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In this article, a multiplayer inventory model is discussed that explains the relationship 

between a single manufacturer and multiple retailers in a supply chain system. There 

are products with imperfect quality in the quantity of lots produced, resulting from the 

production and transportation processes. A partial shortage backorder policy is 

implemented to handle shortage conditions. The cost of greenhouse gas emissions from 

loading and transportation equipment is also considered in the total cost. The quantity 

of imperfect products can affect the quantity of products to be shipped. Classical 

optimization techniques with an integrated approach are used for analytical inventory 

model analysis. Due to the complexity of the model, the optimal solution is performed 

using a numerical computational approach. The computational and optimization 

procedures are implemented in a new algorithm based on the genetic algorithms, which 

are executed by Python programming. 
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1. INTRODUCTION

In the manufacturing process, items produced in factories 

under the supervision of manufacturers are not always in 

perfect condition in terms of quality, and this assumption 

serves as a fundamental premise in contemporary inventory 

modeling. The presence of imperfect items can be described 

either with deterministic or probabilistic approaches. Many 

research studies have been conducted focusing on inventory 

models that consider the presence of imperfect items. 

Inventory models dealing with probabilistically imperfect 

items and incorporating controlled lead times have been 

explored [1], which followed a lead-time demand distribution 

approach. Building on this research, inventory models were 

further investigated, while also considering the concept of 

shortage backordering [2]. Additionally, an inventory model 

for products with imperfect quality has been examined, taking 

into account the assumption of quality improvement over lead 

time [3]. Other relevant research related to the aspect of 

imperfect quality also has been conducted by some researchers 

[4-8]. The development of an inventory model relies on 

predefined assumptions. Nevertheless, there are still numerous 

conditions and scenarios within supply chain management that 

have not yet been incorporated into inventory models dealing 

with imperfect-quality products.  

Recent inventory management research has increasingly 

focused on environmental concerns, specifically the carbon 

emissions (greenhouse gases) generated by production 

machinery, equipment, loading/unloading operations, and 

vehicles. Several studies have included carbon emission 

factors in their inventory models [9-19]. The shortage 

condition is a situation that is frequently encountered in 

practice. Interestingly, this condition is not actively sought to 

be circumvented by participants within the supply chain 

system. Various strategies are employed to minimize the 

occurrence of product shortages, with one such approach being 

the adoption of a partial backordering policy. This policy, in 

turn, influences the quantity of product shipments from 

manufacturers to fulfill retailer demands. Therefore, the partial 

backordering policy can also be integrated into the analysis of 

carbon emission management stemming from loading and 

unloading equipment and vehicles. The relationship between 

carbon emission policies and partial backordering also has 

been explored [20]. 

Furthermore, the presence of imperfect quality products can 

accelerate the depletion of product inventory beyond the 

planned timeframe, as imperfect quality items cannot be sold. 

This aligns with the partial backordering policy, which seeks 

to address such shortages. Therefore, in this context, there is a 

hypothesis that the existence of imperfect quality products and 

the partial backordering policy can be analyzed concurrently 

within the framework of carbon emission management 

policies. To date, no prior research has explored this particular 

combination of factors. From the existing literature, it is 

evident that no prior research has addressed the construction 

of a mathematical model for product with imperfect quality 

while simultaneously considering greenhouse gas emissions, 

reorder procedures, and policies for managing shortages 

through backordering as part of the objective function 

formulation.  

The optimization analysis of inventory models involving 

multiple variables and parameters is generally quite complex. 

It is not uncommon for the optimum analytical solution to 

become infeasible to express explicitly. Numerical approaches 
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often provide a realistic choice, where solutions can be 

obtained through computation based on algorithms designed 

to determine the optimal solution. One of the programming 

languages suitable for developing algorithms to handle 

complex computational cases is Python. 

Based on the above description, it can be explained that this 

research involves 2 research questions (RQ): 

RQ 1. How does a multi-player inventory model consider 

aspects such as imperfect quality, shortage backordering, and 

carbon emission management? 

RQ 2. How does a genetic algorithm using the Python 

programming language determine the optimal solution of the 

inventory model computationally? 

The research results, which are the answers to the research 

questions, are innovative in that they introduce a new multi-

player inventory model that has not existed before. Previous 

research has not included a green inventory model that 

integrates aspects of imperfect quality, shortage backordering, 

and carbon emission in one mathematical model. Furthermore, 

innovation lies in the genetic algorithm developed to 

determine the optimal solution for the green inventory model 

computationally. Genetic algorithms are rarely used in 

inventory model literature, and the use of the Python 

programming language to develop this genetic algorithm in the 

context of inventory models has not been done before this 

research. In this research, a new green inventory model will be 

formulated, considering the existence of imperfect quality 

products and incorporating a partial backordering policy. The 

optimization analysis will be constructed based on integration 

and synchronization schemes. Subsequently, the numerical 

solutions will be determined using a genetic algorithm 

developed using Python.  

The rest of this explanation is structured as follows. In 

Section 2 general assumptions, formulation of mathematical 

model, and analytical analysis for the optimum value are 

formulated. The algorithm and numerical computation of the 

inventory model are discussed in Section 3. Finally, some 

conclusion from our works and provide Several 

recommendations for future research are presented in the final 

section. 

 

 

2. LITERATURE REVIEW 

 

The process of modern inventory model formation has 

involved the assumption of the existence of products with 

imperfect quality. This is because in inventory management, 

there will always be products with imperfect quality. In the 

literature, several inventory models have been developed with 

the assumption of products having imperfect quality. Some of 

these studies include Lin [1], who examined a probabilistic 

multi-player inventory model with a lead-free distribution 

demand policy. Additionally, Jha and Shanker [2] studied the 

impact of imperfect quality on an integrated inventory model, 

which also incorporated controllable lead time policies and 

shortage backordering. Research on vendor-buyer inventory 

models for imperfect quality items with controllable lead time 

assumptions was also conducted by Setiawan and Endrayanto 

[7]. Focusing on controllable lead time assumptions, Mandal 

and Giri [3] explored the relationship between quality 

improvement and reducing products with imperfect quality. 

