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In this paper, Rayleigh method is utilized to compute the static deflection for simply 

supported, clamped-free, and free-clamped non-prismatic axial functionally graded 

(FG) beams under uniform distributed load. The non-prismatic beam was described 

assuming linear variation in width, height, or both, and the material distribution along 

the axial direction was defined using the power law model. A very excellent agreement 

was obtained when the Rayleigh method accuracy was compared with the results of the 

Finite Element Method (FEM) and the results of the previous literature. Results of the 

static deflection for axial functionally graded non-prismatic beams were displayed as a 

dimensionless form. The effects of material distribution, variation rate and supporting 

types were investigated. the results show that, generally, the maximum dimensionless 

static deflection is decreases at the same variation rate and any material distribution 

parameter. Also, when the material distribution parameter increases, the maximum 

dimensionless static deflection decreases at the same variation rate. The width variation 

has the maximum dimensionless static deflection comparing with the other variation 

cases. 
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1. INTRODUCTION

Nowadays, engineering applications and structures require 

enhancement in material properties (mechanical, physical and 

thermal properties) and this enhancement in material 

properties cannot achieved by using metals [1], alloys [2, 3], 

ceramics, and polymers [4], which have homogenous material 

properties. The first step in enhancing material properties 

involves using conventional composite materials, which are 

manufactured to modify the structural properties of the 

materials. Functionally graded material (FGM) is a class of 

composites where the material properties changes in one, two 

or three directions depending on its application. FGM is 

realized as " material where the volume fractions of two or 

more component materials varies continuously with reference 

to position along certain structure dimensions to obtain the 

required function" [5]. For example, FGM's are used to 

minimize the residual thermal stress in military and aerospace 

applications or to prevent stress distribution in biomedical 

application [6]. 

Element of beam and beam-like is “mainly consist of widely 

used structures in various engineering applications such as 

light weight structure, high speed machines, aerospace, …etc.” 

[7]. In several engineering applications, beams design with 

varying geometry properties of the material along the beam 

length to increase strength to weight ratio. Beams are analyzed 

using classical beam theories which assume that the beam has 

material with homogeneous properties and uniform cross 

section area, therefore, these theories will be modified to 

analyze the static and dynamic problem of non-uniform beam 

or new methods will be created to solve this problem [8-27]. 

For example, Yavari et al. [8, 9] used the distribution theory 

of Schwarz for the Dirac delta function's distributional 

derivatives to study the effect of discontinuities in moment of 

inertia on the bending differential equation considering Euler-

Bernoulli and Timoshenko theory. They proposed a new 

analytical solution for the bending beam behavior under 

singular loading conditions and various jump discontinuities. 

Biondi and Caddemi [10] studied the effect of discontinuity in 

both flexibility and slope of beam on the static governing 

equations considering Euler-Bernoulli beam theory and they 

used Heaviside function and superimposition method to find 

closed form solutions. Also, Biondi and Caddemi [11] studied 

the Euler-Bernoulli beams' static behavior under 

discontinuities in both curvature and slope functions basing on 

their method described in reference [10]. They found that 

general closed form solutions were obtained through the 

integration process, and no continuity condition was enforced 

along the beam span [11]. 
A new method was presented by Naguleswaran [12, 13] to 

find the mode shape of stepped Euler-Bernoulli beam. He 

solved the problem by using eigen function of each step and 

then connecting the slope, moment, and shear force of each 

step with the other. This method also used by Koplow et al. 

[14, 15] for computing the mode shapes for stepped cantilever 

beams. 

The Finite Element Method is a widely simplest and famous 

method and it is also used to study the static and dynamic 

behavior of the stepped and tapered beams [5, 7, 16-27]. 

One of these methods is Rayleigh method (RM) and is 
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utilized for analysis of the static and dynamic problems for 

non-uniform beam [5, 7, 17, 21-28]. Alansari and his 

colleagues applied Rayleigh method to study the static and 

dynamic problems at different cases such as internal [24, 27] 

and external [21, 22, 25] stepped beam and tapered beam [23]. 

In other side, the uniform FG beams are classified into 1-

dimension, 2-dimensions and 3-dimensions-FG beams with 

reference to the direction of variation in material properties. 

Also, classified according to the model that describe the 

varying in material properties into power law, sigmoid and 

exponential FG beam [5]. Many researchers investigated the 

static and dynamic problem of 1D-FG beam in thickness 

direction [5, 29-38]. 

