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The primary aim of this investigation is to conduct a comparative analysis on the 

anticipated intervals at which significant wave height (Hs) will occur. The spectral 

partition technique was used to separate time series. Next, they utilized three established 

methods for extreme value analysis: (1) Initial Distribution: This method assumes a 

specific probability distribution for the data and estimates the return period for extreme 

Hs values based on that distribution. (2) Peak Over Threshold (POT): This approach 

identifies exceedances of a chosen threshold (a significant wave height) and analyzes 

those extreme events to estimate return periods. (3) Annual Maximums: Here, the 

highest Hs value for each year is extracted, and the return period is estimated based on 

this series of annual maxima. By analyzing extremes in both the combined data and 

each individual series, the researchers discovered that one series likely contributes more 

significantly to extreme Hs values within the overall dataset. This suggests that the 

separate series might represent different wave regimes with varying influences on 

extreme events. The study emphasizes the benefits of applying extreme value analysis 

(EVA) to independent wave data series. Furthermore, the peak over threshold statistical 

method exhibits heightened statistical robustness and improved reliability in predicting 

return periods using wave data. 
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1. INTRODUCTION

In the design processes, for example, of mechanical and 

structural structures exposed to environmental factors, one of 

the fundamental parameters is the maximum load value to 

which they will be exposed. These loads define its strength 

requirement and are therefore directly related to 

manufacturing costs. The design under parameters lower than 

the requirements involves risk of failure, while oversizing 

implies high costs, probably not feasible. However, 

environmental variables (e.g., wind, hydrological flow, waves, 

among others) are essentially random variables, so the 

methodology to determine design loads must necessarily be 

stochastic in nature. However, statistical records of these 

variables are not always available and if they exist, its 

extension are limited. In general, the useful lifetime 

considered in the design always exceeds them, so it is 

necessary to estimate the occurrence probability of an extreme 

event in the future [1, 2]. 

The methodology to address this type of problem is well 

specified and is based on the theory of extreme values (EVA), 

which consists of projecting or “extrapolating” from a limited 

series of observed data [3]. The statistical conditions required 

for the application of this theory are: (1) The events must be 

statistically independent. For example, in swell, the value of 

significant wave height is usually not independent, a high 

value of significant wave height is usually preceded and 

followed by another high value. (2) The events must be 

identically distributed as to their nature. This generally does 

not happen because the data can have different origins. For 

example, in a wind analysis, events corresponding to trade 

winds should not be mixed with others from night gusts [4]. 

The situation in the case of waves is similar between the 

waves that are generated in distant storms (swell) and the local 

waves (wind sea) that are generated by local winds. In order to 

obtain statistical independence, only values that are 

sufficiently separated in time are considered, which means, 

taking a maximum value per storm (peak over threshold 

approach), or a maximum value per year (annual maximum 

approach). On the other hand, whenever possible, events 

should be separated according to their physical origin [5]. 

One of the latest advances in the EVA study carried out by 

Jácome [6] is based on the spectral partitioning of waves. And 

its subsequent application of the extreme value theory (EVA). 

But in this study only the peak over threshold (POT) 

adjustment is considered. And an analysis of the other 

adjustment methods is not carried out, such as: Initial or 

maximum annual distribution. Therefore, this research 

complements the study and generates a comparison with all 

the methods applied in this field. 

This paper presents a novel contribution on evaluation of 

EVA methods to separate time series according to their origin. 

To do this, through the use of pattern identification techniques, 

events are identified and separated according to their physical 
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genesis to obtain independent statistical projections. In 

principle, these are more robust in the calculation of extreme 

values, likewise, the return period values obtained in this way 

will also be more precise for the design [6]. To test this 

hypothesis, wave series from the Eastern Equatorial Pacific (3° 

N, 278° W) from the REANALISIS ERA-INTERIM database 

of the European Center for Medium-Term Weather Prediction 

(ECMWF) will be used [7]. These data cover the period from 

1979 to 2018, spatially discretized on a reduced Gaussian 

mesh with a spatial resolution of approximately 110 km. The 

main variable is the wave spectrum, available in 6-h intervals, 

making for a point a total of more than 54,000 spectra with a 

resolution of 30×24 in space (f-θ). Using the data, it is 

expected to obtain return periods for extreme values, total and 

separate series, in order to estimate the statistical parameters 

(e.g., return period) and then determine cases in which there 

may be underestimation or overestimation. 

