,66
, 24.448,66 32.777,59

32.777,59 24.448,66

1, 32.777,59

prefer

prefer

prefer prefer

prefer

if F

F
if F

if F



 


−
=  

−
 

; 

 

Thus the model will be as follows: 

1

max
S

k

k

 
=

=  

Subject to: 

 

1 1 1

1

3.858.873 . . .

3.858.873 3.513.299

S J T

s sjt sj sjt jt

s j t

P Q O Z PIv Iv


= = =

 − + + 
=

−
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1 1 1
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1
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3.3 Experimental simulation 

 

We use python to simulate the experimental result in the 

Figure 1. 

 

 
 

Figure 1. Satisfaction levels for regional development 

 

The radar chart effectively visualizes the trade-offs and 

priorities in regional development decision-making. It shows 

that while sustainability and operational efficiency are 

important, there is a need for better alignment of decision-

makers' preferences with these goals. This analysis provides 

insights into the complexities of regional development and the 

importance of considering multiple criteria in decision-making 

processes. Carbon Emission has the highest satisfaction level 

at 91.76%, indicating that sustainability is highly prioritized in 

the decision-making process. Quality and Delivery Time also 

show high satisfaction levels (80.4% and 79.3%, respectively), 

emphasizing their importance in supplier selection. Price has 

a moderate satisfaction level of 61.11%, suggesting that while 

cost is important, it is not the primary driver in this context. 

Preference has the lowest satisfaction level at 41.18%, 

indicating a significant mismatch between decision-makers' 

priorities and the other criteria, or that it may be challenging 

to balance all criteria simultaneously. 

 

 

4. CONCLUSIONS 

 

Carbon emission had the highest satisfaction level (91.76%) 

in the survey. This shows that supply chain decision-making 

prioritizes sustainability. Quality and delivery time 

satisfaction were high (80.4% and 79.3%), showing their 

importance in supplier selection. However, price and 

preference satisfaction were lower at 61.11% and 41.18%. 

This means that cost is important, but not the key driver in this 

circumstance. The significant decline in preference 

satisfaction shows a mismatch between decision-makers' 

priorities and the other examined factors, or that it may be 

difficult to balance all the criteria. The results show that palm 

oil source selection is complicated. They illustrate that while 

sustainability and operational efficiency are important, 

decision-makers' preferences must be better aligned with these 

goals. This analysis illuminates the trade-offs and priorities 

needed for a sustainable supply chain. The proposed AHP and 

FGP integrated model has shown trade-offs across criteria, 

however its limitations and future research prospects must be 

severely examined. Pairwise comparisons are used to 

determine criteria weights in the AHP technique, which 

introduces subjectivity. Decision-makers may make 

inconsistent assessments, affecting findings robustness. Fuzzy 

membership functions and parameters might be subjective, but 

FGP uses fuzzy logic to handle uncertainty. Different 

definitions of acceptable ranges and satisfaction may yield 

different results. Delphi method or machine learning 

algorithms that learn from past decision-making patterns could 

be used in criteria weighting studies to reduce subjectivity. 

Real-time data analytics and supply chain management system 

integration can improve decision-making speed and accuracy. 

Integration allows continual supplier performance monitoring 

and appraisal. 
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NOMENCLATURE 

 

s FFB supplier, s=1, 2, 3, …, 8 

j Palm Oil Mills (POM), j=1, 2, 3, 4 

t Period t=1.2…12 

Pst FFB price by supplier-s on period-t (Ton/Kg) 

Osjt Ordering cost of POM-j to supplier-s on period-t (Rp) 

Qsjt Order allocation of supplier-s for POM-j in period-t 

(Ton) 

PIv Storage cost of CPO (Rp/Ton) CPO 

Ivjt Inventory of CPO by POM-j in period-t (Ton) 

qdsj Rejected FFB last year (Ton) 
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qasj Delivered FFB by supplier-s to POM-j last year (Ton) 

Zsjt Binary variable (1 if FFB supplied by supplier-S to 

POM-j on period-t, and 0 otherwise 

Cst Total production of FFB by supplier-s on period-t 

(Ton) 

hsj Distance of supplier-f to POM-j (Km) 

Vt Speed of transportation (Km/Jam) 

λ Unit of time period 

TE Carbon emission of transportation (Ton CO2/Km) 

PEjt Emission carbon process TBS oleh PKS-j in period-t 

(Ton CO2) 

IvE Carbon emission for each ton of CPO inventory CPO 

(Ton CO2) 

Ws Weight of supplier-s 
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