Furthermore, Konstantaras et al. [4] analyzed inventory 

models for products with imperfect quality, allowing for 

shortage policies and learning in inspection. Huang et al. [9] 

also analyzed vendor-buyer inventory models for imperfect 

quality products and shortage backordering strategies. 

Inventory model analysis for imperfect quality under 

stochastic demand and partial backlogging conditions was 

studied by Bhowmick and Samanta [5]. Finally, control and 

efficiency in inventory management for imperfect quality 

products have been addressed by Alamri et al. [6]. Based on 

this literature analysis, shortage backordering is considered an 

appropriate strategy in inventory management for imperfect 

quality products. This is because products with imperfect 

quality reduce the quantity of good products, leading to a rapid 

decline in inventory levels and potential shortages. On the 

other hand, control processes and their efficiency are 

necessary to reduce the potential for shortages due to imperfect 

quality. One strategy that can be used is partial backordering, 

although this strategy has not been extensively discussed in the 

literature as previously mentioned. Furthermore, in those 

literature sources, the numerical computations used still do not 

employ heuristic computations (evolutionary algorithms). 

The modeling of green inventory has been developed by 

many researchers, focusing on various aspects of the 

relationship between supply chain management and the 

environment. When focusing on carbon management aspects, 

there are several known results in the literature. Firstly, Huang 

et al. [9] discussed inventory models with green investment 

and the effects of various carbon emission policies. Rahimi et 

al. [10] explained stochastic routing problem inventory models 

considering profit, service level, and green criteria. Bozorgi 

[11] examined carbon emission aspects in inventory models 

for cold items. Marchi and Zanoni [12] discussed inventory 

management for a closed-loop supply chain model considering 

logistics. Beccera et al. [14] studied sustainable green 

inventory models. Mahato and Mahata [20] explored a 

sustainable partial backordering inventory model linked to 

order credit policy and all-unit discount with capacity 

constraints and carbon emissions. Based on the literature 

review, there has not been a discussion on green inventory 

focusing on imperfect quality aspects combined with partial 

backordering strategies. Therefore, this research becomes 

critically important because carbon emissions and imperfect 

quality are two significant aspects of modern inventory 

discussions. 

The green inventory model developed in this paper has 

fundamental differences compared to existing green inventory 

models in the literature. Firstly, the inventory model is 

constructed by combining assumptions of carbon emission 

management with the presence of imperfect products and 

partial backordering policies. Furthermore, genetic algorithms 

have not been previously applied in previous studies to 

optimize the green inventory model. Several comparisons 

between our inventory model and existing inventory models 

are presented in the Table 1. 

There are two limitations of existing models in some 

literatures that will be addressed and also serve as the 

objectives of the inventory model formation process in this 

paper. First is the limitation in developing assumptions for the 

green inventory model regarding carbon emission 

management, which has not integrated several important 

assumptions in inventory management, namely the presence 

of imperfect quality products and anticipation of shortage 

conditions with partial backordering policies. The second 

limitation to be addressed in this research is that the 

computation process for optimal solutions in inventory model 

analysis is still primarily based on classical optimization 

1783



 

theory and has not been directed towards a metaheuristic 

approach. However, given the increasing complexity of 

models and data, heuristic optimization approaches become 

more realistic. One such heuristic optimization approach is 

genetic algorithms, which have high precision in determining 

optimal solutions. 

Based on the analysis and comparison with previous 

research in the literature, the contributions and novelties of this 

research are as follows: 

(1) A new green inventory model for imperfect quality 

products under the assumption of using partial backordering 

strategy. This model's form has not been researched before. 

(2) Computation of optimal solution determination using 

genetic algorithm based on Python programming, which has 

not been done before in inventory model analysis. 

 

Table 1. Literature review 

 
No. Aspect Authors 1 2 3 4 5 

1 Lin [1] v - - - - 

2 Jha and Shanker [2] v - - - - 

3 Mandal and Giri [3] v - - - - 

4 Konstantaras et al. [4] v - - - - 

5 Bhowmick and Samanta [5] v v - - - 

6 Alamri et al. [6] - - - - - 

7 Setiawan and Endrayanto [7] - - - - - 

8 Hsu and Hsu [8] v - - - - 

9 Huang et al. [9] - - - v - 

10 Rahimi et al. [10] v - - v - 

11 Bozorgi [11] - - - v - 

12 Marchi and Zanoni [12] - - - v - 

13 Beccera et al. [14] - - - v - 

14 Mahato and Mahata [20] - - - v - 

15 This Paper v v v v v 
Aspect:  

1. Imperfect quality related to shortages/service level policy. 

2. Imperfect quality related to partially backorder policy. 

3. Numerical computation using Evolutionary Algorithms. 

4. Carbon Emission Aspect. 

5. Carbon Emission for imperfect quality items. 

 

 

3. MATHEMATICAL MODEL FORMULATION AND 

OPTIMUM ANALYSIS 
 

3.1 Mathematical inventory model 

 

A mathematical inventory model will be developed for an 

inventory system comprising a single manufacturer with 

multiple retailers. The existence of imperfect quality will be 

taken into account, and a partial backordering policy will be 

adopted by all retailers. Before delving into further details, 

let’s first introduce the notations and assumptions being 

utilized.  

Assumptions 

1. The inventory management system pertains to a single 

item product. Planning horizon is assumed to be infinite 

(without any time constraints).  

2. The order level is known, constant, and continuous.  

3. There is no lead time and the replenishment rate of 

product is infinite. 

4. The expense (cost) related to carbon emissions is taken 

into account, and the demand rate remains consistent and well-

known. 

5. Shortage conditions are permissible and are addressed 

through a partial backordering policy. We adhere to Mahato 

and Mahata [20]’ approach, where a fixed rate β is used to 

backorder a portion of the shortages. 

6. Imperfect items a present in a lot of sizes q. The fraction 

of these imperfect items, denoted as γi, follows a probability 

density function represented by f(γi). To guarantee that the 

manufacturer possesses adequate production capacity to meet 

retailer demand, it is postulated that the expected value of 

𝐸[𝛾𝑖] < 1 −
𝐷

𝑃
. 