 

 
2. MATERIALS AND METHODS 

 

2.1 Data used 

 
This research investigates the use of long-term, two-

dimensional (2-D) wave spectra at a specific location. While 

measured data from buoys and satellites might seem ideal, 

they come with limitations. Firstly, these point measurements 

are limited in space and time, only capturing data at specific 

locations and constantly changing with time and position. 

Secondly, most of this data doesn't cover long periods. On the 

other hand, reliable meteorological and wave models offer full 

spatial and temporal coverage with complete spectral 

information. These models, after verification, can be a more 

convenient solution. Notably, long-term spectral 

characteristics from these models align well with data 

collected by a local buoy over three years. Despite the inherent 

limitations of both measured and modeled data, both 

approaches successfully capture the four main wave systems 

with consistent spectral properties [8]. As a result, the research 

utilizes data from the Eastern Equatorial Pacific (3° N, 278° 

W) retrieved from the ERA-INTERIM model database [7]. 

The model data spans a significant timeframe, covering 40 

years from 1979 to 2018. It's organized on a specific grid 

system designed for efficiency, with a resolution of roughly 

110 kilometers. This data provides a wealth of information - 

over 54,000 wave spectra - collected frequently, at 6-hour 

intervals. Each spectrum captures detailed information across 

30 different wave frequencies and 24 directions. 

This study utilizes spectral partitioning, a technique detailed 

by Portilla et al. [9], to analyze long sequences of spectral data. 

Spectral partitioning offers two key benefits. Firstly, it allows 

researchers to examine individual wave systems 

independently. Since the technique considers the temporal 

order of the data, it can even help pinpoint the origin 

(geographic location) of a specific wave system based on its 

direction. Secondly, spectral partitioning acts as a data 

reduction tool. Wave spectra typically contain a vast amount 

of information (around 10,000 data points). By grouping the 

data into wave systems, this technique allows summarizing the 

key aspects (energy, frequency, and direction) with minimal 

information loss. This approach effectively reduces data 

volume by two orders of magnitude, making analysis 

significantly more manageable [8, 10, 11]. 

This research focuses on the Eastern Equatorial Pacific 

Ocean, specifically at a location 3° North and 278° West [12]. 

This region is influenced by the Intertropical Convergence 

Zone (ITCZ), a zone with consistent low to moderate winds 

that shifts north and south throughout the year [13, 14]. This 

movement shapes the local climate patterns. Interestingly, the 

waves in this area primarily originate from distant regions in 

the Northern and Southern hemispheres [10]. The researchers 

identified four distinct wave systems present in the 

surrounding area, designated WS1, WS2, WS3, and WS4 [10]. 

 

2.2 Methodology for the selection of extreme events 

 

When analyzing long wave data, a typical first step involves 

understanding the typical range (probability density function) 

of wave heights and other wave properties. Researchers 

usually categorize the observed data and present it as two-

dimensional histograms. These histograms are crucial because 

they show the distribution of wave values within the observed 

range. This information is valuable for tasks like analyzing the 

stress placed on structures by waves [15]. 

The real challenge lies in predicting extreme events, which 

occur rarely and fall outside the range of commonly observed 

data. To estimate the probability of these extreme waves, 

scientists need to extend their analysis beyond the observed 

range. This is achieved through a process called extrapolation. 

Extrapolation involves fitting a mathematical curve, called a 

probability distribution, to the observed wave data represented 

by the histogram. This curve is then used to predict wave 

heights beyond the observed range, allowing us to estimate the 

likelihood of encountering an extreme wave event. There's no 

single perfect model for describing wave data. Scientists rely 

on various probability distributions, each with its own 

strengths and weaknesses. The best choice depends on how 

well the model fits the actual observations. The parameters of 

the chosen distribution are then determined by how closely it 

aligns with the observed data. This "best fit" distribution is 

then used for extrapolation to estimate the probability of 

extreme events. In order to facilitate the ability to judge a fit, 

it is convenient to use the cumulative distribution 

function 𝑃(𝐻𝑠) = 𝑃𝑟[𝐻𝑠
̿̿ ̿ ≤ 𝐻𝑠], instead of the pdf p (Hs) [3], 

when the appropriate scales are plotted, the cumulative 

distribution function will appear as a straight line. Around this 

line the data should be grouped as can be seen in Figure 1. 

