

Journal homepage: http://iieta.org/journals/mmep

An Effective Particle Swarm Optimization for Lot-Sizing Problem with Particulate Matter Emission Constraint

Driss Imen

Industrial Engineering Department, National Higher School of Technology and Engineering, Annaba 23005, Algeria

Corresponding Author Email: i.driss@ensti-annaba.dz

Copyright: ©2024 The author. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.110716

Received: 14 January 2024 Revised: 11 April 2024 Accepted: 25 April 2024 Available online: 31 July 2024

Keywords:

planning problem, one warehouse multi retailers, particle swarm optimization, environmental constraint

ABSTRACT

The green supply chain is the reduction of the atmospheric release emissions including gases, vapour, smoke, solid or liquid particles. This atmospheric reduction will concern each stage of the chain: supply, production, distribution, warehousing, transport and delivery. The design of this loop is based on industrial ecological perspectives, particularly in the production, and the transport stage. In this work, we present a lotsizing problem with capacitated one warehouse multi retailers (OWMR) under the minimization of particles matter (PM) emission from production and delivery, knowing that the problem is an NP-hard. We have developed a logistics structure containing a production unit connected to a distribution network characterized by (size, number and location) retailers specializing in a single type of product. Then, we will introduce our mathematical problem modelling using mixed-integer programming and develop an approach based on the metaheuristic called binary particle swarm optimization (BPSO) in this approach; we will study new strategies and techniques concerning the particle swarm parameters. The improved BPSO will be tested on a series of benchmark data sets and compared with CPLEX. According to the experimental results, this approach is effective in minimizing the total cost of the supply chain and promoting green technology by reducing the number of the particles emitted into the air. It also provides a decision support system to answer key questions about when and how much produce and distribute in a sustainable environment.

1. INTRODUCTION

Supply chain management (SCM) can be defined as the interconnection of three basic functions: planning, design and control (activities and flows). It starts through the supply that ends with customer satisfaction [1, 2].

Effective management of the logistics chain in a competitive environment requires effective governance in production planning. The problem of a single product, multiple periods, and inventory size are among the basic problems that affect trading and have been addressed by a group of researchers [3, 4].

Green Lot-Sizing Problem (GLSP) is considered as a tradeoff between setup and inventory holding costs to determine the minimum cost of a production plan for one or several machines, in order to meet the demand for each item with respecting the environmental constraints.

The atmospheric release inside the supply chain management is carbon emission constraint and particles matter emission constraint.

Concerning the first environmental constraint (carbon emission constraint), in Table 1, we've compared the different studies about lot-sizing problem with different carbon emission constraints thanks to the literature review. The main research gaps here are: (1) research authors, (2) model studies,

(3) carbon emission policy and (4) resolution method.

Their study was to shed light on the integration of two important dimensions [5]: production planning and the principle of sustainability. The study aimed to maximize the expected gross profit of the two-stage newsstand model with environmental constraints: using the cost of licenses, emission limit values, and fines imposed in case of exceeding their permissible limits: Many authors have also focused on this topic. El Saadany et al. [6] focused on two basic approaches, one of which displays the relationship between price and demand with constant quality, and the others present the supply chain precisely affects the criteria of quality, demand, price, in addition the relationships between these criteria under the environmental constraint. In fact, the authors developed a multi-criteria decision support system based on the Pareto method under environmental (carbon emission with MRL) constraints [7] has been used by Bouchery et al. [8] in order to perform operational optimization. Benjaafar et al. [9] mentioned four different types of carbon emission constraints, which are: strict carbon caps, carbon tax, carbon emission trading and carbon. Absi et al. [10] have proposed a new classification of carbon emission constraint, unlike Benjaafar. The four types of carbon emissions are: periodic carbon emission, cumulative carbon emission, global carbon emission and rolling carbon emission [10], other Emission of pollutants such as waste and dust. Although carbon emission limits have been addressed in the majority of articles, the penalty resulting from exceeding these emission limit values has only been addressed by three authors [11, 12]. Four criteria were addressed in this study by focusing on the economic model of quantity scaling with multiple replenishment modes. Suppliers of means of transportation from an economic and environmental perspective (cost and emission level) In a study [13], the authors focused on the consumption of environmental products and how they affect carbon emissions in a complex supply chain [14]. This paper addressed a novel multi-product, multi-period replenishment problem, and proposed the nonlinear model solved by GA and PSO. The researchers in this work [15] based it on attaching the quantity of economic demand in a two-level supply chain model with a carbon tax and emission penalties [9]. Where the researcher and his colleagues were interested in developing improvement models to reduce the carbon footprint, where the relationship was found between the discrepancy in the quantity produced and the quantity of carbon emitted.

The second environmental constraint (particulate matter emissions) is a global concern for environmental monitoring and regulating particulate matter emissions of industrial systems. The Environmental Protection Agency (EPA) impose, therefore, legal penalties for those whose emissions exceed the reference limit values. The EPA defines particulate matter as "particulate pollutants," which consist of acid and chemical particles, soil particles, and dust. In this study, we are interested in Particulate Matter (PM). In the production of plants, the processed PM is discharged via stacks or pipe. This present paper proposes a solution to the planning problem with OWMR under particle matters emission constraints. In this work, we have expanded the research [10] in different directions to make it more realizable. At the beginning, we describe a logistics structure under an environmental constraint then, we consider that the main source of PM emission at the level of production and transport functions. We've developed an approach based on a metaheuristic algorithm called the binary particle swarm optimization (BPSO). This approach can be used as a resolution method to assist company managers in determining how and when to trigger production in order to satisfy a customer service rate with a minimum total cost while respecting PM emission constraints knowing that this problem is NP-hard [16].

After a brief introduction, we have described the planning problem with OWMR under cumulative emission of particulate matter constraint developed in Section 2. Then, the appropriate BPSO is provided in Section 3. The numerical experiment results are reported in Section 4. Section 5 concludes the work and suggests research opportunities and directions for further work.

Figure 1 presents an example of PMcement production process SKIKDA-Algeria.