7. The entirely of the lot quantity sorting procedure is 

finished at the retailer’s site before the commencement of each 

cycle duration T. In this scenario, the time taken for sorting is 

included in the delivery lead time. Any products displaying 

imperfect quality will be sent back to the manufacturer during 

the subsequent lot shipment via a return process. 

8. There is an assumption that no extra shipping expenses 

are incurred for this return process. The manufacturer offers 

compensation of ω for each imperfect-quality product 

identified. Additionally, the manufacturer plans to resell these 

imperfect-quality products through a secondary market. 

9. The principles of synchronization and integration are 

agreed upon by the manufacturer and all retailers for the 

determination of optimal solution. 

Next, the inventory mathematical modeling process will be 

carried out with the following steps: 

1. Formulation of Assumptions: Based on the assumptions 

used, a mathematical inventory model will be developed. This 

inventory model includes the total cost formulation needed by 

each player in the supply chain system, namely the retailers 

and the manufacturer. 

2. Determination of the Total Cost Function: The total 

cost functions for the retailers and the manufacturer are 

determined based on the identification of the cost components 

required according to the previously defined assumptions and 

inventory levels. The inventory levels are presented in a graph 

that depicts the inventory condition of each retailer and 

manufacturer within one cycle. 

3. Formation of the Combined Retailer Total Cost 

Function: This function is obtained by summing up the total 

cost functions of all individual retailers. 

4. Formation of the Joint Total Cost Function: This total 

cost function is derived based on the integration scheme 

assumption by summing the total cost functions of all retailers 

and manufacturer. 

Once these four stages are completed, the inventory 

modeling process is finished. The next step is optimization to 

obtain the optimal values of the decision variables, q and n, 

using optimization principles and theories applied to the 

supply chain system total cost function obtained in step 4. 

The construction of an inventory model for imperfect-

quality products, involving a single manufacturer and multiple 

retailers, will now be explained, based on the previously 

outlined assumptions. The inventory model consists of a total 

cost function that encompasses both the manufacturer and 

retailers, which is subsequently combined into a total cost 

function for the entire inventory system through an integration 

process. The objective function for retailers in one cycle is 

composed of several components, encompassing ordering 

expenses, product transportation charges, product sorting 

expenditures, holding costs, backordering costs, and carbon 

emission handling cost.  

The ordering cost 𝐶𝑖
𝑏 is the standard cost that each retailer 

must pay to the manufacturer to enable the production of 

products needed by each retailer. The products produced by 

the manufacturer will be shipped to each retailer, and the 

transportation cost Fi is borne by the retailer. Since it is 
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assumed that there are always imperfect quality items, the 

retailer will undergo a sorting process when a lot arrives at the 

retailer's location during each shipment. This sorting process 

incurs a sorting cost per unit product si. The products at the 

retailer's location will be stored before they can be sold during 

the sales period. The storage process incurs a holding cost ℎ𝑖
𝑏. 

Then, to avoid shortage conditions, each retailer agrees to use 

a partial backorder strategy with a reorder cost per unit of 

products per unit of time bi and with a proportion of shortage 

that will be ordered set at β. It is then agreed that all carbon 

management costs will be charged as part of the product 

fulfillment cost by the manufacturer to the retailer. First is the 

carbon emission cost from loading equipment EG2 in the 

process of loading products into the transport vehicle. The 

transport equipment uses fuel that generates carbon emissions. 

Next is the carbon emission cost EG2 from the type of transport 

vehicle used to deliver products from the manufacturer's 

location to each retailer's location. It is assumed that the same 

type of vehicle is used for each retailer, so EG3 has the same 

value for each retailer i. Finally, the carbon emission cost 

component from unloading equipment used to unload products 

from the transport vehicle that arrives at the retailer's location 

is considered, assuming that all retailers use the same type of 

unloading equipment and fuel that can generate carbon 

emissions. 

Firstly, the component of product holding costs will be 

determined. It is assumed that the sorting process is entirely 

100% completed when the products reach the retailer’s 

location. Imperfect-quality products discovered during this 

process are promptly separated and returned to the 

manufacturer during the subsequent product shipment. It is 

further assumed that no holding expenses are incurred for the 

identified imperfect-quality products. The assessment of 

holding costs is derived from the inventory levels are 

presented in the following diagram.  

According to the inventory process illustrated in Figure 1, 

the cost for holding component in the cost function for each 

retailer can be formulated as: 

 

 ℎ𝑖
𝑏   (

𝑛

2
( 

𝑞𝑖 − 𝛾𝑖 − 𝛽 𝑞𝑖

𝐷
 )

2

+
𝑞𝑖

2 𝛾𝑖 (1 − 𝛾𝑖)

𝐷
 )  

 

Meanwhile, the shortage cost component is formulated as 
1

2
𝐶𝑏  𝛽𝑛 𝑞𝑖  / 𝐷. The emission handling cost is allocated to each 

retailer i. The type of handling equipment and vehicles are 

determined by the manufacturer. The emission handling cost 

element is computed by adding up the costs incurred from the 

loading and unloading equipment as well as transportation 

equipment emissions, formulated as: 

 

𝐽𝑖𝐸𝐺1𝐶𝑗𝑞𝑖 + 𝐶𝑙𝐸𝐺2𝑚𝑝𝑝𝑞𝑖 + 𝐶𝑢𝑙𝐸𝐺3𝑚𝑝𝑝𝑞𝑖 . 