 

 
 

Figure 1. Cumulative distribution function of the total 

system fitted to a log normal distribution 

 

The choice of distributions is quite arbitrary, but the 

literature helps to limit the choice to only a few functions. The 

methods proposed in this methodology are detailed below. 

 

2.1.1 Initial distribution method 

Initial distribution considers all the values of the data series. 
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One of the problems present in partial series is the 

discontinuity of the sample [16]. Therefore, first a data 

discretization is performed [3], a first removal of values lower 

than a value known as calm sea Hsi can be performed, which 

is relatively low of significant wave height [17], this value will 

depend for each one of the series, consequently the values of 

Hs<Hsi are eliminated [18]. 

 

2.1.2 Peak over threshold method POT 

The extreme statistical values of the significant wave height 

can also be estimated with a different approach to the previous 

one. The Peaks Over Threshold (POT) approach considers 

only the maximum value of Hs in a temporal space known as 

a storm, as can be seen in Figure 2. A storm is defined as an 

uninterrupted sequence of Hs values that exceed a certain 

value. This value should be fairly high (threshold), preceded 

and followed by a lower value. The value chosen for this 

threshold is highly dependent on local conditions [19]. 

The POT peak-over-threshold method allows for better 

selection of extreme events from a data series. This threshold 

value or also known as storm value, is an empirical data from 

which an event can be considered as extreme [20]. However, 

the complexity of this method resides in the threshold selection, 

since a very low value would ignore the basic conditions of the 

model [21]. On the other hand, the higher this value is, the less 

amount of data, therefore, reliability in the fit would be lost. 
 

 
 

Figure 2. Example of a storm between two successive 

crossings of the wave height through a threshold level, 

Threshold=1.5 m 

 

 
 

Figure 3. Example of a deletion of an event whose duration 

is less than 24 hours, Threshold=5m 

It is important also to mention that there are no unified 

criteria to strictly define what is considered a peak event or 

extreme event [22]. The fundamental characteristic present in 

this method is to achieve a population of high and statistically 

independent values [19]. 

One way to guarantee this statistical condition is to select a 

value within the time variable, whose duration must be 

determined by the characteristics of the environmental 

phenomenon. In the case of waves, a recommended value is 

48 hours. This event duration value is justified since it is the 

average time that atmospheric disturbances causing waves 

usually last [21, 23, 24]. In this way, each selected maximum 

value will belong to different disturbances. In this analysis, a 

separation of 24 hours will be used, selecting the highest value 

in said interval, see Figure 3 (first peak). 

The distribution of the maximum value in a sequence that 

occurs above a threshold fits the generalized Pareto 

distribution [3, 22, 25]. This POT approach has two important 

advantages over the initial distribution approach discussed 

above: (a) Select only high values in the significant wave 

height. The elimination of minor events tends to concentrate 

the analysis on the regime that dominates the extremes; and (b) 

storms are statistically independent events, which provide a 

more solid theoretical foundation and simplify the 

interpretation of the analysis results (for example, the 

estimation of the sampling errors involved) [26]. 

 

2.1.3 Annual maximum method 

The third approach used is the annual maximum or also 

known as a block-based model. This model considers a 

population of random values (its distribution is called the 

parental distribution) from which a set of samples is drawn 

arbitrarily. Extreme value theory states that, under general 

conditions, the set’s maximum distribution is a generalized 

extreme value (GEV) distribution [3, 22]. To use these 

theoretical bases in a wave analysis, the original population is 

considered and from this, the maximum significant wave 

height value that occurs in a period of time, generally one year, 

is selected. The most relevant data from the sample set is then 

the maximum height in each year of the multi-year series. A 

time series of N years therefore gives N values of significant 

wave height as can be seen in Figure 3. The parameters of this 

GEV distribution can be estimated from the observed values 

of Hs [27]. 

One of the disadvantages present in this method is the 

importance of having a sufficiently long series of data, not less 

than 15 years [24], with this a sufficient number of extremes 

will be obtained to guarantee the adjustment. In cases where 

the series are very short, it is advisable to do it in blocks of less 

than one year, taking into account that it can be carried out up 

to quarterly or monthly maximums, in this case the statistical 

independence of the events must be guaranteed. In the present 

case, the series consists of 42 years, so this limitation does not 

affect the analysis. 
 