In axial-FG beams (i.e., 1-dimension-FG beam where, the 

material properties are varied in axial direction only), several 

workers studied the static and dynamic problems [39-48]. 

Shahba et al. [39] investigated the free vibration behavior 

for axially tapered FG beams using Timoshenko beam theory 

for estimation of stiffness and mass matrices. Also, the 

transverse vibration problem of cantilever axial- FG with non-

uniform section area beam and under point load was studied 

by Mahmoud [40] and he created a general solution for this 

case. 

In static problems, Lin et al. [41] studied the big 

deformation case for A-FG cantilever beam with point load on 

the free end using HAM (homotopy analysis method) and 

assuming power law model for description of the mechanical 

properties’ variation in axial direction. In additional to " 

homotopy analysis method (HAM)”, they used Finite Element 

Method to estimate the A-FG beam larger deformation and 

they compared between the two methods and they found a very 

good accordance between it. Also, Soltani and Asgarian [42] 

solved buckling and static problem of A-FG beams using 

power series with basing on Timoshenko beam theory. They 

evaluated linear stability stiffness matrices by assuming 

variable cross-section of axial-FG and fixed-free boundary 

condition. They made comparison between the results of 

power series solution, results calculated by ANSYS and other 

available solutions. Daikh et al. [43] used a modified higher 

order shear deformation theory to study the static deflection 

and buckling of axially FG -plates. They assumed that the 

(CNTRC) plate is single walled (SW) axial composite 

functionally graded (FG) which is reinforced by carbon 

nanotubes. The plate materials properties are assumed to be 

temperature dependent and they also, assumed different 

function forms to characterize the material properties variation 

of CNTRC plate. Nguyen et al. [44] studied the static 

deflection problems of axially non-uniform FG beams that has 

a non-uniform cross section area considering Euler-Bernoulli 

beam theory. They built a new model and they compared its 

results with finite element results. Also, Nguyen [45] utilized 

the (FE) finite element technique to study the influence of 

slenderness ratio and type and ratio of non-uniformity in cross 

section area on the static deflection of axial- FG. 

Rajaskaran and Bakhshi Khaniki [46] applied the finite 

element technique, Wilson's Lagrangian multiplier, Gaussian 

quadrature method, and numerical integration to present a 

comprehensive study dealing with the effect of non-uniform 

and non-homogenous size dependent axial-FG beam on the 

free vibration, buckling and bending problems. They assumed 

that “the axial-FG beam with non-uniform cross-section and 

scale effects are shown by having nonlocal effects in addition 

to a strain gradient” [46]. 

Finally, Wadi et al. [47] utilized the model of power-law to 

characterize the variation in mechanical properties and 

physical properties in axial or longitudinal. They applied 

Rayleigh and Finite Element Methods to estimate the static 

deflection of clamped-free and free-clamped axial-FG beam. 

They used ANSYS APDL 17.2 with (BEAM189) element to 

build a new model (which is suitable to model beams by 

including shear deformation and performs 6-Degree of 

freedom). They studied the effects of type of applied load, 

power law index, supporting types and number of segments on 

the dimensionless static deflection. They compared between 

Rayleigh and Finite Element results and they found a very 

good accordance between these results. Hashim et al. [48] 

investigated the static deflection of axial FG non-prismatic 

beams with tapered cross section area under distributed load 

using ANSYS software. They utilized the power-law model 

for simulation of the properties of material along the length of 

beam. They assumed that the dimension of axial-FG beam 

(width or thickness) varied linearly along the length of beam. 

They studied the non-uniformity parameter effects, and 

power-law index on the axial-FGB static deflection according 

to (simply-supported, free-clamped and clamped-free) three 

boundary conditions. 

The objective of this study is to estimate the static deflection 

of axial-FG beam with tapered cross section area and (simply-

supported (SS), clamped-free (CF) and free-clamped (FC)) 

three boundary conditions by using the Rayleigh method. The 

effect of non-uniformity parameter, power law index and 

supporting type are to be investigated through problem 

description, applying Rayleigh Method for Non-Uniform FG 

Beam, creating Finite Element Model by Using ANSYS 

Software, discussing the results and creating conclusions. 