_	Carbon Emission Constraint						
Authors	CAP	CAP & TRADE	TAX	PENALT Y	Description Model	Approach	
[17]	-	-	-	-	Inventory model transportation	Dynamic programming	
[7]	*	*	-	-	Single echelon inventory	ÊOQ	
[18]	-	-	-	-	Stochastic model	Tabu search	
[19]	*	*	-	-	Classical single-period model	NEWSVENDOR	
[15]	-	-	*	*	Two echelon supply chain	EOO	
[10]	*	-	-	-	Multi sourcing deterministic lot-sizing problems	Dynamic programming	
[20]	*	*	*	-	Single echelon inventory model	EOO	
[21-24]	*	*	*	-	Multi-item production extended	NEWSVENDOR	
[25]	-	*	*	-	Dual sourcing	NEWSVENDOR	
[26]	*	*	-	-	Inventory model with truck capacities	Heuristic local search algorithm	
[12]	*	*	*	*	Replenishment and supplier/transportation	CPLEX	
[18, 27]	*	*	-	-	Multi product single-period production model stochastic demand	Classical Newsboy model	
[11]	*	*	-	*	Single period, single product inventory problem stochastic D	Classical newsboy model	
[18, 27]	*	-	-	-	One plant, multiple distribution centers (DCs) and multiple retailers	Genetic algorithm	
[28]	*	*	-	-	Multi (Manufacturing plant, warehouse, product) with transport mode	Cross-entropy	
[29]	*	-	*	-	Multi-echelon production-inventory model with lead time	CPLEX	
[30]	*	*	*	-	Single echelon inventory	EOQ	
[18, 27]	-	-	*	-	Two echelon inventory (Distributors and retailers) model Supply chain network design model (inventory		
[31]	*	*	*	-	production and transport with product, network and	CPLEX	
					facility parameters		
[32]	-	-	-	-	Stochastic capacitated lot sizing problem	CPLEX	
[18, 27]	*	-	-	-	Third-party logistics providers (3PLs). multi warehouse	CPLEX	
[33]	-	*	-	-	Multi-stage dynamic optimization problem	Dynamic programming	
[34]	-	-	-	-	Non-stationary stockastic demand	Mixed integer linear programming	
[33]	-	*	-	-	Multi-stage dynamic optimization problem	AMPL/CPLEX	
[35]	-	*	-	-	Two echelon multi-product supply chain	EOQ and EPQ	

Table 1. Literature review

Figure 1. Particle matter emissions in the cement industry in SKIKDA-Algeria

2. DEFINITION AND PROBLEM FORMULATION

2.1 Problem definition

Environment

We can define the Just-in-time logistics structure by a production unit and a distribution network (size, number and location) of the different retailers specified by a single product, as show in Figure 2.

Figure 2. Structure studies

Assumptions

- The main assumptions are as follows:
 - **4** The amount of the emitted PM is taken in lead time.
 - Proportionality between production batches and PM emissions.
 - **W** No inventory allowed on the distribution center.
 - Retailers belong the planning horizon.
 - The demands are probabilistic
 - **4** The client satisfaction is a priority in each period.

Objective

Minimizing the total cost of structure logistic.

We will introduce the mathematical formulation of Mixed Integer Linear Programming (MILP) in this next part.

2.2 Problem formulation

Objectif function

$$Min Z = \sum_{t=1}^{T} (Production \cos + Distribution Center \cos t) + \sum_{t=1}^{T} \sum_{i=1}^{NR} (Retailers \cos t)$$
(1a)

$$Min Z = \sum_{t=1}^{T} (fp_i y_t + p_i x_t) + (fd_t yd_t + sd_t Id_t) + \sum_{t=1}^{T} \sum_{l=1}^{NR} (fr_{it} yr_{it} + sr_{it} Ir_{it}) Min Z2 = \sum_{t=1}^{T} (fp_i y_t + p_i x_t) + (fd_t yd_t + sd_t Id_t) + \sum_{t=1}^{T} \sum_{l=1}^{NR} (fr_{it} yr_{it} + sr_{it} Ir_{it}) + \sum_{t=1}^{T} \sum_{l=1}^{NR} (ut_{it} ql_{it}) (1') Min Z = \sum_{t=1}^{T} (fp_i y_t + p_i x_t) + (fd_t yd_t + sd_t Id_t) + \sum_{t=1}^{T} \sum_{l=1}^{NR} (fr_{it} yr_{it} + sr_{it} Ir_{it}) + \sum_{t=1}^{T} \sum_{l=1}^{NR} (ut_{it} ql_{it})$$
(1b)

Subject to

The production capacity constraint

$$x_t \le y_t cap_t \tag{2}$$

The inventory level of DC and retailers' constraints

$$Id_t = Id_{t-1} + x_t - \sum_{i=1}^{NR} d_{it}$$
(3)

$$Ir_{it} = Ir_{it-1} + ql_{it} - d_{it}$$
(4)

The PM emission constraint

$$\sum_{k=1}^{t} (pe_k^m - PE_k^m) x_k \le 0$$
 (5)

$$h_t^m = h_{t-1}^m - (pe_k^m - PE_k^m)x_t$$
(6)

$$h_t \ge 0$$
; $h_0 = 0$ (7)

The domain of definition of decision variables

$$x_t, Id_t, Ir_{it} \ge 0; intergers \forall i, t, k$$
 (8)

The definition of decision variables

$$y_t = \begin{cases} 0 \text{ if } x_t = 0\\ 1 \text{ Otherwise} \end{cases}$$
(9)

$$yd_t = \begin{cases} 0 \text{ if } Id_t = 0\\ 1 \text{ Otherwise} \end{cases}$$
(10)

$$yr_{it} = \begin{cases} 0 \text{ if } Id_t = 0\\ 1 \text{ Otherwise} \end{cases}$$
(11)

Table 2 presents the measurements of these particles over a 2018-2019 horizon in this company.

Table 3 explains the principle of inventory emission variable.