 

3. RESULTS 
 

The data used are obtained from the spectral separation of 

variables mentioned above, from which 54056 significant 

wave height data are obtained, separated in time space by an 

interval of 6 hours. Each separate series is designated as: Sw1, 

Sw2, Sw3, Sw4, and Total, the last being the original series, 

these data are grouped in a matrix (in MATLAB) for statistical 

analysis. The initial data corresponds to January 1, 1979, at 
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00:00 and the final data to December 31, 2018, at 18:00. 
 

3.1 Statistical analysis by the initial distribution method 

 

Initially, data lower than a value known as calm sea Hsi 

(relatively low value of significant wave height) [28] This 

value will depend on each one of the series, and the values of 

Hs<Hsi, will be erased [3]. In the case of the processed series, 

these values are: Sw1, Hsi=0,7 m; Sw2, Hsi=0,1 m; Sw3, 

Hsi=0,1 m; Sw4, Hsi=0,2 m; and for the Total series, Hsi=1 m. 

 

3.1.1 Histogram adjustment - initial distribution method 

As can be seen in Figure 4 for the partitioned series Sw1, 

the fit is very good graphically, it has a normal tail, while for 

the series Sw2 it is a much heavier tail. The Sw3 series 

presents problems with the fit since it has a large number of 

central values with few maximums, unlike the Sw4 series 

which has a heavier tail than the other distributions, it has few 

minimum values. In general, the total series is very similar to 

the Sw1 series. 

 
 

Figure 4. Histograms by the initial distribution method, fit to a Log-Normal curve 

 

 
 

Figure 5. Histograms by the initial distribution method, fit to a Weibull curve 
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Figure 6. Cumulative probability by the initial distribution method, fit to a Log-Normal curve 

 

 
 

Figure 7. Cumulative probability by the initial distribution method, fit to a Weibull curve 

 

As observed in Figure 5 for the partitioned series Sw1, the 

fit is poor compared to the previous distribution, the Weibull 

curve has a fit with more central values, leaving a light tail. 

Sw2 series is similar to the Log-Normal distribution. Unlike 

Sw3 series, which presents a better fit to the Weibull 

distribution. However, the Sw4 series has a heavy tail which 

fits well this distribution. Finally, the total series presents a 

poor fit. 

With the histogram method, it can be observed that this data 

series shows a better fit to a Log-Normal distribution, which 

will be contrasted with the cumulative probability graphs that 

are presented below. 

3.1.2 Adjustment by cumulative probability - initial 

distribution method 

As can be seen in Figures 6 and 7, for all the partitions, 

especially for Sw3, the adjustment occurs more for average 

values, which causes a distortion in the adjustment of extreme 

values. 

In relation to the histograms presented above for this 

method, the following results are presented: The series Sw1, 

Sw2, and Total behave better in a Log-Normal fit, both in 

histograms and in cumulative probability. While Sw3 and Sw4 

fit better to a Weibull distribution, this is mainly since the low 

values predominate in these series and not the maximum ones. 
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From this method, as can be seen in Figures 8 and 9, it is 

concluded that the total series fit a statistical method, while the 

partitions do not do so in this way when separating the series 

by their origin, statistically they behave differently. 

3.1.3 Return period - initial distribution method 

The return periods are calculated with the occurrence 

probabilities of each event up to a value of 100 years [29]. 

 

 
 

Figure 8. Return period by the initial distribution method, fit to a Log-Normal curve 

 

 
 

Figure 9. Return period by the initial distribution method, fit a Weibull curve 
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Figure 10. Significant wave height as a return period function for the initial distribution method using Log-Normal and Weibull 

adjustment 

 

Table 1. Return times initial distribution method 

 

Return Time 

[Years] 

Significant Wave Height [m] 