 

Consequently, the function of total cost for each retailer is 

denoted as ℝ𝑖(. ): ℝ2 → ℝ with: 

 

𝑅𝑖(𝑞𝑖,𝑛) =  𝐶𝑖
𝑏 +  𝑛𝐹𝑖 + 𝑠𝑖𝑛𝑞𝑖 + ℎ𝑖

𝑏 1

2
+

1

2
𝐶𝑏𝛽𝑛

𝑞𝑖

𝐷
+

𝐽𝑖𝐸𝐺1𝐶𝑗𝑞𝑖 + 𝐶1𝐸𝐺2𝑚𝑝𝑝𝑞𝑖 + 𝐶𝑢𝑙𝐸𝐺3𝑚𝑝𝑝𝑞𝑖  
(1) 

 

Now, the manufacturing objective function, denoted as the 

total cost function, will be detailed. Comprising several 

components, this manufacturing objective function includes 

setup costs and compensation expenses incurred due to the 

identification of imperfect-quality products. Drawing from 

Figure 1 and building upon the research conducted by Lin [1] 

and also result by Konstantaras et al. [4], the inventory holding 

cost for the manufacturer under the integration scheme is 

established as the product of the cost per unit of product held 

and the cumulative disparity between the manufacturer's 

inventory level and retailer i's cumulative inventory level. The 

formulation of holding costs per cycle is accomplished 

through the following equation: 

 

ℎ𝑝 [𝑛(𝑞𝑃−1 + (𝑛 − 1)𝑇)𝑞 −
𝑛(

𝑛

𝑃
)

2
] − ℎ𝑝[𝑞 + 2𝑞 + ⋯ +

(𝑛 − 1)𝑞𝑇] = ℎ𝑝 (
1

𝑃
𝑛𝑞2 −

𝑛2𝑞2

2𝑃
+

1

2
𝐷−1𝑛(𝑛 − 1)(1 − 𝛾)𝑞2)  

 

Hence, the total cost for the manufacturer is formulated by: 

 

𝑀(𝑞, 𝑛) = 𝐶𝑝 + 𝜔𝑛𝑞𝛾 + ℎ𝑃
𝑛𝑞2

𝑃
− ℎ𝑃

1

2𝑃
𝑛2𝑞2 +

ℎ𝑝 (
1

2
𝐷−1𝑛(𝑛 − 1)(1 − 𝛾)𝑞2)  

with 𝑞 = ∑ 𝑞𝑖
𝑛
𝑖=1  and 𝛾 = (𝛾1, 𝛾2, … , 𝛾𝑛). 

(2) 

 

3.2 Optimum analysis 

 

The manufacturer and all retailers are assumed to agree to 

employ an integration scheme as the foundation for 

determining the optimal decision variables. The integration 

scheme in the inventory system is translated into the 

establishment of the overall cost function for the inventory 

system which is the combination of the manufacturer's 

objective function and the retailers' objective function, 

𝐽(𝑞, 𝑛, 𝐵) = 𝑀𝑖(𝑞𝑖 , 𝑛) + ∑ 𝑅𝑖(𝑞𝑖 , 𝑛)𝑘
𝑖=1  as follows: 

 

𝐽(𝑞, 𝑛) = ℎ𝑝 (
𝑛𝑞2

𝑃
−

𝑛2𝑞2

2𝑃
+

𝑛(𝑛−1)𝑞2(1−𝛾)

2𝐷
)  

+ ∑ (𝐶𝑖
𝑏 + 𝑛𝐹𝑖 + 𝑠𝑖𝑛𝑞𝑖)

𝑘
𝑖=1   

+ ∑
1

2
ℎ𝑖

𝑏𝑛𝑘
𝑖=1 (

(𝑞𝑖−𝛾𝑖−𝛽𝑞𝑖)2

𝐷

𝑞𝑖
2𝛾𝑖(1−𝛾𝑖)

𝐷
)  

+ ∑ (
1

2

𝑐𝑏𝛽𝑛𝑞𝑖

𝐷
+ 𝐽𝑖𝐸𝐺1𝐶𝑗𝑞𝑖 + 𝐶𝑙𝐸𝐺2𝑚𝑝𝑝𝑞𝑖)

𝑘
𝑖=1   

+ ∑ (𝐶𝑢𝑙𝐸𝐺3𝑚𝑝𝑝𝑞𝑖)
𝑘
𝑖=1 + 𝐶𝑝 + 𝜔𝑛𝑞𝛾.  

(3) 

 

where, 𝑞 = ∑ 𝑞𝑖
𝑛
𝑖=1 , and 𝛾 = (𝛾1, … , 𝛾𝑛)𝑇 . Since every party 

in the inventory system also agree to use the synchronization 

principle, the relationship 𝑞𝑖 = 𝐷𝑖
𝑞

𝐷
 hold. Thus, Eq. (3) can be 

expressed as the following equation: 

 

𝐽(𝑞, 𝑛) =
𝑞2𝑛

𝐷3
(

ℎ𝑝𝐷3

𝑃
−

(1 − 𝛾)𝐷2ℎ𝑝

2
) + 

𝑞2𝑛

𝐷3
∑ ℎ𝑖

𝑏

𝑘

𝑖=1

𝐷𝑖
2𝛾𝑖(1 − 𝛾𝑖) +

𝑞2𝑛

𝐷3
(−𝛽 ∑ ℎ𝑖

𝑏𝐷𝑖
2

𝑘

𝑖=1

+
1

2
∑ 𝛽2𝐷𝑖

2

𝑘

𝑖=1

) 

+
𝑞2𝑛

𝐷3
(

1

2
∑ ℎ𝑖

𝑏𝐷𝑖
2

𝑘

𝑖=1

) +
𝑞2𝑛2

−
1

2𝑃
+

(1 − 𝛾)
2𝐷

+ 

𝑞𝑛
1

𝐷
(𝜔𝛾 +

1

𝐷
∑ 𝑠𝑖𝐷𝑖

𝑘

𝑖=1

− 𝐷−2 ∑ ℎ𝑖
𝑏𝛾𝑖

𝑘

𝑖=1

𝐷𝑖) + 

𝑞𝑛
1

𝐷
(

𝛽

𝐷2
∑ ℎ𝑖

𝑏𝛾𝑖𝐷𝑖

𝑘

𝑖=1

+
𝑐𝑏𝛽

2𝐷
) + 

𝑞

𝐷
∑ 𝐷𝑖

𝑘

𝑖=1

(𝐽1𝐸𝐺1𝐶𝑗 + 𝐶𝑙𝐸𝐺2𝑚𝑝𝑝) + ∑ 𝐷𝑙

𝑘

𝑖=1

𝐶𝑢𝑙𝐸𝐺3𝑚𝑝𝑝 + 

𝑛

2𝐷
(∑ ℎ𝑖

𝑏𝛾𝑖
2𝑘

𝑖=1 + ∑ 𝐹𝑖
𝑘
𝑖=1 ) + ∑ 𝐶𝑖

𝑏𝑘
𝑖=1 + 𝐶𝑝.   