 

 

2. PROBLEM DESCRIPTION 

 

The uniform FG beam that has dimensions of (L*W*h) is 

illustrated in Figure 1. The elasticity modulus and other 

material attributes are changed along the length of the FG 

beam (i.e., axial direction) base on the power law model [47, 

48]: 

 

𝐸(𝑥) = (𝐸𝐿𝑒𝑓𝑡 − 𝐸𝑅𝑖𝑔ℎ𝑡) ∗ (1 − (
𝑋

𝐿
))

𝑚

+ 𝐸𝑅𝑖𝑔ℎ𝑡 (1a) 

 

𝜐(𝑥) = (𝜈𝐿𝑒𝑓𝑡 − 𝜈𝑅𝑖𝑔ℎ𝑡) ∗ (1 − (
𝑋

𝐿
))

𝑚

+ 𝜈𝑅𝑖𝑔ℎ𝑡 (1b) 

 

𝜌(𝑥) = (𝜌𝐿𝑒𝑓𝑡 − 𝜌𝑅𝑖𝑔ℎ𝑡) ∗ (1 − (
𝑋

𝐿
))

𝑚

+ 𝜌𝑅𝑖𝑔ℎ𝑡  (1c) 

 

where, 

𝐸(𝑥) is the elastic modulus as a function of (x) through the 

axial direction. 

𝐸𝐿𝑒𝑓𝑡  and 𝐸𝑅𝑖𝑔ℎ𝑡  are the left and right elastic moduli (Pa.). 

𝜐(𝑥) is the poison ratio as a function of (x) through the axial 

direction. 

𝜈𝐿𝑒𝑓𝑡  and 𝜈𝑅𝑖𝑔ℎ𝑡 are the left and right poison ratio. 

𝜌(𝑥) is the density as a function of (x) through the axial 

direction. 

𝜌𝐿𝑒𝑓𝑡  and 𝜌𝑅𝑖𝑔ℎ𝑡  are the left and right density (Kg/m3). 

L is the length of the FG beam. 

m is power law index. 
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Figure 1. Dimensions of the uniform FG beam 

 

The stiffness (E(x)*I) varies along the axial direction in the 

uniform FG beam because of varying of the modulus of 

elasticity only. This case was analyzed by Wadi et al. [47] 

using Finite Element Methods and Rayleigh. 

When the FG beam is non-uniform, the stiffness varies 

along the axial direction because of varying both second 

moment of area and modulus of elasticity. As said previously, 

the modulus of elasticity is varied in axial orientation 

according to power law model (see Eq. (1)). According to the 

definition of the area second moment, the second moment of 

area is varied according to three cases (a) variation of width 

only, (b) variation of thickness or depth only and (c) variation 

of both thickness and width [48]. In other side, the variety of 

thickness and/or width can be linear or non-linear form. In this 

work, the thickness and width of the FG beams are varied 

linearly according to the next equations: 

 

𝑊(𝑥) = 𝑊0 ∗ (1 + 𝛼𝑤 (
𝑋

𝐿
)) (2) 

 

ℎ(𝑥) = ℎ0 ∗ (1 + 𝛼ℎ (
𝑋

𝐿
)) (3) 

 

where, 

𝑊(𝑥) and ℎ(𝑥) are the width and thickness at any point (X) 

respectively. 

𝑊0  and ℎ0  are the width and thickness at the beam’s left 

side (X=0). 

𝛼𝑤  and 𝛼ℎ are the variation rate in width and thickness 

respectively. 

According to definition of second moment of area (I) and 

by applying Eqs. (2) and (3), the second moment of area (I) is: 

 

𝐼(𝑥) =
𝑊(𝑥) ∗ (ℎ(𝑥))

3

12
 

 

𝐼(𝑥) =

{
 
 
 
 
 

 
 
 
 
 (𝑊0 ∗ (1 + 𝛼𝑤 (

𝑋
𝐿
))) ∗ ℎ0

3

12
Width Variation only

𝑊0 ∗ (ℎ0 ∗ (1 + 𝛼ℎ (
𝑋
𝐿
)))

3

12
Thickness Variation only

(𝑊0 ∗ (1 + 𝛼𝑤 (
𝑋
𝐿
))) ∗ (ℎ0 ∗ (1 + 𝛼ℎ (

𝑋
𝐿
)))

3

12
Width and Thickness Variation

 
(4) 

Eq. (4) represents the variation of second moment of area 

for non-uniform beam with linear variation in width and/or 

thickness of beam. 

By combination Eqs. (1) and (4), the variation of stiffness 

of non-uniform FG beam can be estimated. 