Log-N 

Sw1 

Log-N 

Sw2 

Log-N 

Sw3 

Log-N 

Sw4 

Log-N 

Total 

Wb 

Sw1 

Wb 

Sw2 

Wb 

Sw3 

Wb 

Sw4 

Wb 

Total 

10 2.41 1.33 1.92 1.46 2.43 2.24 1.07 1.61 1.31 2.36 

20 2.59 1.54 2.08 1.68 2.55 2.33 1.15 1.67 1.42 2.43 

30 2.69 1.67 2.17 1.80 2.62 2.38 1.20 1.70 1.48 2.47 

40 2.76 1.76 2.24 1.90 2.66 2.41 1.23 1.72 1.52 2.49 

50 2.81 1.83 2.29 1.97 2.70 2.43 1.25 1.74 1.55 2.51 

60 2.86 1.90 2.33 2.03 2.73 2.45 1.27 1.75 1.57 2.53 

70 2.90 1.95 2.37 2.09 2.75 2.47 1.28 1.76 1.59 2.54 

80 2.93 1.99 2.40 2.13 2.77 2.48 1.30 1.77 1.61 2.55 

90 2.96 2.03 2.43 2.17 2.79 2.49 1.31 1.78 1.63 2.56 

100 2.98 2.07 2.45 2.21 2.81 2.50 1.32 1.79 1.64 2.56 

 

 
 

Figure 11. Histograms by the peak over threshold method, fit to a Generalized Pareto curve 
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The return periods for the series: Sw1, Sw2, Sw4 do not 

present a good fit for extreme values, minor events are very 

relevant; while in the Sw3 and Total series there is a decrease 

for low values, which causes a curvature at the beginning of 

the graph. 

As can be seen in Figure 10 and Table 1, for the initial 

distribution method, there are different return times with both 

methodologies used. Since there is a statistical analysis, the 

result differs from the methods used, defining that the greater 

the return time, the greater the difference, which would cause 

an overestimation if the appropriate method were not used. 

The trend is maintained with the partitioned series and the 

Total. 

 

 
 

Figure 12. Histograms by the peak over threshold method, fit to a Generalized Pareto curve 

 

 
 

Figure 13. Return period by the POT peak over threshold method, fit to a Generalized Pareto curve 
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Figure 14. Return period by the POTSTORM peak over threshold method, fit to a Generalized Pareto curve 

 

 
 

Figure 15. Significant wave height as a function of return time for the peak over threshold method using the number of events 

and storm duration method 

 

3.2 Statistical analysis by the POT peak over threshold 

method 

 

To carry out the data statistical analysis, it is necessary to 

define the threshold, for which there are several recommended 

methods. The reference value in most data is identified as a 

non-stationary sequence of states in which Hs exceeds the 

value of 1.5 times the mean annual wave height, that is 

𝐻𝑠𝑈𝑚𝑏𝑟𝑎𝑙 = 1,5 𝐻𝑠̅̅̅̅  [30, 31]. With this value we proceed to 

eliminate lower data and select each storm event from the 

maximum events. In addition, to guarantee the statistical 

independence of events, it is necessary to take only values that 

are distant in temporal space by a period of 24 hours. 

3.2.1 Histogram fit - POT method 

When the data is reduced by a threshold fit, the series must 

belong to a statistical family known as the generalized Pareto 

distribution. Then, the data is ordered by histograms and fitted 

to the statistical distributions, as shown in Figure 11, for the 

Generalized Pareto Distribution. 

As can be seen in Figure 11, the Sw1 series has a heavy tail 

with very extreme data, while the Sw2 series tail is lighter. The 

Sw3 series features a normal tail just like the Sw4. Finally, the 

Total series has a light tail considering their respective 

aforementioned threshold values. 

As can be seen in Figure 12, for the Sw1, Sw4 and Total 

series: the selected threshold guarantees having enough data 
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and is aligned with the extremes, so it has a good fit. This 

occurs to a lesser extent with the Sw2 and Sw3 series in which 

there are extreme values that deviate from the adjustment 

curve. Compared to the histograms presented above for this 

method, the following results are shown: The Sw1, Sw4, and 

Total series behave better in the cumulative probability plots, 

while the Sw2 and Sw3 series do not, concluding that the 

heavier the tail, the better it fits this threshold method. 

 

3.2.2 Return period - POT method 

As can be seen in Figures 13-15, the return periods are 

calculated with the probabilities of occurrence of each of the 

events up to a value of 100 years. As stated earlier in section 

1, there are two ways to assess the return period in this method. 

The first is to find a correction value based on the number of 

years and the number of events that exceed the said threshold. 

and another with the average duration time of the storm, that 

is, the average duration time of the value Hsthreshold. 