(4) 

 

Due to the length of the product replenishment cycle 

(𝑇𝑡𝑜𝑡 =
𝑛𝑞(1−𝛾)

𝐷
), then we have: 
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𝐸[𝑇𝑡𝑜𝑡] =
𝑛𝑞(1−𝐸[𝛾])

𝐷
  (5) 

 

By employing the renewal-reward theorem, the formulated 

expected average total annual cost per unit of time becomes 

𝐸𝐽(𝑞, 𝑛, 𝐵) =
𝐸[𝐽(𝑞,𝑛,𝐵)]

𝐸[𝑇𝑡𝑜𝑡]
. Then, we have: 

 

𝐸𝐽 (𝑞, 𝑛) =
𝑞(𝐸[𝛾](1 −  𝐸[𝛾]) ∑ ℎ𝑖

𝑏𝐷𝑖
2𝑘

𝑖=1 )

𝐷2(1 − 𝐸[𝛾])
− 

𝑞(1 − 𝐸[𝛾])𝐷2ℎ𝑝

2𝐷2(1 − 𝐸[𝛾])
+

𝑞

𝐷2(1 − 𝐸[𝛾])
(

ℎ𝑝𝐷3

𝑝
+

1

2
∑ ℎ𝑖

𝑏𝐷𝑖
2

𝑘

𝑖=1

) + 

𝑞

𝐷2(1 − 𝐸[𝛾])
(

1

2
∑ 𝛽2𝐷𝑖

2

𝑘

𝑖=1

− 𝛽 ∑ ℎ𝑖
𝑏𝐷𝑖

2

𝑘

𝑖=1

) + 

𝑞 (𝐸[𝛾](1 − 𝐸[𝛾]) ∑ ℎ𝑖
𝑏𝐷𝑖

2

𝑘

𝑖=1

) +
𝑞𝑛

1
2

(1 −
𝐷
𝑃

(1 − 𝐸[𝛾]))

+ 

1

𝑞(1 − 𝐸[𝛾])

𝑐𝑏𝛽

2𝐷
+

1

𝑞(1 − 𝐸[𝛾])

(𝑐𝑏𝛽)

2𝐷
 

+
1

𝑞(1 − 𝐸[𝛾])
(𝜔𝐸[𝛾] +

1

𝐷
∑ 𝑠𝑖𝐷𝑖

𝑘

𝑖=1

) 

−
(

1
𝐷2 ∑ ℎ𝑖

𝑏𝑘
𝑖=1 𝐸[𝛾]𝐷𝑖 +

𝛽
𝐷2 ∑ ℎ𝑖

𝑏𝐸[𝛾]𝑘
𝑖=1 𝐷𝑖)

𝑞(1 − 𝐸[𝛾])
 

+
1

𝑛(1 − 𝐸[𝛾])
∑ 𝐷𝑖

𝑘

𝑖=1

(𝐽𝑖𝐸𝐺1𝐶𝑗 + 𝐶𝑙𝐸𝐺2𝑚𝑝𝑝) 

+ ∑ 𝐶𝑢𝑙

𝑘

𝑖=1

𝐸𝐺3𝑚𝑝𝑝 +
𝑛

2
(∑ ℎ𝑖

𝑏

𝑘

𝑖=1

𝛾𝑖
2 + ∑ 𝐹𝑖

𝑘

𝑖=1

) 

+𝐷
1

𝑛𝑞(1−𝐸[𝛾])
∑ (𝐶𝑖

𝑏 + 𝐶𝑝)𝑘
𝑖=1   

(6) 

 

where, 

𝐾1 =
ℎ𝑝𝐷3

𝑃
−

(1−𝐸[𝛾])𝐷2ℎ𝑝

2
+ 𝐸[𝛾](1 − 𝐸[𝛾]) ∑ ℎ𝑖

𝑏𝐷𝑖
2𝑘

𝑖=1 +
1

2
∑ ℎ𝑖

𝑏𝐷𝑖
2 − 𝛽𝑘

𝑖=1 ∑ ℎ𝑖
𝑏𝑘

𝑖=1 𝐷𝑖
2 +

1

2
∑ 𝛽2𝑘

𝑖= 𝐷𝑖
2,  

𝐾2 =
1

2
(1 −

𝐷

𝑃(1−𝐸[𝛾])
),  

𝐾3 = 𝜔𝐸[𝛾] +
1

𝐷
∑ 𝑠𝑖𝐷𝑖 −

1

𝐷2
𝑘
𝑖=1 ∑ ℎ𝑖

𝑏𝐸𝑘
𝑖=1 [𝛾]𝐷𝑖 +

𝛽

𝐷2
∑ ℎ𝑖

𝑏𝑘
𝑖=1 𝐸[𝛾]𝐷𝑖 +

𝑐𝑏𝛽

2𝐷
,  

𝐾4 = ∑ 𝐷𝑖
𝑘
𝑖=1 (𝐽𝑖𝐸𝐺1𝐶𝑗 + 𝐶𝑙𝐸𝐺2𝑚𝑝𝑝 + 𝐶𝑢𝑙𝐸𝐺3𝑚𝑝𝑝) +

𝑛

2
(∑ ℎ𝑖

𝑏𝑘
𝑖=1 𝛾𝑖

2 + ∑ 𝐹𝑖
𝑘
𝑖=1 ),  

𝐾5 = (∑ 𝐶𝑖
𝑏 + 𝐶𝑝

𝑘
𝑖=1 ).  