 

 

3. APPLYING RAYLEIGH METHOD FOR NON-

UNIFORM FG BEAM 
 

Generally, the analysis of non-uniform beam is difficult 

when the Rayleigh Method is used specially under the 

distribution load. In other hand, the axial-FGM leads to vary 

the properties of the material along the length of beam and 

causes non-uniformity in static deflection phenomena. In this 

work, Rayleigh Method is used to calculate the static 

transversal deflection of non-uniform axial-FG beams due to 

uniform distributed load. The non-uniformity in this case 

requires several steps in order to find the suitable way to 

represent the variation of modulus [47] and second moment of 

area [23] and these steps are: 

(1) The non-uniform axial-FG beam is discretized into (J) 

parts or segments (i.e. (J+1)) points and ∆𝑋 =
𝐿

𝐽
 (see 

Figure 2). In each point, the thickness and width of the 

non-uniform axial-FG beam are calculated using Eqs. 

(2) and (3) in addition to the modulus of elasticity using 

Eq. (1). 

(2) Each part or segment has a new uniform dimensions 

and new homogenous modulus using the following 

equations: 
 

𝑊(𝑆𝑒𝑔.= 𝑖) =
(𝑊(𝑋𝑖) +𝑊(𝑋𝑖 + ∆𝑋))

2
 (5) 

 

ℎ(𝑆𝑒𝑔.= 𝑖) =
(ℎ(𝑋𝑖) + ℎ(𝑋𝑖 + ∆𝑋))

2
 (6) 

 

𝐸(𝑆𝑒𝑔.= 𝑖) =
(𝐸(𝑋𝑖) + 𝐸(𝑋𝑖 + ∆𝑋))

2
 (7) 

 

According to Eqs. (5)-(7), the tapered axial-FG beam is 

transferred into beam with stepped dimensions and stepped 

modulus as displayed in Figure 3. 

(3) The equivalent stiffness of stepped beams can be 

computed by following equations [22, 23, 47]: 

(i) For clamped-free cantilever beam, Eq. (8) used to 

calculate the equivalent stiffness of stepped beam when 

(n) is a number of steps as shown in Figure 4. 

 

(𝐸𝐼)𝑒𝑞 =
(L)3

∑
(𝑛 ∗ ∆𝑋)3 − ((𝑛 − 1) ∗ ∆𝑋)3

(𝐸𝐼)𝑛
𝐽
𝑛=1

 
(8) 
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(ii) For simply supported beam, the first step, for 

calculating the equivalent stiffness of stepped beams, is 

calculating of the centroid (center of gravity) of the 

stepped beam and then dividing the simply supported 

stepped beam into two cantilever stepped beams as 

shown in Figure 5. 

The equivalent stiffness of simply supported stepped beams 

is computed by Eq. (9): 

 

(𝐸𝐼)𝑒𝑞 =
(𝐿𝑅𝑖𝑔ℎ𝑡 + 𝐿𝐿𝑒𝑓𝑡) ∗ (𝐿𝑅𝑖𝑔ℎ𝑡)

2
∗ (𝐿𝐿𝑒𝑓𝑡)

2

((∑  
(s ∗ ∆𝑥)3 − ((s − 1) ∗ ∆𝑥)3

(𝐸𝐼)𝑠
𝑁𝑅
𝑠=1 ) ∗ 𝐿𝑅𝑖𝑔ℎ𝑡

2) + ((∑  
(k ∗ ∆𝑥)3 − ((k − 1) ∗ ∆𝑥)3

(𝐸𝐼)𝑘
𝑁𝐿
𝑘=1 ) ∗ 𝐿𝐿𝑒𝑓𝑡

2)

 
(9) 

(NR) and (NL) are the steps number of right and left 

cantilever stepped beams respectively as displayed in Figure 

5(c) and Figure 5(d). (LRight) and (LLeft) are the length of right 

and left cantilever stepped beams respectively. LLeft is the 

centroid of simply supported stepped beam and (LRight 

+LLeft=L). 

(4) After calculating the equivalent stiffness, the Delta 

matrix ([δ]) is calculated using Table 1 for cantilever 

beam and Table 2 for simply supported beam. 