For the first case the results are as follows: 

As can be seen in Table 2, the return periods for the series: 

Sw1, Sw2, Sw3 and Total, present a good adjustment with 

little relevance of minor events, while in the Sw4 series there 

is an influence of the low values that cause a curvature at the 

beginning of the graph. There is a dominance in the Sw1 series 

over the Total in the return periods, but it does not exceed its 

value. 

 

Table 2. Return times, peak over threshold method 

 

Return Time 

[Years] 

Significant Wave Height [m] 

POT 

Sw1 

POT 

Sw2 

POT 

Sw3 

POT 

Sw4 

POT 

Total 

POTSTOR

M Sw1 

POTSTOR

M Sw2 

POTSTOR

M Sw3 

POTSTOR

M Sw4 

POTSTOR

M Total 

10 3.16 1.70 2.07 2.18 3.21 3.34 2.13 2.22 2.57 3.53 

20 3.28 1.87 2.17 2.32 3.32 3.46 2.33 2.31 2.68 3.63 

30 3.35 1.97 2.22 2.40 3.39 3.52 2.44 2.37 2.73 3.69 

40 3.39 2.04 2.26 2.45 3.43 3.56 2.53 2.41 2.77 3.73 

50 3.43 2.10 2.29 2.49 3.47 3.59 2.60 2.45 2.80 3.76 

60 3.46 2.15 2.32 2.52 3.50 3.62 2.65 2.47 2.82 3.78 

70 3.48 2.19 2.34 2.55 3.52 3.64 2.70 2.50 2.83 3.80 

80 3.50 2.23 2.36 2.57 3.54 3.66 2.74 2.51 2.85 3.82 

90 3.52 2.26 2.38 2.59 3.56 3.68 2.78 2.53 2.86 3.84 

100 3.54 2.29 2.39 2.60 3.57 3.69 2.81 2.55 2.87 3.85 

 

 
 

Figure 16. Histograms by the method of annual maximums method, fit to a GEV curve 

 

3.3 Statistical analysis by the method of annual maximums 

 

For the following method it is necessary to examine the data 

and determine the high values for each year since we are 

essentially working with maximums. However, by choosing 

only the highest value of a data set, it is possible to ignore 

extreme events that occurred in that time period that may be 

similar to or even greater than the maximum values of other 

intervals. For this series it is essential to analyze their behavior. 

In addition, separation by blocks can be arbitrary, since if 
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there is not enough data, it is necessary to group them on a 

quarterly, monthly, or daily basis, losing reliability in the 

model. In the case of waves, the highest values that fit a 

Generalized extreme value distribution (GEV) are selected. 

The selected data is presented below: 

 

3.3.1 Adjustment by histograms - method of annual 

maximums 

As can be seen in Figure 16, in the annual maximum’s 

method, there are 42 years and a maximum in each of these 

blocks, complying with the recommendations in the reference 

[24], who advises having a minimum of 15 data. 

 

3.3.2 Adjustment by cumulative probability - method of 

annual maximums 

As can be seen in Figure 17, the Sw1 series presents a slight 

deviation from the fit line at its maximum values. This is 

because it has several core values that dominate the data. 

While for the Sw2, Sw3, Sw4, and Total series, it can be seen 

that the fit to the maximum values is higher and has better 

confidence in the expected results. 

In the annual maximum’s method, there are 42 years and a 

maximum in each of these blocks, complying with the 

recommendations in the reference [24], who advises having a 

minimum of 15 data. 

 
 

Figure 17. Cumulative probability by the method of annual maximums, fit to a GEV curve 

 
3.3.3 Return period - annual maximum method 

As can be seen in Figure 18, there is a complete domination 

of the Sw1 series in the return periods, but in this case its value 

is not exceeded, so only by analyzing the total series can an 

adequate value of the return period be obtained (Table 3). 

 
Table 3. Return times method of annual maximums 

 
Return Time 

[Years] 

Significant Wave Height [m] 

Sw1 Sw2 Sw3 Sw4 Total 

10 3.15 1.64 2.06 2.13 3.21 

20 3.29 1.79 2.14 2.29 3.34 

30 3.37 1.88 2.18 2.38 3.41 

40 3.43 1.94 2.21 2.44 3.46 

50 3.47 1.99 2.23 2.49 3.50 

60 3.51 2.03 2.25 2.52 3.53 

70 3.53 2.06 2.26 2.55 3.55 

80 3.56 2.09 2.27 2.57 3.57 

90 3.58 2.12 2.28 2.60 3.59 

 
There is a complete domination of the Sw1 series in the 

return periods, but in this case its value is not exceeded, so 

only by analyzing the total series can an adequate value of the 

return period be obtained. 