 

Next, the optimization process for the formulated expected 

average total annual cost per unit of time (function (6)) will be 

carried out using classical optimization principles, specifically 

partial derivatives. The first step is to determine the extreme 

values of function (6) by taking the partial derivative with 

respect to each decision variable, q and n. Thus, we obtain the 

following equation: 

 
𝜕𝐸𝐽(𝑞,𝑛)

𝜕𝑞
=

𝐾1

𝐷2(1−𝐸[𝛾])
+

𝑛𝐾2

2
−

𝐾3

𝑞2(1−𝐸[𝛾])
−

𝐷𝐾5

𝑛𝑞2(1−𝐸[𝛾])
= 0  

(7) 

 
𝜕𝐸𝐽(𝑞,𝑛)

𝜕𝑛
=

𝑞𝐾2

2
−

𝐾4

𝑛2(1−𝐸[𝛾])
−

𝐷𝐾5

𝑛2𝑞(1−𝐸[𝛾])
= 0  (8) 

 

To obtain the optimal values of (q and n) (i.e., 𝑞∗ and 𝑛∗), 

we perform algebraic manipulation of Eqs. (7) and (8) and 

derive the analytical solution as follows: 

 

𝑞∗ =
𝐷𝐾5

√
(𝑛∗)2𝐾2(1−𝐸[𝛾])

2 √
𝐾3+

𝐷𝐾5
𝑛

(
𝐾1
𝐷2+

(𝑛∗)𝐾2(1−𝐸[𝛾])
2

)
−𝐾4

  

(9) 

Since function (6) is a convex function, the value of q* 

obtained in Eq. (9) represents a minimum extreme point. 

Furthermore, determining an explicit analytical solution for 

the optimal solution based on Eq. (9) is not feasible, so the 

determination of the optimal solution can be achieved using a 

numerical computational approach, which will be explained in 

the next section.  

 

 
 

Figure 1. Retailer’s inventory level 

 

 

4. NUMERICAL COMPUTATION 

 

Based on the joint total cost function in Eq. (3) and the 

optimal value q* in Eq. (9), the analytical solution obtained is 

still in implicit form and cannot be directly interpreted in real 

conditions. Therefore, numerical computation is required to 

obtain a representative solution from the analytical solution. 

Due to the complex form of function (3) and the presence of 

many parameter values, classical optimization techniques 

using partial derivative criteria become irrelevant. The genetic 

algorithm used is a general genetic algorithm applied to 

function (3) with variables q and n, processed using the genetic 

procedures in the genetic algorithm to obtain the best fitness. 

These procedures include selection, crossover, and mutation. 

The value of γ is assumed to follow a uniform distribution in 

the interval [0,1]. 

 

Table 2. Value of parameters 

 
Symbol Value Symbol Value 

D1 150 D2 160 

ℎ1
𝑏 3 ℎ2

𝑏 4 

Cp 4 s1 3 

J1 100 J2 120 

EG1 0.004 EG2 0.003 

C1 4 Cul 2 

F2 55 F3 60 

D3 170 β 0.4 

ℎ3
𝑏 4 ω 25 

s2 3 s3 3 

J3 125 mpp 10 

EG3 0.03 Cj 3 

Cb 2 F1 55 

P 500 hp 5 

 

We will explain the numerical computational result using 

genetic algorithm to find approximate values of q* and n* in a 

complex equation. We will input the previously determined 

parameters into our Python algorithm and initialize initial 

estimated values. Furthermore, we will describe the iterative 

process following the principles of the genetic algorithm, 

which is an effective method for solving nonlinear equations. 

This algorithm will be executed using Python programming, 

allowing us to approximate solutions for an equation that 

cannot be solved explicitly. The results will provide us with 

approximate values for practical use in our inventory system. 
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The first step is to provide the required parameter values as 

shown in Table 2. 

The standard value of γ for each retailer is set to 0.1. The 

units of these values are adjusted according to the nature of the 

corresponding parameters as listed in Table 2. The units for 

quantities of products are in 1000 IDR, for unit costs are in 

IDR, and for weight is in kilograms. It is hypothesized that the 

defect rate, denoted as γi is consistent across all retailers and 

adheres to a uniform distribution on the interval [0,1]. The 

optimal values for q and n are calculated using a numerical 

approach applied to Eqs. (7) and (8). The numerical approach 

method employed is the genetic algorithm. The genetic 

algorithm was chosen due to its higher precision. Subsequently, 

the algorithm is formulated and executed in Python using the 

"random" and "pandas" packages and also "matplotlib.pyplot" 

packages to visualize the relationship between the changes in 

several parameters and the optimal values of q and n. The 

subsequent pseudocode outlines the genetic algorithm 

employed to identify the optimal decision for q and n.  

The values of the other important parameters are explained 

as follows. The population size is set to 50. This size is 

considered sufficient to achieve variation in the best individual 

solutions while not being too large to ensure the computation 

process does not become slow. The crossover probability is set 

to 0.8. This relatively high probability is intended to ensure 

that the crossover process occurs frequently, allowing for good 

gene combinations from the two parents. The mutation process 

is set with a probability of 0.2 to provide a balance between 

exploring new solutions. 

The convergence of the genetic algorithm is based on two 

criteria: 

(1) Maximum number of generations: Implemented through 

the ‘num_generations’ parameter, which controls how many 

iterations the algorithm will perform before automatically 

stopping. This is a very common criterion used to ensure the 

algorithm does not run indefinitely. 

(2) Threshold for fitness improvement: Compares the 

current best fitness value obtained with the previous one to 

determine whether there is a significant improvement. If there 

is no significant improvement: 

(‘abs(best_fitness_current - best_fitness_previous) < 

threshold).  

for several consecutive generations, the algorithm stops 

early. This helps to prevent unnecessary computations and 

accelerate convergence. 

These criteria are designed to ensure that the genetic 

algorithm operates efficiently and effectively in determining 

the optimal solution without performing unnecessary 

calculations. 

There are two complexities of the algorithm formed in this 

paper (Algorithm 1) namely time complexity and space 

complexity. Time complexity is affected by the initial 

population which takes O(polulation_size) (in Big-O notations) 

time. 

(1) Fitness Evaluation. Each individual in the population is 

evaluated in O(1) (constant) time, so the whole population is 

evaluated in O(population_size) for each generation. 

(2) Tournament Selection. This process is performed twice 

for each pair of parents, with a complexity of 

O(tournament_size) per selection such that it results in O(2x 

tournament size). 

(3) Crossover and Mutation. This process is performed with 

O(1) complexity for each pair of children. 

(4) Population Sorting and Trimming: The population is 

sorted and truncated every generation. 