 

 
 

(a) 

 
(b) 

 

Figure 2. Geometry and dividing of the non-uniform FG 

beam 
 

 
 

Figure 3. Changing the non-uniform FG beam into stepped 

beam 

 
 

Figure 4. Numbering of steps in clamped- free stepped beam 

 

 
(a) Center of stepped beam 

 
(b) Numbering of left and right parts 

 
(c) Left free-clamped stepped beam 
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(d) Right free-clamped stepped beam 

 

Figure 5. Numbering of steps of simply supported stepped 

beams 

 

Table 1. Deflections of cantilever beams [47] 

 

 

𝛿𝑖𝑗 = 𝛿𝑗𝑖 =
𝑊𝑎2(3𝑏 − 𝑎)

6𝐸𝐼
 

𝛿𝑖𝑖 =
𝑊𝑏3

3𝐸𝐼
 

𝛿𝑖𝑘 = 𝛿𝑘𝑖 =
𝑊𝑏2(3𝑐 − 𝑏)

6𝐸𝐼
 

 

Table 2. Deflections formula of the deflections of simply 

supported beam at different points 

 

 

𝛿𝑖𝑗 = 𝛿𝑗𝑖 =
𝑊𝑏𝑐(𝐿2 − 𝑏2 − 𝑐2)

6𝐸𝐼𝐿
 

𝛿𝑖𝑖 =
𝑊𝑎2𝑏2

3𝐸𝐼𝐿
 

𝛿𝑖𝑘 = 𝛿𝑘𝑖 =
𝑊𝑎𝑑(𝐿2 − 𝑎2 − 𝑑2)

6𝐸𝐼𝐿
 

𝛿𝑖𝑚 = 𝛿𝑚𝑖 =
𝑊𝑎𝑏𝑟(𝐿 + 𝑎)

6𝐸𝐼𝐿
 

 

(5) The next step is calculation of the applied force matrix 

([F]). In this work, the uniform distributed load is 

applied on the non-uniform axial FG beam. This load is 

simulated as a pressure (P) on the area (L*W0) in 

uniform and non-uniform width as shown in Figure 6. 

In each part or segment, the applied pressure is dividing 

into two parts and the force at each point can be 

evaluated according the next equation: 

 

𝐹(𝑛) = {

𝑃 ∗ ∆𝑋 ∗𝑊0        when 𝑛 = 2,… 𝐽
𝑃 ∗ ∆𝑋 ∗𝑊0

2
               when 𝑛 = 1 and 𝐽 + 1

 (10) 

 

(6) The final step, the boundary conditions are applied as 

following: 

(i) For clamped-free beam: 

F(1)=0 and d(1)=0 (i.e., force and deflection at X=0 equals 

zero). 

(ii) For free-clamped beam: 

F(J+1)=0 and d(J+1)=0 (i.e., force and deflection at X=L 

equals zero) 

(iii) For simply supported beam: 

F(1)=0 and d(1)=0 (i.e. force and deflection at X=0 equals 

zero). 

F(J+1)=0 and d(J+1)=0 (i.e., force and deflection at X=L 

equals zero) 

Finally, calculating the deflection (d) at each point by 

solving Eq. (11): 

 
[𝑑] = [𝛿][𝐹] (11) 

 

These steps are implemented using using Fortran power 

station in order to study the static deflection of linear tapered 

axial FG beam under distributed load with three types of 

supporting (clamped-free, free-clamped and simply 

supported). 

 

 
(a) Uniform width 

 
 

(b) Non-uniform width 

 

Figure 6. The area of applied pressure in uniform and non-

uniform width 

 

 

4. FINITE ELEMENT MODEL USING ANSYS 

SOFTWARE 

 

The Finite Element Method (FEM) was used to investigate 

the complex geometry and complex phenomena of any 

problem. Therefore, it is used to calculate the static deflection 

of axial-FG beam with tapered cross section area considering 
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the non-uniformity in geometry, load and properties. Three-

dimensional finite element model is constrained using ANSYS 

APDL 17.2 to simulate the tapered axial-FG beam under 

constant distributed load. In this model, beam is divided into 

twenty parts [47] as shown in Figure 7(b) and twenty sets of 

material properties are input into ANSYS software. The 

properties of each part are calculated using Eq. (1). The elastic 

modulus of each part is calculate using Eq. (7) (i.e., similar to 

Rayleigh Method). "SOLID187" is the 3-D element used in 

this work (see Figure 7). This element is a 10-nodes, higher 

order 3-D element. The element is defined by 10 nodes having 

3 DOF at each node: translations in the x, y, and z directions. 

It has mixed formulation capability to simulate deformations 

of fully incompressible hyperelastic materials, and nearly 

incompressible elasto-plastic materials. Its quadratic 

displacement movements are good suitable for modeling 

irregular meshes (for those produced from various CAD/CAM 

systems). It also has large strain capabilities, large deflection, 

creep, stress stiffening, hyperelasticity, and plasticity [23, 45]. 