 

3.4 Comparing results 

 

This is verified by means of a statistical T-student test for 

two samples assuming unequal variances by which the null 

hypothesis is accepted or rejected for the different cases shown 

in Figure 19. 

It can be deduced from Figure 19(a) that there is a 

relationship between the annual maximum method and the 

peak over threshold method using the amount of events 

technique. On the other hand, with the peak over threshold 

method using the average storm duration technique, a higher 

value of significant wave height is obtained. While the initial 

distribution methods have very low values, the latter is the one 

with the least reliability.  

Figure 19(b) shows that there is agreement between the 

annual maximum method and the peak over threshold method 

using the amount of events technique. However, there is a 

greater difference than in the previous case, while with the 

peak over threshold method and with the average storm 
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duration technique, there is a higher value of significant wave 

height. On the other hand, with the initial distribution methods, 

very low values are obtained, except with the Log-Normal 

adjustment method, which is very close to annual maximums.  

 

 
 

Figure 18. Return period by the annual maximum’s method, fit a GEV curve 

 

 
 

Figure 19. Return period: a) Sw1, b) Sw2, c) Sw3, d) Sw4, e) Total 

 

Additionally, in the Figure 19(c) can be observed that, as in 

the previous cases, the similarity between the annual 

maximum methods is maintained with the peak over threshold 

method using the amount of events technique. In contrast, the 

peak over threshold method with the average storm duration 

technique has a higher value of significant wave height, but in 

this case, higher values are reached with the Log-Normal 

adjustment initial distribution method. Figure 19(d) shows that 

the trends remain the same as in the Sw1 series. Figure 19(e) 

shows a relationship between the annual maximum method 

with the peak over threshold method using the amount of 

events technique. While the peak over threshold method with 
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the average storm duration technique has a higher value of 

significant wave height. On the other hand, with the initial 

distribution methods, there are very low values, the latter with 

the least reliability, and therefore related to the dominant series 

Sw1. 

In previous studies [32], it has been determined that four 

wave systems can be identified for the analyzed place. The 

EVA methods were applied to the total wave series, and to the 

partial time series of each of these systems. In the analysis (in 

all cases) it is observed that the partial series WS1 is dominant 

at the extremes, and therefore its distribution resembles the 

distribution of the total series. The other series WS2, WS3, 

WS4 result in extreme values for significantly shorter return 

periods of 100 years. As observed in Figure 19, for the 5 

methods, the Sw1 series (red line) is related to the Total series 

(black line). This was verified by means of a goodness-of-fit 

test with a similarity index of 90%. 

For the peak over threshold method, there are two 

techniques for calculating the return period. The first uses a 

correction factor based on the number of events that crosses 

the threshold (POT) and the second uses the duration of the 

average storm (POTSTORM). As can be seen in Figure 19, 

with POTSTORM (magenta line) higher values of the variable 

are obtained for return periods of 100 years compared to POT 

(blue line). In addition, the latter presents more consistent 

values with the annual maximum’s method (black line). 

Two methods (POT and AM) yield the same results, in 

statistically terms. When evaluating return periods using the 

peak over threshold and annual maximum methods, very 

similar results are obtained. This is verified with a t-student 

test with an index of 0.05, approving the null hypothesis, as 

shown in Table 4. 

 

Table 4. Return times up to 100 years for the peak over threshold and annual maximum methods 

 

Return Time 

[Years] 

Hs [m] 

Sw1 Sw2 Sw3 Sw4 Total 

POT AM POT AM POT AM POT AM POT AM 

50 3.43 3.47 2.10 1.99 2.29 2.23 2,49 2.49 3.47 3.50 

60 3.46 3.51 2.15 2.03 2.32 2.25 2,52 2.52 3.50 3.53 

70 3.48 3.53 2.19 2.06 2.34 2.26 2,55 2.55 3.52 3.55 

80 3.50 3.56 2.23 2.09 2.36 2.27 2,57 2.57 3.54 3.57 

90 3.52 3.58 2.26 2.12 2.38 2.28 2,59 2.60 3.56 3.59 

100 3.54 3.60 2.29 2.14 2.39 2.29 2,60 2.61 3.57 3.61 

Hypothesis 

testing 

t-test α=0.05 

t-statistic 0.67 t-statistic 1.45 t-statistic 1.62 t-statistic 0.16 t-statistic 0.46 