Table 2. Pr	esentation of du	ist measuremen	ts in 2018-2019	at
th	e cement indus	try in SKIKDA	, Algeria	

	20	18	2019		
Location	Production Tons	Particle Matter (Mg/Nm ³)	Production Tons	Particle Matter (Mg/Nm ³)	
GP120 Filter		25.67		30.92	
Handle filter outlet L01		0.81	100/100 0	6.34	
Handle filter outlet L02	1000702.04	0.78		3.72	
L01 Chiller Bag Filter Outlet	1008783.84	0.68	1086120.3	2.16	
L02 Chiller Bag Filter Outlet		1.21		1.65	

In Table 3, example for cumulative emission h_t values increase until t=6, because PE_t is greater then pe_t (PE_t > pe_t); it means permission is sufficient for production. Till t=7 h decrease PE_t is less then pe_t (PE_t < pe_t), it means we need permissions from inventory emission to produce x quantity. This is what explain clearly Figure 3. In another manner:

For t=1 to T do If $PE_t * x_t > pe_t x_t$ then Do not need h_t Else Need h_t End.

Table 3. Example for cumulative emission

t	х	pe	Emission	PE	pe-PE	x(pe-PE)	Η
1	100	10	1000	15	-5	-500	500
2	120	5	600	10	-5	-600	1100
3	50	15	750	17	-2	-100	1200
4	0	17	0	20	-3	0	1200
5	250	10	2500	15	-5	-1250	2450
6	25	9	225	10	-1	-25	2475
7	40	12	480	10	2	80	2395
8	90	8	720	4	4	360	2035
9	0	14	0	8	6	0	2035
10	200	5	1000	5	0	0	2035
	×	~					/

Figure 3. Cumulative emission

Another scenario presents itself, when h takes negative values; that mean in this period plant cannot produce all quantity desired because it has not permission for particle emission. It has consumed all its reserve during the previous periods. Therefore, in this case plant must reduce production to get at least zero inventory of emission and satisfy environmental constraint. After we have defined the mathematical model in MIPL with different constraints, we will go through proposing a way to solve this problem.

3. BINARY PARTICLE SWARM OPTIMIZATION FOR PLANNING PROBLEM WITH OWMR

3.1 The basis of PSO

Particle swarm optimization (PSO) is developed by Kennedy and Eberhart, and it the main product is through consistency and competition by conveying specific information to guide the improvement process [36].

Algorithm General PSO
Begin
Initialize randomly swarm, velocity/*a set of particles
Calculate Pbest, Gbest
For i=1 to NI/*number of iterations
Calculate new velocity
Calculate new swarm
Calculate Pbest and Gbest
Seek fitness
End for
Write fitness/*the best value from all.
End

Now we adopt this algorithm to solve capacitated lot-sizing problem.

3.2 Structure of the binary PSO algorithm

Better efficiency of PSO -based search could be achieved by modifying the particle representation and its related operators to generate feasible solutions [37].

Sazvar et al. [14] proposed an integer presentation of the particle; each particle refers to the number of batch sizes ordered for each product for each period to solve a supply chain with perishable items. Boonmee and Sethanan [38] developed a new decoding representation where each particle in the swarm is separated into two parts, to solve multi-level capacitated lot-sizing and scheduling problems. The first part is the number of chicks purchased and delivered to the poultry industry in each period, and the second part is the allocation of chicks and pullets to farms.

However, Chen and Lin [39] developed a representation of complex particles encoding type is integers, while Izakian et al. [40] only encoded with binary values, which speeds up the algorithm and deals with large solution spaces.

We have designed an effective particle representation with an accelerated algorithm on the basis of the analysis of the approach adopted from the above literature. PSO simulates the movement of a group of volatile particles. It can search very large spaces of candidate solutions.

Now, we adopt this algorithm to solve capacitated lot-sizing problem.

3.2.1 Binary particle encoding

In this case, we use two particles:

					[1	0	0	1	0	1	0]	
(1) L_{it} : bin	ary	mat	rix I	$L_{it} =$	1	1	0	0	0	1	0	
	-				l1	0	0	0	1	1	1	
(2) $y_t = [1$	0	0	1	0	0	1]					

Figure 4. Way for calculation

3.2.2 Calculating fitness

To calculate z, we need all the values of decision variables x_t , Id_t , Ir_{it} , yd_t , yr_{it} , from particles one; such parameters are mentioned in Figure 4, which illustrates the way of calculation.

Algorithm quantity delivered

Begin ql=0 For i=1 to NR do For t=1 to T If L(i,t)=1ql(i;t)=d(i;t)k=t Else While L(i,t)=0ql(i;k) = ql(i;k) + d(i;t)t=t+1End for Ir(I, t)=Ir(I,t-1)+ql(i,t)-d(i,t)If Ir(i, t) = 0 then yr(i, t)=0Else yr(i, t)=1End if

The next step is to find the produced quantity. We should use the delivered quantity instead of the demand written in the produced quantity algorithm.

Algorithm quantity produced

Begin x=0; h=0 For t=1 to T do If y(t)=1x(t)=sum ql(i; t)if PE(t) > pe(t) then h=h+(PE(t)-pe(t));end k=t Else While y(t)=0 and $x(k)\leq cap(t)$ and $p \leq h$ x(k)=x(k)+sum ql(i,t)h=h+(PE(t)-pe(t));t=t+1End while If $(x(k)>cap(t) \text{ or } pe(t)>PE(t) \text{ then}/*test constraint}$ capacity and CAP emission x(k)=x(k)-sum ql(i, t)Y(t)=1End if t=t-1Id(t)=Id(t-1)+x(t)-sum ql(i, t)End for If Id(t)=0 then yd(t)=0Else yd(t)=1End if End

Everything is ready to calculate fitness. The next step is to use PSO to solve the capacitated lot-sizing problems.

3.2.3 Binary PSO algorithm

(1) Generate randomly X such as

	[[1	0	0	1	0	0	1]
Y(i, t, n) = [y]	<u>[</u> [1	0	0	1	0	1	0]
$X(l, l, p) = \lfloor L \rfloor^{-1}$	1	1	0	0	0	1	0
	ll1	0	0	0	1	1	1]

where, *i*=1, *i*=1, *t*=7, *p*=1

(2) Generate randomly V in [-v; +v] when Dim [X]=Dim [V]
(3) Calculate fitness *gbest* and *pbest* as shown in Table 4.