 

 

Then for space complexity includes a population that 

requires space with a complexity of O(population_size) and 

additional variables such as fitness value, the best individual 

that requires O(1) space. Algorithm 1 has advantages in terms 

of efficiency, namely efficient in finding optimal solutions that 

are close to the optimal solution in a relatively short time. In 

Algorithm 1. Algorithm for find optimal solution 
1: Import: random, pandas, matplotlib.pyplot  

2: procedure INITIALIZE_POPULATION(population-size) 

3:      return [(random.uniform(500, 1500), 

random.uniform(1,2))   

            for in range(population-size)] 

4: end procedure 

5: procedure FITNESS (𝑞, 𝑛, 𝐷, 𝛾) 

6:       Calculate fitness based on given equations  

7:       return fitness value 

8: end procedure 

9. procedure TOURNAMENT_SELECTION (population, 

tournament-size) 

10: return min (random.sample(population, tournament-  

size), key=𝜆 x: fitness (x[0], x[1], D, 𝛾)) 

11: endprocedure 

12: procedureCROSSOVER(parent-1,parent-2) 

13: crossover-point = random.randint(1, length(parent1) - 1)  

14: child-1 = parent-1[1..crossover-point]+parent- 2[crossover-

point+1..length(parent-2)] 

15: child-2 = parent-2[1..crossover-point]+parent- 1[crossover- 

      point+1..length(parent-1)] 

16: return child-1, child-2 

17: endprocedure 

18: procedureMUTATION(individual,mutation-probability) 

19: if random() < mutation-probability then 

20: mutation-index = random.randint(1,length(individual)) 

21: if mutation_index == 1 then 

22: individual[mutation-index] = random.uniform(500, 1500)  

23:           else  

24: individual[mutation-index] = random.uniform(1, 2)  

25: end if 

26: endif 

27: return individual  

28: endprocedure 

29: procedure population-size, GENETIC-ALGORITHM 

(num- 

generations, tournament-size, crossover-probability, 

mutation- 

probability) 

30: population = initialize-population(population-size) 

31: for generation from 1 to num-generations do  

32: parent-1 = tournament-selection (population, tournament-

size)  

33: parent-2 = tournament-selection (population, tournament-

size)  

34: child-1, child-2 = crossover(parent-1, parent-2) 

35: child-1 = mutation(child-1, mutation-probability) 

36: child-2 = mutation(child-2, mutation-probability) 

37: population.extend ([child-1, child-2]) 

38: population.sort (key=𝜆 x: fitness(x[0], x[1], D, 𝛾)) 

39: population = population[:population-size] 

40: end for 

41: return population[0] 

42: endprocedure 

43: optimal-solution=genetic-algorithm(num-

generations=100,  

population-size=50, tournament-size=5, crossover-  

probability=0.8, mutation-probability=0.2) 

44: print ("Optimal Value of q: " + optimal-solution [0])  

45: print ("Optimal Value of n: " + optimal-solution [1])  
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this case, the selection, crossover, and mutation processes help 

to maintain population diversity so as to avoid early 

convergence on local solutions. Furthermore, the memory 

required by the algorithm is quite controllable as it only 

requires space that is linear to the population size. Despite its 

high complexity, Algorithm 1 is faster and gives better results 

than traditional optimization methods. Convergence criteria 

are based on two things: 

(1) Maximum number of generations. The algorithm stops 

after reaching a predetermined number of generations 

('num_generations'). 

(2) Insignificant improvement in fitness. The algorithm will 

stop early if there is no significant improvement in the best 

fitness value during consecutive generations 

('max_no_improvement'). This is measured by comparing the 

improvement in fitness value with a threshold value 

('threshod'). 

The convergence process of the algorithm can be explained 

as follows. Genetic algorithm 1 tends to converge towards the 

optimal solution as the generations increase. The selection, 

crossover and mutation mechanisms can help in exploring and 

exploiting the solution space effectively. 

Furthermore, the efficiency of the genetic algorithm created 

in this research is compared with several other heuristic 

algorithms. 

(1) Simulated Annealing (SA) 

a. SA algorithm has a time complexity that is quite similar 

to Genetic Algorithm 1 in terms of exploring the solution 

space. However, when the program is run, the SA algorithm is 

more dependent on the temperature parameters and cooling 

schedule of the computer processor used to run the algorithm. 

b. The convergence process of the SA algorithm is generally 

slower than the genetic algorithm group because it is more 

exploratory than exploitative. 

c. SA algorithms tend to be slow so it is less efficient to find 

solutions to large and complex optimization problems. 

(2) Tabu Search (TS) 

a. The time complexity of the TS algorithm depends on the 

length of the taboo list and the number of iterations.  

b. Convergence of the TS algorithm is more exploratory in 

the early iterations, but tends to exploit the existing solutions 

more in the fissile region. 

c. The TS algorithm is less efficient than the genetic 

algorithm 

(3) Particle Swarm Optimization (PSO) 

a. The time complexity of the PSO algorithm is similar to 

the genetic algorithm in terms of maintaining and updating the 

population which in this case are the particles. 

b. Convergence. PSO can achieve faster convergence in 

some cases due to social interaction between particles. 

c. In general the genetic algorithm may be more efficient in 

problems that require exploration of a wider solution space 

than the PSO algorithm. 

Using the Algorithm 1 and starting with individuals within 

the range of (500, 1500), the best individual values were 

obtained through the genetic algorithm process over 100 

iterations, with the best fitness value around 

207.858804659295. This resulted in optimal values for q and 

n within the ranges q*=1488.253454433092 and 

n*=1.9974241415185063, respectively. Therefore, it can be 

stated that the optimal value q* is approximately 1488 and n* 

is approximately 2. By using the same algorithm with slight 

variations in the input values related to imperfect product 

quality rate (γ), the optimal decision of q and n will change in 

response to variations in the gamma value. In general, the 

optimal value of q will increase as the value of γ becomes 

larger. Meanwhile, the value of n, although changing, remains 

within the range of 1.99 .... Hence, given that 𝑛 signifies the 

quantity of shipments, the optimal value for n remains n=2. 

The changes in the values of q and n due to variations in the γ 

value are presented in the following Table 3 and Figure 2.  