P(T<=t) 

two tails 
0.51 

P(T<=t) 

two tails 
0.16 

P(T<=t) 

two tails 
0.12 

P(T<=t) 

two tails 
0.88 

P(T<=t) 

two tails 
0.65 

Critical t-

value 

(two 

tailed) 

2.10 

Critical 

t-value 

(two 

tailed) 

2.10 

Critical 

t-value 

(two 

tailed) 

2,10 

Critical 

t-value 

(two 

tailed) 

2.10 

Critical 

t-value 

(two 

tailed) 

2.10 

As 0.67<2.10 Null 

Hypothesis Accepted 

As 1.45<2.10 Null 

Hypothesis Accepted 

As 1.62<2.10 Null 

Hypothesis Accepted 

As 0.16<2.10 Null 

Hypothesis Accepted 

As 0.46<2.10 Null 

Hypothesis Accepted 
Notes: Data Separation indicates the presence of different populations with different characteristics. To guarantee data independence, it is convenient to separate 

them whenever possible. 

 

 

4. CONCLUSIONS AND FUTURE RESEARCH 

 

The primary objective of this research endeavor is to 

employ various extreme value analysis (EVA) techniques in 

the analysis of wave time series data. A notable innovation in 

this context is the application of EVA methods to wave data, 

wherein the principal variable of interest, the wave spectrum, 

facilitates the identification and separation of distinct events 

based on their origins. Consequently, this approach enables a 

more rigorous adherence to the essential statistical 

prerequisites for EVA, particularly the requirement of event 

independence, both in physical and statistical terms. 

Three distinct EVA methodologies have been utilized in this 

study, namely the Initial distribution method, the peak over 

threshold method, and the annual maximum value method. 

The Initial distribution method predominantly serves a 

descriptive function, while the latter two methods are 

predictive in nature, enabling the projection of extreme values 

over time periods that extend beyond the length of the data 

series. It is worth noting that EVA methods are conventionally 

employed in engineering studies for the determination of 

design values. However, in the present study, their application 

has been instrumental in the development of algorithms aimed 

at consolidating this knowledge and applying it in novel 

geographical locations. 

The main parameter sought by applying EVA is the value 

of a variable associated with a specific return period, with 

particular attention to the 100-year return period in this context. 

The significant wave height Hs, for a return period of 100 

years, is used as a design value in most marine structures, such 

as coastal zone protections. 

In the context of selecting an appropriate threshold value, it 

is imperative to opt for values that ensure both statistical and 

physical independence of events, avoiding extremes that are 

either too high or too low. In accordance with Boccotti’s 

research [30], a threshold value of 1.5 times the significant 

wave height (Hs) has been chosen as the threshold value, 

although it is acknowledged that further investigation into the 

suitability of this value is warranted. 

Among the various EVA methods considered, the peak over 

threshold method, in conjunction with the technique of 

counting events above the threshold, has been found to be 

particularly suitable. Conversely, the use of the annual 

maximum technique in conjunction with the peak over 

threshold method, along with the introduction of the storm 

duration parameter, has been found to result in more complex 

calculations and an overestimation of values. Accordingly, it 

is not advisable to employ the initial distribution method as a 

projection method in the context of EVA. 

Selecting the appropriate threshold value is a meticulous 
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and analytical process, contingent upon the unique 

characteristics of the dataset and the underlying physical 

phenomenon. Opting for a low threshold value may include 

non-extreme events, while high threshold values pose the risk 

of working with an insufficient number of data points, 

compromising the reliability of the model. In this study, the 

threshold value has been set at 1.5 times the average annual 

wave height [30, 31] as a pragmatic choice. 

Through this study, it is evident that the peak over threshold 

method, when coupled with event-counting techniques, 

exhibits similarities with the annual maximum method. 

Moreover, the algorithm for calculating the return period is 

considerably simpler in the former approach. 
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