Р	Iter1	Iter2	Iter3	Iter4
1	25	20	18	16
2	40	35	25	15
3	20	19	30	25
4	60	45	20	22

(4) Next iterations to calculate the new velocity V for $V_{(i,t,p)}^{iter+1}$ Using the following equation:

$$V_{(i,t,p)}^{iter+1} = \omega V_{(i,t,p)}^{iter} + C1r1 \left(pbest^{iter} - X_{(i,t,p)}^{iter} \right) + C2r2 \left(gbest^{iter} - X_{(i,t,p)}^{iter} \right)$$
(12)

(5) Calculate new X, $X_{(i,t,p)}^{iter+1} = \begin{cases} 1 \text{ if } Sig(V_{(i,t,p)}^{iter+1} > r) \\ 0 \text{ otherwise} \end{cases}$ Such as $Sig = \frac{1}{1+e^{-V_{(i,t,p)}^{iter+1}}}$

Figure 5. Framework of the proposed BPSO

In Figure 5, the detailed procedure of the Binary Particle Swarm Optimization for the planning problem with OWMR.

4. COMPUTATIONAL EXPERIMENTS

In order to investigate the performance of the proposed algorithm (BPSO), a concrete analysis of the proposed algorithm is made. The BPSO is coded on Lenovo PC with 8G RAM and 2GHz. The software is MATLAB 2013. I have run my proposed algorithm for ten times on the same instance with the same best values of the selected parameters as it is shown in Table 5 [41-43].

Fable 5. The best	parameters	values	for BPSO
-------------------	------------	--------	----------

Parameters	Values	Best Parameters
ω	[1,10]	1
<i>C</i> 1	[1,4]	3
С2	[1,4]	3
Р	[50,200]	100
V	[10,90]	50

The instance problems case for the planning problem with OWMR under environment (PM emission) constraint are presented as following (see Table 6):

Table 6. Instances variation for the proposed BPSO

Т	NR	Т	NR	Т	NR	
Smal	l size	Medium	size	Big siz	ze	
3,6,9,12	[2,10]	15,18,21,27	[5,25]	40,50,60,70	[30,70]	

4 Case 1: little size/30 instance problems/(T∈[3; 12], NR∈[2; 10])

- Case 2: middle size/30 instance problems (T∈[15; 27], NR∈[5; 25])
- Case 3: great size/30 instance problems/(T∈[40; 70], NR∈[30; 70])

Table 7 displays the computational results of our proposed BPSO. In this table, the problem instances are listed in the first column, the second PM emissions and the third columns represent the number of period and retailers respectively, the fourth and five column that refer to our algorithms are still compared with CPLEX lower bound.

For each instance, results are summarized in Table 7, in which we compare our proposed BPSO algorithms and CPLEX in terms of total cost Z_{BPSO} time and running Time(s).

Little size

From Table 7 in the little size, the difference between Z_{BPSO} and Z_{CPLEX} is Err $\in [0; 0.65]$ s is small, when BPSO speed reaches 0.65s, it gives us solution optimal. We have also noticed a proportionality between the running time and (T, NR).

🔸 Middle size

From Table 7 in the Middle size, the difference between Z_{BPSO} and Z_{CPLEX} is Err $\in [0.98; 3.29]$ s for an increased instance (T, NR), and the Err increases too. We have also noticed a proportionality between the running time and (T, NR).

🔸 Great size

From Table 7 in Great size, the difference between Z_{BPSO} and Z_{CPLEX} is Err \in [7.26; 11.65] s for an increased instance (T, NR) and the Err increases more as well.

$$Err = \frac{Z_{PSO} - Z_{CPLEX}}{Z_{CPLEX}}$$

The running time BPSO is better than CPLEX.

	Instances		PM Emission		T	ND	T*ND	PSO		CPLEX		Fnn
			PE	Pe	I	INK	I "INK	Z _{PSO}	Time(s)	Z _{CPLEX}	Time (s)	Err
	1	1	U[3,6]	U[2,5]	3	2	6	1030	27.931	1030	0.614	0
	2	2	U[3,6]	U[2,5]	3	4	12	574	61.1	575	1.343	0
	3	3	U[3,6]	U[2,5]	6	2	12	1311	54.977	1295	1.208	0.01
	4	4	U[3,6]	U[2,5]	3	6	18	2953	65.26	2954	1.434	0
	5	5	U[3,6]	U[2,5]	6	3	18	587	60.45	589	1.302	0
	6	6	U[3,6]	U[2,5]	9	2	18	3732	60.918	3589	1.339	0.04
	7	7	U[3,6]	U[2,5]	3	8	24	3831	33.709	3831	0.741	0
	8	8	U[3,6]	U[2,5]	6	4	24	3831	33.709	3794	0.741	0.01
	9	9	U[3,6]	U[2,5]	12	2	24	4982	62.244	4152	1.368	0.2
	10	10	U[3,6]	U[2,5]	3	9	27	5841	67.205	5841	1.469	0
	11	11	U[3,6]	U[2,5]	9	3	27	9653	33.835	9553	0.819	0.01
	12	12	U[3,6]	U[2,5]	3	10	30	7325	36.504	7261	0.802	0.01
	13	13	U[3,6]	U[2,5]	6	5	30	8652	33.705	8635	0.823	0
Little size	14	14	U[3,6]	U[2,5]	6	6	36	5906	130.52	5791	2.869	0.02
	15	15	U[3,6]	U[2,5]	9	4	36	5870	66.989	5755	1.472	0.02
	16	16	U[3,6]	U[2,5]	9	5	45	9565	67.301	9326	1.467	0.02
	17	17	U[3,6]	U[2,5]	6	8	48	7662	67.405	7439	1.482	0.03
	18	18	U[3,6]	U[2,5]	12	4	48	9197	70.07	7075	1.54	0.3
	19	19	U[3,6]	U[2,5]	6	9	54	9383	73.098	9122	1.6	0.03
	20	20	U[3,6]	U[2,5]	9	6	54	17012	73.086	16421	1.606	0.04
	21	21	U[3,6]	U[2,5]	6	10	60	14651	73.008	14406	1.605	0.02
	22	22	U[3,6]	U[2,5]	12	5	60	14651	73.326	14406	1.626	0.02
	23	23	U[3,6]	U[2,5]	9	8	72	11919	79.014	11572	1.737	0.03
	25	25	U[3,6]	U[2,5]	12	6	72	11700	79.313	8299	1.743	0.41
	26	26	U[3,6]	U[2,5]	15	5	75	5952	82.654	3608	1.816	0.65
	27	27	U[3,6]	U[2,5]	9	9	81	9565	82.126	9326	1.923	0.02
	28	28	U[3,6]	U[2,5]	9	10	90	21803	86.489	14536	1.901	0.5
	29	29	U[3,6]	U[2,5]	12	8	96	16971	89.284	11624	1.962	0.4
	30	30	U[3,6]	U[2,5]	12	9	108	15245	91.326	10136	1.852	0.501