 

 
(a) Element SOLID187 

 
(b) Tapered axial FG beam 

 

 
(c) Meshing 

 

Figure 7. The geometry and meshing of axial FG beam 

5. ACCURACY OF THE PRESENT MODELS 

 

 
(a) F-C FG beam when 𝛼𝑤 = 1 

 
(b) F-C FG beam when 𝛼𝑤 = −0.5 

 
(c) S-S FG beam when 𝛼𝑤 = 1 

 
(d) S-S FG beam when 𝛼𝑤 = −0.5 

 

Figure 8. The validation of the present models 
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For checking of the present model accuracy of Rayleigh and 

ANSYS Methods, the static deflection results of Rayleigh 

Method are compared with that obtained by Nguyen et al. [44] 

for free-clamped and simply supported axial FG beam when 

the variation rate of the width (𝛼𝑤) are (1) (i.e., 𝑊0 < 𝑊1 ) and 

(-0.5) (i.e., 𝑊0 > 𝑊1). 

In this work, the used mechanical properties are: modulus 

of elasticity of left material is (390G Pa.); modulus of elasticity 

of right material is (210G Pa.); Poisson ratio of left material is 

(0.23) and Poisson ratio of right material is (0.3). The 

dimensionless static deflection can be determined by the 

following equation: 

 

d̂(𝑥) = d(𝑥)
384 ∗ 𝐸𝑙𝑒𝑓𝑡 ∗ 𝐼0

5𝑞𝐿4
 (12) 

 

where, 

d̂(𝑥) is the dimensionless static deflection as a function of 

(x) along the length of axial-FG beam and any value of 𝜶𝒘 and 

𝜶𝒉. 

d(𝑥) is the static deflection at any point (x) along the length 

of axial-FG beam and any value of 𝜶𝒘 and 𝜶𝒉. 

(𝑞) is the distributed load (N/m). 

(𝐼0) is the second moment of area at X=0. 

Figure 8 shows a comparison between the results of present 

(Rayleigh and ANSYS) models and that of Nguyen et al. [44] 

which were chosen for comparison because the investigated 

some similar cases of this study numerically. For simply 

supported axial FG beam, very good agreement is shown 

between the present models and Nguyen et al. [44] model 

when αw = 1 and αw = -0.5. In free- clamped axial FG beam, 

the comparison shows very good accordance between the 

present models and Nguyen et al. [44] model specially when 

αw = 1, and the results of present models is lower than that of 

Nguyen et al. [44]. When αw = −0.5, the results of Nguyen et 

al. [44] model are smaller than ANSYS results and larger than 

Rayleigh results. Generally, the minimum and maximum 

percentages of discrepancy between the present models and 

Nguyen et al. [44] model are listed in Table 3. There was an 

exceptional agreement between the results of present 

(Rayleigh and ANSYS) models and that of Nguyen et al. [44], 

and the maximum absolute percentages of discrepancy was 

14% when α=-0.5 for clamped-free FGM beam. 

 

Table 3. Maximum and minimum percentages of 

discrepancy for the present models compared to Nguyen et 

al. [44] model 

 

Supporting 

Type and α 

Value 

Present Work-ANSYS Present Work-RM 

Discrepancy  

Percentages 

Discrepancy 

Percentages 

Max. Min. Max. Min. 

α=1-FC 12.4865 6.65044 2.1954 -5.6044 

α=1-SS 1.07696 -8.4902 2.7003 -6.505 

α=-0.5-FC -10.2437 -14.5467 -9.5314 -13.4674 

α=-0.5-SS 3.9378 -1.64305 11.1878 0.978 

 

 

6. RESULTS AND DISCUSSION 

 

In this work, the variation rates of non-prismatic axial FG 

beam are considered (i.e., αb, αh and α). The values of 

variation rate are (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 

2.5, 2.75 and 3). Also, the effects of material distribution (i.e., 

power law index (m)) and type of supporting on the 

dimensionless static deflection under uniform distributed load 

are studied. The expected results show the relationship 

between the maximum dimensionless static deflection with the 

considered variable parameters of the study like material 

distribution parameter, variation rate (α), etc. 