 

Table 3. Changes in optimal values of q and n in response to 

gamma variations 

 
No. γ q* n* 

1 0.1 1322.153002 1.977192 

2 0.2 1470.386571 1.947446 

3 0.3 1461.037243 1.991255 

4 0.4 1491.971485 1.990678 

5 0.5 1413.801326 1.987244 

6 0.6 1487.459066 1.992530 

7 0.7 1426.698571 1.991902 

8 0.8 1487.803543 1.999788 

 

 
 

Figure 2. Plots of q and n under gamma variations 

 

According to the numerical simulation in Table 3, it can be 

noticed that with the rise in imperfect quality rates, the value 

of q generally becomes larger. However, it can be noted that 

this change is not significantly large and remains within 

tolerable limits. Furthermore, the number of shipments 

(shipment quantity) does not change, allowing control over 

emission costs resulting from the shipping process. Therefore, 

this inventory model can be concluded as being resilient to the 

rate of defective items. Nevertheless, manufacturers should 

make efforts to reduce the rate of imperfect quality. Increasing 

q, after all, implies additional costs, underscoring the 

importance of minimizing imperfect quality. Next, the 

influence of the parameter β, or the proportion of shortage that 

will be ordered, on the optimum values of q and n will be 

examined. By employing Algorithm 1 with additional code to 

explore different values of β. Next, the influence of the 

parameter β, or the proportion of shortage that will be ordered, 

on the optimum values of q and n will be examined. By 

employing Algorithm 1 with additional code to explore 

different values of γ for γ=0.1, the resulting optimal values for 

q and n are as follows: for γ=0.1, the resulting optimal values 

for decision variables are shown in Table 4. 

Based on the numerical simulations, The optimal value of q 

tends to decrease as beta increases, specifically when beta is 

greater than or equal to 0.1. However, the optimal value of 𝑞 

tends to increase again (returning to the values observed when 

beta was 0.1) when beta is greater than or equal to 0.5. On the 
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other hand, the optimal value of n remains relatively 

unchanged. From these observations, it can be concluded that 

if retailers intend to adopt a partial backordering policy, the 

value of beta should be chosen to be small. A larger value of 

beta (approaching 1) would essentially imply a full 

backordering policy.  

Based on the numerical results, it can be concluded that the 

proposed model has advantages compared to other inventory 

models mentioned in Section 2, Literature Review. The 

proposed model effectively illustrates the potential for carbon 

reduction processes, one of which is by reducing imperfect 

quality products. When this green inventory model is 

implemented, carbon emission reduction can be achieved 

simultaneously. For instance, the relationship between the 

strategy to reduce imperfect quality and the reduction of 

carbon emissions in the transportation process is evident. This 

implies improvements in the transportation process, such as 

better vehicle selection and route optimization, leading to 

reduced carbon emissions. Existing inventory models in 

previous research, or traditional inventory models, do not yet 

show the connection between imperfect quality and carbon 

emissions as clearly as the proposed model does. 

 

Table 4. Changes in optimal values of q and n in response to 

beta variations 

 
No. β q* n* 

1 0.1 1492.210969 1.984411 

2 0.2 1434.313475 1.999060 

3 0.3 1476.862559 1.998576 

4 0.4 1489.889392 1.974049 

5 0.5 1442.761040 1.999444 

6 0.6 1491.153190 1.965408 

7 0.7 1455.133886 1.997027 

8 0.8 1497.088201 1.998467 

9 0.9 1484.334895 1.996898 
 

Based on this data in Table 4, Figure 3 can be generated: 

 

 
 

Figure 3. Plots q and n under beta variations 

 

 

5. CONCLUSIONS 

 

A multi-compartment inventory model was developed for a 

single manufacturer and multiple retailers. The inventory 

model was designed considering imperfect quality products 

and carbon emission costs. Due to the involvement of 

numerous parameters, obtaining an explicit analytical solution 

was not feasible, and only implicit solutions could be derived 

analytically. The focus of this study was on utilizing genetic 

algorithms implemented in Python to find numerical 

approximations. From the simulation outcomes, it can be 

deduced that the inventory model created demonstrates 

resilience in the face of variations in crucial parameters like 

the rate of imperfect quality and the proportion of ordered 

shortages. This implies that although variations in these 

parameters affect the optimal value of q, the resulting changes 

are within tolerable limits. Furthermore, alterations in these 

parameter values also impact the computed value of n, but only 

at the decimal level. Consequently, the optimal value of n, 

which should be an integer, remains unchanged at n=2. 
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NOMENCLATURE 

 
qp Batch production size at manufacturing site 

qi Lot size or production 

Bi The maximum quantity of reorder per unit 

n Number of shipments in each batch produced by the 

manufacturer. The decision variable 

Di Demand from the retailer i 

D Cumulative demand 

P Manufacturer’s production rate P>D, with D = ∑ Di
n
i=1  

Cp Set up cost the production process 

𝐶𝑖
𝑏 Cost for ordering per unit 

γi Percentage of products with imperfect quality in lot q 

fi (γi) The probability density function of γi 

ω Cost for compensation per unit of imperfect quality of 

products 

si Sorting cost per unit of products for retailer i 

bi Reorder cost per unit of products per unit time 

hp Manufacturer’s holding cost 

ℎ𝑖
𝑏 The expense associated with holding one unit of the 

product for each retailer i 

Fi Freight cost per shipment from the manufacturer to 

retailer i 

T The time length between one shipment and the next 

(retailer’s replenishment cycle) 

T1 The period during the production process at the 

manufacturing site 

T2 The period when the manufacturer fulfills the demands 

of all retailers from the inventory kept the manufacturing 

site 

Tt Cycle time, Tt=T1+T2=nT 

Ji The distance from the manufacturing location to each 

retailer i (km) 

EG1 Carbon gas emissions from specific vehicle for 

delivering a unit product (kgCO2) per 1 kg product 

EG2 Carbon gas emissions from loading equipment (kgCO2) 

per 1 kg product 

EG3 Carbon gas emissions from unloading equipment 

(kgCO2) per 1 kg product 

Cl Cost of loading per unit product 

Cul Cost of unloading per unit product 

Cj Carbon emission cost per unit distance 

Cb Cost for backodering process per unit per time 

mpp Weight per unit product 

R(.) Retailer i’ s objective function 

M(.) Manufacturer’s objective function 

β Proportion of shortage that will be ordered 
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