Table 7. Performance of BPSO

	31	31	U[3,4]	U[2,3]	18	5	90	6892	85,501	1887	33.879	2.652
	32	32	U[3,4]	U[2,3]	21	5	105	11771	91 286	2243	35.875	2.006
	22	22	11[2 /1]	U[2,2]	12	10	120	15140	07.055	0061	22 221	2 1 5 2
	33	33	0[3,4]	0[2,3]	12	10	120	13140	97.955	9901	55.521	2.155
	34	34	U[3,4]	U[2,3]	27	5	135	9661	103.35	1281	60.732	2.271
	35	35	U[3,4]	U[2,3]	15	10	150	16887	108.212	8529	60.378	2.378
	36	36	U[3.4]	U[2.3]	18	10	180	20284	117.195	8992	65.576	2.576
	37	37	11[3 /1]	11[2 3]	21	10	210	36845	120 675	7066	71.080	2.85
	20	20	U[3,4]	U[2,5]	21	10	210	10205	129.075	170.10	71.009	2.05
	38	38	0[3,4]	0[2,3]	15	15	225	40385	136.695	1/949	/0.004	3.004
	39	39	U[3,4]	U[2,3]	18	13	234	30254	137.025	7542	70.52	3.011
	40	40	U[3,4]	U[2,3]	18	15	270	73815	152.321	18641	73.348	3.348
	41	41	11[3/1]	11[2 3]	27	10	270	30805	152 75	1217	73 023	3 3 5 7
	42	42	U[2,4]	U[2,3]	21	12	270	72262	152.75	15470	72.023	2 725
	43	43	0[3,4]	0[2,3]	21	15	273	/3202	152.98	15478	13.828	3.735
	44	44	U[3,4]	U[2,3]	15	19	285	33585	165.25	8754	74.110	2.83
	45	45	U[3,4]	U[2,3]	15	20	300	76534	165.386	33955	74.080	3.635
Middle size	46	46	11[3 4]	11[2 3]	21	15	315	40363	160 417	6397	73 584	3 745
	17	47	U[2,4]	U[2,3]	10	10	242	76000	171 122	11540	70.265	5.66
	47	47	0[5,4]	0[2,5]	10	19	342	/0982	171.125	11546	/0.505	5.00
	48	48	U[3,4]	U[2,3]	15	23	345	54576	170.502	11587	73.58	3.710
	49	49	U[3,4]	U[2,3]	18	20	360	50575	189.371	15120	44.623	4.162
	50	50	U[3.4]	U[2.3]	15	25	375	30120	196.586	8991	44.320	4.32
	51	51	U[2 /]	U[2,2]	21	10	200	77805	200.02	12254	44 522	1 997
	51	51	U[3,4]	U[2,3]	21	17	105	07(00)	200.93	10204	44.525	4.007
	52	52	0[3,4]	0[2,3]	27	15	405	8/628	201.76	10622	44.623	4.434
	53	53	U[3,4]	U[2,3]	18	23	414	82585	205.36	15236	49.326	4.423
	55	55	U[3,4]	U[2,3]	21	20	420	38178	213.98	5796	50.356	4.703
	56	56	U[3 4]	U[2 3]	18	25	450	56901	225.81	13376	52 963	3 25
	57	57	U[2,4]	U[2,3]	21	22	102	70952	222.01	12015	52.505	4 0.025
	57	57	0[5,4]	0[2,5]	21	23	405	19052	225.52	15645	52.027	4.985
	58	58	U[3,4]	U[2,3]	27	19	513	88956	225.66	15852	52.071	4.611
	59	59	U[3,4]	U[2,3]	21	25	525	46904	227.27	9003	52.962	5.654
	60	60	U[3,4]	U[2,3]	27	20	540	43615	256.62	4714	52.987	5.64
	61	61	11[2 4]	U[1 3]	40	30	1200	180659	538.2	18530	448 5	8 7 5
	01	01	U[2,4]	U[1,3]	40	25	1400	220002	539.10	21450	440.159	0.75
	02	02	0[2,4]	0[1,5]	40	55	1400	330003	528.19	51459	440.138	9.77
	63	63	U[2,4]	U[1,3]	50	30	1500	435249	661.31	41217	551.092	9.56
	64	64	U[2,4]	U[1,3]	40	40	1600	227569	733.98	23015	611.65	8.89
	65	65	U[2.4]	U[1.3]	50	35	1750	515273	777.53	51766	647.942	8.95
	66	66	11[2 /1]	U[1,2]	40	15	1800	178/38	807 52	17402	7/7 033	0.25
	00	00	U[2,4]	U[1,5]	40	40	1000	170430	790.1	17402	747.933	9.25
	67	67	0[2,4]	0[1,3]	60	30	1800	334/1/	/89.1	28152	970.593	10.89
	68	68	U[2,4]	U[1,3]	40	50	2000	186797	1006.33	22626	838.608	7.26
	69	69	U[2,4]	U[1,3]	50	40	2000	548875	950.56	55125	792.133	8.96
	70	70	U[2.4]	U[1,3]	40	52	2080	183852	973.83	19856	797.362	8.259
	71	71	1112 /1	U[1 3]	60	35	2100	305751	953 94	20830	1173 346	9.25
	71	71	U[2,+]	U[1,3]	70	20	2100	270000	001.04	20021	2000 727	11 54
	12	12	0[2,4]	0[1,3]	/0	30	2100	3/9088	901.94	30231	2899.131	11.54
	73	73	U[2,4]	U[1,3]	40	55	2200	182973	1109.73	17895	983.408	9.224
	75	75	U[2,4]	U[1,3]	50	45	2250	664356	1109.81	57371	924.842	10.58
Great size	76	76	U[2.4]	U[1.3]	60	40	2400	365551	1119.3	36464	1376.739	9.03
	77	77	11[2 4]	U[1 3]	70	35	2450	703450	1115 66	60176	3586 847	10.69
	70	70	U[2,1]	U[1,0]	50	50	2500	776196	1200	61907	1500	11.54
	/0	/0	0[2,4]	0[1,5]	50	50	2300	//0100	1500	01097	1399	11.34
	79	/9	U[2,4]	U[1,3]	40	65	2600	285658	1300.86	22025	1602.258	11.656
	80	80	U[2,4]	U[1,3]	60	45	2700	399334	1301.56	36254	1600.919	10.02
	81	81	U[2.4]	U[1.3]	50	55	2750	778985	1112.63	66584	964.057	10.699
	82	82	11[2 4]	U[1 3]	70	40	2800	271554	1560	N/A	N/A	N/A
	02	02	U[2,4]	U[1,3]	60	50	2000	116016	2258.07	N/A	N/A	NI/A
	83	83	0[2,4]	0[1,3]	60	50	3000	440240	3238.97	IN/A	IN/A	IN/A
	84	84	U[2,4]	U[1,3]	50	65	3250	487589	1658.25	N/A	N/A	N/A
	85	85	U[2,4]	U[1,3]	60	55	3300	332557	4165.35	N/A	N/A	N/A
	86	86	U[2.41	U[1.3]	70	55	3850	798258	1325.36	N/A	N/A	N/A
	87	87	11[2 /1	U[1 2]	60	65	3000	273854	2265 22	N/A	N/A	N/A
	07	07	U[2,4]	U[1,5]	70	05	4200	450070	2203.23	1 N/ / A	1 N/ / A	1 N/ / A
	88	88	0[2,4]	U[1,3]	70	60	4200	458272	2210.02	IN/A	IN/A	IN/A
	89	89	U[2,4]	U[1,3]	70	65	4550	985025	3873.58	N/A	N/A	N/A
	90	90	U[2,4]	U[1,3]	70	70	4900	575092	4160	N/A	N/A	N/A