 

6.1 Variation rate of non-prismatic axial FG beam 

 

In this section, the effect of variation rates (i.e., αb, αh and 

α) on the maximum dimensionless static deflection of simply 

supported axial FG beam is discussed. The results found that 

the second moment of area is varied depending on the 

variation of beam dimensions. The second moment of area (I) 

for the width variation case is smaller than the second moment 

of area (I) for height variation and width and height variation 

cases. Therefore, the maximum dimensionless static deflection 

for width variation case is larger than that of other cases at any 

value of power law index (m). 

 

 
(a) Width variation 

 
(b) Height variation 

 
(c) Width and height variation 

 

Figure 9. Effect of variation on the maximum dimensionless 

static deflection of clamped-free non-prismatic axial FG 

beam 
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(a) Width variation 

 
(b) Height variation 

 
(c) Width and height variation 

 

Figure 10. Effect of variation on the maximum 

dimensionless static deflection of free-clamped non-prismatic 

axial FG beam 

 

Figure 9 shows the effect of variation rates (i.e., αb, αh and 

α) on the maximum dimensionless static deflection of simply 

supported axial FG beam. Generally, the dimensionless static 

deflection decreases when the variation rate (i.e., αb, αh and α) 

increases because of increasing the equivalent stiffness ((EI) 

eq). The maximum dimensionless static deflection of axial FG 

beam in width variation (i.e., αb) (as shown in Figure 9(a)) 

decreases with the rate smaller than that of height and both 

width and height variation (i.e., αh and α) (as shown in Figure 

9(b) and Figure 9(c)). In order to explain the effect of beam 

dimensions variation of axial FG beam, the following points 

must be considered: 

(a) In uniform FG beam, the equivalent modulus depends 

on the material distribution parameter (i.e., power law 

index (m)) (see Eq. (1)) and it is constant for each value 

of material distribution parameter (m). Also, the second 

moment of area is constant. 

(b) In non-prismatic beam, the area second moment is 

varied depending on the beam dimensions variation 

(see Eq. (4)). As shown in Eq. (4), the second moment 

of area (I) for the width variation case is smaller than 

the second moment of area (I) for height variation and 

width and height variation cases. 

(c) The equivalent stiffness ((EI)eq) depends on both 

modulus and the area second moment. Because the 

modulus is constant for any value of power law index 

(m), the second moment of area is the effective 

parameter. The equivalent stiffness ((EI)eq) for the 

width variation is smaller than other cases, because the 

second moment of area (I) for the width variation case 

is smaller than other cases. 

(d) The maximum dimensionless static deflection 

increases with decreasing the equivalent stiffness 

((EI)eq), therefore, the maximum dimensionless static 

deflection for width variation case is larger than that of 

other cases at any value of power law index (m). Also, 

the maximum dimensionless static deflection for height 

variation case is larger than that of width and height 

variation case same effect of variation rate on the 

maximum dimensionless static deflection is noted in 

clamped-free and free-clamped non-prismatic axial FG 

beam as indicated in Figures 9 and 10 respectively. 
 

6.2 The effect of material distribution parameter (Power 

law index) 
 

Generally, the modulus increases of prismatic and non-

prismatic axial FG beam when the material distribution 

parameter increases, and this causes decreasing the maximum 

dimensionless static deflection. The maximum dimensionless 

static deflection tends to be constant when the material 

distribution parameter is greater than (5). 

 

 

 
(a) Width variation 
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(b) Height variation 

 

 
(c) Width and height variation 

 

Figure 11. Effect of power law index on the dimensionless 

static deflection of simply supported non-prismatic axial FG 

beam 

 

The effect of material distribution on the maximum 

dimensionless static deflection of simply supported non-

prismatic axial FG beam with different variation rates under 

uniform distributed load is shown in Figure 11. Generally, the 

modulus of prismatic and non-prismatic axial FG beam 

increases when the material distribution parameter increases, 

and this causes decreasing the maximum dimensionless static 

deflection. In other side, the maximum dimensionless static 

deflection also decreases due to increase the cross-section area 

(width, height or both width and height) as illustrated 

previously. Figures 12 and 13 display the change of maximum 

dimensionless static deflection of clamped-free and free-

clamped axial FG beam due to the change of the cross-section 

area. From these figures, it can be concluded that the 

maximum dimensionless static deflection tends to be constant 

when the material distribution parameter is greater than (5). 

 

6.3 The effect of supporting type 
 

 

 
(a) Width variation 

 

 
(b) Height variation 
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(c) Width and height variation 

 

Figure 12. Effect of power law index on the dimensionless 

static deflection of clamped-free non-prismatic axial FG 

beam 

 

 
(a) Width variation 

 

 
(b) Height variation 

 

 
(c) Width and height variation 

 

Figure 13. Effect of power law index on the dimensionless 

static deflection of free-clamped non-prismatic axial FG 

beam 

 

Figure 14 shows a comparison of the maximum 

dimensionless static deflections of simply supported axial FG 
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beam with different variation rates (i.e., αb, αh and α) and 

different material distribution parameter (m). When α=0 (i.e., 

beam is uniform), the dimensionless maximum static 

deflection decreases when the material distribution parameter 

increases. When α=1 (i.e., linear variation), the dimensionless 

maximum static deflection also decreases when the material 

distribution parameter increases but the maximum 

dimensionless static deflection of width variation case is larger 

than that of height variation case and width and height 

variation case respectively. The decreasing rate of maximum 

dimensionless static deflection increases when the variation 

rate increases for any material distribution parameter. 

From Figures 15 and 16, the maximum dimensionless static 

deflection of clamped-free prismatic axial FG beam is smaller 

than that of free-clamped prismatic axial FG beam (i.e., α=0). 

This difference occurs due to change of the supporting point. 

In clamped-free beam, the fixed point is at the left (stronger) 

side (i.e., stronger material), while the free point is at the right 

(weaker) side (i.e. weaker material). When the material 

distribution parameter and variation rate increase, the effect of 

supporting position is appeared sharply in unsymmetrical 

supported conditions. 

 

 
α=0 

 
α=0.5 

 
α=1 
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α=1.5 

 
α=2 

 
α=2.5 

 
α=3 

 

Figure 14. Comparison between the dimensionless static deflection of simply supported non-prismatic axial FG beam with 

different power law index and three variation cases 
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α=0 

 
α=0.5 

 
α=1 

 
α=1.5 
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α=2 

 
α=2.5 

 
α=3 

 

Figure 15. Comparison between the dimensionless static deflection of clamped-free non-prismatic axial FG beam with different 

power law index and three variation cases 

 

 
α=0 
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α=0.5 

 
α=1 

 
α=1.5 

 
α=2 
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α=2.5 

 
α=3 

 

Figure 16. Comparison between the dimensionless static deflection of free - clamped non-prismatic axial FG beam with different 

power law index and three variation cases 

 

 

7. CONCLUSION 
 

In this work, Rayleigh method was used to analyze the static 

deflection of non-prismatic axial FG beam under uniform 

distributed load. The linear change of width or height or both 

width and height were assumed to describe behavior of the 

non-prismatic beam and the power law model was used to 

define the material distribution along the axial direction. The 

following points can be concluded from the results: 

(1) The comparison of the present models (Rayleigh 

method and the (FEM) (ANSYS Software)) with the 

study conducted by Nguyen et al. [44] shows a very 

good agreement between them and the maximum 

absolute percentages of discrepancy was 14% when 

α=-0.5 for clamped-free FGM beam. 

(2) The dimensionless maximum static deflection 

decreases when the material distribution parameter 

increases at the same variation rate (α). 

(3) The width variation has a maximum dimensionless 

static deflection comparing with the other variation 

cases. 

(4) The effect of material distributions parameter and 

variation rate on the dimensionless maximum static 

deflection of simply supported non-prismatic axial 

FG beam is smaller than that of cantilever non-

prismatic axial FG beam. 

(5) The material distribution parameter effect on the 

maximum dimensionless static deflection of non-

prismatic free-clamped axial FGB is smaller than that 

of variation rate. While the effect of distribution 

parameter of the material on maximum dimensionless 

static deflection of non-prismatic clamped-free axial 

FGB is greater than that of variation rate. 

This work introduced a good understanding for the effects 

of FG beam dimensions variation on the static deflection and 

this is useful for designing the suitable dimensions of FG beam 

according the requirements of beam application. As a future 

work, the non-linear FGM beam will be considered to study 

the ability of Rayleigh method to simulate the non-linearity in 

geometry, load and properties in the same time. This will be 

very significant for the industry and will open up numerous 

research avenues. Also, the 2-D FGM beam will be analyzed 

using Rayleigh method which is significantly affects the field 

of FGM. 
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