Figure 6 depicts the convergence behavior of BPSO for the (T=50 and NR=40) instance. This figure shows the improvement of average solution quality of this instance over the number of Iterations.

Figure 7 illustrates the running time (s) (BPSO, CPLEX). The running time is exponential linear.

Figure 6. Decrease of cost function

Figure 7. The running time (BPSO-CPLEX)

5. CONCLUSION

Most of the research's scholars are interested in integrating carbon emission constraint within the lot-sizing problem. In this article, we have focused on integrating hard particles different in their nature. These emissions contribute riskily to increasing air pollution, which negatively affects the environment, especially by major industrial companies, in general, and companies of construction materials and cement, in particular. In this article, we have solved a lot-sizing problem. The description model of this later is production unit and a distribution network (size, number and location) in different retailers in time under cumulative particulate matters emission constraint.

A mixed-integer programming model has been constructed the problem is NP-hard. We have developed a binary particle swarm optimization one for solving it. The BPSO approach that was proposed is powerful and delivers high-quality solutions within a short running time.

Based on the discussions and analysis of this study trend of Binary swarm intelligence optimization for solving the green lot-sizing problem,

Through this study, we have developed a specialized software that is also a decision support system Creates a decision support system to help business managers make decisions in time and space, quantity to trigger production and distribute in a sustainable environment while satisfying the customer at the lowest total cost and on the other hand respecting cumulative emissions.

We give some perspectives from the problems aspects, approaches and constraints for future works.

- The real-world constraints must be considered if we want to solve lot-sizing problem in the various industrial environments. Through considering the real-life constraints, we can put the planning results included within the theoretical research into a specific field or a specific transport and products storage as a helping tool for making decision.
- Minimizing energy consumption in transports and production are two new objectives to seek in integrating the problem of turning the vehicle and production scheduling problems with the green lot-sizing problem.
- Efficient hybrid swarm intelligence optimization with the local search is vital for solving the green lot-sizing problem.
- The models and planning strategies for multi-product and multi-objective optimization remain a challenging issue, which needs to be further studied for the lot-sizing problem.
- Comparing the results of the study with metaheuristic such as ant colonies

ACKNOWLEDGMENT

National Higher School of Technology and Engineering has generously supported the research. The author would like to express their sincere appreciation for all support provided. We would like to thank Pr. A. Driss and R. Zeggada for checking our English phrasing.

REFERENCES

[1] Sarker, B.R. (2014). Consignment stocking policy

models for supply chain systems: A critical review and comparative perspectives. International Journal of Production Economics, 155: 52-67. https://doi.org/10.1016/j.ijpe.2013.11.005

- [2] Tempelmeier, H., Hilger, T. (2015). Linear programming models for a stochastic dynamic capacitated lot sizing problem. Computers & Operations Research, 59: 119-125.https://doi.org/10.1016/j.cor.2015.01.007
- [3] Lee, A.H., Kang, H.Y., Lai, C.M., Hong, W.Y. (2013). An integrated model for lot sizing with supplier selection and quantity discounts. Applied Mathematical Modelling, 37(7): 4733-4746. https://doi.org/10.1016/j.apm.2012.09.056
- [4] Rapine, C., Penz, B., Gicquel, C., Akbalik, A. (2018). Capacity acquisition for the single-item lot sizing problem under energy constraints. Omega, 81: 112-122. https://doi.org/10.1016/j.omega.2017.10.004
- [5] Manikas, A., Godfrey, M. (2010). Inducing green behavior in a manufacturer. Global Journal of Business Research, 4(2): 27-38.
- [6] El Saadany, A.M.A., Jaber, M.Y., Bonney, M. (2011). Environmental performance measures for supply chains. Management Research Review, 34(11): 1202-1221. https://doi.org/10.1108/01409171111178756
- [7] Hua, G., Cheng, T.C.E., Wang, S. (2011). Managing carbon footprints in inventory management. International Journal of Production Economics, 132(2): 178-185. https://doi.org/10.1016/j.ijpe.2011.03.024
- [8] Bouchery, Y., Ghaffari, A., Jemai, Z., Dallery, Y. (2012). Including sustainability criteria into inventory models. European Journal of Operational Research, 222(2): 229-240.https://doi.org/10.1016/j.ejor.2012.05.004
- [9] Benjaafar, S., Li, Y., Daskin, M. (2012). Carbon footprint and the management of supply chains: Insights from simple models. IEEE Transactions on Automation Science and Engineering, 10(1): 99-116.https://doi.org/10.1109/TASE.2012.2203304
- [10] Absi, N., Dauzère-Pérès, S., Kedad-Sidhoum, S., Penz, B., Rapine, C. (2013). Lot sizing with carbon emission constraints. European Journal of Operational Research, 227(1): 55-61. https://doi.org/10.1016/j.ejor.2012.11.044
- [11] Dye, C.Y., Yang, C.T. (2015). Sustainable trade credit and replenishment decisions with credit-linked demand under carbon emission constraints. European Journal of Operational Research, 244(1): 187-200. https://doi.org/10.1016/j.ejor.2015.01.026
- [12] Palak, G., Ekşioğlu, S.D., Geunes, J. (2014). Analyzing the impacts of carbon regulatory mechanisms on supplier and mode selection decisions: An application to a biofuel supply chain. International Journal of Production Economics, 154: 198-216. https://doi.org/10.1016/j.ijpe.2014.04.019
- [13] Nouira, I., Hammami, R., Frein, Y., Temponi, C. (2016). Design of forward supply chains: Impact of a carbon emissions-sensitive demand. International Journal of Production Economics, 173: 80-98. https://doi.org/10.1016/j.ijpe.2015.11.002
- [14] Sazvar, Z., Mirzapour Al-e-hashem, S.M.J., Govindan, K., Bahli, B. (2016). A novel mathematical model for a multi-period, multi-product optimal ordering problem considering expiry dates in a FEFO system. Transportation Research Part E: Logistics and Transportation Review, 93: 232-261.

https://doi.org/10.1016/j.tre.2016.04.011

 [15] Jaber, M.Y., Glock, C.H., El Saadany, A.M. (2013). Supply chain coordination with emissions reduction incentives. International Journal of Production Research, 51(1): 69-82.
 https://doi.org/10.1080/00207543.2011.651656

https://doi.org/10.1080/00207543.2011.651656

- [16] Florian, M., Klein, M. (1971). Deterministic production planning with concave costs and capacity constraints. Management Science, 18(1): 12-20. https://doi.org/10.1287/mnsc.18.1.12
- [17] Bonney, M., Jaber, M.Y. (2011). Environmentally responsible inventory models: non classical models for a non-classical era. International Journal of Production Economics, 133(1): 43-53. https://doi.org/10.1016/j.ijpe.2009.10.033
- [18] Mirabelli, G., Solina, V. (2022). Optimization strategies for the integrated management of perishable supply chains: A literature review. Journal of Industrial Engineering and Management, 15(1): 58-91. https://doi.org/10.3926/jiem.3603
- [19] Song, J.P., Leng, M.M. (2012). Analysis of the singleperiod problem under carbon emissions policies. In: Choi, TM. (eds) Handbook of Newsvendor Problems. International Series in Operations Research & Management Science, vol. 176. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3600-3_13
- [20] Chen, X., Benjaafar, S., Elomri, A. (2013). The carbonconstrained EOQ. Operations Research Letters, 41(2): 172-179. https://doi.org/10.1016/j.orl.2012.12.003
- [21] Zhang, G.Q., Ma, L.P. (2009). Optimal acquisition policy with quantity discounts and uncertain demands. International Journal of Production Research, 47(9): 2409-2425.

https://doi.org/10.1080/00207540701678944

- [22] Zhang, M.J., Kucukyavuz, S., Yaman, H. (2012). A polyhedral study of multi-echelon lot sizing with intermediate demands. Operations Research, 60(4): 918-935. https://doi.org/10.1287/opre.1120.1058
- [23] Zhang, Z.H., Jiang, H., Pan, X.Z. (2012). A Lagrangian relaxation based approach for the capacitated lot sizing problem in closed-loop supply chain. International Journal of Production Economics, 140(1): 249-255. https://doi.org/10.1016/j.ijpe.2012.01.018
- [24] Zhang, B., Xu, L., (2013). Multi-item production planning with carbon cap and trade mechanism. International Journal of Production Economics, 144(1): 118-127. https://doi.org/10.1016/j.ijpe.2013.01.024
- [25] Rosic, H., Jammernegg, W. (2013). The economic and environmental performance of dual sourcing: A newsvendor approach, International Journal of Production Economics, 143(1): 109-119. https://doi.org/10.1016/j.ijpe.2012.12.007
- [26] Konur, D., Schaefer, B. (2014). Integrated inventory control and transportation decisions under carbon emissions regulations: LTL vs. TL carriers. Transportation Research Part E: Logistics and Transportation Review. 68: 14-38. https://doi.org/10.1016/j.tre.2014.04.012
- [27] Ghosh, A., Jha, J.K., Sarmah, S.P. (2017). Optimal LoTsizing under strict carbon cap policy considering stochastic demand. Applied Mathematical Modelling, 44: 688-704. https://doi.org/10.1016/j.apm.2017.02.037
- [28] Fahimnia, B., Sarkis, J., Choudhary, A., Eshragh, A. (2015). Tactical supply chain planning under a carbon

tax policy scheme: A case study. International Journal of Production Economics, 164: 206-215. https://doi.org/10.1016/j.ijpe.2014.12.015

- [29] Hammami, R., Nouira, I., Frein, Y. (2015). Carbon emissions in a multi-echelon production-inventory model with lead time constraints. International Journal of Production Economics, 164: 292-307. https://doi.org/10.1016/j.ijpe.2014.12.017
- [30] He, Y., Li, Y., Wu, T., Sutherland, J. (2015). An energyresponsive optimization method for machine tool selection and operation sequence in flexible machining job shops. Journal of Cleaner Production, 87(1): 245-254. https://doi.org/10.1016/j.jclepro.2014.10.006
- [31] Martí, J.M.C., Tancrez, J.S., Seifert, R.W. (2015). Carbon footprint and responsiveness trade-offs in supply chain network design. International Journal of Production Economics, 166: 129-142. https://doi.org/10.1016/j.ijpe.2015.04.016
- [32] Koca, E., Yaman, H., Aktürk., M.S. (2015). Stochastic lot sizing problem with controllable processing times. Omega, 53: 1-10. https://doi.org/10.1016/j.omega.2014.11.003
- [33] Zhou., S.H., Zhou, Y.L., Zuo, X.R., Xiao, Y.Y., Cheng Y. (2018). Modeling and solving the constrained multiitems lot-sizing problem with time-varying setup cost. Chaos, Solitons and Fractals, 116: 202-207. https://doi.org/10.1016/j.chaos.2018.09.012
- [34] Purohit, A.K., Shankar, R., Dey, K.P., Choudhary, A. (2016). Non-stationary stochastic inventory lot-sizing with emission and service level constraints in a carbon cap-and-trade system. Journal of Cleaner Production, 113: 654-661.

https://doi.org/10.1016/j.jclepro.2015.11.004

- [35] Claassen G.D.H., Kirst, P., Thai Thi Van, A., Snels, J.C.M.A., Guo, X., van Beek, P. (2024). Integrating timetemperature dependent deterioration in the economic order quantity model for perishable products in multiechelon supply chains. Omega, 125: 103041. https://doi.org/10.1016/j.omega.2024.103041
- [36] Kennedy, J., Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-International Conference on Neural Networks, Perth, WA, Australia, pp. 1942-1948. https://doi.org/10.1109/ICNN.1995.488968
- [37] Driss, I. (2021). Binary particle swarm optimization for one warehouse multi retailer problem with cumulative particulate matter constraint. In 2021 International Conference on Control, Automation and Diagnosis (ICCAD), Grenoble, France, pp. 1-6. https://doi.org/10.1109/ICCAD52417.2021.9638769
- [38] Boonmee, A., Sethanan, K. (2016). A GLNPSO for multi-level capacitated lot-sizing and scheduling problem in the poultry industry. European Journal of Operational Research, 250(2): 652-665. https://doi.org/10.1016/j.ejor.2015.09.020
- [39] Chen, Y.Y., Lin, J.T. (2009). A modified particle swarm optimization for production planning problems in the TFT Array process. Expert Systems with Applications, 36(10): 12264-12271. https://doi.org/10.1016/j.eswa.2009.04.072
- [40] Izakian, H., Ladani, B.T., Abraham, A., Snasel, V. (2010). A discrete particle swarm optimization approach for grid job scheduling. International Journal of Innovative Computing, Information and Control, 6(9): 1-

15.

- [41] Han, Y., Tang, J., Kaku, I., Mu, L. (2009). Solving uncapacitated multilevel lot-sizing problems using a particle swarm optimization with flexible inertial weight. Computers & Mathematics with Applications, 57(11-12): 1748-1755. https://doi.org/10.1016/j.camwa.2008.10.024
- [42] Pant, M., Thangaraj, R., Abraham, A. (2009). Particle swarm optimization: Performance tuning and empirical analysis. In Foundations of Computational Intelligence. Berlin, Heidelberg: Springer, pp. 101-128. https://doi.org/10.1007/978-3-642-01085-9 5
- [43] Parapar, J., Vidal, M.M., Santos, J. (2012). Finding the best parameter setting: Particle swarm optimisation. In 2nd Spanish Conference on Information Retrieval, pp. 49-60.

NOMENCLATURE

Indices

Τ	Number	of p	eriods
		-	

- *NR* Number of retailers
- *t* Index of periods, t=1, 2, ..., T
- *i* Index of retailers, i=1, 2, ..., NR
- *M* Number of particulate matters
- *m* Index of particulate matters m=1, 2, ...M

Parameters

dit	Amount of demand of retailer i at the end period t
pe_k^m	PM emission quota per unitary product in
PE_k^m	Maximum unitary PM emission per period

Production

Can _t	Total	production	capacity	of plant	during	period t
Cupi	TOtal	production	capacity	or plant	uuring	periou i

p_t	Unitary cost of production
fp _t	Setup cost of production

Delivery

*ut*_t delivery cost for unit of product

Holding

sd _t	Unitary holding cost for distribution center in
	period i
C 1	

- fd_t Setup cost for distribution center in period i
- *sr*_{it} Unitary holding cost for retailer i in period t

*fr*_{it} Setup cost for retailer i in period t

Variable decision

X_t	Quantity produced in period t
y t	Binary variable there is or no production in period
	t
id _t	Inventory level in distribution center at period t
yd _t	Binary variable there is or no stock in DC in period
	t
ir it	Inventory level for retailer i in period t
yr it	Binary variable there is or no stock in retailer i in
	period t
qlr _{it}	Quantity delivered to retailer I at period t
X	Swarm of particles
р	Index of swarm
Р	Maximum number of particles
iter	Index of iterations
ω	Inertia weight
<i>C</i> 1, <i>C</i> 2	Positive acceleration which control the influence
	of <i>gbest</i> and <i>pbest</i> in search process
r1, r2 ,	Random variable uniform distribution
r	